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Abstract. Today’s development processes employ a var-
iety of notations and tools, e.g., the Unified Modeling
Language UML, the Standard Description Language
SDL, requirements databases, design tools, code gener-
ators, model checkers, etc. For better process support,
the employed tools may be organized within a tool suite
or integration platform, e.g., Rational Rose or Eclipse.
While these tool-integration platforms usually provide
GUI adaption mechanisms and functional adaption via
application programming interfaces, they frequently do
not provide appropriate means for data integration at
the meta-model level. Thus, overlapping and redundant
data from different “integrated” tools may easily become
inconsistent and unusable. We propose two design pat-
terns that provide a flexible basis for the integration of
different tool data at the meta-model level. To achieve
consistency between meta-models, we describe rule-based
mechanisms providing generic solutions for managing
overlapping and redundant data. The proposed mech-
anisms are widely used within the Fujaba Tool Suite.
We report about our implementation and application
experiences.
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1 Introduction

In recent decades, the usage of different software tools has
grown massively in nearly all industrial areas of product
development. The various aspects of the product under
development are described using different software tools
specialized for one particular purpose. Altogether the
software tools produce documents, and often the output
of one software tool is used as input for another tool. This
inevitably leads to the idea of tool coupling.

Coupling tools is usually done by exchanging the pro-
duced documents. Unfortunately, most tools have their
own document format. This makes the exchange of docu-
ments between tools or the sharing of document parts, in
means of interfaces, hard to achieve. In recent years XML
has made the exchanging task easier but left unresolved
the problem of using different tools for different purposes.

Most tools are domain specific, i.e., they offer certain
functionality for their domain. In the best case, one docu-
ment, produced by one or a group of tools, describes only
one specific part of the product, but usually the informa-
tion overlaps.

Overlapping information requires consistency for all
documents. Unfortunately, such a product-consistency
management system exists only for closely related docu-
ments. Therefore, the documents are often inconsistent in
their overlapping parts, which results in expensive pro-
cess overhead for managing the inconsistencies.

Another observation often made in practice is that
over time the product is extended, which frequently forces
the need for new tool functionalities. Usually, these new
functionalities are not supported by the existing tools and
the existing tools do not allow for the enhancement of
their functionality. Switching to a completely new tool
is an expensive task and usually not an option. Adding
a specific new tool for just the required functionality and
establishing and maintaining a consistency management
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system for the new tool and the existing ones takes too
much time. Therefore, the resulting inconsistencies pro-
duce additional process overhead and costs.

To reduce the process overhead, and thereby the ad-
ditional costs, one solution to overcome the overlapping
information and the inherent consistency problem is an
integrated development approach. In the following dis-
cussion we call such an integrated development environ-
ment a Tool Suite. In Tool Suites different tools interoper-
ate on a common meta-model with a common consistency
management system. The problem to be solved is how to
handle the dependencies between the different tools in the
Tool Suite and to keep them separated as much as pos-
sible in order to prevent one monolithic application.

In this article we present a flexible mechanism based
on our Meta-Model Extension and Meta-Model Integra-
tion patterns to integrate different tools on the meta-
model level. The benefits of our patterns are that they
may be instantiated in a new system design as well as in
an old system design. In addition, we present a flexible
consistency management system, especially suited for the
integration of different or enhanced meta-models.

The paper is organized as follows. Section 2 first
presents general problems coming up when integrating
tools in a common environment and then presents related
work. Section 3 gives an overview of our approach to in-
tegrating tools at the meta-model level. Then, Sects. 4
and 5 go into details of the Meta-Model Extension and
Meta-Model Integration patterns as well as into details
of our consistency management system. As an appli-
cation of our proposed solution to coupling tools at
the meta-model level, Sect. 6 presents our experiences
with the FusABA TooL SUITE, which overcomes the
problems mentioned above by means of an extensible
tool-integration framework. We close the article with
a conclusion.

2 Problem description

In general, tool integration has four main problems: (1)
integration of (graphical) user interfaces, (2) integration
of tool functionality, (3) integration of tool data and
metadata, and (4) consistency management during tool
integration.

The first problem area is the adaption of the (graph-
ical) user interface of one tool by another. This includes
the extension of menus, tool bars, and dialog windows as
well as the extension of the representation of certain data
at the user interface. The former points are frequently
supported, e.g., via (extensible) GUI configuration files,
whereas the last point is seldom supported.

The second problem area is the integration of func-
tionality. First, this means that one tool uses some func-
tionality of another tool. This is usually easy to achieve
via some application programming interface (API). Sec-
ond, one tool wants to modify and enhance a certain

functionality of another tool. This requires mechanisms
like the template method, chain of responsibility design
patterns [9], or a listener concept for command execu-
tions. A tighter coupling of different functionality or even
a replacement of existing functionality with an alterna-
tive implementation is not always supported. Another
opportunity that has come about with the advent of net-
centric computing is services installed on one or more
instances and retrievable via a central lookup service [1,
31]. Enhancing or exchanging of functionality then means
providing updated or new services or altering service
connections.

The previous two problem areas are well understood.
There are several solutions and implementations, e.g.,
XML-based GUI configuration files describing the adap-
tion of GUISs, especially for menus and actions, or applica-
tion server solutions.

The third problem area comprises the access and ex-
tension of a tool’s data and metadata. Especially for
a tight integration of the tools the integration of the meta-
model is a remaining challenge, which is the focus in this
article.

Concerning the access and extension of a tool’s data
and metadata, we differentiate between two categories
of tools. The first category contains tools designed and
developed without a facility to access their meta-model.
Most older tools belong to this category, and a poste-
riori integration means coupling the tools via their im-
port and export interfaces. For integration of data in
different formats, typical solutions are standardized ex-
change formats, e.g., XMI. A comparison on how and
where the schemas are defined, i.e., organization of the
model data to be exchanged, is given in [17]. In this
category integration of functionality is not feasible and
usually an independent tool serves as a GUI integration
platform, e.g., a favorite folder, which is a very simple
solution.

The second category contains tools allowing other
tools to access their meta-model via a defined interface, or
allowing other tools to enhance their meta-model and ac-
cess the data directly. Such an integration often provides
means to deal with overlapping artifacts.

Integrating and exchanging overlapping artifacts is,
however, not a new problem. The IPSEN approach [21]
presented a framework to integrate tools through a com-
mon meta-model. However, this approach is not easily
applicable to the integration of existing tools because in-
tegration often means duplicating the meta-models — one
copy in the original tool and one in the IPSEN approach
underlying the common meta-model.

