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Abstract. In this paper, a robust H2/H∞ control with regional Pole-Placement is
considered for tool position control of a nonlinear uncertain flexible robot manipu-
lator. The uncertain nonlinear system is first approximated by Takagi and Sugeno’s
(T–S) fuzzy model. To achieve a better tracking, an extra state (error of tracking) is
then augmented to the T–S model. Based on each local linear subsystem with aug-
mented state, a regional pole-placement state feedback H2/H∞ controller is properly
designed via linear matrix inequality (LMI) approach. Parallel Distributed Compen-
sation (PDC) is also used to establish the whole controller for the overall system
and the total linear system is obtained by using the weighted sum of the local linear
systems. A fuzzy weighted online computation (FWOC) component is employed to
update fuzzy weights in real time for different operating points of the system. Simula-
tion results are presented to validate the effectiveness of the proposed controller like
robustness and good load disturbance attenuation and accurate tracking, even in the
presence of parameter variations and also load disturbances on the motor and the tool.
The superiority of the proposed control scheme is finally highlighted in comparison
with the Quantitative feedback theory (QFT) controller, the QFT controller of order
13, a polynomial controller and the so-called linear sliding-mode controller methods.

Keywords. Robust H2/H∞ control; T–S fuzzy model; LMI; PDC; FWOC
component; flexible robot manipulator.
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1. Introduction

Robot manipulators have become progressively important in the field of flexible automation and
manufacturing system in industrial applications such as material handling. Since the dynamics
of robot manipulators are highly nonlinear and may contain uncertain parameters such as fric-
tion, many efforts have been made in developing control designs to achieve the accurate tracking
control of robot manipulators (Zouand et al 2010; Islam & Liu 2011; Wai et al 2010). In this
paper, control of a flexible manipulator benchmark system is investigated. In recent years, there
has been an increasing interest in controlling robots and especially many researches of this
benchmark problem should be appropriately considered as listed below. Moberg et al (2009)
investigated a benchmark problem for robust feedback control of a flexible manipulator. Ohr
et al (2006) presented identification of flexibility parameters of 6-axis industrial manipulator
models. Wernholt & Gunnarsson 2006 proposed detection and estimation of nonlinear distor-
tions in industrial robots. Moreover, other different papers and thesis of flexible manipulators
have been published by Moberg (Moberg & Öhr 2005, 2008; Moberg et al 2008; Moberg 2007;
Moberg & Hanssen 2007).

The dynamics of robot manipulators are highly nonlinear and change rapidly as the robot
links move fast within its working range and may also contain uncertain parameters such as
frictions. Generally, in a manipulator the control signal is motor torque and the main objective is
tool position. The aim of robot manipulator control is position tracking of the tool when moving
the tool along a certain desired path. Furthermore, control performance of robot manipulator in
various applications is highly sensitive to variations of disturbance torque acting on the motor
and tool and system parameters. Although aforementioned disturbances are troublous factors
in the manipulator control system, in this paper an innovative robust position control will be
presented to reduce their effects.

The main contribution of this research is robust H2/H∞ control of a nonlinear uncertain flexi-
ble robot manipulator. In this paper, the problem of robust H2/H∞ control of a robot manipulator
which possesses not only parameter uncertainties but also external disturbances is considered.
Recent researches show that a Takagi and Sugeon’s fuzzy model (T–S) can be utilized to approx-
imate global behavior of highly complex nonlinear systems. The large numbers of published
papers have used the T–S fuzzy model technique for different drive systems (Chen & Wu 2010;
Wai & Yang 2008; Azimi et al 2012a, b, c; Fakharian & Azimi 2012; Asemani & Majd 2013;
Yang et al 2014a; Hu et al 2013). In the proposed method, a Takagi–Sugeno (T–S) fuzzy model
is first designed on behalf of the underlying nonlinear plant. The fuzzy model is described by
fuzzy IF-THEN rules which represent local input–output relations of the nonlinear system. In
this research, tracking of tool position and minimization of motor torque are selected as the main
objectives. In order to obtain an accurate tracking of tool position, an extra state is then aug-
mented to the T–S fuzzy model. Afterward, for each fuzzy linear subsystem a robust H2/H∞ state
feedback controller is designed with regional pole-placement based on Linear Matrix Inequality
(LMI) formulation. In addition, several robust control schemes for different systems have been
reported previously (Shayeghi et al 2008; Yue & Lam 2004; Li et al 2008; El-Mahallawy et al

2011; Azimi et al 2011, 2013a; Wu et al 2014; Yang et al 2014b; Kamal et al 2014). The Paral-
lel Distributed Compensation technique (PDC) is utilized to design the controller for the overall
system. On the other hand, the overall fuzzy model of the system is achieved by fuzzy “blending”
of the local linear subsystem models. Furthermore, a Fuzzy Weighted Online Computation com-
ponent (FWOC) is properly designed to update fuzzy weights in real time for different operating
points of the system. Finally, simulation results show that the proposed method can effectively
meet the performance requirements like robustness and good load disturbance rejection, good



Robust H2/H∞ Takagi-Sugeno fuzzy control of a robot manipulator 309

tracking and fast transient responses of this manipulator. Our simulation records of robot manip-
ulator via various existing control frameworks are also provided in this study to compare and
display the superior performance of the proposed control scheme. To cut a long story short, if
we want to render problem statement of this study, the major contributions can be highlighted
as follows:

• Successful employment of a proper T–S fuzzy model on behalf of the original nonlinear plant
• Successful design of feasible robust position controller based on this T–S fuzzy model in

the presence of parameters uncertainties as well as tool and motor disturbances
• Successful development of transient responses and disturbance attenuation of position

tracking
• Successful robustness of the designed system ensuring that all closed-loop performance

specifications are satisfied in the presence of unavoidable model uncertainty when the
parameters in the system dynamic are varied in a wide range

• Successful design of controller in the event that the control signal (motor torque) does not
exceed the allowable limit ±20 Nm for the system even with a wide range of system
uncertainties

• Successful superiority of proposed strategy in comparison with former design procedures

The paper is organized as follows. The proposed model and problem statement are described
in Section 2. In Section 3, the design of robust H2/H∞ tracking controller is proposed. Simulation
results of the closed-loop system with the proposed controller are presented in Section 4 and
finally the paper is concluded in Section 5.

