
C. Salinesi and O. Pastor (Eds.): CAiSE 2011 Workshops, LNBIP 83, pp. 270–281, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Tool Integration beyond Wasserman

Fredrik Asplund, Matthias Biehl, Jad El-Khoury, and Martin Törngren

KTH, Brinellvägen 83, 10044 Stockholm, Sweden
{fasplund,biehl,jad,martint}@kth.se

Abstract. The typical development environment today consists of many spe-
cialized development tools, which are partially integrated, forming a complex
tool landscape with partial integration. Traditional approaches for reasoning
about tool integration are insufficient to measure the degree of integration and
integration optimality in today's complex tool landscape. This paper presents a
reference model that introduces dependencies between, and metrics for, integra-
tion aspects to overcome this problem. This model is used to conceive a method
for reasoning about tool integration and identify improvements in an industrial
case study. Based on this we are able to conclude that our reference model does
not detract value from the principles that it is based on, instead it highlights im-
provements that were not well visible earlier. We conclude the paper by
discussing open issues for our reference model, namely if it is suitable to use
during the creation of new systems, if the used integration aspects can be subdi-
vided further to support the analysis of secondary issues related to integration,
difficulties related to the state dependency between the data and process aspects
within the context of developing embedded systems and the analysis of
non-functional requirements to support tool integration.

Keywords: Tool Integration, Model-based Tool Integration, Model-based
Development, Integrated Development Environments.

1 Introduction

We work within the domain of embedded systems. In this domain there is tradition-
ally a strong emphasis on ensuring system quality throughout the development proc-
ess. This is due to embedded systems, through their close interaction with the envi-
ronment in domains such as transportation and automation, have a strong presence of
requirements on safety, availability, performance, etc. To ensure relevant expert
knowledge development efforts are therefore often very much multidisciplinary,
which leads to many stakeholders and a large diversity of tools. In development envi-
ronments for embedded systems well functioning tool integration is needed to achieve
seamless cooperation between tools to support the goals of the tool users. Due to it
being unlikely that the whole system will be taken into account during every change
done to improve tool integration this strive towards seamless cooperation typically
leads to islands of automation (i.e. integrated groupings of tools). These islands sup-
port only specific parts of the product life-cycle and are heterogeneous environments
that can vary drastically in the way they carry out tool integration.

 Tool Integration beyond Wasserman 271

We have used the principles that originated in [1] to build a reference model for
reasoning about tool integration in these heterogeneous development environments
(hereon after this is the context of which we speak), since we found the original prin-
ciples insufficient for our work. The second section in this paper describes the reasons
behind diverging from the original principles and how we do this by adding metrics
and dependencies to the categories defined in [1].

The third section describes a method on approaching tool integration in our con-
text. This is done both to exemplify our reference model and to allow for it being used
in case studies.

In the fourth section we describe a case study.
In the fifth, and final, section we sum up our findings and point out the research di-

rections in the greatest need of further effort.

2 Diverging from Wasserman

To facilitate the reasoning about tool integration in an existing system we need:

• A set of categories that divide an integration effort into parts that can be discussed
in isolation. This is needed to structure the reasoning into manageable parts.

• A way to measure the degree of integration. This to needed to understand the
state of the integration of a system.

• A notion of what optimal integration is. This is needed to know in which direction
to move when improving a system.

[1] provides all of these, but before we settled on this set of principles we performed
an extensive literature review to judge its current value. As will be apparent later in
this section these principles figure prominently in literature throughout the last two
decades, which is, in itself, promising. What made us finally decide was that [1] is
being mentioned in literature reviews summarizing the most salient papers [2] and
used as a reference to compare with when trying to build new research agendas for
tool integration [3].

These principles are, however, not fully applicable in our context. In the following
subsections we will discuss each of the requirements above as put forward in [1] and
how we diverged from them when building our own reference model.

