
Tool Construction for the British Airways SEE

with the O2 ODBMS*

Wolfgang Emmerich

Interoperable Systems Research Centre, City University, London EC1V 0HB, UK

Jim Arlow

LogOn Technology Transfer, Burgweg 14, 61476 Kronberg, Germany

Jo�elle Madec

O2Technology, 7 rue du Parc Clagny, 78000 Versailles, France

Mark Phoenix

British Airways Plc, TBE (E124), Viscount Way, Hounslow, UK

Keywords: Software engineering environments, tool generation, object databases

Software engineering environments (SEE) support the con-
struction and maintenance of large-scale software systems.
They integrate tools for the production and maintenance
of documents such as requirements de�nitions, architec-
ture de�nitions or user manuals. Very few SEE tools
meet all the developers' requirements. Some requirements
that are important in practice have not been appropri-
ately addressed. These are inter-document consistency
handling, version and con�guration management and co-
operative work. We claim that the reason for current tools
not meeting these requirements is the fact that the re-
quired database support for maintaining documents is only
now becoming available. The British Airways SEE meets
these new requirements. Its tools were constructed us-
ing the O2 object database management system, which
has been extended to become a database management
system for software engineering. We discuss the expe-
riences we made during tool construction for this SEE.
c
 1997 John Wiley & Sons

1. Introduction

A software development process that develops and

maintains a software system consists of a number of dif-

Received March 1, 1996; revised March 4, 1997; accepted May
23, 1997.
Recommending editors: Remo Pareschi and Mario Tokoro..

* This work has been funded by ESPRIT-III Project 6115
(GOODSTEP). It was done while the �rst author was with Uni-
versity of Dortmund, Germany and the second author was with
British Airways Plc.

c
 1997 John Wiley & Sons, Inc.

ferent tasks. Examples are requirements analysis tasks
through which the requirements of future customers of a
software system are elicited or architectural design tasks
through which the di�erent components of software
systems and relationships among them are identi�ed.
The implicit assumption of the Waterfall model [41],
that these tasks be performed in mutual exclusion, has
proved to be unsound [9]. Tasks are, in fact, performed
in an incremental and intertwined manner [49, 23].

The purpose of each task is to produce a set of doc-
uments, such as use cases during requirements analysis
or Booch class diagrams [10] during architectural de-
sign. Such documents are written in formal graphical
or textual languages. These languages determine docu-

ment types and the purpose of each task of a software
process is to create, analyse and maintain documents of
the types identi�ed for that task. Document types are
de�ned in terms of syntax and static semantics of the
underlying speci�cation languages.

Apart from static semantic constraints of the for-
mal languages, there are also consistency constraints be-
tween di�erent documents. These inter-document con-

sistency constraints are not con�ned to documents of
the same type but frequently exist between documents
of di�erent types. Such a constraint may require, for
instance, that each class identi�ed in an analysis model
should be re�ned by a class of the same name in the
Booch design model. A major problem is that the mix

THEORY AND PRACTICE OF OBJECT SYSTEMS, Vol. 24(4), 1 19 1997 CCC 1042-98329/94/020253-18

of document types is process speci�c. A process de-

veloping a safety critical real-time application will use

document types induced by languages such as Z [44] and

Ada [17] which di�er considerably from those used in a

traditional information system development, i.e. entity

relationship diagrams and fourth generation languages.

The need arises to assist software developers in the

production of documents that meet inter-document con-

sistency constraints. Software developers, which we re-

fer to as users hereafter, require a tool for each doc-

ument type. Such a tool should then implement the

language associated with the document type and o�er

commands to edit documents. During editing the tool

should be supportive in achieving syntactic and static

semantic correctness of documents, browsing of seman-

tically related documents and it must check for inter-

document consistency. Checking for constraints with

documents of other types requires tools to be integrated

into a software engineering environment (SEE). Due to

the fact that inter-document consistency constraints de-

pend on the process-speci�c mix of document types, a

need arises to support SEE construction and customi-

sation.

A process-centred software engineering environment

is an SEE that also has a component called a process

engine. The process engine maintains knowledge about

the software process, the particular state a development

project currently has and sometimes even the evolution

of development states over time. In doing so, it guides

developers through tasks they are obliged to perform,

automates particular tasks and controls the way mul-

tiple users cooperate. Examples of such environments

are Merlin [37], Melmac [16], and Marvel [7].
The main contributions of the GOODSTEP project

to solving the problems of construction and customisa-
tion of process-centred SEEs are the following:

� The O2 database system [3] has been extended with
object-level concurrency control, a version man-
ager, object-oriented views [42], triggers [13] and
schema updates [25] so as to become a database
suitable for the construction and customisation of
process-centred software engineering environments.

� The process modelling language SLANG [5] was
de�ned and a process engine interpreting SLANG
models was implemented. It controls tool execution
and therefore guides the overall development pro-
cess. An account on the use of O2 for the SLANG
interpreter implementation is given in [4].

� The GOODSTEP Tool Speci�cation Language
(GTSL) [20] was de�ned and GENESIS, a compiler
for this language has been implemented. GENESIS
generates object database schemas that implement
the structure of documents and the commands of-
fered by the respective tools.

SPADE, GENESIS and the O2 database system with
its extensions were evaluated during the construction of
an SEE for British Airways. British Airways is one of
the largest software developers in the U.K. currently
with some 2,000 IT sta�. In order to simplify main-
tenance of their applications and increase productivity
during their development, for instance through corpo-
rate reuse, a number of projects at BA are being de-
veloped using object-oriented techniques and C++ [18]
as the programming language. The IT division has es-
tablished a group that is in charge of development and
maintenance of libraries containing reusable classes that
are considered of importance for the carrier.

The use of SPADE, GENESIS and the O2 database
for the construction of the BA SEE is outlined in FIG. 1.
The purpose of the SEE is to support the development
and maintenance of reusable class libraries. A SLANG
process model de�nes di�erent roles for BA software en-
gineers and de�nes the way developers at British Air-
ways cooperate. GTSL speci�cations de�ne a number

BA Process Model
 (SLANG)

Booch Diagram
 Editor

 C++ Class
Definition Editor

 C++ Method
Implementation Editor

 Class Documentation
 Editor

BA SEE Specification

invo
ke

s

Booch Diagram
 Schema

 C++ Class
Definition Schema

 C++ Method
Implementation Schema

 Class Documentation
 Schema

Tool Schemas

 Process
Schema

G
E

N
E

S
IS

ge
ne

ra
te

s

G
E

N
E

S
IS

ge
ne

ra
te

s

G
E

N
E

S
IS

ge
ne

ra
te

s

S
P

A
D

E
ge

ne
ra

te
s

 BA SEE
Database Schema

co
ntro

ls

GTSL Tool Specifications

G
E

N
E

S
IS

ge
ne

ra
te

s

FIG. 1. Construction of the British Airways SEE

2 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

of tools that BA software engineers can use to develop

class libraries. SPADE transforms the process model

into a schema that is used to store the state of the ac-

tual process. GENESIS is used to generate schemas for

the di�erent tools. These schemas de�ne the structure

of documents and implement the tool commands avail-

able for document creation and modi�cation.

Our experiences when de�ning the BA process model

and its integration with the generated tools are the sub-

ject of a companion paper [21]. The focus of this paper

is on how O2 was exploited for the construction of BA

SEE tools.

This paper is structured as follows. In Section 2, we

discuss major problems software developers at British

Airways are faced with in their daily work. These prob-

lems lead to the requirements de�nition for tools for the

BA SEE. Section 3 discusses how documents should be

represented so as to meet these requirements. In Sec-

tion 4 we discuss extensions to the O2 system that were

done within GOODSTEP and focus on how they were

exploited for the construction of the BA SEE tools. In

Section 5 we present an evaluation of the BA SEE and

trace results to their origin in the O2 system. Section 6

relates our work to the literature and we conclude the

paper in Section 7.

2. Requirements for BA SEE Tools

2.1. Inter-Document Consistency

The British Airways reuse group has adopted the
Booch methodology [10] for the design of reusable
classes. It has developed corporate programming guide-
lines that de�ne a subset of C++ that is approved for
use. This subset excludes a number of C++ constructs,
such as ellipses, friends and inlines, whose application
might create problems such as statically uncheckable
parameter lists or the broken encapsulation of classes.
Moreover, each class of a library has to be accompanied
with appropriate documentation. Without documenta-
tion, client projects were not able to e�ectively reuse
these classes. In summary, documents of four types
have to be produced and maintained. These are Booch
class diagrams, C++ class interfaces, C++ method im-
plementations and appropriate documentation for C++
classes. Examples of these document types are dis-
played in FIG. 2 at the user interface of the BA SEE.

Documents of these types must meet a number of
inter-document consistency constraints. A class iden-
ti�ed in a Booch diagram must be re�ned in a C++
class interface de�nition. `Inheritance' and `has' rela-
tionships included in the diagram must be properly im-

FIG. 2. User Interface of the BA SEE

THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 3

plemented in the class interface and vice versa. Member
functions declared in a class interface should be imple-
mented in the implementation document of the class.
The member function must be described in the docu-
mentation document of the class. In both cases, the sig-
natures for the member function must match the ones
in the class interface. There are also inter-document
consistency constraints between di�erent documents of
the same type. Class forward declarations, which can
be considered as imported classes, should be declared in
another class interface document. #include preproces-
sor statements should denote �lenames that have been
de�ned for another class interface document. These
constraints are only a few examples and in reality a
much higher number of constraints exist between these
four document types.