The CoruM approach [32] suggests the usage of
a common information model that is used by all tools. For
the integration of tools that are not based on the CORUM
approach and that cannot use the COrRUM API, input can
be generated by means of transformation tools. In [18]
the CoruM I approach is presented, integrating different
reengineering tools operating on different levels.
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A prominent tool-integration platform is Eclipse,
which is promoted by several midsize and major IT enter-
prises. The supported integration aspects are restricted
to a framework built on a mechanism for discovering, inte-
grating, and running plug-ins. One plug-in is the Eclipse
Modeling Framework (EMF). It is a Java/XML frame-
work for generating tools and other applications based on
simple class models. Although EMF provides the foun-
dation for interoperability with other EMF-based tools,
support for tight meta-model coupling and integration
between these tools is not provided. Further, to the best
of our knowledge, most UML tools like Together Con-
trol Center or Rational Rose are also only extensible
via APIs.

The fourth problem area when integrating tools is con-
sistency management. On the one hand, it is clear that
a certain consistency management system is closely re-
lated to the solution taken to integrate metadata and
the possibility of accessing the data. On the other hand,
consistency management with respect to tool integration
consists of some general problems and requirements. For
example, separation of concerns on the one hand reduces
the complexity of the overall specification. On the other
hand, the increasing number of used notations very of-
ten leads to a wide range of inconsistencies [10,11], e.g.,
syntactical inconsistencies violating the well-formedness
of models, behavior inconsistencies between different di-
agrams [6], or inconsistencies during refinement of dia-
grams [4]. Of course, the general problem of inconsistency
is much broader and comprises a large number of disci-
plines. For a survey we refer the reader to [23] and for
a research agenda to [7].

The built-in consistency management of most of to-
day’s tools is not satisfactory. One reason for this is that
tools often try to enforce consistency and do not support
temporal inconsistencies during development. In [2, 23],
Nuseibeh et al. emphasize the importance of tolerating in-
consistencies and propose a conceptual framework for in-
consistency management that allows inconsistencies to be
ignored, deferred, circumvented, ameliorated, or resolved.
In addition, tools that support consistency checking on
user demands only [24, 26] have to check the whole specifi-
cation over and over again, even if no changes were made.

A database reengineering approach that supports
temporary inconsistencies is presented in [14, 15], hence
reengineering means handling partly correct information,
hypotheses, or contradictory indications. The presented
consistency management system uses so-called Triple
Graph Grammars, cf. [20,28], which are more or less
hard-coded, because the application domain is fixed, i.e.,
database reengineering.

In cases of a flexible environment for various appli-
cation areas, we need a consistency management system
that keeps different connected models of different meta-
models consistent. This demands a flexible consistency
rule set extension and management accompanied by the
corresponding rule execution mechanism.

3 The Fujaba integration approach

The integration approach presented in this paper was de-
veloped by the FusABA Team. We implemented this ap-
proach in the FusABA TOOL SUITE, which is presented in
Sect. 6.

3.1 Plug-in mechanism

Plug-ins are a common mechanism for adding third-party
software to a basic environment. Throughout this article
we call such a basic environment a Tool Suite. A plug-in
has to provide information about its version, its depen-
dencies on other plug-ins, and its developers. Addition-
ally, a plug-in can change menus and menu entries as well
as popup menus and toolbars via XML-based GUI con-
figuration files. Additionally, it is possible for plug-ins to
notice the execution of menu actions of other plug-ins.
Every tool that participates in a Tool Suite is a plug-in.
FuJsaBA’s Integration Approach supports two plug-in in-
teroperability variants.

First, an existing tool (plug-in) is extended by a new
plug-in, i.e., the meta-model of the existing tool is ex-
tended in the new plug-in (Fig. 1). Second, two existing
tools (plug-ins) are integrated, i.e., the meta-model in-
stances of two plug-ins are linked together and kept con-
sistent by a third plug-in (Fig. 2).

Figure 1 shows a meta-model extension for an exist-
ing ToolSuite. The <uses>> dependency is unidirectional;
thus the ToolSuite is not dependent on its plug-ins. The
ToolA plug-in is a tool with its own meta-model. ToolB is
a plug-in that extends the meta-model of ToolA. In terms
of compiling, this means that ToolA can be compiled with
the ToolSuite only, whereas ToolB needs the ToolSuite and
the ToolA plug-in for compilation.

ToolA

ToolSuite | .-
»»»»»»»»»»»»»» ToolB

«uses»

«USes»

Fig. 1. Tool extension

Tooll

Tool3

ToolSuite «usesy..-

-
«Uses»

M Tool2

«Useg;;‘-

- wUSES»

Fig. 2. Tool integration
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Assume that two independent (existing) tools, plug-
in Tooll and plug-in Tool2, should be used together
in a consistent manner. The meta-models of these two
plug-ins are independent. The aim is to enable the
use of both Tooll and Tool2, while integrating their
meta-models. Figure 2 shows such a meta-model inte-
gration within the Tool3 plug-in. Tool3 establishes the
link between the two disjunct meta-models of Tooll
and Tool2. Hence, Tooll and Tool2 are separately com-
pilable. Of course, Tool3 needs Tooll and Tool2 to
compile.

3.2 Bidirectional associations

A fundamental problem for extensible frameworks is
providing the possibility to integrate meta-models even
though the different meta-models might be in indepen-
dently compilable parts (plug-ins) of the software system.
In particular, bidirectional associations produce mutual
dependencies between classes.

There are different ways to implement associations be-
tween meta-model elements (classes). One way is to use
an attribute in a class A to reference another class B.
This models a unidirectional association where class B
does not know about its reference from class A. Keeping
unidirectional associations consistent is a difficult task.
Deleting an object of class B may result in an invalid ref-
erence within an object of class A.

Another solution is to use bidirectional associations.
They can be created by mutual references between both
classes, which is usually done by adding a public attribute
to each class referencing the other class. When creating
a link between two objects, both attributes are set to ref-
erence each other. Even in this scenario there could be
problems preserving the consistency. Since the attributes
can be set independently of each other, invalid references
are still possible.

We propose a smarter solution. Instead of using public
attributes, we recommend private attributes with public
access methods. The access methods can be used to en-
capsulate a mechanism that ensures a consistent mutual
referencing. When setting a link between two objects by
using the access method of one object, the access method
of the other method will be implicitly called to set the op-
posite reference. Even when deleting a link between two
objects, both references will be erased. See [8] for more
details.

