
Tool Supported OCL Refactoring Catalogue

Jan Reimann, Claas Wilke, Birgit Demuth, Michael Muck, Uwe Aßmann
Technische Universität Dresden

Institut für Software- und Multimediatechnik
D-01062, Dresden, Germany

firstname.lastname@tu-dresden.de | michaelmuck@gmx.de

ABSTRACT
The Object Constraint Language (OCL) as the primary con-
straint language in model-driven software development is
heavily used to specify static semantics of arbitrary lan-
guages and models. Models and constraints are therefore
interconnected and depend on each other. On the one hand,
daily work with models enjoys a good tool support, whereas,
on the other hand, mature OCL tools are not widely spread
but a niche. Unfortunately, during their life-time, the com-
plexity of models rises and so do their OCL constraints.
Thus, the gap between conventional modelling and OCL
tools becomes obvious. This fact demands for OCL tool sup-
port to cope with the complexity. To bridge this gap, refac-
toring is well-suited and mighty. In this paper we discuss
existing work, present a revised catalogue of OCL-exclusive
refactorings and provide an implementation. We do not
consider co-refactorings of OCL constraints and their con-
strained models.

Categories and Subject Descriptors
D.2.3 [Coding Tools and Techniques]: Program edi-
tors; D.2.7 [Distribution, Maintenance, and Enhance-
ment]: Restructuring, reverse engineering, and reengineer-
ing

Keywords
OCL, model refactoring, OCL-exclusive refactoring, refac-
toring catalogue

1. INTRODUCTION
In recent years, OCL has become a popular constraint lan-
guage used to specify constraints on top of several Meta
Object Facility (MOF)-based metamodels, as well as Uni-
fied Modeling Language (UML) models, and models from
other domains such as XML. However—as in conventional
programming languages—when specifications become com-
plex, qualities such as reusability, readability, and under-
standability must be maintained to improve comprehensibil-

1 context DirectDebitTransactionInformation1
2 inv EPC_AOS_DrctDbtTxInfDbtr:
3 dbtr.pstlAdr.adrTp->size() = 0 and
4 dbtr.pstlAdr.strtNm->size() = 0 and
5 dbtr.pstlAdr.bldgNb->size() = 0 and
6 dbtr.pstlAdr.pstCd->size() = 0 and
7 dbtr.pstlAdr.twnNm->size() = 0 and
8 dbtr.pstlAdr.ctrySubDvsn->size() = 0 and
9 dbtr.ctryOfRes->size() = 0

Listing 1: OCL example from Nomos Software’s
XML validation demo.

1 context DirectDebitTransactionInformation1
2 inv EPC_AOS_DrctDbtTxInfDbtr:
3 let adr = dbtr.pstlAdr
4 in
5 adr.adrTp = null and
6 adr.strtNm = null and
7 adr.bldgNb = null and
8 adr.pstCd = null and
9 adr.twnNm = null and

10 adr.ctrySubDvsn = null and
11 dbtr.ctryOfRes = null

Listing 2: OCL example with applied refactorings.

ity for modellers working with these constraints. Listing 1
shows an example for a constraint from the Nomos XML
validation service demo. As can be seen, the constraint
uses the association call dbtr.pstlAdr as well as the idiom
sourceExp->size()=0 several times. Thus, refactorings [5] can
be used to extract the association call dbtr.pstlAdr into a
variable and the idiom into a helper method, or replacing it
with a more appropriate expression, such as sourceExp=null
(cf. Listing 2). Altogether, the XML validation demo con-
sists of 79 constraints having similar structure and requiring
similar refactorings to improve their readability and main-
tainability.1

Today, OCL refactorings are usually done manually. This
process of restructuring constraints is very error-prone since
their modification must not change the meaning of the con-
straints. Thus, refactoring is one of the most wanted features
for OCL tooling, which was recently underpinned by a sur-
vey conducted among the OCL community [2]. To the best

1All constraints of the example as well as their model (an
XML schema file) are online available as an example shipped
together with Dresden OCL.