2.1 A Set of Categories

First, there are five widely accepted categories found in [1], namely the control, data,
platform, presentation and process integration aspects (hereon after aspects is used to
specifically indicate these five categories). For clarity we have listed the definitions of
these aspects below. These definitions are in essence the same as the ones found in
[1], with only minor updates to reflect our view of the discussion since the paper was
published.

• Control integration is the degree to which tools can issue commands and notifica-
tions correctly to one another.

272 F. Asplund et al.

• Data integration is the degree to which tools can, in a meaningful way, access the
complete data set available within the system of interest.

• Platform integration is the degree to which tools share a common environment.
• Presentation integration is the degree to which tools, in different contexts, can set

up user interaction so that the tool input/and output is perceived correctly.
• Process integration is the degree to which interaction with tools can be supervised.

This decomposition is often used when structuring development efforts or case stud-
ies. Discussions often lead to which technical mechanisms (such as explicit message
passing vs. message servers, etc., hereon after mentioned only as mechanisms) should
be covered ([4]) or were used to address which integration aspect ([5], [6], [7], [8],
[9], [10], [11]). These discussions often take a “broad” view of what the different
aspects entail and discuss only the mechanisms actually used.

The aspects are used also in evaluative approaches. In [12] the aspects are used for
categorizing, but combined with the notion of integration levels [13] to define the
extent of the integration. An attempt is made to relate the different levels to several of
the aspects. In the end this is again done by directly mapping different mechanisms to
the different levels. In [14] all the aspects are pulled into one category where different
groupings of mechanisms determine the level of integration.

So, while the aspects are widely used, they are used as vague categories. When ex-
actness is needed the mechanisms are the preferred fallback. This is natural, since in
[1] mechanisms are used as the measure of integration. Assigning different mecha-
nisms to different aspects has with time also become the way of isolating the aspects
from each other when exactness is needed.

2.2 A Way to Measure

There are two reasons why using mechanisms as the measure of integration is prob-
lematic for us. First, it does not allow discussing complex mechanisms that cover
several aspects without the terminology becoming vague [15]. Secondly, this ap-
proach does not scale as the amount of mechanisms grows. Both of these problems
are especially difficult in our context, since we deal with such heterogeneous envi-
ronments. Therefore, to facilitate the reasoning about integration in our context, we
have come up with a new metric for each of the aspects. These are described in the
paragraphs below.

We define our metric of control integration as the number of unique services in a
system. This we have picked up from the notation in [16] that the provision and use of
services is the essence of this aspect. The possibility to achieve a high level of inte-
gration increases the finer the granularity of a systems services is.

We define our metric of data integration as the number of data interoperability sets
in a system (a data interoperability set is a collection of syntax and semantic pairs that
are related by links or transformations). This we have deduced from the discussions
on data integration ([16], [17]) where data interoperability figures prominently. The
possibility to achieve a high level of integration decrease when the number of data
interoperability sets increase.

 Tool Integration beyond Wasserman 273

We define our metric of platform integration as the distinct platforms used in the
system. The more platforms that have to be considered when analyzing the other
aspects, the less possible it is to achieve a high level of integration.

We define our metric of presentation integration as the level to which users are
forced to view or manipulate data in views they are not used to interact with. Most of
the discussions about presentation integration are centered on the need for a common
“look and feel” ([16], [18], [19]). However, in our context a specific user is usually
not expected to use all of the tools present and thus a lot of different “look and feels”
can exist without a major impact. The more data entities that are accessed in different
views, pertaining to different development activities, the less possible it is to achieve
a high level of integration.

We define our metric of process integration as the number of services that allow
the end-user to know the state of the system when they signal completion (implicitly
or explicitly). Process integration is mostly discussed in relation to frameworks put
forward to facilitate the application of a process ([15], [20], [21], [22]), but we focus
on process in its most simple form. The closer this metric comes to the total number
of services, the better the possibility to achieve a high level of integration.

Our metrics, however, do not help us to isolate the aspects from each other. To be
able to use them we also explicitly list the dependencies between the aspects.