Other solutions to implementing bidirectional asso-
ciations use adapters or observers (cf. [9]) or generate
code according to JMI [16]. All solutions embed consid-
erable overhead, i.e., (external) tables that store the bidi-
rectional associations (adapter) or at least an observer
for the generated association-interface that listens to the
participating classes. However, these solutions result in
different ways of dealing with intra- and intertool associ-
ations, which in turn results in maintenance and consis-
tency problems.

In monolithic applications, such a tight integration of
different meta-models is not problematic since the classes
just have to be connected via bidirectional associations.
In an extensible framework this solution is obviously not
appropriate since the different parts (plug-ins) would not
even compile separately.

Therefore, we propose a solution that preserves the
separation of core and plug-in as well as allows the tight
integration of the meta-models. Technically speaking, it
must be possible to connect both meta-models bidirec-
tionally without explicitly adding references to the meta-
models.

3.3 Running example

We present our approach using a running example. The
ISILEIT project [19], related to embedded systems, re-
quires a hybrid specification with the Unified Modeling
Language (UML) and the Specification and Descrip-
tion Language (SDL). SDL was developed for telecom-
munications engineering with a special focus on for-
mal semantics for process communication. We used
the FusaBA TooL SUITE with support for UML class
diagrams as a basic environment and added support
for SDL.

SDL block diagrams are used to specify the static
communication structure where processes are connected
by channels and signal routes. From an SDL block dia-
gram an initial UML class diagram is derived, where each
process is represented by a class. In addition, each signal
received by a process in the SDL block diagram is mapped
to a method of the corresponding class in the UML class
diagram. The class diagram can then be refined by state
charts for each class.

We added an SDL block diagram meta-model as a
plug-in that extended the UML class diagram meta-
model. Further, the SDL plug-in restricted the UML class
diagram meta-model by prohibiting multiple inheritance
for code generation reasons. This scenario corresponds
to Fig. 1. Consistency maintenance, by means of meta-
model restriction, has to be handled in a flexible manner
by the new plug-in.

A second embedded-system-related project raises the
need for a stand-alone SDL tool (plug-in). Nevertheless,
the integration with UML is still a major concern. Thus,
we constructed a plug-in that integrates and manages
the consistency between UML and SDL (Fig. 2). The in-
tegration plug-in has to incorporate a flexible mechan-
ism that guarantees consistency between the integrated
meta-models.

4 Meta-Model Integration approach
In the following discussion our proposed Meta-Model Ez-

tension and Meta-Model Integration patterns will be de-
scribed in the style introduced by Gamma et al. [9].
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4.1 Meta-Model Extension pattern
Intent

Extend tools on the meta-model level with tight bidirec-
tional but compile-time-independent coupling between
meta-model elements.

Motivation

Connecting meta-models is a fundamental task when
extending a tool by another tool or plug-in. To han-
dle data consistency between meta-models, data updates
have to be propagated in both directions between the
meta-models. This requires bidirectional associations be-
tween corresponding meta-model elements of the differ-
ent tools.

Figure 3 shows such a tight connection between two
elements in different meta-models using a bidirectional
1-to-N association. Each of both classes references the
other class. Links between objects of those meta-model
elements can then be navigated in both directions. Thus,
a bidirectional <uses>> dependency exists.

< connection
0.1 0.n

ConcreteElementA ConcreteElementB

Fig. 3. Tight connection between meta-models

However, this bidirectional association creates a mu-
tual dependency. It requires a modification of both tools
and particularly prevents a separate compilation of the
tools. In addition, the meta-models cannot be deployed
separately. These dependencies have to be avoided in
order to provide independent tool development and plat-
forms that will be extensible by tools to be developed in
the future.

The Meta-Model Extension pattern describes how an
existing meta-model can be extended by a new meta-
model. The extension does not affect the existing tool but
still provides a bidirectional coupling between the new
and the existing tool. This scenario is depicted in Fig. 1.

Applicability

Use the Meta-Model Extension pattern when you want
to (1) provide an extensible tool platform using a meta-
model framework and (2) extend a meta-model of an ex-
isting tool based on the meta-model framework.

Structure

In Fig. 4 the Meta-Model Extension pattern is presented.
A Meta-Model A is extended by a Meta-Model B with-

MetaModelElement ConcreteElementA |, | 1 model
key _,..-----1 ---------
I_OJ.J # Meta-Model™,
\._Extension .~
links lv ConcreteElementB | | _f
extension
X 0..n
connection|v
0..1 0.1
MetaModelAssociation ConcreteAssociation

Fig. 4. Meta-model extension pattern

out affecting the interface and the compilation of Meta-
Model A, but still a bidirectional association between
elements of the two meta-models is given.

The two classes MetaModelElement and MetaModel-
Association are part of the the meta-model framework.
This framework is provided by Tool Suites that enable
extensions on the meta-model level. All elements of meta-
models have to subtype the class MetaModelElement.
It provides a qualified association to the class Meta-
ModelAssociation. To create a bidirectional association
between ConcreteElementA of Meta-Model A and Con-
creteElementB of Meta-Model B as depicted in Fig. 3,
a subclass of MetaModelAssociation has to be created and
a connection association between ConcreteElementB and
ConcreteAssociation has to be established. This connec-
tion association should have the same cardinalities as the
intended tight association between the meta-model elem-
ents. All associations in this pattern are bidirectional.
The (name of the) ConcreteAssociation class is used as the
key for the qualified links association.

Participants

MetaModelElement. Provided by the meta-model frame-
work. Superclass for all meta-model elements.
MetaModelAssociation. Provided by the meta-model frame-
work. Superclass for all inter-meta-model association
classes.

ConcreteElementA, ConcreteElementB. Elements from dif-
ferent meta-models, provided by different tools.
ConcreteAssociation. Association class provided by the ex-
tending tool for inter-meta-model links.

Collaborations

The connection association modeled by the additional
class ConcreteAssociation can be navigated in both di-
rections. Figure 5 shows how objects of ConcreteEle-
mentA and ConcreteElementB are linked via an associa-
tion object.

It is obvious how to navigate from a ConcreteElementB
object bl via the object link of type ConcreteAssociation
to an object al of type ConcreteElementA. In the oppo-
site direction from a ConcreteElementA object al you can
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a1:g;gngrg1§Elgm§n1Alﬂ| link:ConcreteAssociation |

A|connection A|connection

[ b1:ConcreteFlementB | | b2:ConcreteElements |

Fig. 5. Objects linked via an association object

get the ConcreteAssociation object link by using the class
name of the ConcreteAssociation as key and then navigate
to an object bl of type ConcreteElementB.