2. Model Description of ABB manipulator IRB6600

2.1 Nonlinear mathematical model

The most common type of industrial manipulators has six serially mounted links which are con-
trolled by electrical motors and gears. A photograph of the ABB manipulator IRB6600 which
shows its axes is presented in figure 1 (Moberg et al 2009; Wernholt & Gunnarsson 2006). The
ABB-IRB6600 is a solid industrial manipulator and gear transmission in each axis possesses
elasticity. A manipulator can be described as a nonlinear multivariable dynamical system having
the six motor currents as the inputs, and the six measurable motor angles as outputs. For sim-
plicity only the first axis of a horizontally mounted manipulator will be considered here. The
remaining axes are positioned in a fixed configuration. In this way the influence of the nonlin-
ear rigid body dynamics associated with the change of configuration (operating point) as well as
gravity, centripetal, and coriolis torques can be neglected. Moreover, the remaining axes are posi-
tioned to minimize the couplings to the first axis. In this way, the control problem concerning the
first axis can be approximated by an SISO control problem (Moberg et al 2009; Moberg 2007).
The dynamics of the first axis of the robot includes both the actuator and the arm structure. The
simulation model to be used is a four-mass model having nonlinear gear elasticity (Moberg et al

2009). This model is illustrated in figure 2. Hence, the manipulator dynamics can be described
by the set of equations (Moberg et al 2009):

Jmq̈m = um+w−fmq̇m − k1(qm − qa1) − d1(q̇m − q̇a1)

Ja1 q̈a1 = −fa1 q̇a1 + k1(qm − qa1) + d1(q̇m − q̇a1) − k2(qa1 − qa2) − d2(q̇a1 − q̇a2)

Ja2 q̈a2 = −fa2 q̇a2 + k2(qa1 − qa2) + d2(q̇a1 − q̇a2) − k3(qa2 − qa3) − d3(q̇a2−q̇a3)

Ja3 q̈a3 = ν − fa3 q̇a3 + k3(qa2 − qa3)+d3(q̇a2 − q̇a3)
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Figure 1. The ABB manipulator IRB6600.

The rotating masses are connected via spring-damper pairs. The first spring-damper pair, cor-
responding to the gear, has both the linear damping d1 and the nonlinear elasticity k1 While
according to figure 2, elasticity of the first spring has nonlinear behavior, the part k1(qm − qa1)

in (1) is replaced with a nonlinear function of the deflection qm − qa1, i.e., the entitled spring
torque τgear. The modified version of Eq. (1) can be presented as

Jmq̈m = um + w − fmq̇m − τgear − d1(q̇m − q̇a1)

Ja1 q̈a1 = −fa1 q̇a1 + τgear + d1(q̇m − q̇a1) − k2(qa1 − qa2) − d2(q̇a1 − q̇a2)

Ja2 q̈a2 = −fa2 q̇a2 + k2(qa1 − qa2) + d2(q̇a1 − q̇a2) − k3(qa2 − qa3) − d3(q̇a2 − q̇a3)

Ja3 q̈a3 = v − fa3 q̇a3 + k3(qa2 − qa3) + d3(q̇a2 − q̇a3) (1)

Figure 2. Model of manipulator.
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A typical relationship between deflection and spring torques is illustrated in figure 3 (Moberg
et al 2009). The second and third spring-damper pairs are both assumed to be linear and
represented by d2, k2, d3 and k3. The moment of inertia of the arm is here split-up into the
three components Ja1, Ja2, and Ja3. The moment of inertia of the motor is Jm. The parameters
fm, fa1, fa2, and fa3 represent viscous friction in the motor and the arm structure, respectively.
The motor torque um, which is the manipulated input of the system, is limited to ±20 Nm. The
disturbance torque acting on the motor and tool is denoted by w and v, respectively. Angle of
motor shaft is qm The variables qa1, qa2 and qa3 are arm angles of the three masses, and together
they define the position of the tool. Although the angles in this model are expressed on the high-
speed side of the gear, one must divide the model angles by the gear-ratio in order to get the real
arm angles. For small variations around a given working point, the tool position, which is the
controlled variable, can be calculated as Moberg et al (2009)

Z =
l1qa1 + l2qa2 + l3qa3

n
, (2)

where n is the gear-ratio and l1, l2, l3 are distances between the (fictive) masses and the tool.

2.2 Proposed T-S fuzzy model

In this section, a suitable function is first computed such that it exactly matches to the nonlinear
curve torque-deflection in the specified domain shown in figure 3. The replaced function is given by

τgear = 7500(qm − qa1)
3 + 10(qm − qa1) (3)

Using (3) in (1), the quasi-linear system of the nonlinear model can be expressed as

ẋ = Ax + BwW + Bvv + Buu
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Bw =
[

0 0 0 0 1
Jm

0 0 0
]T

Bv =
[

0 0 0 0 0 0 0 1
Ja1

]T

Bu =
[

0 0 0 0 1
Jm

0 0 0
]T

(4)

where x and R1, R2 are states vector and nonlinearity terms, respectively.

x =
[

qm qa1 qa2 qa3 q̇m q̇a1 q̇a2 q̇a3
]T

R1 = q 2
m + 3q 2

a1

R2 = 3q 2
m + q 2

a1 . (5)

In view of the set of matrices (4), R1 and R2 appear only in matrix A. since the nonlinear
system (1) is an affine model accordingly, R1 and R2 cannot be present at Bu, Bv and Bw. In
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Figure 3. Nonlinear gear elasticity: Torque as function of deflection.

other words, matrix A is only influenced by the nonlinearity term R1 and R2. In this model, all
of viscous frictions are supposed to differ from their nominal values. In the second part of this
section, a T–S fuzzy model is proposed for the quasi-linear system (4). The T–S fuzzy dynamic
model is described by fuzzy IF–THEN rules, which represent local linear input–output relations
of nonlinear systems (Chen & Wu 2010; Wai & Yang 2008; Azimi et al 2012b, 2013a; Hua et al

2009; Zheng et al 2004; Assawinchaichote et al 2006). The fuzzy dynamic model is proposed
by Takagi and Sugeno. The ith rule of T–S fuzzy dynamic model with parametric uncertainties
can be described as follows:

IF R1(t) is Mi1 and...and Rp(t) is Mip THEN

ẋ(t) = [[Ai + �Ai]x(t) + [B1i + �B1i]w(t) + [B2i + �B2i]u(t)], x(0) = 0
z∞(t) = [[C1i + �C1i]x(t) + [D11i + �D11i]w(t) + [D12i + �D12i]u(t)]

z2(t) = [[C2i + �C2i]x(t) + [D21i + �D21i]w(t) + [D22i + �D22i]u(t)]

i = 1, 2...r (6)

where Mip is the fuzzy set, r is the number of IF-THEN Rules and R1 (t) → Rp (t) are the
premise variables, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector, w(t) ∈ Rq

is the disturbance input vector w (t) =

[

w

v

]

. The matrices: �Ai, �B1i, �B2i, �C1i, �C2i,

�D12i, �D21i, �D11i and �D22i represent the uncertainties in system (6). According to the
local linearization approach (6), the local linear models for the system (4) are obtained in view
of the aforementioned uncertainties (fm, fa1, fa2, and fa3). The overall fuzzy model can be
represented given below.