The different services of control integration need to be reachable, which is a fea-
ture of platform integration. Data also needs to be reachable, which is a combined
feature of control and platform integration. Control, data and platform integration
limit the choices available for presentation integration. The logic of process integra-
tion will depend on control (process awareness) and data integration (state). These
dependencies are visualized in Figure 1.

Fig. 1. Dependencies between aspects

We should treat the dependencies as entities in their own right and understand how
they are handled. Then the aspects can be discussed and measured in isolation.

2.3 A Notion of Optimality

This leads us to the last issue, the notion of optimality. In [1] optimal tool integration
is defined as when all tools agree on the mechanisms in regard to all aspects. This is

274 F. Asplund et al.

of course true, but the price for and time to achieve such a homogeneous environment
is likely to be large. We need a reference model which is able to point out what to
focus on and in what order. The dependencies and our metrics work together to give
our reference model this property.

The first indicator of optimality is the existence of as few dependencies as possible
(process steps may for instance dictate a certain number of required dependencies).
Fewer dependencies indicate both less need for and a greater possibility for integra-
tion between aspects. The structure of dependencies provides the order in which to
deal with the aspects, from the aspect with no dependencies (platform) to the ones at
the end of the dependency chains (presentation and process). A change at the begin-
ning of a dependency chain will affect more entities than a change at the end of a
chain. Our metrics are the secondary indicator of optimality.

3 A Method to Analyze Development Environments

To exemplify the reference model described in the previous section and to prepare the
way for an upcoming case study we here describe a method for analyzing develop-
ment environments. The description will make use of a fictional example of three
islands of automation, shown in Figure 2.

Fig. 2. A fictional example of three groupings of integrated tools illustrated through their inte-
gration aspects and dependencies

3.1 Identify the Member Sets and Their Dependencies

The first step is to identify all the sets of members of our metric sets (i.e. the sets of
related data interoperability sets, the platforms used together, etc.) and their depend-
encies. Figure 2 illustrates this.

 Tool Integration beyond Wasserman 275

The implications of the first three aspects (platform, control and data) in the de-
pendency chain are obvious, but we note that they can be shared between islands.
When none of these member sets are shared this implies a data artifact which is
manually transferred between development steps (using a word processor or such).
Less obvious is perhaps the sharing of a presentation and process member set. For a
presentation member set this simply implies that the same abstractions are supported
on both islands, perhaps by adhering to a standard (UML, etc.). For a process mem-
ber set this implies that there is no possibility to identify distinct process states on the
different islands, perhaps because the process is one of gradual refinement. The later
could be equally well signaled by not listing a process member set (note the depend-
encies between control, data and process however, where there is none it implies that
the completion of a process step cannot be known by the tools). We also note that data
member sets can be shared even though control member sets are not; this simply
implies the use of different data bases or such.

3.2 Reason about Aspects

The second step is to reason about the aspects on a more general level. This step is
also undertaken to identify and investigate the non-functional requirements (available
expertise, cost-effectiveness, etc.) that block the strive towards a homogeneous, non-
fractured environment. If it is obvious that a large part of the non-functional require-
ments can be changed, then we can jump directly to reasoning about them and then
start over afterwards (to avoid sub-optimization). Important issues not strictly de-
pendent on the optimality of integration, such as data synchronization, interaction
paradigms in use, etc, should also be discussed during this step.

3.3 Add Member Sets and Dependencies

The third step is to review missing member sets and dependencies, to see if something
can be gained by introducing extra complexity. In our example this could consist of
introducing separate, identifiable process steps on island 1 and 2.

3.4 Minimize the Number of Member Sets

The fourth step is to minimize the number of member sets, which entails both reduc-
ing the amount of dependencies and maximizing our metrics. In our example the
former could consist of using the same database for all data on island 1 and 2, using
the same platform set for all islands, etc. The later could consist of using fewer plat-
forms on a particular island, increasing services that signal completion, etc.