BA software engineers are not able to maintain all
these constraints manually. Some constraint violations
that involve C++ class interfaces and method imple-
mentations can be detected by the C++ compiler.
Some are only detected by the linker (e.g. class for-
ward declarations that have not been implemented).
Both compiler and linker, however, are not particularly
supportive in resolving inconsistencies, leaving these to
the user. Moreover, the compiler can only be used if
all imported classes are available and the document is
complete. We agree with [49] that constraint viola-
tions should be detected at much earlier stages. Inter-
document constraints beyond those implemented by the
C++ compiler/linker are not checked at all. Tools for
developing Booch diagrams, already on the market, can
generate an initial code fragment for a C++ class, but
after the generation has been completed, consistency
between the Booch diagram and the C++ class inter-
face is no longer maintained by these tools. Changes
to a C++ class interface will not be re
ected in the
Booch diagram and, vice versa, incremental changes to
a Booch diagram cannot be incorporated into the class
interface without losing work spent on the generated in-
terface. The situation for documentation is even worse,
because there are no tools at all that support the BA
documentation standard. Hence keeping the documen-
tation of a class consistent with its interface de�nition
is highly labour intensive and often not done, which
renders the documentation useless. What is required
is an environment, containing four integrated tools for
the above document types that support the checking
and preservation of the inter-document consistency con-
straints identi�ed. There are several strategies to be
considered for constraint handling.

CONSTRAINT ENFORCEMENT:

The straightforward strategy to handle constraints is
to simply prevent users from introducing violations by
rejecting erroneous input. Although this is inappro-

priate in many cases (see below), there are constraints
that ought to be handled this way. As an example, con-
sider names of class icons in Booch diagrams that repre-
sent class libraries. These class names should be unique
within the scope of not only one but any diagram. If
there were two classes with the same name contained in
di�erent libraries, these libraries could never be reused
together. Typically di�erent developers are in charge
of di�erent diagrams. Considerable communication be-
tween the developers would be required to resolve a con-
straint violation. In particular, a developer might not
understand why his or her class name all of a sudden
ceases to be unique. This overhead cannot be justi-
�ed compared to just choosing another name when the
tool has detected a duplicate. In cases like this, tools
should therefore follow a strategy of constraint enforce-
ment and reject erroneous input.

CHANGE PROPAGATIONS:

The above constraint enforcement is inappropriate
when a part of a document must be changed that is
already consistent with other parts in other documents.
As an example, consider changing a name of a class icon
in a Booch diagram. If the name is consistent with the
C++ class interface it will become inconsistent after the
change. We cannot enforce the constraint, because then
we could never change the name of an existing class. To
solve this dilemma, consistency can be retained by ex-
plicit actions of the interface tool, if it is informed about
a change by the Booch tool. The interface tool might
then take the necessary action and in the above exam-
ple change the class name, the names of constructors
and destructors and make appropriate modi�cations to
all the types that were using the class. This relieves de-
velopers of the mundane and error-prone task of imple-
menting the change manually in the interface. The class
interface tool might then even inform tools working on
transitively dependent documents, which are the imple-
mentation and documentation tools of the BA SEE, so
that they can deal with the change. We refer to this
mechanism as change propagation. It preserves consis-
tency during changes by informing related tools to take
explicit action.

Propagations can be seriously damaging if tools can-
not ensure atomicity and durability of changes. As with
many other tool commands, users clearly expect that
propagations are either done completely, or not at all.
Moreover, they expect that the e�ect of complete prop-
agations are stored persistently so that they will not be
a�ected by future failures.

VIOLATION TOLERATION:

Constraints will not be violated if tools only imple-
ment the constraint enforcement and change propaga-
tion strategies. There are, however, constraints that de-

4 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

velopers might want to violate temporarily. An example
in the BA SEE is a class forward declaration. If devel-
opers are always forced to meet the constraint that the
forward declared class must be declared in some other
class interface, then they could not use classes to be
designed in the future. As a consequence library design
would have to be done strictly bottom-up. A top-down
or hybrid strategy would be inhibited by the constraint
handling strategy.

Again, we agree with [49] that this is undesirable. A
violation toleration strategy seems more appropriate for
constraints upon declarations and their applied occur-
rence. In general, any inconsistency between a declara-
tion and an applied occurrence that can be recti�ed at
the declaration should be tolerated. Hence, other viola-
tions that need to be tolerated include provision of the
wrong number of actual parameters in a method call
or the assignment of incompatible types. Tools should
highlight temporary inconsistencies e.g. by using an-
other colour or another font, so as to draw the user's
attention to their existence.

2.2. Version and con�guration management

In our experience, the management of reusable class
libraries is impossible without proper version and con-
�guration management. Library component documents
are improved during library maintenance. Sometimes
new components are added to meet new requirements
or obsolete components are deleted. It is, however, es-
sential that any release that has been given to a client
project can be restored in the workspace of the reuse
group. This is required, for instance, if a project detects
a fault in a library that needs to be �xed urgently. Then
the reuse department must be able to locate the fault
within the release that the project is using. In general,
it is not feasible to force projects to use the most recent
release and, therefore, the reuse group may be asked to
produce releases of a library, �xing a particular fault
speci�cally for the project that has encountered it.

Available version and con�guration management sys-
tems do not precisely meet the reuse group's con�gura-
tion management needs. Systems such as SCCS [40] and
RCS [45] can manage versions of �les but they fail to
support library releases, i.e. con�gurations of versioned
�les. Stand-alone con�guration management systems,
such as CCC [43] or PVCS [31] su�er from two main prob-
lems. Firstly, these CM systems are not aware of inter-
document consistency constraints at all and put the
burden of selecting consistent components completely
on the user. Secondly, they demand maintenance of a
redundant component model, which might be embedded
in a physical design document that is produced anyway.

To solve these problems, version and con�guration
management should be tightly integrated with the tools
of the BA SEE. The library architecture that is de-

�ned within a Booch diagram serves as the component
model for con�guration management. Any class icon
in the Booch diagram is considered to represent three
component documents: the C++ class interface, the
C++ method implementation and the class documenta-
tion. Each of these documents has a version label, that
uniquely identi�es the current version of the document.
We attach the document's version labels as attributes to
the respective class icons in the Booch diagram. The en-
vironment will interpret these version labels as version
selection rules. Hence, a version of the Booch diagram
represents a con�guration of the library, and a diagram
version must be kept for each release.

The Booch tool should then provide a variety of ver-
sion and con�guration management commands: It must
support a means to freeze a consistent component. It
should also be able to freeze all components identi�ed
by the diagram if they are consistent with each other.
The other tools should respect this status and prevent
users from modifying a frozen component. Users should
be able to derive a successor version from a frozen com-
ponent version. A new version label should be auto-
matically computed during derivation of the successor
version and be associated with the class icon. Naviga-
tion to components should be supported by the Booch
tool in terms of opening commands. During execution
of such a command it should pass the component's ver-
sion label as a version selection rule to the interface,
implementation or documentation tools. These tools
should, in turn, respect the version semantics and ap-
ply changes only to the version identi�ed by the label.
In this way version labelling becomes fully transparent
to the user. Restoration of a particular release then
only requires the loading of the Booch diagram version
that corresponds to the release.

2.3. Cooperative Work

Most software development processes are performed
by multiple cooperating software engineers. This is also
the case for the development of reuseable libraries at
BA, where a group of six engineers cooperates. The
cooperation model for these engineers is de�ned in a
process model using the SLANG [5] formalism. The
model is enforced by the SPADE process engine [4]. A
full account of this modelling exercise is provided in [21].

No matter what cooperation policy is de�ned by a
process model, tools have to implement it. The four
editing tools of the BA SEE should, therefore, avoid
imposing restrictions on the process model. In this sub-
section we argue that editors requiring tools to lock doc-
uments during whole editing sessions are too restrictive
for the BA reuse process. Hence, the four editing tools
need to be constructed in a way that tighter cooperation
can be modelled and controlled by the process model.

THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 5

The di�erent libraries provided by the reuse group
are not totally independent of each other. Classes de-
�ned in one library are used by classes contained in
other libraries. Hence, developers responsible for the
di�erent libraries cannot work in complete isolation
from each other, but have to cooperate on the devel-
opment of the overall set of libraries maintained by the
group. In particular, before a set of related library con-
�gurations can be released, the developers have to share
their library con�gurations and must reach a state of
inter-document consistency, so that the libraries can
be compiled and tested. During this phase, develop-
ers want to use versions of classes from each other's
working library con�guration. They then expect to see
the e�ect of each other's changes immediately.

The reuse group is, for instance, maintaining a li-
brary BASQLXX that contains classes to send SQL queries
to relational databases. Some of these classes use class
BAString contained in library BALIBXX, which is dis-
played in FIG. 2. Now assume that an extension of
BASQLXX requires the introduction of a new function
upcase in BAString. Then the developer in charge of
BASQLXX asks his colleague responsible for BALIBXX to in-
troduce this function. He, however, starts using upcase

right away and the applied occurrences of upcase are,
therefore, marked erroneous. He expects, however, the
error marks to disappear as soon as his colleague has
de�ned upcase. Similarly changes to existing member
functions of a class, such as BAString, should be propa-

gated to classes in BASQLXX, even though a�ected classes
might be edited concurrently. These change propaga-
tions retain inter-document consistency and relieve the
developer responsible for BASQLXX from de�ning the re-
quired changes manually.

This style of computer supported cooperation is not
available at present because tools apply strict locking
policies that lock complete documents while they are
being edited, or even worse lock them while they are in a
working con�guration, i.e. have been checked out from
a common repository. On the other hand, some sort
of concurrency control scheme must be implemented so
as to avoid lost updates or inconsistent analysis prob-
lems, known from database systems [15], that can oc-
cur in software development tools as well [19]. Tools
should, therefore, apply a smart concurrency control
scheme that only locks those parts of documents that
are accessed and releases locks as soon as possible.

3. Document Representation

Documents should be represented as project-wide at-

tributed abstract syntax graphs (ASGs), as discussed
in [22, 20]. We discuss how the requirements delin-
eated above can be met using ASGs in this section.
ASG nodes are attributed. Attribute values represent
lexemes or semantic information such as references to
a string table, symbol table or error list. We distin-
guish between aggregation edges in the graph, which

1

dms

cl 1

2

1rels Relation
 ships

Booch
Diagram Classes Class

’BABaseString’

Class

Inherits
From

source

...n

...n

Class
Definition

id Class
Identifier

’BAString’

Inherited
ClassList

icl Inherited
 Class

’BABaseString’

public Public
Members

Data
Members

Member
Functions

mfs
Constructor OpName

name
’BAString’

Parameter
 List

Comment
’Mistakingly ...’