of the authors’ knowledge, currently only catalogues of OCL
refactorings exist, but no publicly available tool supports
OCL refactoring yet. Furthermore, existing catalogues lack
details (e.g., incomplete pre- or postconditions). For this
reason, in this paper we contribute (1) an analysis of existing
approaches of OCL refactorings, (2) an extended catalogue,
and (3) a refactoring tool for Dresden OCL2 implemented
with the generic model refactoring framework Refactory [9].3

The remainder of this paper is structured as follows: In
Sect. 2 we present related work. Afterwards, in Sect. 3 we
present and discuss our extended catalogue. Sect. 4 shortly
discusses our refactoring implementation for Dresden OCL.
Finally, Sect. 5 concludes our work.

2. REFACTORING FOR OCL REVISITED
Several authors have already focused on OCL refactorings.
Their work can be divided into two categories: (1) OCL
refactorings as co-refactorings and (2) OCL-exclusive refac-
torings. Exclusive refactorings are directly intended to mod-
ify OCL expressions, whereas co-refactorings modify OCL
expressions and their constrained model in parallel (e.g.,
modifications in a UML class model where classes referenced
in OCL constraints are renamed).

In the area of UML/OCL co-refactoring important research
was done by Marković and Baar [8] or by Hassam et al. [7].
These authors developed approaches for synchronising OCL
constraints specified for evolving UML models. Since we fo-
cus on OCL-exclusive refactorings, we do not discuss these
papers further. In the following, related work for OCL-
exclusive refactorings is elaborated.

In [6] Giese and Larsson investigate possibilities for the au-
tomatic simplification of OCL constraints. Based on the
idea of design patterns, not only implementations for UML
model elements may be generated, but also the correspond-
ing OCL constraints. In such a scenario automatically or
semi-automatically generated OCL constraints often contain
redundancies. To simplify constraints suffering from this
problem, they propose the repeated application of small,
simple rules, as e.g. simplifying (false and e) to (false).

The most important work on OCL-exclusive refactorings was
published by Correa and Werner [3, 4]. They presented a
unique collection of OCL smells which are used as a basis
for a catalogue of refactorings that can be used to enhance
understandability of OCL constraints. Table 1 shows their
OCL smells and the according refactorings. Critical refac-
torings from their findings are discussed in the following.
Refactoring (2) is used to split a large boolean expression
into separate expressions being connected by and operators.
Due to the greater operator binding strength of the and op-
erator in comparison to that of the implies operator, it is
necessary for this refactoring to put the intermediary results
of the type a implies b into a set of brackets before linking
them by and. Otherwise, the refactoring would change the
semantics of the expression, a fact that has not been men-
tioned by Correa and Werner. Refactoring (3) splits con-
straints consisting of boolean expressions connected by and

2http://www.dresden-ocl.org/
3http://www.modelrefactoring.org/

OCL refactoring Associated smell
(1) Replace implies chain by a single
implication

Implies chain

(2) Split conditional rules Non-atomic rule
(3) Split AND chain AND chain
(4) Replace forAll chain by navigations forAll chain
(5) Remove redundant expression Redundancy
(6) Simplify operation calls Duplication
(7) Change context Down-casting
(8) Change initial navigation Verbose expression
(9) Add variable definition Magic literal
(10) Replace expression by variable Magic literal
(11) Add operation definition Long Journey
(12) Replace expression by operation call Long Journey
(13) Add property definition/replace
expression by property call

Magic literal

(14) Introduce polymorphism Type-related
conditionals

(15) Inline attribute/inline operation
definition
(16) Rename attribute/rename operation

Table 1: Refactorings and related OCL code smells
proposed in [3].