3.5 Reason about Non-functional Requirements

The last step would be to reason about which of the existing non-functional require-
ments can be changed. A change in these opens up the possibility to reiterate the ear-
lier steps to identify new opportunities for better tool integration. We have not found
any suggestion on a structured approach to this, which is not surprising as for instance
the lack of research into economical implications of tool integration have been noted
in [3].

276 F. Asplund et al.

4 A Case Study

In this section we take a look at an industrial case study put forward by an industrial
partner. The case aims to assess the impact of tool integration in a development envi-
ronment aimed at multicore products and featuring HW/SW co-design. The product
used to evaluate the development environment is a prototypical control system for an
elevator. This control system is developed to be suitable for closed loop control where
a number of sensor elements and actuators are connected by various interfaces. The
system performs relevant actions depending on the input signals, the internal system
state, the configurable logic, and operator commands. The development is to a large
degree done according to the principles of Model-based Development (MBD).

Table 1. Original set of tools analyzed in the case study

Fig. 3. Part of the visualization highlighting the data fragmentation

The total number of tools that figured in the original setup was 15. Out of these we
limited ourselves to 11 (see Table 1), disregarding tools whose use was not clearly
defined. The most obvious problem was the fragmented handling of data, both in
regard to the data and control aspects (see Figure 3). In total we identified 12 separate
data interoperability sets, all potentially handled separately from each other in 17

 Tool Integration beyond Wasserman 277

different development steps. The lack of process support was also obvious, since no
process tool or integrated process support in the tools involved were used.

After identifying the original state of the development environment we analyzed it
according to our method introduced in section 3 and came up with suggested im-
provements. However, there were few non-functional requirements defined for the
case study. Therefore we had to evaluate our solution by contrasting it against sug-
gested improvements by system engineers working at our industrial partner. The
commonly identified improvements we analyzed in a first iteration consisting of rela-
tively easily achieved integration improvements. Among the additional improvements
we had identified we chose two (discussed further below) which will be the focus of
further research and included them in a second iteration. Due to the lack of non-
functional requirements we could not evaluate the worth of the remaining improve-
ments highlighted by our reference model and removed them from the case study.

Due to the existence of a defined product life-cycle we could exchange the use of
MS Word and Excel early in the development process with the use of Enterprise Ar-
chitect. This allowed the start of MBD practices earlier than before. The use of EDA
Simulator Link allowed us to link Hardware and Software Development. Together
this shrank the total number of data interoperability sets to 4. The introduction of
SVN and a MS Windows network similarly simplified the reachability of the data.

The first of the two improvements in the second iteration was to introduce trace-
ability between requirements and design. This would shrink the total number of data
interoperability sets even more, reducing error sources and increasing the possibility
of verification and validation. The second improvement related to the lack of process
support. This would entail introducing support for the process awareness dependency
and moving the knowledge of the state of the process from inside the heads of the
designers to the data.

4.1 Evaluating Our Reference Model

The critical issue is not the improvements of the development environment in the case
study; it is how the use of our reference model compares to the use of [1] when
searching for these improvements. To evaluate this we made use of integration weak-
nesses identified in the case study.

There were a total of 25 integration weaknesses identified by domain experts and
developers using this tool chain on a daily basis. Note that 14 out of these 25 were not
relevant for this comparison:

• 4 were domain issues such as the lack of a complete list of requirements. These
were contained within the aspects in both reference models.

• 4 detailed secondary issues, i.e. workflow optimization, version control, etc.
• 1 was in direct conflict with a non-functional requirement we had identified.
• 5 were related to tools we had excluded from our analysis or were too vague to be

analyzed.

7 of the remaining 11 integration weaknesses were equally visible in both reference
models. Interestingly enough almost all of them related to data being handled ineffi-
ciently and in a segmented way. The remaining 4 were obvious in our reference
model, but not when using the principles detailed in [1].

278 F. Asplund et al.

• While there was a development process, it was not rigorously defined. This relates
to the lack of process state defined for the data, which we could identify since
there was no state dependency for several of the process steps (see Figure 4).

• The process was customized by the different designers. This was identified like in
the issue above, but due to missing process awareness dependencies.