...n

protected
...

...private

Class
Definition

id Class
Identifier
Inherited
ClassList

icl

public

’BABaseString’

protected ...
...private

...

C++ Class Interface Subgraph

C++ Class Interface Subgraph

pl

’BAString’

DefinedIn

SuperClass

ToDesign

ToDesign

1
Parameter

type Type
Identifier

’BAString’

Constructs

Booch Diagram Subgraph

com

ClassDefi
nitionPool

target

BoochDia
gramPool

1

1

2

2

1
...

FIG. 3. Fragment of an Abstract Syntax Graph

6 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

implement syntactic relationships, and reference edges,

which arise from semantic relationships. Documents are

identi�ed by the subgraph whose node-set is the tran-

sitive closure of nodes reachable by aggregation edges

from document root nodes. Nodes that cannot have

out-going aggregation edges are called terminal nodes,

for they are derived from terminal symbols of the under-

lying grammar. Those nodes that may have out-going

aggregation edges shall be called non-terminal nodes.

As an example, consider FIG. 3, which displays an

excerpt of the ASG that represents documents displayed

in FIG. 2. The �gure shows three excerpts of docu-

ment subgraphs. The subgraph in the upper left cor-

ner represents the graphical Booch diagram. The sub-

graph below represents the class interface of the C++

class BAString and the subgraph in the upper right rep-

resents the class interface of BABaseString, the super

class of BAString. Attributes given in quotes at the

upper right corner of a node representation represent

lexemes. A number of attributes, like positional co-

ordinates, error lists and symbol tables, are omitted

for reasons of brevity. Aggregation edges are drawn

with solid arrows and reference edges are displayed as

dashed arrows. Although they are directed, edges are

considered traversable in both directions. Edges are di-

rected in order to determine the navigation direction

that is designated by the edge name. For aggregation

edges, the reverse direction has the implict name 'fa-

ther' and for reference edges, names for the reverse di-

rection can be explicitly de�ned. The two nodes of types

BoochDiagramPool and ClassDefinitionPool serve as di-

rectories for the respective document types and are the

starting point for queries that need to lookup a partic-

ular document of that type.

CONSTRAINT HANDLING STRATEGIES:

The various inter-document consistency constraint han-

dling strategies identi�ed above can be implemented ef-

�ciently on the basis of this document representation

scheme. Implementation of constraint enforcement can

be achieved by adoption of techniques known from com-

piler construction. Implementing checks for uniqueness

of class identi�ers, for instance, is a typical name anal-

ysis problem [32] and should be treated as such. Hence

we attach a symbol table attribute to the node of type

BoochDiagramPool. During insertion of a new class, the

Booch tool can then perform a look-up in this symbol

table in order to see whether the new name has been

introduced before. If this is not the case, it can add a

new class node to the list of class nodes, attach the des-

ignated class name to the lexeme attribute of that node

and insert a new association under the key of the new

class name into the symbol table. In the other case, it
can reject the user request and perform no changes to
the graph at all.

The implementation of change propagations exploits
the reference edges of the graph. We �rst have to con-
sider how these edges come into existence. Let us, there-
fore, continue the above example. After the Booch tool
has successfully created a new class, the tool would re-
quest the class interface tool to create a new class in-
terface subgraph. It would pass a reference to the class
node in the Booch diagram subgraph to the interface
tool. The interface tool would use this reference to es-
tablish the referenced edge DesignedIn between the new
ClassDefinition node and the Class node in the Booch
diagram subgraph. This reference is then exploited to
implement the change propagations to be done during
the changing of a class name. If such a change is done
by the Booch tool, it would exploit the reverse direction
of DesignedIn to �nd the a�ected class interface. If the
change is initiated by the class interface tool, it would
follow the original direction to �nd the a�ected node in
the Booch diagram subgraph. Note that in both cases
only constant time is required to traverse along an edge
and �nd the a�ected node.

In order to achieve atomic and durable change propa-
gations, the graph traversal and modi�cation operations
should be clustered together into atomic and durable
execution units that we refer to as transactions. If a
failure occurs during such a transaction, the ASG state
should be recovered to the state that it had after the
last completed transaction.

The constraint violation toleration strategy is the
most di�cult to achieve. It requires the maintenance
of constraint violations that nodes are causing. From
a structural point of view, each node must have an er-
ror set as an attribute. The elements of this set are
error descriptors denoting particular constraint viola-
tions. The error set is exploited during computation of
external document representation: The part of a docu-
ment corresponding to a node with a non-empty error
set is marked as erroneous. From a behavioural point of
view, we will then have to maintain the attribute values
of these error sets depending on the overall state of the
ASG. This is particularly complicated to specify and
implement e�ciently.

We suggest a rule-based formalism to specify depen-
dencies. We have described in [19] a way to generate a
dedicated rule interpreter that exploits the dependen-
cies between rules to perform incremental rule evalu-
ation and thus achieves a better performance than a
generic rule interpreter.

For reasons of brevity, we will have to restrict the
discussion here to a sketch of the main idea based
on an example. Consider the constraint in C++
that each constructor of a class must have the same
name as the class itself. This constraint can be ex-

THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 7

SPECIFICATION Constructor; ...

ON CHANGED(name.value) OR

CHANGED(Constructs.value) DO

ACTION

IF name.value == Constructs.value THEN

Errors.remove(#ConstructorNameMismatch)

ELSE

Errors.insert(#ConstructorNameMismatch)

ENDIF

END ACTION;

FIG. 4. GTSL Rule Checking Constructor Names

pressed in our rule-based formalism in the form dis-
played in FIG. 4. It de�nes that whenever the name of
the constructor (name.value) or the name of the class
(Constructs.value) have been changed the error set at-
tribute Errors will have to be modi�ed. If the names
match, the error descriptor #ConstructorNameMismatch

will be removed from the set, otherwise it will be in-
serted. Note how the speci�cation of this rule is based
on attributes and edges of the ASG.

A locally controlled two-phase evaluation algorithm
is generated from the dependencies determined by ref-
erences in the ON clauses of the rules. The idea of the
algorithm is as follows. Whenever an attribute is mod-
i�ed, a propagation phase marks all those attributes as
`dirty' whose nodes have rules that reference the mod-
i�ed attribute. Before a dirty attribute is accessed, an
evaluation phase brings the attribute back into `clean'
state. This requires all attributes which the accessed at-
tribute transitively depends on, to be brought into the
clean state �rst. This is done by executing the action
parts of the rules that modify the attributes. Then the
attribute is itself brought back into the clean state by
executing all rules that modify the attribute.

In the above example, the Errors attribute of a con-
structor node would be marked as dirty as soon as
the lexeme attribute value of the constructor name, or
the lexeme attribute value of the ClassIdentifier node,
were modi�ed. Before the Errors attribute is accessed
the next time, e.g. during the computation of an exter-
nal document representation, the attribute is brought
into the clean state by determining the attribute value
on the basis of the computations de�ned in the action
part.

VERSION MANAGEMENT:

The granularity for version management is de�ned by
the subgraphs of the ASGs that represent documents.
The identi�cation of these subgraphs is enabled by the
distinction between aggregation and reference edges. In
order to freeze such a subgraph we have to prevent the
creation or deletion of nodes and aggregation edges as
well as changes to the values of lexeme attributes. Note
that other attributes, like error sets, as well as refer-
ence edges might have to be modi�ed, even in a frozen
version of a subgraph. As an example, consider the in-

troduction of a new subclass of a frozen class. This will
require the creation of a reference edge SuperClass be-
tween an InheritedClass node and the ClassIdentifier
in the frozen version of the subgraph representing the
interface of the super class. A copy of a subgraph has to
be created to implement the derive operation. We note
that this copy should actually not be a physical copy,
because that would be too ine�cient in both space and
time.

COOPERATIVE WORK:

When several users are cooperating on the development
of related libraries, they are concurrently accessing a
shared ASG representing all the libraries. The con-
currency control scheme that we are looking for should
avoid imposing restrictions on developers' work as far
as possible and it must at the same time ensure the in-
tegrity of the graph in the face of concurrent updates.
We claim that conventional ACID transactions [28], if
they are used to implement single tool commands rather
than complete editing sessions, are well suited to imple-
ment the required concurrency control.

Executing a tool command, such as insertion of a new
member function template or expansion of a member
function identi�er template, will require a few hundred
milliseconds [19]. Redisplaying changes done after such
a command again requires a few hundred milliseconds.
If we start a transaction before the command execution
begins and commit it after the changes have been re-
displayed, it will most likely last for less than one and
a half second. Integrity preservation for concurrent up-
dates is achieved by the locking that the transaction
performs. It locks nodes that are being modi�ed in
exclusive mode and nodes that are being accessed in
read mode. Read locks are compatible with each other
while any other combination reveals a concurrency con-
trol con
ict. Note that the number of nodes that will
be locked during a transaction is very limited and the
duration for which locks are being held is very short.
In addition the tool will hold no locks at all when it
is idle. Because di�erent users are rarely working on
the same libraries, the chances of concurrency control
con
icts are fairly remote. If they occur, they can be
resolved by delaying one con
icting transaction or even
by aborting a con
icting transaction and restarting it
again.

4. Managing Abstract Syntax Graphs in

O2

In this section, we discuss how ASGs as introduced
in the previous section are implemented using the O2

ODBMS as extended in GOODSTEP. Before we dis-
cuss these extensions and their exploitation for ASG
implementation, we brie
y sketch why we have cho-

8 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

sen ODBMSs rather than conventional data stores. A
much more detailed review of available database sup-
port required for software engineering environments can
be found in [6].