operators into several constraints for the same context. The
authors did not discuss that this refactoring can be applied
on invariants, pre- and postconditions only, as for defini-
tions and body constraints the semantics can not be split
into several expressions. Refactorings (5) and (6) are for-
mulated very vaguely (e.g., the authors propose to assure
that the target expressions must not change the semantics,
a statement that holds for each refactoring). In addition,
refactoring (7) also is very imprecise because it is only said
that a context change should be performed in case of long
unreadable association paths. Fortunately, this problem was
discussed by Cabot and Teniente [1]. They formalised their
approach as a path problem over a graph which enables
them to determine all alternatives. Refactoring (8) could
be solved similar to (7) but it cannot be claimed that it is
always semantically correct to replace an association path
with a shorter one. It may occur that one path has another
intent than another one and does not have the same mean-
ing. Refactorings both (9–10) and (11–12) in combination
are used to foster the reuse of expressions. But it remains
unclear why Correa and Werner separated atomic extract
refactorings into the extraction and the replacement of the
occurrences. Opposed to that refactoring (13) is examined
in combination. The refactorings combined under (15) are
the inverses of (12–13) but Correa and Werner do not go
far enough. One can say that every extraction refactoring
can be inverted by its inlining. The according smell might
be single use which occurs in case when the extract is only
referred to once.

3. OCL REFACTORING CATALOGUE
In this section we categorise the refactorings identified in
related work as well as further refactorings identified by our
group. We do not assume our catalogue as being complete.
However, we argue that our catalogue contains several of
the most required refactorings for OCL constraint specifica-
tion and maintenance. We grouped the 28 identified refac-
torings into four categories, namely, (1) renamings, (2) re-
movals and their inverse materialisation, (3) extractions and
their inverse inlinings, and (4) separations and their inverse

http://www.dresden-ocl.org/
http://www.modelrefactoring.org/


RENAMING
Preconditions:
The target name η of the element ε to be renamed and any other
element in its scope must be disjunct.
Steps:
(1) Locate the declaration of the element ε to be renamed.
(2) Compute the scope σ of ε.
(3) Verify that σ does not include any element of the same kind
having name η.
(4) If no match was found, rename ε and all its references. Oth-
erwise cancel the refactoring.

Table 2: Renamings

merges. Below, the individual refactorings are presented and
discussed based on the following pattern: first, the motiva-
tion or necessity for each refactoring is discussed. Where
necessary, examples illustrate the further meaning of indi-
vidual refactorings. Besides, the preconditions as well as the
necessary steps to perform a refactoring are summarised as
enumerations in a table. We denote the selected element(s)
which is/are intended to be refactored with α.

3.1 Renamings
In general, renaming elements can be considered as the most
common refactoring (Table 2). In the context of OCL, ev-
erything that has a name can be renamed which includes
constraints, variables (including parameter names in method
declarations), as well as operations and properties, if they
are defined by an OCL definition (operations and proper-
ties from the constrained model cannot be renamed without
affecting a co-refactoring of the constrained model). An im-
portant prerequisite for this refactoring is that a respective
element of the new name must not already exist within the
scope of the renamed element. The scope of a constraint in-
cludes all other constraints defined on the same model. The
scope of a variable is the area in which it is visible in. For
methods and attributes the scope includes all other methods
or attributes defined on the same class and its superclasses.

3.2 Removals
Removal refactorings (Table 3) remove unnecessary, redun-
dant elements from OCL expressions. In some cases, their
opposite materialisations are useful refactorings as well.

Remove Unused Elements. During the evolution of an
OCL expression sometimes variables are no longer required
as all their uses have been removed from the constraint.
Removing these unused declarations improves readability as
well as the execution performance of OCL expressions, as
unnecessary variables consume memory for their allocation
as well as computation time for their initialisation. The
same holds for unused properties or operations defined as
helper elements using OCL def declarations.

Remove/Add Redundant Brackets. While reading OCL
expressions, an often found smell is redundant brackets.
Considering an expression (a+b)+c, the brackets surround-
ing a+b can be removed without affecting the readability of
the affected expression. However, in other cases, such as
a+b*c explicit brackets improve readability as natural read-
ing order does not represent the arithmetic precedence of
the expression (which is a+(b*c)). Thus, adding redundant
brackets is considered as a useful refactoring as well.