ẋ(t) =
∑r

i=1
μi(ϕ(t))[[Ai + �Ai]x(t) + [B1i + �B1i]w(t) + [B2i + �B2]u(t)],

x(0) = 0

z∞(t) =
∑r

i=1
μi(R(t)[[C1i +�C1i]x(t)+[D11i+�D11i]w(t)+[D12i +�D12i]u(t)])

z2(t) =
∑r

i=1
μi(R(t))[[C2i +�C2i]x(t)+[D21i+�D21i]w(t)+[D22i +�D22i]u(t)]

(7)
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where R (t) = [R1 (t) . . .Rp (t) ] and the weighting function is defined as

μi(R(t)) =
ω̄(R(t))

∑r
i=1 ω̄(R(t))

with

ω̄(R(t)) =

p
∏

k=1

Mik(Rk(t)) (8)

It should be further noted that

ω̄(R(t)) ≥ 0, i = 1, 2, ..., r;
∑r

i=1
ω̄i(R(t)) > 0

μi(R(t)) ≥ 0, i = 1, 2, ..., r;
∑r

i=1
μi(R(t)) = 1

3. Design of robust H2/H∞ tracking controller

3.1 The PDC concept

The concept of the PDC is utilized to design a fuzzy state feedback controller (Zheng et al 2004;
Assawinchaichote et al 2006; Azimi et al 2012b). In this subsection, we focus on the design of
a local pole-placement state feedback controller for each linear subsystem (6)

IF R1 (t) is Mi1 and... and Rp (t) is Mip THEN

u(t) = Kix(t), i = 1, 2, ..., r (9)

where Ki (i= 1, 2, . . . , r) are the local controller gains. According to the PDC approach, the
control law of the whole system is the weighted sum of the local feedback control of each
subsystem that can be expressed by

u (t) =

r
∑

j=1

μjKjx (t), (10)

where the local H2/H∞ multi-objective state feedback controller gains Kj are determined by
LMI-based design techniques in order to fulfill the design requirements. In the next subsection,
the state feedback controllers for each linear subsystem will be designed based on the LMI
framework.

3.2 Multi-objective H2/H∞ methodology

To get a feeling for the multi-objective H2/H∞ methodology, consider the general pattern loop
of figure 4. In this structure, P(s) is the generalized plant, K(s) is the controller, u is the control
signal, x is the state vector, w is the exogenous signal and z2 and z∞ are the main objective.
In this subsection, a multi-objective state-feedback synthesis is described by an LMI framework
(Gahinet et al 1995; Gu et al 2005; Patra et al 2008; Azimi et al 2012b). The main objectives of
multi-objective controller are expressed as H∞ performance (for tracking, disturbance rejection
or robustness aspects), H2 performance (for LQG aspects), robust pole placement specifications
(to ensure fast and well-damped transient responses, reasonable feedback gain, etc.). Denote
T∞(s) and T2(s) as the closed-loop transfer functions from w to z∞ and z2, respectively. The
main goal is to design a state-feedback law u = Kx such that:

• It maintains the RMS gain (H∞ norm) of T∞ below some prescribed value γ0 > 0,
• It maintains the H2 norm of T2 (LQG cost) below some prescribed value ν0 > 0,
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Figure 4. The control structure.

• It minimizes an H2/H∞ trade-off criterion of the form α ‖T∞‖2
∞ + β ‖T2‖

2
2

• It places the closed-loop poles in a prescribed LMI region.

Taken separately, three design objectives have the following LMI formulation for the state-space
realization of each linear subsystem (6):

• H∞ performance: the closed-loop RMS gain from w to z∞ does not exceed γ if and only
if there exists asymmetric matrix X∞ such that

⎡

⎣

(A+B2K) X∞+X∞ (A+B2K)T B1 X∞ (C1+D12K)T

BT
1 −I DT

11
(C1+D12K) X∞ D11 −γ 2I

⎤

⎦<0

X∞>0 (11)

• H2 performance: the closed-loop H2 norm of T2 does not exceed ν if there exist two
symmetric matrices X2 and Q such that

[

Q (C2+D22K) X2

X2 (C2+D22K)T X2

]

>0

[

(A+B2K) X2+X2 (A+B2K)T B1

BT
1 −I

]

<0

Trace (Q) <ν2 (12)

• Pole placement: the closed-loop poles lie in the LMI Region D:

D =
{

z ∈ C : L + Mz+MT z̄<0
}

L = 7LT =
{

λij

}

1≤i,j≤m

M =
{

μij

}

1≤i,j≤m

if and only if there exists a symmetric matrix Xpol satisfies
[

λijXpol+μij (A+B2K) Xpol+μijXpol+μjiXpol (A+B2K)T
]

1≤i,j≤m
< 0

Xpol > 0

These three sets of conditions add up to an optimization problem with variables Q, K, X∞, X2

and Xpol. For tractability in the LMI framework, we seek a single Lyapunov matrix: X : = X∞

= X2 = Xpol that enforces all three objectives. With the change of variable Y : = KX, this leads
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to the following sub-optimal LMI formulation of our multi-objective state-feedback synthesis
problem: Minimize αγ 2 + β Trace (Q) over Y , X, Q, and γ 2 satisfying (Wai & Yang 2008;
Azimi et al 2012b)

⎡

⎣

AX + XAT +B2Y+Y T BT
2 B1 XCT

1 +Y T DT
12

BT
1 −I DT

11
C1X+D12Y D11 −γ 2I

⎤

⎦<0

[

Q C2X+D22Y

XCT
2 +Y T DT

22 X

]

>0
[

λij+μij (AX+B2Y )Xpol+μji

(

XAT +Y T BT
2

)]

1≤i,j≤m
<0

Trace (Q) <ν2
0 γ 2<γ 2

0 (13)

Denoting the optimal solution by (X*, Y*, Q*, γ *) the corresponding state-feedback gain is
given by K*=Y*(X*)−1 and this gain guarantees the worst-case performance