4.1. Choosing a DBMS

The ASGs introduced in the previous section must
be stored persistently because they will have to sur-
vive editing sessions. Moreover, di�erent developers
will have to access the ASGs from di�erent worksta-
tions, or the graph itself might even be distributed over
several workstations. While these concerns could be
addressed by storing graphs as �les in a network �le
system, further considerations lead us to use database
systems instead. Any full-blown database system sup-
ports conventional ACID transactions that are required
to implement cooperative work, while network �le sys-
tems lack this support. Moreover, database systems can
protect the integrity of ASGs against hardware or soft-
ware failures, while network �le systems do not provide
this. Finally, databases e�ciently manage the transfer
between higher-level data structures in main memory
and their physical representation on secondary storage
media, while �le systems lack this secondary storage
management.

We have chosen object database management sys-
tems (ODBMS) [2] rather than relational database
management systems (RDBMS) for the storage of ASGs
for the following reasons. The data de�nition languages
available in ODMBSs can directly express graph struc-
tures, while graphs would have to be decomposed into
tables for management by RDMBSs. The schema def-
inition gets more complicated and the run-time per-
formance su�ers because RDBMSs have to compose
the graph during external documentation computation
by as many joins as there are node types to be ac-
cessed. Moreover, inheritance and the encapsulation
of data de�nitions supported by the concept of classes
in ODBMSs help to keep the complexity of ASG de�ni-
tions manageable and also contributes to their mainte-
nance. Finally, some object databases support version
management, which we will use for versioning those sub-
graphs of ASGs that represent documents. There are
no comparable mechanism available in RDBMSs.

Currently, there are about ten ODBMS products
in the market. The most relevant of these are Gem-
Stone [14], ObjectStore [34], Versant [27], Ontos [1]
and O2 [3]. A signi�cant step towards the standard-
isation of ODBMSs has been achieved by the object
database management group (ODMG-93) [12]. The
�rst ODBMSs that comply with this standard have
been released. The standard de�nes a common ob-
ject model, an object de�nition language (ODL), an
object query language (OQL) and programming lan-

guage bindings to C++ and Smalltalk so as to use them

as object manipulation languages (OML). As we shall

see later, these ODL and OMLs provide the expressive-

ness that is needed for expressing graph structures and

graph traversal and modi�cation operations. Capabili-

ties that are neither standardised nor commonly avail-

able in ODBMSs include version management of com-

posite objects and e�cient object-level locking. These

were added to the O2 system during the course of the

GOODSTEP project and are brie
y discussed now.

4.2. Extensions to the O2 System

4.2.1. Versions of Composite Objects

Two principles guided the design of the version man-
agement facility: generality and e�ciency. As a com-
ponent to be incorporated into a database system, the
version manager should be of general applicability for
a large variety of database applications that require
version management. This implies that the design of
the version manager should avoid imposing particular
version or con�guration management policies, but only
provide the basic mechanisms that applications would
use to de�ne their own policies. The second guiding
principle was e�ciency in both time and space. The
version management operations to be provided should
avoid slowing down the overall application performance
and at the same time the storage space of versioned
application data should not increase linearly with the
number of versions of application data to be maintained,
but linearly with the number of di�erences among the
di�erent versions.

The version manager provides versioning operations
that can be applied to a collection of objects, rather
than to single objects. These collections are dynami-
cally de�ned at run-time by insertion of single objects
into a version unit, rather than statically in the schema.
The slight performance overhead of this dynamic def-
inition is out-weighed by the greater
exibility that it
provides. In particular, the decision on the granularity
for versioning can be postponed until after the schema
has been de�ned and the same schema de�nitions can
be used to manage versioned and non-versioned objects.

The version manager implements a lazy object dupli-

cation strategy, which imporantly contributes both to
decreasing the time required for creation of a new ver-
sion and reducing the space the new version occupies.
Following this strategy, di�erent versions of a version
unit share the physical representation of any object in-
cluded in the version unit as long as that object does not
di�er in the di�erent versions. Hence, creating a new
version does not require to create objects anew. Ob-
jects are rather considered as multi-versioned objects.
As soon as a shared object is modi�ed in one version,

THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 9

however, a new copy of the object is created and regis-
tered within the multi-version object.

We note that this lazy object duplication strategy
interferes with the concurrency control protocol of the
database. Assume that an object is shared by two ver-
sions V1 and V2. If one transaction modi�es the object
in version V1, while some other transaction accesses the
object in version V2, a split has to be made. This split,
although being a modi�cation to the multi-version ob-
ject that is shared between the concurrent transactions,
must not cause a concurrency control con
ict. In that
case, one of the major objectives for having versions,
namely to isolate concurrent development with di�er-
ent versions of the unit for a certain period of time,
cannot be achieved. Instead the transaction manager
has to be integrated with the version manager so as to
not consider splits as modi�cations. This leads to the
general observation that version management with lazy
object duplication can never be implemented on top of
a database system that does not support version man-
agement.

The version manager is available to application pro-
grammers as a pre-de�ned class o2 Version. It o�ers
operations to modify the contents of the version unit
associated to an instance of the class by inserting or
deleting objects. It provides operations for deriving,
comparing, merging and selecting particular versions of
this version unit. Moreover, the class maintains a ver-
sion history graph and provides operations for querying
and navigating through the graph.

4.2.2. Object-level Concurrency Control

O2 has a client/server architecture, where the server
is in charge of concurrency control and storing pages on
disk, while the mapping of objects to pages as well as the
execution of schema and version management are per-
formed by the client. Clients and server exchange pages
that contain, in the case of the BA SEE, multiple ob-
jects because objects implement fairly small-sized ASG
nodes. A clustering mechanism [8] can be adjusted in
a way that related objects reside on the same page and
consequently the network overhead involved in transfer-
ring objects to the client is minimised.

Originally not only client/server communication,
but also concurrency control, which implements ACID
transactions, was page-based since the server was not
aware of the objects that resided on the pages it was
managing. We refer to this page-level concurrency
control as mode C A R hereafter. With a number of
small objects residing on a page, situations might occur
where the page-level concurrency control reveals con-

icts though the concurrent transactions were access-
ing disjoint sets of objects. The con
icts occurred just
because there were objects in the sets which by chance
resided on the same page.

O2 has been extended in GOODSTEP with object-
level concurrency control to resolve this undesirable be-
haviour. In the new mode OC A R concurrency control is,
by default, still page-based. As soon as a con
ict occurs,
however, the concurrency control switches to object-
level locking that is then implemented jointly by server
and client. It only reveals con
icts if the locks acquired
by transactions are really incompatible. The extension
is, therefore, done in a way that the bene�ts of smaller
network overhead, achieved by page-level client/server
communication and page-level concurrency control, are
retained as far as possible, but concurrency control con-

icts are restricted to concurrent transactions that ac-
tually do con
ict.

4.3. Exploitation of the Extended O2

4.3.1. Schema Generation

The object database schemas implementing ASGs for
complicated languages, such as Booch diagrams, C++
class de�nitions and method implementations, tend to
become rather complex. One reason for this is that even
powerful object de�nition and manipulation languages
as they are provided by ODBMSs do not o�er the right
level of abstraction for the highly application speci�c
problem of de�ning ASGs. Rather they have to be con-
sidered as persistent object-oriented programming lan-
guages that serve general purposes. The approach taken
in GOODSTEP was, therefore, to design the GOOD-
STEP tool speci�cation language (GTSL) [20] as an
application speci�c schema de�nition language that can
appropriately express ASG structures and operations.
The desired object-database schemas for ASGs are then
derived by the GTSL compiler from these high-level
speci�cations during code generation. The GTSL com-
piler itself has been generated with relatively little ef-
fort [19] using the Eli compiler construction toolkit [29].

GTSL is a multi-paradigm language. It combines
object-orientation, rules and patterns to appropriately
address the di�erent concerns that arise during speci�-
cation of ASGs. An environment speci�cation is struc-
tured into a number of tool con�gurations. Each of these
consists of a number of classes that de�ne the di�erent
node types that occur in the subgraph corresponding
to the document type the tool is intended for. Di�er-
ent sections are provided to de�ne properties of a class.
GTSL provides attribute, abstract syntax and seman-

tic relationship sections to de�ne structural properties,
which are node attributes, out-going aggregation edges
and out-going reference edges. The lexical syntax that
lexeme attributes attached to terminal nodes must obey
is de�ned in the form of regular expression patterns
in regular expression sections. An unparsing section is
available to de�ne the mapping between external doc-
ument representation and the ASG. This mapping is

10 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

de�ned in terms of patterns. Three behavioural prop-
erties can be de�ned for a class. The available oper-
ations to modify graph nodes are de�ned in a method

section. The invocation of operations from commands
and their availability are speci�ed as patterns in in-

teraction sections. Finally, inter-document consistency
constraints are de�ned in a rule-based manner in se-

mantic rule sections, which we have, in fact, discussed
above already. Multiple inheritance is supported so as
to facilitate reuse of properties.

The tools for the BA SEE have been speci�ed with
GTSL. Let us consider a small excerpt from this speci-
�cation. We will then discuss the ODL and OML code
that has been derived from the speci�cation as the ob-

ject database schema for the BA SEE tools. FIG. 5 dis-
plays fragments of GTSL classes, some of which specify
node types that were used in FIG. 3.

GTSL supports the concept of abstract classes, which
specify common properties of all their subclasses. Ab-
stract classes cannot be instantiated. The most gen-
eral class is Increment. It de�nes four attributes, which
any other node inherits. The �rst of these is the er-
ror set that we discussed already. Moreover, it de�nes
an attribute for deciding whether a node represents a
placeholder or is expanded. Furthermore, it de�nes the
attribute father which refers to a node's father node in
the abstract syntax tree and, �nally, it de�nes an at-
tribute doc ver. This refers to the root node of the sub-

ABSTRACT INCREMENT INTERFACE Increment;
 ATTRIBUTES
 Errors:SET OF ERRORS;
 expanded:BOOLEAN;
 father: Increment;
 doc_ver: DocumentVersion;
 END ATTRIBUTES;
END ABSTRACT INCREMENT INTERFACE Increment.