REMOVE UNUSED ELEMENTS
Preconditions:
α should contain at least one let expression, property or opera-
tion definition, respectively.
Steps:
(1) Find all variable/property/operation declarations ∆ within α.
(2) ∀δε∆:
(2-1) Search for any references to δ.
(2-2) If no reference is found, remove δ.
(2-3) If for a removed variable declaration no variable remains in
the same let expression λ, remove λ.

REMOVE/ADD REDUNDANT BRACKETS
Steps:
(1) If brackets shall be removed search for brackets within α which
do not alter the precedence rules of α and remove them.
(2) If brackets shall be added, surround α with a pair of brackets.

REMOVE/MATERIALIZE self
Steps:
(1) Locate all references to self.
(2) If explicit references shall be removed, remove all explicit ref-
erences to self.
(3) If explicit references shall be materialised, search for all im-
plicit references to self and make them explicit.

REMOVE/MATERIALIZE TYPE DECLARATIONS
Steps:
(1) Let E denote the set of all expressions within α (also nested
expressions) that can have an explicit type declaration.
(2) If type declarations shall be removed: ∀εεE: if ε’s type dec-
laration δ can be inferred, remove δ.
(3) If type declarations shall be materialised: ∀εεE: if ε misses
an explicit type declaration δ, add δ.

REMOVE IMPLICIT asSet
Preconditions:
α should contain at least one implicit collection conversion.
Steps:
(1) Be C the set of all implicit collection conversions in α.
(2) ∀εεC: in ε = exp->op() replace ε with an explicit collection
conversion ε′ = exp.asSet()->op().

REMOVE IMPLICIT collect
Preconditions:
α should contain at least one implicit collect() iterator.
Steps:
(1) Be C the set of all implicit collect() iterators in α.
(2) ∀ εεC: in ε = sourceExp.targetExp (where sourceExp is an
expression resulting in a collection of values) replace ε with ε′ =
sourceExp->collect(targetExp).

REMOVE DEPRECATED null CHECK
Preconditions:
α should contain at least one null check η of the pattern
a->size()=0, a->size()> 0, a->size()= 1, or a->size()<> 0
where a denotes an expression resulting in a non-collection value.
Steps:
(1) Be N the set of all deprecated null checks in α.
(2) ∀ηεα:
(2-1) If η = a->size()=0 replace η with η′ = a=null.
(2-2) Otherwise replace η with η′ = a<>null.

Table 3: Removals

Remove/Materialise Self. Since explicit usage of the
self reference for property and operation calls is optional,
some calls show this reference while others do not. This
refactoring is intended to unify the selected constraints ac-
cording to the individual preference of the user.

Remove/Materialise Type Declaration. OCL does not
require to explicitly specify the type of expressions, if the
type can be inferred from the expression. Sometimes, ex-



plicit type declarations make code more unreadable (e.g., if a
collection type is specified although the expression uniquely
identifies the result type). However, in other cases, explicit
type declarations may be more appropriate.

Remove implicit asSet. In OCL operation calls are sepa-
rated into calls on collection and non-collection operations.
The former are denoted using an arrow (->), the latter us-
ing a dot (.) notation. When the arrow notation is used on
a non-collection expression, its value is implicitly converted
into a collection before invoking the operation call (e.g., in
Listing 1, all property call results are converted into col-
lections before invoking the size() operation). Although
this can be usable in some cases, it can lead to unexpected
semantics [10]. Thus, we propose a refactoring to convert
implicit collection conversions into explicit ones.

Remove implicit collect. A counterpart of implicit col-
lection conversions is the implicit collect() iterator that ap-
plies an expression onto all elements contained in a collec-
tion (e.g., an expression company.employees.salary*12 results
in a collection containing the salaries of all employees of
a company multiplied by 12). Although this seems to be
quite useful in some cases, the implicit collect iterator may
lead to confusing results as one might expect the example
expression resulting in a single integer value. Thus, refactor-
ing the expression into the explicit form company.employees->

collect(salary*12) improves its comprehensibility.