‖T∞‖∞ <γ ∗ ‖T2‖2 <
√

T race(Q∗)

3.3 Proposed tracking controller

In this research, the purpose is to design a suitable control which guarantees robust performance
in the presence of parameter variations and disturbances. In this case, the control objective is
position tracking of the tool (Z) when the tool moves along a certain desired path (Zref) as the
designed controller can be robust in the presence of parameter variations and both the tool and
motor disturbances. Also, the control signal (motor torque) does not exceed the allowable limit
±20 Nm for the system even with a wide range of system uncertainties. Therefore, to achieve
an accurate tracking of tool position; the position tracking error (eT) shall be minimized. Conse-
quently, the main goal is to design a state-feedback controller such that: Maintains the RMS gain
(H∞ norm) of this eT below some prescribed value γ0 > 0. In order to do the minimization, an
extra state is augmented to the quasi-linear system (4). The output of the integrator is considered
as an extra state variable:

eT = Zref −Z

Z =
l1qa1+l2qa2+l3qa3

n
(14)

xaug =

∫ t

0
eT (δ) dδ

ẋ9 = ẋaug=eT . (15)

These goals are realized through constructing the objectives Z and the extra state in an appro-
priate control loop. Under the above considerations, the structure of the fuzzy robust control
loop is proposed based on the structure depicted in figure 5.The quasi-linear system (4) given in
figure 5 (a) is first approximated with some local linear models that each rule is represented by
the T–S fuzzy approach. In order to obtain an accurate tracking of tool position, an extra state is
then augmented to the T–S fuzzy model and the augmented plant is built. Separate controllers
for each linear sub-plant are designed based on the LMI approach. After that the total system is
obtained by using the weighted sum of the local linear systems and it is utilized on behalf of the
original nonlinear system. According to the PDC approach, the control law of the whole system
is the weighted sum of the local feedback control of all subsystems.
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On the other hand, fuzzy weights (μi) are updated by using an FWOC component shown in
figure 5(b). The blocks of the FWOC component are explained as follows:

• In the first block of this diagram the angle of motor shaft and the first mass values are
measured in real time and nonlinear terms are built by these measurements.

• In the second block, the values of membership functions in current values of R1R2

"nonlinearities" are calculated.
• In the thirdblock, new fuzzy weighting are calculated and they are sent to the main cotrol

structure.

Figure 5. (a) The fuzzy robust control loop structure. (b) FOWC component.
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Finally, by using the whole system and the global controller, a tracking loop (figure 5(a)) is
applied to the system in order to achieve desirable specifications such as tracking performance,
bandwidth, disturbance rejection, and robustness for the closed-loop system. More details of the
procedure also are presented in Azimi et al (2013b).

4. Simulation results

In this section, we show the effectiveness of the proposed method by performing some simu-
lation studies over three sets of an ABB flexible manipulator IRB6600 system. These sets are
symbolized by Mnom, M1, M2, in the event that the set Mnom is indeed the nominal model and
the sets M1, M2 introduce small and large variations in the physical parameters (min and max
uncertainty of the system), respectively. The parameters of this manipulator are shown in table 1
(Moberg et al 2009). In this case, viscous frictions in the motor and the arm structure (fm, fa1,
fa2, and fa3) are varied between ±50% (Moberg et al 2009; Moberg 2007). As a matter of fact,
an industrial robot is influenced by various types of torque disturbances. They consist of torque
disturbances acting on the motor and on the tool according to figure 6 and it is a combination
of steps, pulses, and sweeping sinusoids (chirps) (Moberg et al 2009). In the quasi-linear sys-
tem of flexible manipulator (4), the numbers of nonlinear terms R1R2 are 2. According to the
manipulator characteristics and the territory of the system operating points, we should calculate
the minimum and maximum values of R1 and R2 as

Ri (t) = f
(

qm (t) ,qa1 (t)
)

and qmqa1∈ [−π, π ]

With regard to the above limitations, the membership functions can be taken as depicted in
figure 7.

In the first step, the system (4) is represented by a T–S fuzzy model using the fuzzy rules
given in (6). For this design problem, the rules r1–r4 are constructed for the T–S fuzzy model and
referring to (4)–(6) the four linear subsystems are then calculated. In the second step, by using

Table 1. Nominal parameter values of manipulator.

Parameter Value

Jm(kg.m2) 0.005
Ja1(kg.m2) 0.002
Ja2(kg.m2) 0.02
Ja3(kg.m2) 0.02
k2(Nm/rad) 110
k3(Nm/rad) 80
d1(Nm.s/rad) 0.08
d2(Nm.s/rad) 0.06
d3(Nm.s/rad) 0.08
fm(Nm.s/rad) 0.006
fa1(Nm.s/rad) 0.001
fa2(Nm.s/rad) 0.001
fa3(Nm.s/rad) 0.001
l1(mm) 20
l2(mm) 600
l3(mm) 1530
n 220
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Figure 6. Torque disturbances on motor and tool.

Figure 7. The membership functions for (a) M1(R1) and M2(R1), (b) M3(R2) and M4(R2).
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the LMI formulations fully presented in subsection 3.2, we can calculate the local controllers for
each linear subsystem. In order to design state-space feedback gains (Ki) for each subsystem,
the following steps are done:

(1) Specify the LMI region D, in order to place the closed-loop poles in this region (pole
placement) and also to guarantee some minimum decay rate and closed-loop damping. The
aforementioned region is shown in figure 8, as the intersection of the half-plane x < −5.5
and of the sector centered at the origin with an inner angle

θ = 2π/3(D : x < −5.5 and θ = 2π/3).

(2) Choose a four-entry vector specifying the H2/H∞ cost function (α ‖T∞‖2
∞ +β ‖T2‖

2
2) :

[γ0ν0αβ] = [0011].
(3) Minimize H2/H∞ cost function subject to the above-mentioned pole placement constraint

using (11)–(12)–(13).

Finally, the overall fuzzy system is obtained by using a weighted average defuzzifer (WAD) and
also the control law of the whole system is designed by using the PDC approach.