• There was an unnecessary diversity in the tool solutions. The limitation
dependency between presentation and data clearly identified the difference in tool
boxes being used in the same development phase, but on different system parts
(see Figure 5).

• Some data was not possible to access from relevant development steps, once
again identified by the dependencies between presentation and data.

Fig. 4. Process step without dependencies to control or data

Fig. 5. Tool access related to relevant data

The completeness of our classification framework can be shown for this case study,
as all 20 integration weaknesses could be identified and isolated to an aspect or
dependency.

5 Discussion and Conclusion

We have found that we cannot apply the decomposition defined by Wasserman in [1]
when reasoning about integration issues in the heterogeneous environments we work

 Tool Integration beyond Wasserman 279

with. To solve this we have extended the set of principles in [1] into a new reference
model. This model moves away from technical mechanisms as the measurement of
integration. At a higher level of abstraction it instead focuses on reasoning around the
dependencies between and metrics for integration aspects.

We have analyzed a limited case study to evaluate our reference model. For that
case we found no sign of deterioration of the usefulness of the principles found in [1].
On the contrary, a number of integration weaknesses that would not have been obvi-
ous earlier were now highlighted. We were also able to break down and isolate all
integration issues in the case study to individual aspects or dependencies.

Our ideas show promise, but there are a number of open questions. We think the
most important of these are:

• Is our reference model suitable for decision support when building a new devel-
opment environment? While the principles in [1] compare different mechanisms
in an absolute way our reference model focuses on giving guidance on how to
improve a system. To ensure the usefulness in this scenario our reference model
should be applied to different architectures and platforms to identify how our
metrics relate to them.

• The current metrics are very generic, while there are a number of secondary is-
sues related to integration (data synchronization, data consistency, etc.). The later
can be handled by checklists or multi-dimensional reference models, but these
may limit users by only highlighting a subset of the relevant issues. Instead, some
of the aspects could potentially be divided into parts if dependencies between
these parts were identified. This could give guidance without limiting reasoning.

• In our experience, the identification of mechanisms to support the different
aspects and dependencies is usually easy. It is however difficult for the state de-
pendency between the data and process aspects, at least within the context of the
development of embedded systems. This is due to difficulties in ascertaining the
state of the data artifacts in relation to the development process. These difficulties
are related to a diversity of issues, such as rules for artifact refinement, develop-
ment metrics, requirements traceability, optimizing of different system aspects,
etc. ForSyDe [23] is an example of a design methodology that takes this into
account, but actual tool support is not easy to come by.

In addition there is one broader question that is not peculiar to our reference model,
but which is critical to its use (as discussed in section 3):

• How non-functional requirements relate to tool integration is another very rele-
vant topic which requires additional research. Are there separate aspects yet to be
defined to support reasoning about these, and what are the involved dependencies
in that case?

Acknowledgments

We thank all participants of the ARTEMIS iFEST project, who have given us con-
tinuous access to an additional breadth of expertise on and experience of software
engineering in relation to the life-cycle of embedded systems.

280 F. Asplund et al.

Reference

1. Wasserman, A.L.: Tool Integration in Software Engineering Environments. In: Long, F.
(ed.) Proceedings of the Software Engineering Environments: International Workshop on
Environments, pp. 137–149. Springer, Chinon (September 1989)

2. Wicks, M.N.: Tool Integration within Software Engineering Environments: An Annotated
Bibliography. HW-MACS-TR-0041. Heriot-Watt University, Edinburgh (2006)

3. Wicks, M.N., Dewar, R.G.: Controversy Corner: A new research agenda for tool integra-
tion. J. Syst. Software 80(9) (2007) ISSN: 0164-1212

4. Chen, M., Norman, R.J.: A Framework for Integrated CASE. IEEE Software 9(2) (1992)
ISSN: 0740-7459

5. Gautier, B., et al.: Tool integration: experiences and directions. In: Proceedings of ICSE
1995. ACM, New York (1995) ISBN: 0-89791-708-1