TERMINAL INCREMENT INTERFACE ClassIdentifier;
 INHERIT Increment;
 REGULAR EXPRESSION
 {[A−Za−z][A−Za−z0−9_]*}
 END REGULAR EXPRESSION;
 SEMANTIC RELATIONSHIPS
 IMPLICIT Constructors:SET OF Constructor.Constructs;
 IMPLICIT UsedBy : SET OF Type.DefinedIn;
 END SEMANTIC RELATIONSHIPS;
 METHODS
 IMPLICIT METHOD scan(Str:STRING):BOOLEAN;
 METHOD ChangeName(Str:STRING):BOOLEAN;
 END METHODS;
END TERMINAL INCREMENT INTERFACE ClassIdentifier.

ABSTRACT INCREMENT INTERFACE MemberFunction;
 INHERIT Increment;
 ABSTRACT SYNTAX
 pl : ParameterList;
 com : Comment;
 END ABSTRACT SYNTAX;
 METHODS
 DEFERRED METHOD expand();
 DEFERRED METHOD parse(Str:STRING):MemberFunction;
 DEFERRED METHOD unparse():STRING;
 METHOD ExtendParamList();
 END METHODS;
END ABSTRACT INCREMENT INTERFACE MemberFunction.

NONTERMINAL INCREMENT INTERFACE Operator;
 INHERIT MemberFunction;
 ABSTRACT SYNTAX
 virt : OptVirtual;
 type : Type;
 os : OperatorSign;
 const: OptConst;
 ass : OptAssign;
 END ABSTRACT SYNTAX;
 UNPARSING SCHEME
 virt, type, "operator", (" "), os, (" "), "(",
 pl, ")", (" "), const, ass, ";", (NL),
 com, (NL)
 END UNPARSING SCHEME;
 METHODS
 IMPLICIT METHOD expand();
 IMPLICIT METHOD parse(Str:STRING):Operator;
 IMPLICIT METHOD unparse():STRING;
 END METHODS;
END NONTERMINAL INCREMENT INTERFACE Operator.

NONTERMINAL INCREMENT INTERFACE Constructor;
 INHERIT MemberFunction;
 ABSTRACT SYNTAX
 name : OpName;
 END ABSTRACT SYNTAX;
 UNPARSING SCHEME
 name, "(", pl, ")", ";", (NL),
 com, (NL)
 END UNPARSING SCHEME;
 SEMANTIC RELATIONSHIPS
 Constructs : ClassIdentifier;
 END NON SYNTACTIC EDGES;
 METHODS
 IMPLICIT METHOD expand();
 IMPLICIT METHOD parse(Str:STRING):Constructor;
 IMPLICIT METHOD unparse():STRING;
 END METHODS;
END NONTERMINAL INCREMENT INTERFACE Constructor.

NONTERMINAL INCREMENT INTERFACE MemberFunctions;
 INHERIT Increment;
 ABSTRACT SYNTAX
 l : LIST OF MemberFunction;
 END ABSTRACT SYNTAX;
 UNPARSING SCHEME
 (NL), l DELIMITED BY (NL) END;
 END UNPARSING SCHEME;
 METHODS
 IMPLICIT METHOD expand();
 IMPLICIT METHOD parse(Str:STRING):MemberFunctions;
 IMPLICIT METHOD unparse():STRING;
 END METHODS;
END NONTERMINAL INCREMENT INTERFACE MemberFunctions.

FIG. 5. Fragments of GTSL classes

THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 11

SPECIFICATION ClassIdentifier; ...

METHOD ChangeName(Str:STRING):BOOLEAN;

BEGIN

IF SELF.scan(Str) THEN

FOREACH con:Constructor IN Constructors DO

con.name.react_to_change(Str)

ENDDO; ...

value:=Str;

RETURN(TRUE)

ELSE

RETURN(FALSE)

ENDIF;

END ChangeName;

FIG. 6. GTSL Method Performing Change Propagation

graph that represents the document the node belongs
to.

Class MemberFunctions de�nes the node type of the
same name in FIG. 3. Its abstract syntax section spec-
i�es an ordered multi-valued aggregation edge directed
to member function nodes. In C++ these can be op-
erators, constructors, destructors and ordinary meth-
ods. We de�ne this heterogeneity with polymorphism.
Instances of any subclasses of MemberFunction may be
inserted into the list l. The abstract syntax section of
class MemberFunction de�nes two aggregation edges pl

and com. They are de�ned in class MemberFunction be-
cause any C++ member function can have a parameter
list and a comment. Thus, its subclasses inherit these
de�nitions. They add speci�c abstract syntax de�ni-
tions in their abstract syntax sections.

As an example for the speci�cation of a reference
edge, consider the edge between constructor and class
identi�er nodes. It is speci�ed as a pair of links in the
semantic relationship section of the two classes. The
explicit link Constructs denotes the original direction
and the implicit link Constructors is used to address
the reverse direction of the edge.

The unparsing sections of classes specifying non-
terminal node types de�ne the mapping between nodes
and the external representation of the nodes. The pre-
cise semantics is of no concern here and we refer the
interested reader to [19].

Methods are the means to modify the graph and can
be implicit, explicit or deferred. A deferred method is
only declared in an abstract class and has to be re-
de�ned in all subclasses, either by implicit or explicit
methods. An implicit method is a programming inter-
face to the other sections declared for a class. Their
bodies are generated by the GTSL compiler. The scan

void Constructor::expand() {

if (name == NULL) name = new OpName(this);

if (pl == NULL) pl = new ParameterList(this);

if (com == NULL) com = new Comment(this);

expanded = true;

};

FIG. 7. OML Code Generated for GTSL Implicit Methods

method in class ClassIdentifier, for instance, checks its
argument for conformance with the regular expression
de�ned for a terminal node type. The expand method
performs a placeholder expansion and creates nodes for
all abstract syntax children and assigns them to the
children de�ned in the abstract syntax section. The
parse method tries to construct a subgraph from its
character string argument according to the unparsing
section. It returns a reference to the new subgraph if
the string parsed as argument conforms to the grammar
that is induced by the unparsing sections. The unparse

method performs the inverse operation and returns a
textual representation of a subgraph as de�ned by the
unparse section. The tool builder may then apply these
implicit methods in explicit methods. As an example
for an explicit method consider method ChangeName of
class ClassIdentifier in FIG. 6. It uses scan to check
for conformance of the new class name to the regular
expression and then propagates the change to applied
occurrences, for instance constructor names.

The translation of GTSL classes into ODL class in-
terfaces is straightforward. Each GTSL class is trans-
lated into an ODL interface de�nition. ODL sup-
ports multiple inheritance, as GTSL does. GTSL at-
tributes of atomic types are translated into ODL class
attributes. Attributes whose types are other classes,
abstract syntax children and links of semantic relation-
ships are translated into ODL relationships. Implicit,
explicit and deferred methods are translated into ODL
operations. In addition to the de�ned methods, each
ODL class interface de�nes a constructor init, which
initialises objects upon creation. An extent is de�ned
for each class that will include references to all persis-
tent objects of that class. The result of the application
of this translation process to the classes displayed in
FIG. 5 is shown in FIG. 8.

A more complicated problem is the generation of
implementations for the implicit methods, those which
implement placeholder expansion, parsing and unpars-
ing as well as the semantic rule evaluation algorithm,
we discussed in the previous section. The target lan-
guage for all these methods is the object manipulation
language (OML). To describe this in detail is beyond
the scope of this article; we refer the interested reader
to [19].

As an example, consider the implementation of the
expand method of class Constructor given in the C++
OML language binding in FIG. 7. It creates a new ob-
ject for each abstract syntax child that has not been
created before and modi�es the status of attribute
expanded to re
ect the state that the node no longer rep-
resents a placeholder. The OML code for the explicit
methods is generated by syntax-directed code genera-
tion techniques that are appropriately supported by the
compiler construction toolkit Eli and their implementa-
tion is straightforward.

12 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

interface ClassIdentifier:Increment {
 extent __ClassIdentifiers;
 attribute string value;
 relationship set<Constructor> Constructors
 inverse Constructor::Constructs;
 relationship set<Type> UsedBy inverse Type::DefinedIn;
 init(in Increment);
 boolean scan(in string)
 boolean ChangeName(in string);
}

interface MemberFunctions : Increment {
 extent __MemberFunctionss;
 relationship list<MemberFunction> l;
 init(in Increment);
 expand();
 MemberFunctions parse(string Str);
 string unparse();
}

interface MemberFunction : Increment {
 extent __MemberFunctions;
 relationship ParameterList pl;
 relationship Comment com;
 init(in Increment);
 expand();
 MemberFunction parse(in string);
 string unparse();
 ExtendParamList();
}

interface Operator:MemberFunction {
 extent __Operators;
 relationship OptVirtual virt;
 relationship Type type;
 relationship OperatorSign os;
 relationship OptConst const;
 relationship OptAssign ass;
 init(in Increment);
 expand();
 Operator parse(in string);
 string unparse();
}

interface Constructor : MemberFunction {
 extent __Constructors;
 relationship OpName name;
 relationship ClassIdentifier Constructs;
 init(in Increment);
 expand();
 Constructor parse(in string);
 string unparse()
}

interface Increment {
 extent __Increments;
 attribute set<ERRORS> Errors;
 attribute boolean expanded;
 relationship Increment father;
 relationship DocumentVersion doc_ver;
 init(in Increment);
}

FIG. 8. Class Interface De�nitions in ODL

4.4. Version and Con�guration Management

GTSL has a number of pre-de�ned classes. Their im-
plementations are part of the GTSL run-time environ-
ment. The GTSL class DocumentVersion is such a pre-
de�ned class. Its purpose is to serve as a superclass for
all GTSL classes whose instances represent root nodes
of those subgraphs of the project-wide abstract syntax
graph that represent versionable documents.

The implementation of GTSL class DocumentVersion
in ODL de�nes a relationship to an instance of class
o2 Version which always refers to the current version.
It also de�nes an attribute to store the information that
the document version is considered frozen, or not. It
then de�nes a number of operations for version man-
agement. These are inherited by all subclasses. FIG. 9
displays the ODL class de�nition for the implementa-
tion of GTSL class DocumentVersion.