In practical applications, the states of the system are often not readily available; however, in
this research according to the concept of the T–S fuzzy approach, states of the original nonlinear
system are estimated by a separation principle (6) and alternatively, state feedback controller is
employed based on these estimated states. In accordance with this point, an LMI-based fuzzy
control is investigated using state feedback. Indeed, in this research an indirect robust controller
is designed unlike the controller was directly hired in Azimi et al (2012b). Figure 9 compares
states of the proposed T–S fuzzy model in comparison with the nonlinear system, where the
dashed lines denote the estimated state variables x̂ (t) by the T–S fuzzy model and solid lines
indicate states of the original nonlinear system x(t) in (1). Accordingly, design of a T–S fuzzy
model is required to satisfy x̂ (t) →x(t) and this condition guarantees that the steady-state errors
between x̂ (t) and x (t) converges to 0. As it is evident in this figure, the proposed T–S fuzzy
model estimates states of the nonlinear benchmark model (1) without any steady-state error for

Figure 8. Pole placement region.
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Time (S)

(a) 

(e) 

(b)

(f)

(c)

(g)

(d)

(h)

Figure 9. States of the proposed model x̂ (t) (dashed) and the nonlinear benchmark model x(t) (solid).
(a) Angle of motor shaft qm. (b) Arm angle of the first mass qa1 . (c) Arm angle of the second mass qa2 .
(d) Arm angle of the third mass qa3 . (e) Velocity of motor shaft q̇m. (f) Velocity of the first mass q̇a1 .
(g) Velocity of the first mass q̇a2 . (h) Velocity of the first mass q̇a3 .

the range x1, x2 ∈ [−π, π ], which means that the fuzzy model can represent the original system
in the pre-specified domains with a suitable approximation. Consequently, a complete T–S fuzzy
model proposed can represent the nonlinear system in the region [−π, π ] × [−π, π ] on the
x1 −x2(qm −qa1) space for various operating points. Figures 10 and 11 demonstrate that how the
tool position (control objective) and the manipulated input (motor torque) of the nominal system
(Mnom) are influenced by the motor and tool disturbances (figure 6) as the proposed controller is
used. The notations on figures 10 and 11 are described as follows:

• Peak-to-peak errors of the tool position curve (figure 10) are denoted by e1−e8, where
e1, e3, e5, e7 are created by the tool disturbance and e2, e4, e6, e8 are generated by motor
disturbance.

• Settling times of the control objective (tool position) on figure 10 are symbolized by T 1
s −T 4

s
• Maximum and adjusted rms values and torque "noise" (peak-to-peak) of input signal on

figure 11 are represented by TMAX, TRMS and TNOISE respectively.

Figure 12(a) and (b) shows motor torque and tracking of tool position to a certain command
against motor and tool disturbances that are shown in figure 6, with regard to the proposed
method. These figures illustrate the torque and position responses for all of the aforementioned
parameter sets of system (Mnom, M1 and M2), when the viscous friction in the motor and the arm
structure (fm, fa1, fa2, and fa3) parameters are varied between ±50%. It is clear that the system
has good robustness when the parameters in the system dynamics are varied in a wide range.

As can be easily observed, the proposed method has good disturbance attenuation. According
to figures 10 and 12(b), the proposed controller has the appropriate values of settling times (T i

s ),
rise times, tool position tracking errors and peak-to-peak errors of the tool position (ei). On
the other hand, referring to figures 11 and 12(a), input signal is limited to ±20 Nm and it has
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Figure 10. Tool position of manipulator.

satisfactory values of maximum and noise torque (TMAX, TNOISE). Compared with the paper
presented in Azimi et al (2013b), in this research some cost functions will be expressed to make
an accurate assessment of this work. Three cost functions Vnom, V1, V2 are described for three
sets of flexible manipulator system, Mnom, M1, M2 respectively, and they are given by Moberg
et al (2009) and Moberg (2007):

Vnom =

15
∑

i=1

αi{ei}on Mnom

V1 =

15
∑

i=1

αi{max (ei)}on M1

V2 =

15
∑

i=1

αi{max (ei)}on M2 (16)

where e1, . . . , e8 have been defined before; e9, . . . , e12 are T 1
s , . . . , T 4

s ; e13, e14, e15 represent
TMAX, Trms, TNOISE, respectively. Here the proposed fuzzy robust controller is used for all of the
sets Mnom, M1, M2. The adjusted RMS value of motor torque (input signal) TRMS for all of these
sets can be defined in time domain as

TRMS=

√

1

n

∑

n

(Tm−Tadj )
2 (17)
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Figure 11. Motor torque of manipulator.

where Tm is the motor torque that has been already shown in figure 12(a), n is number of Tm

samples and according to figure 12(a) Tadj are adjusted values of the torques that are presented
for every set in table 2.

The whole cost function is symbolized by V to evaluate both the robustness and nominal
performance, that is presented as

V =βnomVnom+β1V1+β2V2 (18)

Table 3 presents various classes of industrial coefficients αi for sets Mnom, M1, M2 with the
following definitions:

• Class 1: This class is determined in order to obtain a tradeoff between performance and
robustness.

• Class 2: This class is defined to get control signal (motor torque) characteristic.
• Class 3: This class is utilized to gain tool position response trait (control objective) when

torque disturbances just act on the tool.
• Class4: This class is used to achieve tool position response feature (control objective) when

torque disturbances just act on the motor.
• Class5: This class is employed to evaluate peak-to-peak errors on tool position responses.
• Class6: This class is applied to assess settling times for tool position responses.
• Class7: This class is developed to obtain massive influence on design result.

Table 4 summarizes values of peak-to-peak errors (ei), settling times (T i
s ), maximum, noise and

adjusted RMS torques (TMAX, TNOISE and TRMS) for all of the three sets that also have been
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Figure 12. Torque and position responses of motor with viscous frictions uncertainties (a) Motor torque
responses (b) tool position responses.
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Table 2. Adjusted values of torques.

Tadj (Nm) 0≤time<5 5≤time<25 25≤time<50

Tadj for set Mnom 0 −1.2 2.7
Tadj for set M1 0 −1.2 7.8
Tadj for set M2 0 −1.2 10.3

already illustrated in figures 10, 11 and 12. This table is established when the proposed method
is used.

Also, values of cost functions Vnom, V1 and V2, for each related set based on different classes
of industrial coefficients (table 3) are presented in table 5. This table presents three cost function
results based on three sets of an ABB flexible manipulator for the proposed approach over all
kinds of classes.

In fact, numerical results of table 5 are fascinated by the aforementioned LMI region:
x < −5.5 and θ = 2π/3. Table 6 presents obtained values of cost functions Vnom, V1 and V2

in class1 for various LMI regions (pole placement region) over the position tracking response of
the proposed method.