Consequences

The Meta-Model Extension pattern (1) realizes bidirec-
tional associations between meta-model elements and
(2) avoids mutual compile-time dependencies by using
generalizations.

Implementation

The above-described navigation via objects of the associ-
ation class is clumsy compared to navigation via ordinary
bidirectional associations. For ordinary bidirectional as-
sociations well-known approaches (cf. [8]) exist that use
access methods to ease the navigation of associations
and the creation and deletion of links. In principle, the
same approach can be used to navigate via the associa-
tion class. Unfortunately, the usage of the Meta-Model
Extension pattern implies the navigation of two associa-
tions. Additionally, the generic association between Meta-
ModelElement and MetaModelAssociation imposes an ad-
ditional burden on the developer. Therefore, the source
code, which navigates over the object structures built by
the pattern, may deteriorate, and the readability suffers.
Thus, for the implementation of the Meta-Model
Extension pattern we propose a variant of the access
methods described in [8] to hide as much as possible the
special nature of the pattern-based association. Typic-
ally, access methods are used for creation, check, and
deletion of links as well as navigation over links. In the
example above, we are creating a ConcreteElementB class
that has an association to a not-to-be-changed class Con-
creteElementA. Therefore, we may add ordinary access
methods to the first class but not to the second. In the
case of a to-many association, the access methods for the
class ConcreteElementB have the following signatures:

public void addToConcreteElementA
(ConcreteElementA value)

public void removeFromConcreteElementA
(ConcreteElementA value)

public boolean hasConcreteElementA
(ConcreteElementA value)

public Iterator iteratorOfConcreteElementA()

In case of a to-one association, we employ two access
methods:

public void setConcreteElementA
(ConcreteElementA value)
public ConcreteElementA getConcreteElementA ()

Inside these methods the usage of an object of the
association class can be completely encapsulated. Thus,
the application of the pattern is hidden from Concrete-
ElementB’s point of view. The other way around the asso-
ciation class cannot be completely encapsulated by access
methods since the ConcreteElementA class must not be
changed. Therefore, the access methods must be added to
another class. The association class is a natural location
for these access methods. Since the exact object of the as-
sociation class is typically not known and is dependent on
the object of the ConcreteElementA class, we propose to
add static access methods to the association class that in-
clude the object of the ConcreteElementA class as parame-
ter. These static access methods completely hide the exis-
tence of an object of the association class from the devel-
oper. Therefore, the developer does not need to treat the
association based on the Meta-Model Extension pattern
in a special way. In particular, the error-prone manual
handling of objects of the association class is completely
encapsulated in the static access methods. For example,
the addTo method first uses the links association between
the MetaModelElement and MetaModelAssociation classes
to reach the object of the ConcreteAssociation class and
then adds the valueB object to the connection association.
The encapsulation keeps the two associations consistent
with each other such that the two bidirectional associa-
tions are equivalent to the needed one bidirectional asso-
ciation between both meta-model element classes.

public static void addToConcreteElementB
(ConcreteElementA valueA,
ConcreteElementB valueB)
public static void removeFromConcreteElementB
(ConcreteElementA valuel,
ConcreteElementB valueB)
public static boolean hasConcreteElementB
(ConcreteElementA valueA,
ConcreteElementB valueB))
public static Iterator
iteratorOfConcreteElementB
(ConcreteElementA valueA)

In the case of a to-one association, appropriate set and
get methods are used.

Example

Figure 6 gives an example where the Meta-Model Exten-
sion pattern was used to extend a UML meta-model by an
SDL meta-model (Sect. 3.3).

In this example a framework for implementing ab-
stract syntax graphs (ASGs) is given. The classes ASG-
Element and ASGAssociation are part of the framework
and implement the MetaModelElement and MetaModel-
Association classes of the pattern. Two meta-models are
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ASGElement UMLClass
[key |
0..1
links |v SDLProcess
0..n
umiClass| v
0..1 0.1
ASGAssociation ToUMLClass
~

Fig. 6. Extension of a UML meta-model
by an SDL meta-model

built on top of this framework, which are a UML class
diagram meta-model and a meta-model for SDL.

This example corresponds to Fig. 1, where one plug-
in extends another plug-in. Here a plug-in providing SDL
block diagrams extends another plug-in providing UML
class diagrams by associating SDL processes with UML
classes.

4.2 Meta-Model Integration pattern
Intent

Integrate independent tools on the meta-model level with
tight bidirectional but compile-time-independent coup-
ling between meta-model elements.

Motivation

The presented Meta-Model Extension pattern limits the
reuse of the extending tool as it cannot be used without
the extended tool. For the example given in Sect. 4.1 this
means that the SDL block diagrams cannot be used with-
out the UML class diagrams. Therefore, a mechanism is
needed to integrate two independent tools on the meta-
model level without affecting their dependencies. The
Meta-Model Integration pattern proposes to use a third
integration meta-model that extends the existing tools by
using the Meta-Model Extension pattern twice. This sce-
nario is depicted in Fig. 2. The integration meta-model
can then be used to preserve consistency between the two
meta-models.

Applicability

Use the Meta-Model Integration pattern when you want
to integrate two independently developed tools based on
the meta-model framework.

Structure

The Meta-Model Integration pattern is based on the dou-
ble application of the Meta-Model Extension pattern.
Figure 7 shows the structure of the pattern.

model ConcreteElementA |, | model ~Meta-Modei™, _
. Extension /1
extension |
I,»/'Méta—Moa-éT\‘\\ '
.. Integration .~ IntegrationNode |, | :
N
i extension
ConcreteElementB 7___r_qggi_gj\,""'l\-/leta—ModeT‘\\
model .. Extension .

Fig. 7. Meta-Model Integration pattern

An Integration Meta-Model is used to connect two
independent meta-models A and B. When connecting
two elements from Meta-Models A and B an Integra-
tionNode is created. It is connected via association ob-
jects using the Meta-Model Extension pattern. Note that
Meta-Models A and B are still independent of each other
and can be used separately. Only the Integration Meta-
Model depends on Meta-Model A and Meta-Model B.

Participants

ConcreteElementA, ConcreteElementB. Elements from dif-
ferent meta-models, provided by different independent
tools.