6. Bao, Y., Horowitz, E.: A new approach to software tool interoperability. In: Proceedings
of SAC 1996. ACM, New York (1996) ISBN: 0-89791-820-7

7. Best, C., Storey, M.-A., Michaud, J.: Designing a component-based framework for visuali-
zation in software engineering and knowledge engineering. In: Proceedings of SEKE 2002.
ACM, New York (2001) ISBN: 1-58113-556-4

8. Wallace, E., Wallnau, K.C.: A situated evaluation of the Object Management Group’s
(OMG) Object Management Architecture (OMA). In: SIGPLAN Not., vol. 31(10). ACM,
New York (1996) ISSN: 0362-1340

9. Reiss, S.P.: The Desert environment. ACM Trans. Softw. Eng. Methodol. 8(4) (1999)
ISSN: 1049-331X

10. Mampilly, T., Ramnath, R., Irani, S.: PFAST: an eclipse-based integrated tool workbench
for facilities design. In: Eclipse 2005: Proceedings of the 2005 OOPSLA Workshop on
Eclipse Technology Exchange. ACM, New York (2005) ISBN: 1-59593-342-5

11. Biehl, M., DeJiu, C., Törngren, M.: Integrating safety analysis into the model-based devel-
opment toolchain of automotive embedded systems. In: SIGPLAN Not., vol. 45(10).
ACM, New York (2010) ISSN: 0362-1340

12. Cuthill, B.: Making sense of software engineering environment framework standards. In:
StandardView. ACM, New York (1994) ISSN: 1067-9936

13. Brown, A.W., McDermid, J.A.: Learning from IPSE’s mistakes. In: IEEE Software,
vol. 9(2). IEEE Computer Society, Pittsburgh (1992) ISSN: 0740-7459

14. Baik, J., Boehm, B., Steece, B.M.: Disaggregating and Calibrating the CASE Tool Vari-
able in COCOMO II. IEEE Trans. Softw. Eng. 28(11) (2002) ISSN: 0098-5589

15. Pohl, K., Weidenhaupt, K.: A contextual approach for process-integrated tools. SIGSOFT
Softw. Eng. Notes 22(6) (1997) ISSN: 0163-5948

16. Thomas, I., Nejmeh, B.A.: Definitions of Tool Integration for Environments. IEEE Soft-
ware 9(2), 29–35 (1992)

17. Holt, R.C., et al.: GXL: a graph-based standard exchange format for reengineering. Sci.
Comput. Program. 60(2) (2006) ISSN: 0167-6423

18. Tilley, S.R.: The canonical activities of reverse engineering. Ann. Softw. Eng. 9(1-4)
(2000) ISSN: 1022-7091

19. Stoeckle, H., Grundy, J., Hosking, J.: A framework for visual notation exchange. J. Vis.
Lang. Comput. 16(3) (2005) ISSN: 1045-926X

 Tool Integration beyond Wasserman 281

20. Pohl, K., et al.: PRIME—toward process-integrated modeling environments. ACM Trans.
Softw. Eng. Meth. 8(4) (1999) ISSN: 1049-331X

21. Endig, M., Jesko, D.: Engineering Processes - On An Approach To Realize A Dynamic
Process Control. J. Integr. Des. Process Sci. 5(2) (2001) ISSN: 1092-0617

22. Sharon, D., Bell, R.: Tools that bind: creating integrated environments. IEEE Soft-
ware 12(2) (March 1995)

23. Sander, I., Jantsch, A.: System modeling and transformational design refinement in
ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 23(1) (2004)

	Tool Integration beyond Wasserman
	Introduction
	Diverging from Wasserman
	A Set of Categories
	A Way to Measure
	A Notion of Optimality

	A Method to Analyze Development Environments
	Identify the Member Sets and Their Dependencies
	Reason about Aspects
	Add Member Sets and Dependencies
	Minimize the Number of Member Sets
	Reason about Non-functional Requirements

	A Case Study
	Evaluating Our Reference Model

	Discussion and Conclusion
	Reference