Table 6 proves that D1 is the optimal region among regions of this table, because the cost
functions based on this region have the smallest values in comparison with other regions. In fact,
values of peak-to-peak errors are increased when the inner angle θ is expanded, as well as settling
timesare raised when the intersection of the half-plane x is reduced. Therefore, we have used
design results based on the optimal LMI Region D1.To show the effectiveness of the proposed
method, we compared the proposed controller with the following four solutions described in
(Moberg et al 2009):

(A) A QFT controller proposed by P.-O. Gutman, Technion-Israel Institute of Technology,
Haifa, Israel,

(B) A QFT controller of order 13 proposed by O. Roberto, Uppsala University, Uppsala,
Sweden,

Table 3. Industrial coefficients values.

Coefficient Class1 Class2 Class3 Class4 Class5 Class6 Class7

α1 0.7 0 0.7 0 0.7 0 0.7
α2 1.4 0 0 1.4 1.4 0 0
α3 1.4 0 1.4 0 1.4 0 0
α4 2.8 0 0 2.8 2.8 0 0
α5 0.7 0 0.7 0 0.7 0 0.7
α6 1.4 0 0 1.4 1.4 0 0
α7 1.4 0 1.4 0 1.4 0 0
α8 2.8 0 0 2.8 2.8 0 0
α9 2.8 0 2.8 0 0 2.8 0
α10 2.8 0 0 2.8 0 2.8 0
α11 2.8 0 2.8 0 0 2.8 0
α12 2.8 0 0 2.8 0 2.8 0
α13 1.4 1.4 0 0 0 0 0
α14 1.4 1.4 0 0 0 0 1.4
α15 3.5 3.5 0 0 0 0 0
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Table 4. Numerical results for proposed method.

Set Mnom M1 M2

e1(mm) 6.50 13.10 16.25
e2(mm) 0.51 0.50 0.53
e3(mm) 1.70 3.41 4.20
e4(mm) 0.23 0.22 0.24
e5(mm) 7.23 14.43 17.93
e6(mm) 0.74 0.74 0.78
e7(mm) 1.73 3.41 4.31
e8(mm) 0.24 0.23 0.23
T 1

s (Nm) 1.71 1.65 1.70
T 2

s (Nm) 2.21 2.20 2.20
T 3

s (Nm) 1.72 1.62 1.70
T 4

s (Nm) 1.80 1.75 1.81
TNOISE(Nm) 1.00 1.01 1.08
TMAX(Nm) 5.5 10.8 13.5
TRMS(Nm) 0.92 2.4 2.72

(C) A polynomial controller proposed by F. Sikström and A.-K. Christiansson, University West,
Sweden,

(D) A so-called linear sliding-mode controller proposed by W.-H. Zhu, Canadian Space Agency,
Saint-Hubert, QC, Canada

The performance comparison for the set M1 of the QFT controller in A, the QFT Controller
of order 13 in B, the Polynomial Controller in C, Linear Sliding Mode Controller in D (Moberg
et al 2009) and the proposed scheme is summarized in table 7.

Table 8 epitomize numerical results of the cost function V1 referring to (16) for all methods
based on various class of industrial coefficients.

Acording to this table, the value of the cost function V1 in Classes 1, 4 and 5 for the proposed
scheme is the least in comparison with the other methods. According to the records in class 4,
better performances via quantities e2, e4, e6, e8, T 2

s and T 4
s are obtained through the proposed

method. These quantities are peak-to-peak errors and setteling times of tool position when the
torque disturbances act only on the motor. Although values of these quantities in the proposed
method are lower than those of the other methods, the proposed controller can still give a better
performance regarding both disturbance attenuation and transient time response in comparison
with others when system is influenced by motor disturbances. Furthermore, based on the results
in class 4, the proposed scheme has over 36, 37, 49 and 41% error reduction improvements in
numerical results than the A, B, C and D systems, respectively when system is affected by both
of motor and tool disturbances. Referring to class1 of this table, it can be observed that the
proposed method outperforms remarkably other methods when a tradeoff between performance

Table 5. Cost functions Vnom, V1 and V2 for different classes.

Set Class1 Class2 Class3 Class4 Class5 Class6 Class7

Vnom 50.6 12.3 24 14.3 17.4 20.8 17.3
V1 77 24.9 35.5 14 29.4 20.2 34.3
V2 89.7 29.9 45.3 14.4 38.9 20.7 42.8
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Table 6. Performance of proposed method for various LMI regions.

LMI region D
D1 D2 D3 D4

x < −5.5 x < −5.5 x < 0 x < 0
Cost function θ = 2π/3 θ = 5π/6 θ = 2π/3 θ = 5π/6

Vnom 50.6 53 53.6 57
V1 77 79.5 81 85
V2 89.7 91 92.2 96.9

Table 7. Performance comparisons for set M1.

Proposed
Algorithm Control A B C D

e1(mm) 13.10 8.22 8.57 9.75 9.11
e2(mm) 0.50 2.56 2.43 3.41 3.22
e3(mm) 3.41 5.39 5.56 5.34 5.28
e4(mm) 0.22 1.58 1.74 2.12 1.77
e5(mm) 14.43 7.78 8.22 9.37 8.64
e6(mm) 0.74 2.82 2.82 4.02 3.68
e7(mm) 3.41 4.88 5.13 4.20 4.59
e8(mm) 0.23 1.40 1.56 1.90 1.57
T 1

s (Nm) 1.65 2.04 2.13 1.79 1.68
T 2

s (Nm) 2.20 1.25 1.47 1.52 1.05
T 3

s (Nm) 1.62 1.04 0.77 0.71 0.77
T 4

s (Nm) 1.75 0.95 0.55 0.69 0.71
TNOISE(Nm) 1.01 2.67 1.05 1.85 1.66
TMAX(Nm) 10.8 12.1 12.0 11.0 11.3
TRMS(Nm) 2.4 1.53 1.52 1.43 1.46

and robustness is concerned. Although V1 for our method has evidently higher values in classess
2, 3, 6 and 7, values of classess 2 and 3 are indeed very close to the related values of other
methods. Records of class 2 show that our scheme has the lowest values of the maximum and
noise torques (TMAX, TNOISE) while the value of TRMS is the highest in comparison with others.
On the other hand, based on the class 3 results, the proposed system has the highest value of V1

when torque disturbances act only on the tool; however, this value is so close to that of A, B, C
and D systems.

In fact, the proposed approach can give smaller values of whole items in table 7 in comparison
with other methods, except settling times T 1

s T 2
s , T 3

s , adjusted rms value and both of e1 and e5.
Therefore, according to the results given in table 8, the values of V1 in classes 6 and 7 for

Table 8. Numerical results comparisons of cost function V1.