IntegrationNode. Element from third integration meta-
model to connect elements from the existing meta-
models.

Meta-Model Extension pattern. Applied twice. Provided
partially by the meta-model framework. Two concrete
meta-model association classes between the ConcreteEle-
ments and the IntegrationNode have to be provided by the
Integration Meta-Model.

Collaborations

The integration nodes can be used for preserving con-
sistency between elements of the two meta-models. The
integration tool has to ensure the existence of the inte-
gration nodes so that changes can be propagated between
the connected elements. The integration tool has to cre-
ate the integration node when meta-model elements are
created and delete the nodes when meta-model elements
are destroyed.

Consequences

The Meta-Model Integration pattern realizes a tight bidi-
rectional connection between elements of two indepen-
dent meta-models.

Implementation

The pattern can be implemented using the Observer pat-
tern [9]. The integration tool observes the creation and
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Fig. 8. Integration of SDL and UML meta-models

deletion of meta-model elements. The integration nodes
observe changes of the connected elements.

Example

Figure 8 shows how the UML and SDL meta-models are
connected by a third integration meta-model. The first
Meta-Model Extension pattern is applied to the compo-
nents ToolSuite, UML Meta-Model, and the Integration
Meta-Model. The second Meta-Model Extension pattern
is applied to the components ToolSuite, SDL Meta-Model,
and the Integration Meta-Model.

Consistency is a vital part of the Meta-Model Inte-
gration pattern. Ensuring consistency by manually im-
plementing observers for each constraint is a tedious
and error-prone task. To reduce the effort, a consistency
mechanism for checking declarative rules is presented in
the following.

5 Consistent tool integration

As outlined in Sect. 2, the problem of inconsistency de-
tection and management is central to the development
of large and complex models. Thus, sufficient support for
model consistency is a crucial prerequisite for the success-
ful and effective application of computer-aided develop-
ment tools.

The requirements for a suitable consistency manage-
ment approach have to provide an incremental check-
ing of consistency rules as well as the ability to toler-
ate detected inconsistencies. In the case of tool integra-
tion, the set of required consistency rules and integra-
tion constraints results from the individual combination
of independently developed tools. Thus, it is not feas-
ible for a tool developer to identify consistency rules
for all possible integration scenarios in advance. It must
be possible to specify required consistency rules outside
each individual tool. Resulting conflicts between contra-
dictory rules and repair actions have to be managed at
runtime.

We first outline how the execution of such rules has to
be organized and then present two alternatives specifying
the required consistency rules and repair actions.

change

notification change
change Tchange resolving
events
check checking resolving
deferred deferred resolve

user

v

checking

inconsistency
detected

inconsistency
events

Fig. 9. Consistency life cycle of a model modification

5.1 Consistency checking

To understand what a consistency rule evaluation should
look like, we have to understand the different phases of
(1) detecting a possible inconsistency, (2) checking that
it is indeed an inconsistency, and (3) resolving the in-
consistency with respect to a given consistency rule. The
general life cycle of a model modification concerning con-
sistency is depicted in Fig. 9.

To detect a possible inconsistency, tools usually wait
for the user command to check all rules. A better ap-
proach is to observe the model modifications and employ
an on-demand consistency management approach that
reacts to different change events or specific user com-
mands in a flexible manner. An incremental checking al-
gorithm has to analyze only that fraction of the system
that has been modified. Thus, the response time for con-
sistency checking can be reduced drastically.

For each change event we simply have to check
whether it results in a modification that is inconsistent.
The change events can be processed by a single rule ap-
plication that usually reports detected inconsistencies.
In more complex cases, multiple rules may cooperate
via resulting higher-level change events that permit one
to decompose the detection of inconsistencies into a se-
quence of less complex steps.

We distinguish required and optional rules. For re-
quired rules the consistency check has to be successfully
applied. Thus, if the rule detects an inconsistency, either
it is automatically resolved by a related repair action or
a compensating undo is required.

For optional rules we allow temporary inconsisten-
cies. If the automatic check does indicate a problem and
only a user inspection can determine whether or not it is
a real inconsistency, the consistency management should
simply keep track of the required manual inconsistency
checks and inform the user.

For the final step of resolving an inconsistency, sup-
port for automatic as well as manual handling is required.
It is required to keep these two last phases separated,
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as a proper consistency management system must toler-
ate for optional rules that a detected inconsistency re-
mains in the model until it is resolved in a later stage
of development when the required context information is
available.

If an inconsistency is detected, it can be resolved ei-
ther automatically or manually. In the case of automatic
resolution of inconsistencies, some consistency rules and
repair actions may introduce new inconsistencies. Even
worse, contradictory consistency rules and repair actions
can result in a nonterminating chain of change events,
checking activities, inconsistency events, and repair ac-
tivities. In particular, such situations occur often in en-
vironments with several integrated tools restricting the
meta-model of one tool in different ways. For example,
if two tools A and B were integrated using some consis-
tency rules restricting the meta-model of tool B, integrat-
ing a third tool C into this environment may introduce
further consistency rules on B’s meta-model. If the addi-
tional consistency rules are contradictory to the already
existing rules, an automated repair will result in a cyclic
execution of the consistency rules.

An appropriate approach to evaluating a given set
of rules thus has to detect such problems and stop the
repeated rule application. To prevent such a cyclic exe-
cution and to detect contradictory consistency rules and
repair actions, our algorithm works in two phases.

In the first phase, all modified elements are checked by
executing the appropriate consistency rules. In the case of
found inconsistencies, the necessary repair activities are
executed. As a matter of course, repair activities modify
the model elements themselves, causing further change
events. Thus, during a repair all elements modified by
a repair action are stored, and it is noticed which consis-
tency rule caused the repair action to be executed.

The second phase works similar to the first phase ex-
cept for the fact that now the consistency rules are ex-
ecuted only for the previously stored elements collected
during the repair activity in the preceding phase. Addi-
tionally, the second phase is executed in a cyclic man-
ner where the modified elements collected during a re-
pair serve as input for the subsequent execution phase
cycle. Within each phase cycle three different cases can be
distinguished:

The first case is if further inconsistencies are detected
and if the considered element was modified by another
rule in a previous phase cycle. This means that multiple
rules cooperate with each other. Thus, the appropriate re-
pair activity can be executed without any risk. Note that,
as in the first phase, all modified elements will be stored
and used for the next phase cycle.