The inclusion of objects that represent nodes of ver-
sionable subgraphs in the version unit, which is asso-
ciated by DocumentVersion to the subgraph, is imple-
mented in the constructor of the most general class
Increment, as displayed in FIG. 10. Additional ini-
tialisations have to be done to initialise the root node

properly. These are implemented in the constructor
of class DocumentVersion. It creates a new instance of
class o2 Version, thereby creating a new version his-
tory graph, then de�nes the name of the root version to
be the parameter verName, then identi�es that it is not
frozen and �nally inserts the newly created root node
in the version unit so that it will be itself under version
control.

The operations of classes DocumentVersion are im-
plemented merely by calling the respective operations
of o2 Version. As an example, consider the imple-
mentations of DeriveVersion and SelectVersion below.
They are implemented by using the retrieve, set label,
select, set default and derive operations provided by
o2 Version. DeriveVersion, displayed in FIG. 11, cre-
ates a new successor version of the current version and
gives the new version the name passed as parameter.
The aim of SelectVersion is to explicitly select a new
version. All changes done after a version selection to
the subgraph representation in terms of OML opera-
tions will be applied only to that selected version.

In this way, the implementation of version manage-
ment of subgraphs in the GTSL run-time environment
is achieved in about 800 lines of OML code. In addi-

THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 13

interface DocumentVersion : Increment {

readonly attribute boolean Stable;

relationship o2_Version CurrentVersion;

init(Increment f,string doc, string root_ver);

o2_Version GetRootVersion();

string GetRootVersionName();

string GetVersionName();

string GetDefaultVersionName();

SetDefaultVersion(string ver_name);

SelectVersion(string ver_name);

SelectDefaultVersion();

MergeVersions(string nameToMerge, string newName);

boolean DeleteVersion(string name);

DeriveVersion(string new_ver);

FreezeVersion();

set<string> AllVersions();

set<string> GetChildren(string ver_name);

set<string> GetParents(string ver_name);

set<string> GetChildrenClosure(string ver_name);

set<string> GetParentsClosure(string ver_name);

boolean AreOnDifferentPaths(v1:string, v2 : string);

boolean IsVersionStable(string ver_name);

boolean IsStable();

}

FIG. 9. Interface of Class DocumentVersion

Increment::Increment(Increment f) {

father = f; expanded = false;

if (f!=NULL) {

doc_ver= f->doc_ver;

doc_ver->CurrentVersion->append(this);

}

}

DocumentVersion::DocumentVersion(string name,

string verName):Increment(NULL) {

CurrentVersion = new o2_Version("Document: "+name);

CurrentVersion->set_label(verName);

Stable = false;

CurrentVersion->append(this); ...

}

FIG. 10. Appending ASG Nodes to the Version Unit

tion, this code is generic and can be reused in any tools
that access documents stored as subgraphs of ASGs in
the O2 ODBMS.

4.5. Concurrent Tool Commands

As argued above, the granularity of concurrency con-
trol should be that of tool commands rather than that
of editing sessions. GTSL provides the concept of inter-
actions to specify commands. The de�nition of an inter-
action encompasses an internal and an external name,
a selection context, a precondition and an action. The
external name appears in context sensitive menus or is
used to invoke a command from a command-line. The
internal name is used to determine the rede�nition of
an inherited interaction. The selection context de�nes
which increment must be selected so that the interac-
tion is applicable. It is actually included in a context-
sensitive menu if the precondition that follows the ON

void DocumentVersion::DeriveVersion(string new_ver) {

o2_Version new,current;

current=CurrentVersion;/* save selection in current*/

new=CurrentVersion->derive();/* create new version */

new->select /* select it and change*/

CurrentVersion=v; /* value of CurrentVersion*/

new->set_label(new_ver); /* label the new version*/

current->select; /* and restore old selection*/

}

void DocumentVersion::SelectVersion(string ver_name) {

o2_Version v;

v=self->RootVersion->retrieve(ver_name)

if (v!=NULL) { /* if ver_name exists */

v->select(); /* select it as current*/

}

}

FIG. 11. Version Derivation & Selection

SPECIFICATION Class; ...

INTERACTION ChangeClassIdentifier;

NAME "Change Class Name"

SELECTED IS SELF

ON expanded

VAR new_name:TEXT;

errors:TEXT_SET;

BEGIN

new_name:= NEW TEXT(SELF.value);

WHILE (new_name.LINE_EDIT("Change identifier:")) DO

IF (SELF.ChangeIdentifier(new_name.CONTENTS())) THEN

errors:=NEW TEXT_SET(SELF.get_set_of_errors());

errors.DISPLAY();

ABORT;

ENDIF

ENDDO;

END ChangeClassIdentifier;

FIG. 12. Interaction of Booch Diagram Editor

clause evaluates to TRUE. The action is a list of GTSL
statements that is executed as soon as the user chooses
the command from the menu. An example showing the
de�nition of a command o�ered by the Booch diagram
editor that is used to change the class name is shown in
FIG. 12.

The command de�ned by that interaction will be
added to the menu of applicable commands if a class
icon has been selected in a Booch diagram and if the
class name has been expanded before. If the user
chooses the command from the menu, the body will be
executed. Then a new text dialog object is created and
this object is used to display a line edit window. This
prompts the user to change the class identi�er, with the
previous identi�er as the default. If the user completes
the dialogue, the method ChangeIdentifier will be exe-
cuted. This method checks the new identi�er for lexical
correctness, performs all the required inter-document
consistency checks and returns TRUE if everything is cor-
rect and false otherwise. Then a detailed error message
is computed and shown to the user, the command is
aborted and all changes done during the command ex-
ecution are undone.

14 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

GTSL interactions are implemented as conventional
O2 transactions to meet the requirements of coopera-
tive work discussed above. If the user has chosen a
command, a new transaction is started. We note that
locking need not be de�ned in the tool speci�cation, nor
be generated by the GTSL compiler, but is performed
transparently by O2. A transaction commit will be ex-
ecuted if the last statement of the interaction has been
executed. GTSL ABORT statements are implemented as
transaction aborts.

The change from page-level to object-level concur-
rency control proves particularly appropriate for the im-
plementation of concurrent tool commands. ASG nodes
are implemented as objects which are of fairly small
granularity. Hence quite a number of ASG nodes reside
on the same server page. Without page-level locking,
concurrent tool commands reveal concurrency control
con
icts, even though they are accessing disjoint sets of
nodes. This is remedied with object-level locking. As
the concurrency control strategy is determined during
server startup, not a single change was needed to the
GTSL compiler or the GTSL run-time environment in
order to implement the transition from page to object-
level locking.

5. Evaluation

5.1. Environment Generation

The full GTSL speci�cation of the BA SEE con-
sists of some 120 GTSL classes. The overall size of the
speci�cation is 12,000 lines of GTSL. The ODL/OML
schema implementation for Booch diagrams, C++ class
interfaces, implementations and documentation that
has been generated from this speci�cation consists of
some 105,000 lines of ODL/OML code. Moreover, the
command interpreters and the tool-speci�c parts of the
user interface, which have also been generated from the
GTSL speci�cations cover further 70,000 lines of C++
code. In addition, each tool uses a tool kernel, which
consists of reusable classes that do not vary from tool to
tool. This kernel contains a further 40,000 lines of C++
code. Hence, this environment is composed of 215,000
lines excluding the user interface management system
and the object database system.

The commercially available Opus environment [24] is
of similar complexity to the BA SEE, since it also in-
tegrates tools for three textual and one graphical doc-
ument type. The functionality of Opus, however, is
less than the BA SEE since it does not support ver-
sion management, cooperative work and lacks support
of free textual input and constraint violation tolera-
tion. Opus has been hand-coded and uses the GRAS
database [35], which must be considered less power-

ful than object databases. Although less powerful, the
amount of code in Opus is larger than that generated
for the BA SEE, let alone the BA SEE speci�cation.
Opus consists of 280,000 lines of C code. This compar-
ison provides evidence that the approach of using an
application speci�c schema de�nition language and a
powerful object database system simpli�es the problem
of tool construction considerably.

5.2. Run-Time Performance

To assess whether the generated BA SEE meets
the end-user performance expectations, we performed
a controlled experiment with the BA SEE. The experi-
ment was performed using a single processor Sun Sparc-
Station 10/40 with 64 MBytes of main memory that
operates with SunOS 4.1.3. The database was stored
on a local 2 GBytes disk. It contained the schema
and the production con�guration of the BALIBXX library
with some 80 classes, their interfaces, implementation
and documentation. We gave O2 a caching allowance
of 2 MBytes for each tool client process and another 1
MByte for the database server process. The clients and
the server were executed on the same machine and the
database was in a warm state, i.e. all objects accessed
during the experiment had been accessed before. We
used the experiment also to compare the performance
of the two concurrency control scheme implementations.
The experiment consisted of six activities:

Dumping: The action that dominates the response time
while opening a document is the time required to
perform a traversal along the transitive closure of
the aggregation edges from a document root node
so as to compute the external representation of the
document. The subgraph that we use in this activ-
ity represents the largest class interface de�nition
of the the BALIBXX library. Its textual representa-
tion has 220 lines of code and the respective ASG
consists of 507 nodes.

Version Derivation: This activity measures the time
required for the derivation of a new version. This
new version is the only successor version of the root
version. The activity also covers committing the
change to the database.

Version Selection: This activity measures the time re-
quired for the selection of the version derived dur-
ing the last activity.

Template Insertion: During this activity we measure
the time for template insertion. As an archetypical
example we measure the time that the tool needs to
insert a parameter template into a list of parame-
ters that currently includes three parameters. The
time not only includes the required ASG modi�ca-
tions, but also the time taken to insert new ASG
nodes into the version unit, the time for redisplay-
ing the contents of the a�ected window and the
time for transaction start-up and commit.

THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 15

Static Semantic Check: During this activity we ex-
plore the performance of commands that perform
static semantic checks. As an example, we ex-
pand the name identi�er of a previously expanded
parameter. The time we measure includes check-
ing the lexical correctness of the identi�er, stor-
ing the value in a lexeme attribute, checking the
uniqueness of the identi�er in the parameter list,
incrementally redisplaying the a�ected window and
transaction start-up and commit.