Control algorithm Class1 Class2 Class3 Class4 Class5 Class6 Class7

Proposed 77 24.9 35.5 14 29.4 20.2 34.3
A 82.5 26.1 33.7 22 40.9 14.8 28.2
B 80.8 23.6 34.9 22.2 43.32 13.8 28.6
C 84.8 23 33.6 27.8 48.3 13.2 28.8
D 80.5 23.4 33.2 23.9 45.2 11.8 28.3
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Table 9. Comparisons of cost function Vnom, V1 and V2 for Class1.

Cost function
Control algorithm Vnom V1 V2

Proposed 50.6 77.0 89.7
A 64.6 82.5 82.6
B 58.8 80.8 84.2
C 64.8 84.8 84.1
D 62.0 80.5 81.6

the proposed method become the highest in comparison with other methods with regard to the
setteling time and massive influence characteristics. Values of the cost function Vnom, V1 and V2

for the proposed method in comparison with other algorithms based on class1 are gathered in
table 9.

According to the results listed in table 9 some differences can be revealed between the pro-
posed scheme and the other schemes. In short, referring to this table, it can be easily seen that
the proposed method has the smallest values of the cost function V1 and Vnom, though the cost
function V2 in our method has the worst value. Table 10 presents total numerical results of five
methods based on the generalized cost function V (18) for class1. In this table, comparison of
cost function results for various coefficients β is classified.

According to this table, the proposed method has the least value of the generalized cost func-
tion V in all of different coefficient groups; however, numerical results of the generalized cost
function V only for class1 and group 1 were represented in Ref. (Zouand et al 2010). In this
group, the coefficient of V2 (β2) in cost function V is smaller than other coefficients. There-
fore,the whole cost funtion V is infuenced by V2 less than V1 and Vnom and as a result they are
more important than V2. From table 10, we can conclude that the performance of the presented
method by the tested controllers is quite well and in turn the proposed robust tracking controller
gives a better transient response and a smaller tracking error norm than the other control methods

Table 10. Comparisons of total results.

Control algorithm
Group Coefficients Proposed A B C D

1 βnom = 0.6 134.3 146.0 141.4 148.9 142.2
β1 = 1
β2 = 0.3

2 βnom = 1 217.3 229.7 223.8 223.7 224.1
β1 = 1
β2 = 1

3 βnom = 0.3 146 151.4 148.9 154.7 148
β1 = 1
β2 = 0.6

4 βnom = 1 134 147.1 141.3 149.2 143
β1 = 0.5
β2 = 0.5

5 βnom = 0.5 192 197.4 194.4 201.3 193.1
β1 = 1
β2 = 1
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do. In addition, both the robustness and nominal performance of the proposed method presented
by the generalized cost function V are better than those of the control methods A, B, C and D
in all of groups. Furthermore, the execution time of proposed controller (normalized CPU time
per unit simulation) is 50 ms, while increase of computing power makes complicated control
concepts feasible to implement and performance, robustness and easy tuning are more important
factors.

5. Conclusion

In this paper, a robust H2/H∞ controller has been designed for tool position tracking and distur-
bance attenuation of a nonlinear uncertain flexible manipulator. First to approximate uncertain
nonlinear system, the T–S fuzzy technique was employed. Then, we have shown that the pro-
posed fuzzy model can accurately represent the original system in the pre-specified domains.
Next, an extra state (tracking error) was augmented to the T–S model in order to improve the
accuracy of the tracking control. After that for each linear subsystem, a robust pole-placement
state feedback controller was appropriately designed by the LMI technique. Finally, the PDC
method was used to design the controller for the overall system. The total linear system was
then obtained through the weighted sum of the local linear system. A FWOC component was
employed to update the fuzzy weights in real time for different system operating points. The
simulation results on the manipulator were shown that the proposed control approach has robust-
ness, precise tracking and good disturbances attenuation against load torque disturbances and
parameter variations. In addition, the superiority of the proposed control scheme was approved
in compared with the QFT controller, the QFT Controller of order 13, a polynomial controller
and the so-called linear sliding-mode controller methods. Tables 8, 9 and 10 summarized per-
formance comparisons for set M1 and total results of five different methods, respectively. The
major achievements of this research are: (i) the proposed T–S fuzzy model accurately represent
the original nonlinear system in the pre-specified domains, (ii) both the robustness and nominal
performance in the proposed method that have been presented by the generalized cost function
V, were better than the control methods A, B, C and D, (iii) the control signal (motor torque)
did not exceed the allowable limit ±20 Nm for the three defined sets even with a wide range of
system uncertainties.
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Appendix

Quasi-linear affine system presentation

The detailed quasi-linear affine model of original manipulator dynamics in (1) is presented in
appendix.
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By substituting (3) into (1), one can obtain

Jmq̈m = um+w−fmq̇m−[7500(qm−qa1)
3+10(qm−qa1)]−d1(q̇m−q̇a1)

Ja1 q̈a1 = −fa1 q̇a1+[7500(qm−qa1)
3+10(qm−qa1)]+d1(q̇m−q̇a1)

−k2(qa1−qa2)−d2(q̇a1−q̇a2)

Ja2 q̈a2 = −fa2 q̇a2+k2(qa1−qa2)+d2(q̇a1−q̇a2)−k3(qa2−qa3)−d3(q̇a2−q̇a3)

Ja3 q̈a3 = v − fa3 q̇a3+k3(qa2−qa3)+d3(q̇a2−q̇a3) (19)

By expanding above equations, it is concluded that

Jmq̈m = −
(

7500q3
m+22500qmq2

a1
+10qm

)

+
(

7500q3
a1

+22500qa1q
2
m+10qa1

)

− (fmq̇m+d1q̇m) +d1q̇a1+w+um

Ja1 q̈a1 =
(

7500q3
m+22500qmq2

a1
+10qm

)

−
(

7500q3
a1

+22500qa1q
2
m+10qa1+k2qa1

)

+k2qa2+d1q̇m−(fa1 q̇a1+d1q̇a1+d2q̇a1)+d2q̇a2

Ja2 q̈a2 = −fa2 q̇a2+k2(qa1−qa2)+d2(q̇a1−q̇a2)−k3(qa2−qa3)−d3(q̇a2−q̇a3)

Ja3 q̈a3 = v − fa3 q̇a3+k3(qa2−qa3)+d3(q̇a2−q̇a3) (20)