The second case is if further inconsistencies are de-
tected and if the considered element was modified by the
same rule in a previous phase cycle. If this situation holds,
either a repair action is faulty or a contradictory rule in-
troduced the inconsistency a second time. In that case
a further repair action is not executed. Instead, the user

is informed about the detected problem and has to resolve
the conflict in the specified consistency rule(s) and/or re-
pair action(s).

In the third case no further inconsistencies are found.
This means that in the preceding phase cycle all con-
sistency checking and repair activities were successful.
Hence, no further steps are required. Note that the execu-
tion terminates if no further modifications are performed
during a phase cycle.

5.2 Simple graph grammar rules

To achieve a successful and effective interoperability be-
tween integrated tools, additional integration constraints
and consistency rules have to be specified. Typical ex-
amples for such integration constraints and rules are
restrictions on the meta-model of one tool that are
needed to achieve a clear interoperability with another
tool.

As an example, we employ a constraint from our
previously mentioned case study. In our case study, we
are generating code for programmable logic controllers
(PLC’s) [22]. To keep the transformation of the class di-
agram into a non-object-oriented target language quite
simple, we have to restrict the used class diagrams to not
include any multiple inheritance between classes.

The Unified Modeling Language (UML) is defined by
the abstract syntax of the underlying meta-model [25].
We will use a simplified fragment of this logical model as
an example (Fig. 10).

In Fig. 11, a class diagram is represented as an in-
stance of the simplified meta-model fragment depicted
in Fig.10. The objects of type Class represent three
classes A, B, and C. The inheritance relationships are
represented by instances of Generalization and links con-
necting the parent classes A and B with the child class C.
Note that, since class C inherits from class A as well as
from class B, this meta-model instance violates our con-
straint forbidding multiple inheritance.

For the specification of such constraints and appropri-
ate repair actions we have decided to use graph rewriting

ModelElement Class
name : Name
— o.n  chid» 1 _ €7
Generalization GeneralizableElement
0.n parenth» 1

Fig. 10. Simplified fragment of the UML meta-model

a:Class c:Class b:Class
name = "A" name = "C" name = "B"
A|parent child|A A|chi|d parent|A
| g1:Generalization | | g2:Generalization |

Fig. 11. Meta-model instance
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Fig. 12. Integration constraint and repair action

rules based on graph grammars [27]. The idea of using
graph grammars for the visual specification of consistency
rules and appropriate repair actions is not new [3, 5]. We
rely on these concepts and show in the following discus-
sion how they can be applied in our tool-integration ap-
proach (cf. [29]).

The specification depicted in Fig. 12 consists of two
parts. The upper part is the consistency rule itself. It con-
tains a specification of a counterexample, i.e., it specifies
an inconsistent situation in the meta-model instance that
is not allowed.

In a graph-grammar-based consistency check, a graph
rewriting system will search for the pattern, and as soon
as a match has been found, an inconsistency will be re-
ported to the user.

The consistency checking can be performed by apply-
ing the graph grammar rule as follows: After a change
event has occurred, the applicability of the rule is checked
by looking for a match of the modified model element
in the specified graph grammar. If the element can be
mapped to one of the graph grammar nodes, the remain-
ing structure is searched for. If there is no such match in
the consistency rule, or if the remaining structure cannot
be found, the consistency rule is not applicable for this
element. Otherwise, if a match for the whole structure is
found, an inconsistency was detected and will be reported
to the user.

The lower part of the specification contains the repair
action. The repair action is executed only if the upper
part of the rule can be applied and automatic consistency
resolving is activated. In our example, the repair is simply
performed by deleting the Generalization object (stereo-
type <destroy>>) and the links between the parent and
the child objects.

Handling inconsistencies may be as simple as adding
information to the description or deleting it. Thus the
inconsistency handling can also be automated by speci-
fying repair activities using graph grammars [30]. How-
ever, in some cases additional information from the user
is needed. Thus resolving inconsistencies immediately is
not always possible or even desired [2, 23]. Therefore, the
automated repair may remain unspecified.

5.8 Triple graph grammar rules

For a tight integration of tools on the meta-model level
it is often not sufficient to restrict the individual meta-
model of each tool itself. What is additionally needed is
a flexible mechanism to specify semantic relationships be-
tween syntactically unrelated objects without modifying
the meta-models of the tools. This relationship is used
to propagate changes in one model to the corresponding
model in the other tool and vice versa. This way, consis-
tency between both models can be ensured.

Simple graph grammars as presented in the previous
section are usually restricted to the specification of op-
erations on a single meta-model. Therefore, they are not
suitable for the specification of integration constraints
and rules among different meta-models.

For specifying relationships between different meta-
models, we are using a technique based on triple graph
grammar theory [28]. In the original work [20], triple
graph grammars are used for transformations between
different documents. An additional integration document
enables a clear distinction between the source and the
target document and keeps the extra links needed to pre-
serve the consistency between both documents. For tool
integration, each document can be seen as a separate
meta-model of the integrated tools (Fig. 13).

A triple graph grammar specification is a declara-
tive definition of a mapping between two meta-models.
A triple graph grammar rule is shown in Fig. 14. The
rule stems from the already mentioned mapping example
where each SDL process is mapped to a UML class and
vice versa.

The rule specifies a consistent state between the ob-
jects of the integrated tools. It consists of a left-hand and
a right-hand rule side. Each rule side contains objects
of the underlying meta-model of the tool, i.e., the left-
hand side contains instances of the SDL block diagram
meta-model and the right-hand side contains instances of
the UML class diagram meta-model. The objects are con-
nected by links using the integration model in between

Integration

Meta Model A Model

Meta Model B

\

- Inter-Model Relation
— Intra-Model Relation

Fig. 13. Triple Graph Grammar
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:SDLBlock left | :MapNodeBlock |right| :UMLClassDiagram
has |«create» «create» | items
«create» «create» «create» «create» «create»

process:SDLProcess | left | :MapNodeProcess | right clazz:UMLClass

{process.name == clazz.name}

Fig. 14. Triple Graph Grammar Rule

both rule sides. An additional constraint specifies that the
process and the class name have to be equal.

This declarative specification can be translated into
simple graph rewriting rules that are used for consistency
checking as well as for automated repair actions. We are
creating three graph rewriting rules for each transform-
ation direction. The rules for the consistency preserving
operations are presented in Fig. 15. These rules are ap-

Forward Creation Rule i
~N
:SDLBlock left [ :MapN Block |right| :UMLClassDiagram
|has |items

process:SDLProcess | left| : P right w

T=process.