Inter-Document Consistency Check: The purpose
of this activity is to measure the performance of
the creation of a new dependency relation between
two di�erent documents. For that purpose we have
chosen a forward declaration of a class, that already
exists. The measured time includes the check as to
whether the referenced class exists, the creation of
a reference edge, the class identi�er node and the
forward declaration, the incremental redisplay of
the a�ected document parts and transaction start-
up and commit.

FIG. 13 depicts the performance �gures for the two
concurrency control implementations in milliseconds of
elapsed real-time. To retrieve the �gures, we have re-
peated each activity 10 times and the �gures repre-
sent the mean values of these 10 executions. The ob-
served deviations were neglectable. The performance
of Dumping is about 1,400 milliseconds for page-level
and 1,800 milliseconds for object-level concurrency con-
trol. This is a reasonable performance that means that
processing each node required on average less than four
milliseconds with object-level locking. If all error at-
tributes are in clean state, this activity need not per-
form any changes. This is the more frequent case and
we could exploit O2's read-only transactions, which
do not perform locking at all. A further experiment
with these transactions has shown that they reduce the
time to 1,050 milliseconds because these do not ac-
quire read-locks. The Version Selection and Ver-

sion Derivation activities are performed in both con-
currency control modes for the complex class interface
de�nition in less than 300 milliseconds, which users will
hardly ever recognise as a delay. Template Insertion

is performed with page-level concurrency control in
900 milliseconds, while 1,250 milliseconds were required
with object-level locking. This is about the time that
they require to move the hand from the mouse to the
keyboard and users will �nd the performance accept-
able. The Static Semantic Check activity required
1,300 milliseconds with page-level concurrency control,
while 1.650 milliseconds were required with object-level
locking. 1,500 milliseconds were required with page-
level locking for the Inter-Document Consistency

Check, while 1,800 milliseconds were required with
object-level locking. The performance of 1,800 mil-

D
um

pi
ng

Elapsed
Real−Time
[msec]

250

500

750

1000

1250

1500

1750

C_A_R

OC_A_R

V
er

si
on

S
el

ec
tio

n

V
er

si
on

D

er
iv

at
io

n

S
ta

tic
−

S
em

an
tic

 C
he

ck

T
em

pl
at

e
In

se
rt

io
n

In
te

r−
D

oc
um

en
t

 C

on
si

st
en

cy

C
he

ck

FIG. 13. Elapsed Real Time during Activities [msec]

liseconds for a tool command that involves an inter-
document consistency check, however, is too slow.

The experiment was conducted on a rather old ma-
chine with only one processor, a SCSI-I disk and a slow
clock rate. With performance of hardware and operat-
ing systems increasing by 100% every two years, we ex-
pect to have acceptable response times of tools available
shortly. Moreover, we note that there is an overhead of
20-30% in object-level locking compared to page-level
locking, even though no con
icts occurred at all dur-
ing this experiment. This overhead traces back to the
prototype implementation of OC A R that is not yet op-
timised to the case when no page con
icts occur. In
the future product version, this optimisation will be in
place and object-level locking without page con
icts will
perform as fast as page-level locking.

5.3. Acceptance in Industry

British Airways did not deploy the BA SEE devel-
oped in GOODSTEP. One of the reasons was that the
practical impact of the deployment was too radical. The
BA SEE contains completely new development tools,
such as the Booch editor and the C++ class interface
editor, and explicit process constraints, e.g. library
code cannot be modi�ed if the corresponding Booch dia-
gram is not modi�ed �rst. In addition, the environment
could not be purchased from a trusted vendor; it was
just a prototype developed by a research consortium
that lacked, for instance, stability, a sophisticated user
interface with keyboard short cuts, facilities for macros
and the like.

Another drawback of the architecture of the environ-
ment is that it does not properly address integration
with foreign tools. British Airways was using the Rose
product from Rational and they were quite happy with
its user interface and its editing capabilities for design-
ing classes in the Booch notation. They would have
preferred an integration between Rose and the C++
and documentation tools. As Rose does not store its
documents in the same object database that we use to

16 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

store ASGs, an integration has to be achieved using
non-database mechanisms.

6. Related Work

The idea of tool generation came up during the early
eighties in a number of projects including Gandalf [30],
Centaur [11] and the Cornell Synthesizer Generator [39].
The tools generated by these systems are tools for
programming environments, that means they were in-
tended to support documents in one language only.
Therefore, they initially did not address the problem of
inter-document consistency constraints. [26] suggested
use of di�erent views to represent di�erent documents,
but this inhibits inter-document consistency constraint
violations. Moreover, none of these early tools provide
su�cient support for concurrency control, but mostly
store documents in a
attened representation in the �le
system. In view of concurrent tool execution, this could
result in loss of changes. Neither version nor con�gura-
tion management is explicitly supported by any of these
tools.

The IPSEN environment [23] was among the �rst
environments that considered inter-document consis-
tency. The speci�cation of this environment was based
on graph grammars. Recently, a graph grammar inter-
preter and compiler have been completed [50]. These
simplify environment construction in the same way as
our GTSL compiler. IPSEN provides facilities for re-
vision control [48], though con�guration management
has not yet been addressed. The most serious draw-
back of IPSEN, compared to the BA SEE, is its lack
of support for cooperative work. The reason is that it
has been built using the home-grown database system
GRAS [35], which does not yet support the required
�ne-grained concurrency control protocol, but applies
strict locking to a complete graph, rather than locking
only those nodes that are being accessed.

Tools contained in the Field environment [38] are in-
tegrated using a broadcast message server. This in-
tegration technique can achieve inter-document consis-
tency constraints and even change propagations. Ver-
sion management and concurrency control required to
support cooperative work, however, are not supported
in Field.

The UQ editor family [47, 33] supports di�erent doc-
ument types as di�erent views of the same concep-
tual representation. These views implicitly implement
change propagations. The user interaction paradigm is
recognition-based as opposed to the structure-oriented
paradigm in the BA SEE. We acknowledge that this
recognition-based interaction paradigm provides better
user support. The UQ editors, however, do not yet ad-

dress version and con�guration management and team
cooperation support.

Documents managed by the Software through Pic-
tures environment [46] are stored in the relational
database Sybase and inter-document consistency con-
straints are managed by relations between these doc-
uments. Speci�c tools can be de�ned on the basis of
a query and reporting language, which is interpreted
by the StP/Core environment. Sybase supports ACID
transactions, which could be exploited for concurrency
control. However, as Sybase does not support ver-
sion management and due to the fact that version
management cannot reasonably be added on top of a
database, Software through Pictures, does not provide
any support for managing di�erent versions of docu-
ments. Sybase may be appropriate for storage of graph-
ical documents, whose syntax graphs tend to be fairly
small. We, however, doubt that the management of
large syntax graphs as they occur in textual docu-
ments, like for instance programming languages, can
be achieved with a relational database with an accept-
able performance. Linton [36] reports a time of about
200 minutes required for computing an external repre-
sentation of a programming language syntax tree for a
1,000 line document that was stored in Ingres. Though
our own investigations [19] revealed that since 1984
relational database technology, operating system and
hardware performance have improved considerably, the
performance will still be too slow if syntax graphs are
stored in third normal form tables.

7. Summary

Using the case study of constructing the British Air-
ways SEE, we have explored the degree to which soft-
ware engineering environments can be enhanced on the
basis of object database systems. We have discussed
a number of advanced requirements, namely inter-
document consistency constraints, version and con�g-
uration management and cooperative work, that are
not addressed by environments that are in the mar-
ket. We have discussed how these requirements can
be addressed on the basis of documents that are repre-
sented as ASGs. We have shown how these ASGs can be
de�ned in a dedicated speci�cation language and how
an object database schema can be derived from these
speci�cations. The schema then enables documents to
be managed by object databases in an ASG represen-
tation. We have sketched the extension of a particular
object database, namely the O2 system, with facilities
for version management of collections of objects and
object-level concurrency control. We have also shown
how these extensions are exploited to implement ver-
sion management of documents and cooperative work.
The evaluation of the BA SEE has shown the advan-
tage of specifying the environment at a level of abstrac-

THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 17

tion higher than that allowed by manual construction.
The environment generated from this speci�cation has
a performance that is in general acceptable.

When reviewing the related work, we observed that
other systems lack support for at least one of our central
requirements. We assume that an implementation was
too di�cult to achieve without the powerful basic mech-
anisms that object databases provide. The �le systems
used for document storage purposes lack support for
secondary storage management, error recovery and the
�ne-grained concurrency control required to support co-
operative work. In our experience the implementation
of an e�cient and reliable concurrency control mech-
anism that could be used for �ne-grained concurrency
control is so di�cult to achieve that it can be hardly
expected in any home-grown database systems, be it
an academic prototype or a system developed in-house
by an SEE vendor. In addition, there are dependencies
between version management and concurrency control
that preclude the implementation of a powerful version
management mechanism for subgraphs of an ASG on
top of, say, a relational database system. This leads to
the conclusion that the way ahead is to exploit the pow-
erful basic mechanisms now emerging in object database
products. The case study outlined in this article has
given evidence that object databases can be used for
improving the functionality of software engineering en-
vironments considerably.

Acknowledgments

We are grateful to Roberto Zicari, who insisted
on constructing the BA SEE as a case study in the
GOODSTEP project. A particular thanks goes to
Werner Beckmann, J�org Brunsmann, Ralph Mertingk
and Matthias Kurth, who implemented most of the BA
SEE. We also thank Claude Delobel, Sabine Sachweh,
Wilhelm Sch�afer and Jim Welsh for their suggestions on
the version manager and Sabine Habert for her e�ort in
getting the object-level concurrency control in place.

References

[1] T. Andrews, C. Harris, and K. Sinkel. Ontos: A Persistent
Database for C++. In R. Gupta and E. Horowitz, editors,
Object-Oriented Databases with Applications to CASE, Net-
works, and VLSI CAD, pages 387{406. Prentice-Hall, 1991.