By factorization of system states (5), it yields

q̈m = −

[

7500
(

q2
m+3q2

a1

)

+10

Jm

]

qm+

[

7500
(

q2
a1

+3q2
m

)

+10

Jm

]

qa1

−

[

fm+d1

Jm

]

q̇m+d1q̇a1+w+um

q̈a1 =

[

7500
(

q2
m+3q2

a1

)

+10

Ja1

]

qm−

[

7500
(

q2
a1

+3q2
m

)

+10+k2

Ja1

]

qa1

+
k2

Ja1

qa2++
d1

Ja1

q̇m−

[

fa1+d1+d2

Ja1

]

q̇a1+
d2

Ja1

q̇a2

q̈a2 =
k2

Ja2

qa1−
(k2+k3)

Ja2

qa2+
k3

Ja2

qa3+
d2

Ja2

q̇a1−
(d2+d3+fa2)

Ja2

q̇a2+
d3

Ja2

q̇a3

q̈a3 =
k3

Ja3

qa2−
k3

Ja3

qa3+d3q̇a2−
(d3+fa3)

Ja3

q̇a3+v (21)
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States of system x and nonlinearity terms R1R2 can be expressed as follows:

x = [ qm qa1 qa2 qa3 q̇m q̇a1 q̇a2 q̇a3 ]T

R1 = q2
m+3q2

a1
=x2

1+3x2
2

R2 = 3q2
m+q2

a1
=3x1

2+x2
2 (22)

According to (20) and (21) the state-space quasi-linear model can be concluded

ẋ1 = x5

ẋ2 = x6

ẋ3 = x7

ẋ4 = x8

ẋ5 = −

[

7500R1+10

Jm

]

x1+

[

7500R2+10

Jm

]

x2−

[

fm+d1

Jm

]

x5+d1x6+w+um

ẋ6 =

[

7500R1+10

Ja1

]

x1−

[

7500R2+10+k2

Ja1

]

x2+
k2

Ja1

x3++
d1

Ja1

x5

−

[

fa1+d1+d2

Ja1

]

x6+
d2

Ja1

x7

ẋ7 =
k2

Ja2

x2−
(k2+k3)

Ja2

x3+
k3

Ja2

x4+
d2

Ja2

x6−
(d2+d3+fa2)

Ja2

x7+
d3

Ja2

x8

ẋ8 =
k3

Ja3

x3−
k3

Ja3

x4+d3x7−
(d3+fa3)

Ja3

x8+v (23)

Consequently, the matrices of system (22) can be represented as

ẋ = Ax+Bww+Bvv+Buu

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

04∗4 I4

− (7500R1+10)
Jm

(7500R2+10)
Jm

0 0
(7500R1+10)

Ja1
− (k2+7500R2+10)

Ja1

k2
Ja1

0

0 k2
Ja2

− (k2+k3)
Ja2

k3
Ja2

0 0 k3
Ja3

− k3
Ja3

− (fm+d1)
Jm

d1
Jm

0 0
d1
Ja1

−
(d1+d2+fa1 )

Ja1

d2
Ja1

0

0 d2
Ja2

−
(d2+d3+fa2 )

Ja2

d3
Ja2

0 0 d3
Ja3

−
(d3+fa3 )

Ja3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

B =
[

Bw Bv Bu

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 0
0 0 0
1

Jm

1
Jm

0
0 0 0
0 0 0
0 0 1

Ja1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)
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Referring above matrices, nonlinearity terms R1 and R2 and also uncertain parameters fm,
fa1 , fa2 and fa3 appear only in matrix A. Define an affine parameter-dependent system is defined as:

⎧

⎨

⎩

E (ρ) ẋ= A (ρ) x+B1 (ρ) w+B2 (ρ) u

z∞=C1 (ρ) x+d11 (ρ) w+d12 (ρ) u

z2=C2 (ρ) x+d12 (ρ) w+d22 (ρ) u

S(ρ) = S0+ρ1S1+ . . .+ρnSn
[

A (ρ) +jE (ρ) B (ρ)

C (ρ) D (ρ)

]

=

[

A0+jE0 B0

C0 D0

]

+ρ1

[

Aρ1+jEρ1 Bρ1

Cρ1 Dρ1

]

+ . . .+ρn

[

Aρn+jEρn Bρn

Cρn Dρn

]

B (ρ) =
[

B1 (ρ) B2 (ρ)
]

, C (ρ)=
[

C1 (ρ) C2 (ρ)
]T

, D (ρ)=

[

d11 (ρ) d12 (ρ)

d12 (ρ) d22 (ρ)

]

(25)

where S0, S1, . . . , Sn are given system matrices; A(.), B(.), C(.), D(.) and E(.) are fixed affine
functions of some vector ρ = (ρ1, . . . , ρn) The parameters pi are uncertain parameters. In this
paper, uncertain parameters are given by following vector:

ρ = (ρ1,ρ2,ρ3,ρ4)=(fmfa1fa2fa3) (26)

As a result, according to definition of (24) and uncertain parameters of (25), the matrix A can
be decomposed as

A (ρ)=A0+ρ1A1+ρ2A2+ρ3A3+ρ4A4=A0+fmAfm+fa1Aa1+fa2Aa2+fa3Aa3

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

04∗4 I4

− (7500R1+10)
Jm

(7500R2+10)
Jm

0 0
(7500R1+10)

Ja1
− (k2+7500R2+10)

Ja1

k2
Ja1

0

0 k2
Ja2

− (k2+k3)
Ja2

k3
Ja2

0 0 k3
Ja3

− k3
Ja3

− d1
Jm

d1
Jm

0 0

d1
Ja1

− (d1+d2)
Ja1

d2
Ja1

0

0 d2
Ja2

− (d2+d3)
Ja2

d3
Ja2

0 0 d3
Ja3

− d3
Ja3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Afm=

⎡

⎣

04∗8

0 0 0 0 − 1
Jm

0 0 0
03∗8

⎤

⎦ , Aa1=

⎡

⎣

05∗8

0 0 0 0 0 − 1
Ja1

0 0

02∗8

⎤

⎦

Aa2=

⎡

⎣

06∗8

0 0 0 0 0 0 − 1
Ja2

0

01∗8

⎤

⎦ , Aa3=

[

07∗8

0 0 0 0 0 0 0 − 1
Ja3

]

(27)

This completes the subsection 2.2 (Proposed T-S fuzzy model) of section 2 (Model Description
of ABB manipulator IRB6600).
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