J/ [repair]

«create» «create» «create» «create» A

process:SDLProcess | left [ :MapNodeProcess |right [  clazz:UMLClass |

[ | [ name:=process.name |

Forward Deletion Rule J./
:SDLBlock left | :MapNodeBlock [right | :UMLClassDiagram
has |\tems
pr :SDL. S | left| :MapNodeProcess |right clazz:UMLClass
_
J/[repair]
N
:SDLBIock left | :MapNodeBlock [right| :UMLClassDiagram

«destroy» |items
«destroy»

clazz:UMLClass ‘

«destroy» «destroy>»

[ :MapNodeProcess |right
l

) o
Forward Consistency Rule i
:SDLBIock left | :MapNodeBlock [right | :UMLClassDiagram
has items

process:SDLProcess | left | :MapNodeProcess |right clazz:UMLClass

\_ {process.name |= clazz.name}

\I/ [repair]

clazz:UMLClass

name:=process.name
AN J

0

Fig. 15. Derived forward rules

process:SDLProcess | left | :MapNodeProcess |right

plied if changes in the left model, i.e., the SDL block
diagram, are made. Therefore, these rules are called left
to right rules or forward rules.

The Forward Creation Rule is applied if a new SDL
process was created and no corresponding class and in-
tegration objects are present. The operational semantic
is similar to the already presented graph rewriting rules.
Therefore, the graph rewriting system will search for all
objects except the crossed-out nodes. The crossed-out
nodes are so-called negative application conditions [12].
They are used to express that an object must not exist.
Thus the graph rewriting system will check for the ab-
sence of the class and the integration object. If this con-
dition holds, i.e., a matching pattern was found, an in-
consistent situation was detected. To resolve the inconsis-
tency, the missing class, the integration object, and the
links are created. The creation of objects and links is spec-
ified by the stereotype <create>>. In the last step the
name of the new class is set to the name of the process.

The Forward Deletion Rule is applied if an SDL pro-
cess was deleted. This inconsistent situation is denoted by
a crossed-out process object. If a matching object struc-
ture is found, both the integration object and the class
object with its links are deleted. The deletion is denoted
by the stereotype <destroy>>.

The Forward Consistency Rule is applied only if the
process object and the class object are already connected
through an integration object and the state of the process
object has changed. In our concrete example, this means
that the name of the process was modified. In this case
the new name is propagated to the class object. This is
specified by the assertion name := process.name within
the UMLClass object.

In contrast to the forward rules, the rules that han-
dle modifications of the right-hand model, i.e., the UML
class diagram, are called right to left or backward rules.
Since they are created in a way that is quite similar to the
way in which the forward rules are created (just by ex-
changing the left and the right model elements), they are
omitted here due to lack of space. For a detailed descrip-
tion see [29].

6 Integration within the Fujaba Tool Suite

As an application of our proposed solution to integrate
tools at the meta-model level, we present the FujaBa
TooL SUITE, which is an open source UML CASE Tool
project.

6.1 Fujaba Tool Suite

The FUJABA project was started by the software engin-
eering group at the University of Paderborn in fall 1997.
It was designed as one monolithic application including
several functionalities from different domains. In 2002
FuiaBA was redesigned and became the FujaBa TooL
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Fig. 16. FujABA’s meta-model framework

SUITE. It now provides a plug-in architecture that al-
lows developers to add functionality easily while retaining
full control over their contributions. It supports build-
ing menus, drawing diagrams, preserving consistency be-
tween models and views, etc. Therefore, the FujABA
TooL SUITE is a platform for the integration of third-
party tools.

Meta-model framework

FuUJABA’s core meta-model provides a framework for ab-
stract syntax graphs that is easily extensible by plug-ins
using the Meta-Model Extension and Integration pat-
terns. Figure 16 depicts the core’s simplified meta-model
framework.

ASGElement and ASGAssociation implement the Meta-
Model Extension pattern. According to Fig. 4 the Meta-
ModelElement is implemented by ASGElement and the
MetaModelAssociation by ASGAssociation. Thus ASGEle-
ment is the superclass for all meta-model elements. All
subtypes of ASGElement are connection points for other
meta-models.

Through the elements association all meta-model
elements can be assigned to a diagram that is an ASGEle-
ment itself. ASGDiagram serves as a base class for meta-
model-specific diagrams such as a UML class diagram.
Multiple diagrams build up a project. Hence ASGProject
manages the diagrams through the diags association.

Plug-ins

Plug-ins for the FusABA ToOOL SUITE using the meta-
model framework can connect to meta-models of existing
plug-ins through the Meta-Model Extension pattern. To
accomplish a tool integration in practice, there is need not
only for an integration at the meta-model level but also
for extending the graphical user interface (GUI) and pro-
viding functionality to visualize the model.

The extension of the GUI is done by XML-based docu-
ments specifying the appearance of menu bars, popup

menus, and toolbars. Menus and toolbars are filled with
actions. An action may cause the creation, deletion, or
modification of the model or open self-defined dialogs to
interact with the user.

To help the plug-in developer visualize his model, FU-
JABA provides the so-called Fujaba Swing Adapter (FSA).
FSA is an implementation of the Model View Controller
mechanism and thus automatically propagates model
changes to the visualization and vice versa.

Owing to FUJABA’s history it provides additionally
sophisticated code generation. This can easily be ex-
tended by adding additional code generators.

All XML documents and class files that specify the
GUI extensions, the meta-model, the functionality, and
the visual representation form the plug-in. They are
shipped as a single jar file and can be downloaded with
FuJABA from a list of servers and installed automatically.

Consistency management environment

For the specific requirements of the outlined tool-integra-
tion framework, a flexible consistency management envi-
ronment has been implemented (cf. [30]). The part of the
consistency management architecture that is relevant for
execution is summarized in Fig. 17.

Consistency rules can be organized in the form of cat-
alogs and different categories to permit each plug-in to
add its own rules in an organized manner. Such prede-
fined catalogs can then be loaded on demand or at startup
of a plug-in to configure the FusABA ToOL SUITE for the
specific needs of an individual tool-integration scenario.

For automated detection, checking, and repair, consis-
tency rules are executed within so-called analysis engines.
We have tool support to develop such engines for the
two formalisms presented in Sect. 5, namely, simple graph
rewrite rules and triple graph grammars. Additionally,

Executable Analysis Engines Rule Profiles
L
G & ML
© l
[ ‘._._fi'{?
| i Profiles

T r |
bind . -" | Consistency Management | - /add
engines | Environment N profiles
apply rules:J L
user
commands ,

Monitor for
Inconsistency

Modeling Tool

Fig. 17. Elements of consistency management plug-in
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external tools such as model checkers can be integrated
for checking and repair (cf. [13]) by simply realizing such
engines.