[2] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier,
and S. Zdonik. The Object-Oriented Database System Man-
ifesto. In W. Kim, J.-M. Nicholas, and S. Nishio, editors,
Proc. of the 1st Int. Conf. on Deductive and Object-
Oriented Databases, Kyoto, Japan, pages 223{240. North-
Holland, 1990.

[3] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an
Object-Oriented Database System: the Story of O2. Morgan
Kaufmann, 1992.

[4] S. Bandinelli, L. Baresi, A. Fuggetta, and L. Lavazza. Ex-
periences in the Implementation of a Process-centered Soft-
ware Engineering Environment Using Object-Oriented Tech-

nology. Theory and Practice of Object Systems, 1(2):115{
131, 1995.

[5] S. Bandinelli, A. Fuggetta, and S. Grigolli. Process
Modeling-in-the-large with SLANG. In Proc. of the 2nd Int.
Conf. on the Software Process, Berlin, Germany, pages 75{
83. IEEE Computer Society Press, 1993.

[6] N. S. Barghouti, W. Emmerich, W. Sch�afer, and A. H. Skarra.
Information Management in Process-Centered Software En-
gineering Enviroments. In A. Fuggetta and A. Wolf, editors,
Software Process, number 4 in Trends in Software, chapter 3,
pages 53{87. Wiley, 1996.

[7] N. S. Barghouti and G. E. Kaiser. Modeling Concurrency in
Rule-Based Development Environments. IEEE Expert, pages
15{27, December 1990.

[8] V. Benzaken, C. Delobel, and G. Harrus. Clustering Strate-
gies in O2: An Overview. In [3], pages 385{410. Morgan
Kaufman, 1992.

[9] B. W. Boehm. A Spiral Model of Software Development and
Enhancement. IEEE Computer, pages 61{72, May 1988.

[10] G. Booch. Object Oriented Design with Applications. Ben-
jamin/Cummings, 1991.

[11] P. Borras, D. Cl�ement, T. Despeyroux, J. Incerpi, G. Kahn,
B. Lang, and V. Pascual. CENTAUR: The System. ACM
SIGSOFT Software Engineering Notes, 13(5):14{24, 1988.
Proc. of the ACM SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Development Environ-
ments, Boston, Mass.

[12] R. Cattell, editor. The Object Database Standard: ODMG-
93. Morgan Kaufman, 1993.

[13] C. Collet, T. Coupaye, and T. Svensen. NAOS E�cient and
modular reactive capabilities in an Object-Oriented Database
System. In Proc. of the 20th Int. Conf. on Very Large
Databases, Santiago, Chile, 1994.

[14] G. Copeland and D. Maier. Making Smalltalk a Database
System. ACM SIGMOD Record, 14(2):316{325, 1984. Proc.
of the ACM SIGMOD 1984 Int. Conf. on the Management
of Data, Boston, MA.

[15] C. J. Date. Introduction to Database Systems, Vol. 1. Ad-
dison Wesley, 1986.

[16] W. Deiters and V. Gruhn. Managing Software Processes
in MELMAC. ACM SIGSOFT Software Engineering Notes,
15(6):193{205, 1990. Proc. of the 4th ACM SIGSOFT Sym-
posium on Software Development Environments, Irvine, Cal.

[17] Department of Defense. Reference Manual for the Ada Pro-
gramming Language. Technical Report ANSI/MIL-STD-
1815A, United States Dept. of Defense, 1983.

[18] M. A. Ellis and B. Stroustrup. The Annotated C++ Refer-
ence Manual. Addison Wesley, 1990.

[19] W. Emmerich. Tool Construction for process-centred Soft-
ware Development Environments based on Object Database
Systems. PhD thesis, University of Paderborn, Germany,
1995.

[20] W. Emmerich. Tool Speci�cation with GTSL. In Proc. of
the 8th Int. Workshop on Software Speci�cation and De-
sign, Schloss Velen, Germany, pages 26{35. IEEE Computer
Society Press, 1996.

[21] W. Emmerich, S. Bandinelli, L. Lavazza, and J. Arlow. Fine
grained Process Modelling: An Experiment at British Air-
ways. In Proc. of the 4th Int. Conf. on the Software Process,
Brighton, United Kingdom, pages 2{12. IEEE Computer So-
ciety Press, 1996.

[22] W. Emmerich, W. Sch�afer, and J. Welsh. Databases for
Software Engineering Environments | The Goal has not yet
been attained. In I. Sommerville and M. Paul, editors, Soft-
ware Engineering ESEC '93 | Proc. of the 4th European

18 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

Software Engineering Conference, Garmisch-Partenkirchen,
Germany, volume 717 of Lecture Notes in Computer Science,
pages 145{162. Springer, 1993.

[23] G. Engels, C. Lewerentz, M. Nagl, W. Sch�afer, and A. Sch�urr.
Building Integrated Software Development Environments |
Part 1: Tool Speci�cation. ACM Transactions on Software
Engineering and Methodology, 1(2):135{167, 1992.

[24] R. Fehling and W. Sch�afer. OPUS: Konzept und Werkzeug
f�ur die verteilte, modulare Softwareentwicklung. In U. Kelter
and W. Lippe, editors, Software-Technik Trends | Proc.
Softwaretechnik '93, pages 73{80, November 1993.

[25] F. Ferrandina, T. Meyer, and R. Zicari. Implementing Lazy
Database Updates for an Object Database System. In Proc.
of the 20th Int. Conference on Very Large Databases, San-
tiago, Chile, pages 261{272, 1994.

[26] D. Garlan. Views for Tools in Integrated Environments.
PhD thesis, Carnegie Mellon University, 1987.

[27] K. E. Gorlen. An Object/Oriented Class Library for C++
Programs. Software { Practice and Experience, 17(12):181{
207, 1987.

[28] J. N. Gray. Notes on Database Operating Systems. In
R. Bayer, R. Graham, and G. Seegm�uller, editors, Operating
systems { An advanced course, volume 60 of Lecture Notes
in Computer Science, chapter 3.F., pages 393{481. Springer,
1978.

[29] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and
W. M. Waite. Eli: A Complete, Flexible Compiler Construc-
tion System. Communications of the ACM, 35(2):121{131,
1992.

[30] A. N. Habermann and D. Notkin. Gandalf: Software De-
velopment Environments. IEEE Transactions on Software
Engineering, 12(12):1117{1127, 1986.

[31] Intersolve, 3200 Tower Oaks Blvd, Rockville, Maryland.
PVCS Version 4.0 Version Manager Users Reference Guide,
1991.

[32] U. Kastens and W. M. Waite. An abstract data type for
name analysis. Acta Informatica, 28:539{558, 1991.

[33] D. Kiong and J. Welsh. Incremental Semantic Evaluation
in Language-based Editors. Software { Practice and Experi-
ence, 22(2):111{135, 1992.

[34] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Ob-
jectStore Database System. Communications of the ACM,
34(10):51{63, 1991.

[35] C. Lewerentz and A. Sch�urr. GRAS, a management system
for graph-like documents. In Proc. of the 3rd Int. Conf.
on Data and Knowledge Bases, pages 19{31. Morgan Kauf-
mann, 1988.

[36] M. A. Linton. Implementing Relational Views of Programs.
ACM SIGSOFT Software Engineering Notes, 9(3):132{140,

1984. Proc. of the ACM SIGSOFT/SIGPLAN Software En-
gineering Symposium on Practical Software Development En-
vironments, Pittsburgh, Penn.

[37] B. Peuschel, W. Sch�afer, and S. Wolf. A Knowledge-based
Software Development Environment Supporting Cooperative
Work. International Journal for Software Engineering and
Knowledge Engineering, 2(1):79{106, 1992.

[38] S. P. Reiss. Interacting with the FIELD environment. Soft-
ware { Practice and Experience, 20(S1):S1/89{S1/115, 1990.

[39] T. W. Reps and T. Teitelbaum. The Synthesizer Generator {
a system for constructing language based editors. Springer,
1988.

[40] M. J. Rochkind. The Source Code Control System. IEEE
Transactions on Software Engineering, 1(4):364{370, 1975.

[41] W. W. Royce. Managing the Development of Large Software
Systems. In Proc. WESCON, 1970.

[42] C. Santos, S. Abiteboul, and C. Delobel. Virtual Schemas
and Bases. In M. Jarke, J. Bubenko, and K. Je�erey, ed-
itors, Proc. of the 4th Int. Conf. on Extending Database
Technology, Cambridge, UK, volume 779 of Lecture Notes in
Computer Science, pages 81{94. Springer, 1994.

[43] Softool. CCC: Change and Con�guration Control Environ-
ment. A Functional Overview, 1987.

[44] J. M. Spivey. The Z Notation - A Reference Manual. Pren-
tice Hall, 1989.

[45] W. F. Tichy. RCS { A System for Version Control. Soft-
ware { Practice and Experience, 15(7):637{654, 1985.

[46] A. I. Wassermann and P. A. Pircher. A Graphical, Extensi-
ble Integrated Environment for Software Development. ACM
SIGPLAN Notices, 22(1):131{142, 1987. Proc. of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Palo Alto,
Cal.

[47] J. Welsh, B. Broom, and D. Kiong. A Design Rational for a
Language-based Editor. Software { Practice and Experience,
21(9):923{948, 1991.

[48] B. Westfechtel. Revision Control in an Integrated Software
Development Environment. ACM SIGSOFT Software Engi-
neering Notes, 17(7):96{105, 1989.

[49] A. L. Wolf, L. A. Clarke, and J. C. Wileden. The
AdaPIC Tool Set: Supporting Interface Control and Anal-
ysis Throughout the Software Development Process. IEEE
Transactions on Software Engineering, 15(3):250{263, 1989.

[50] A. Z�undorf. PROgrammierte GRaphErsetzungsSysteme {
Spezi�kation, Implementierung und Anwendung einer inte-
grierten Entwicklungsumgebung. PhD thesis, University of
Aachen, 1996.

THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 19