Starting from a consistent model, inconsistencies can
only be introduced by model changes. In our tool, models
are changed by executing user commands from predefined
pull-down or popup menus. In general, a user command
is not an atomic operation and usually consists of more
than one model modification. Thus inconsistencies dur-
ing the execution of a user command are not unusual
and are often temporary. Therefore, the automatic con-
sistency checking within our plug-in is not executed until
a user command is completed. The changes are collected,
and after the command has been finished only relevant
rules concerning the modified model elements are exe-
cuted (Sect. 5).

6.2 Integration example

In the following example we show how the Meta-Model
Integration framework is used to integrate two stand-
alone editors into our FUJABA ToOL SUITE. This integra-
tion will be used to show how the Meta-Model Integration
pattern and consistency management are combined to
achieve interoperability between both editors.

For the specification of controller software we are
using SDL block diagrams and UML class diagrams
(Sect. 3). For a tight integration both editors and their
meta-models have to be integrated into the FujABA
TooL SUITE using the Meta-Model Integration frame-
work.

UML editor integration

A part of our UML class diagram meta-model and how
it is embedded into FUJABA’s meta-model framework is
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shown in Fig. 18. The class diagram is implemented by
UMLClassDiagram extending ASGDiagram. The diagram
elements representing classes, methods, and attributes
are derived from UMLDiagramltem (which itself extends
ASGElement). Thus other plug-ins can connect to the
UML class diagram meta-model, as shown in Sect. 4.

SDL editor integration

The SDL meta-model is integrated in FUJABA in a similar
manner. Figure 19 shows a part of its architecture.

As in the UML class diagram meta-model there ex-
ists a diagram class SDLDiagram extending ASGDiagram
and multiple meta-model elements derived from ASG-
Element. Elements for structuring the SDL system are
SDLSystem, SDLBIlock, and SDLProcess. The superclass
SDLElement was designed to model a system composed of
blocks and processes. Blocks can be hierarchically nested.
It is forbidden syntactically, for example, for a block to
contain a process that is ensured through intramodel
consistency rules. Connections between elements are
modeled through the source and target associations to
SDLConnection.

6.3 Consistency management

Since both editors can be used in parallel, it is necessary
to keep both specifications consistent. Thus changes in
the UML model have to be reflected in the SDL model
and vice versa.

For this purpose we are using the triple graph gram-
mars presented in Sect. 5. The rule specification is sup-
ported by a special editor where required rules can be
specified in an easy way. The needed bidirectional as-
sociations between the integration model and the meta-
models of the tools are realized using the Meta-Model

ASGElement [<I——————9 ASGAssociation
collapsed FV‘. associations collapsed
collapsed 0--1 0.1 collapsed
3
4 elements
n UMLDiagramitem
ASGProject > diags ASGDiagram collapsed
collapsed 17 - collapsed collapsed
collapsed collapsed
UMLClassDiagram UMLMethod «methods UMLCIass » attrs UMLAttr
collapsed collapsed ’m@ collapsed %coﬂansec
collapsed collapsed collapsed collapsec

Fig. 18. Meta-model of the UML class diagram plug-in
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Fig. 19. Meta-model of the SDL plug-in

Integration pattern from Sect. 3. For a simpler usage of
the editor, the extra nodes used within the integration
pattern are hidden from the user.

The triple graph grammar editor and the rule for the
process to class mapping are shown in Fig. 20. This rule
can then be translated automatically into the simple graph
grammar rules presented in Sect. 5. From these graph
grammar rules executable analysis engines are generated.

The consistency management binds the rule catalog
and its analysis engines at runtime to the FujaBa TooL
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Fig. 20. TGG Rule editor

SUITE. These rules are then applied to the currently de-
veloped models.

The consistency management can also be config-
ured and adapted at runtime. For example, consis-
tency rules and categories can be activated or deac-
tivated on demand by the user. If a category is de-
activated, its entries are not considered and thus no
rule within the category is checked. This way, the engi-
neer can adjust the consistency checking to his current
needs.

The user can specify whether or not he will be in-
formed immediately about any detected inconsistency. If
this option is selected, the system informs the user as soon
as an inconsistency is detected by displaying an informa-
tion dialog. In most cases, especially for minor inconsis-
tencies, the option will be deactivated so as not to hinder
the user.

An inconsistency can be resolved either automatically
or manually. This behavior can be controlled by the repair
option. If no repair action is specified or the automatic
repair is disabled, the developer is informed about the un-
resolved inconsistency and must resolve it manually. This
way, the automatic resolution of inconsistencies may be
circumvented by the user if required.
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7 Conclusion

Tool integration is a hot topic among tool vendors and
users. The integration of graphical user interface artifacts
and the integration of functionality via a special applica-
tion programming interface (API) is supported by most
integration platforms. Unfortunately, a prominent prob-
lem in tool integration originates from data stored by the
different tools. The problem of dealing with overlapping
data and ensuring the consistency of data while maintain-
ing the flexibility of different tools remains unsolved in all
proposed platforms.

In this paper we describe the FUJABA approach to
tool integration. The FUJABA approach tackles the dif-
ferent aspects of tool integration. While also supporting
the mentioned aspects of integration at the graphical user
interface level and providing the integration of functional-
ity, the presented approach focuses in particular on data
integration.

The proposed Meta-Model Extension and Meta-
Model Integration patterns enable the integration of data
in different scenarios on the meta-model level. Both pat-
terns maintain flexibility by ensuring compile-time in-
dependence. The Meta-Model Extension pattern is used
for the extension of one meta-model, whereas the Meta-
Model Integration pattern enables the integration of two
different meta-models by an integration meta-model.

Based on the data integration provided by the pat-
terns, a consistency mechanism is presented. This consis-
tency mechanism uses triple graph grammars for a graph-
ical, though formal, specification of structural consis-
tency between instances of the integrated meta-model
elements. This formal specification is used for manag-
ing consistency during runtime. Automatic repair actions
may be included in the consistency specification.

The presented approaches to data integration and ad-
ditional approaches for graphical user interface and func-
tionality integration have been widely employed within
the FusjABA TooL SUITE and all related plug-ins with
great success.
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