Remove deprecated null check. In former versions, OCL
did not allow the null literal, which caused the unavailabil-
ity of null checks. A common idiom to check for null values
was the expression a->size()=0 which implicitly converts a
non-collection value into a collection and checks the collec-
tion for its size. Since OCL 2.3, the null literal can be used
for explicit checks on null values. Thus, we propose the re-
move deprecated null check refactoring to replace the idiom
with an appropriate null check. This refactoring could be
applied to improve the readability and comprehensibility of
the constraint shown in Listing 1 as shown in Listing 2.

3.3 Extractions
Extraction refactorings (Table 4) extract expressions into
variables, properties, or operations to reuse them from sev-
eral calls within the same or even several OCL constraints.
There counterparts are the inverse inlining refactorings.

Extract Variable. The extraction of a variable is related
to the two refactorings add variable definition and replace
expression by variable from Correa and Werner [3]. The
refactoring can be applied to the example given in Listing 1,
where multiple occurrences of the property call dbtr.pstlAdr
are replaced by a variable adr (cf. Listing 2) which improves
both readability and evaluation performance. If a user wants
to extract a single literal (e.g., an integer or boolean value
into a variable), it is impossible to automatically decide if
other literals having the same value in the scope of the newly
introduced variable shall be replaced with a variable call as
well or not. Thus, for literal values, this refactoring only
extracts the one selected by the user. Note that not only
variables defined in a let expression have to be checked for
name collisions, but also all iterator variables and operation
parameters of the constraint’s context declaration as well.

EXTRACT VARIABLE
Preconditions:
If another variable in the scope of the variable to be introduced
has the same name, its type and value must match the selected
expression α to be extracted.
Steps:
(1) Compute the scope of α.
(2) If a variable ν having the same name already exists, continue
if its initialisation expression matches α, else abort.
(3) If no variable having this name exists:
(3-1) Add a declaration of a new variable ν to the beginning of
the body expression containing α and initialise it with α.
(3-2) If α is a literal replace α with a call to ν.
(3-3) If α is no literal replace all occurrences of α in the scope of
the extracted variable with a call to ν.

INLINE VARIABLE
Preconditions:
References to the variable ν have to be present within α.
Steps:
(1) Check if α is a variable declaration or an expression contain-
ing variable references.
(2) If α contains references:
(2-1) If the variable ν to inline has a primitive type, encapsulate
its initialisation in brackets to ensure correct precedence rules.
(2-2) Replace the references with ν’s initialisation expression.
(3) If α is a variable declaration:
(3-1) Find all references to the variable ν.
(3-2) If ν has a primitive type, encapsulate its initialisation ex-
pression in brackets.
(3-3) Replace all found references with the encapsulation.
(4) Perform remove unused variables to remove unused variables.

EXTRACT PROPERTY/OPERATION
Preconditions:
If the names of any property/operation and the one to be ex-
tracted on a class or superclass are not disjunct, its type and
expression must match α. If a property shall be extracted, α
must not contain any references to externally defined variables or
parameters.
Steps:
(1) Check if a property/operation φ of the given name is already
defined on the same class or a superclass.
(2) If this is not the case, add a new property/operation φ and
initialise it with α.
(2-1) If φ is an operation, collect the set R of external references
to variables or parameters not being part of α.
(2-2) ∀γεR: add a parameter ρ to the operation declaration hav-
ing the same name and type as γ.
(3) Locate all occurrences of α and replace them with a call to φ.
(4) If φ is an operation, add the corresponding arguments for
each external reference from α to variables or parameters to the
operation call in a way they match the signature and semantics
of φ’s dedclaration.

INLINE PROPERTY/OPERATION
Preconditions:
References to the property/operation φ have to be present within
α. φ must not be declared recursively.
Steps:
(1) Check if α is a reference to φ or its declaration.
(2) If α is a property/operation call:
(2-1) If φ’s expression ε to inline results in a primitive type, ε′ =
(ε) to ensure precedence rules. Else ε′ = ε.
(2-2) Replace the selected call with ε′.
(3) If α is φ’s declaration, let R denote all references to φ:
(3-1) ∀γεR: Replace γ with ε′.
(3-2) If γ is an operation call, replace the names of all parameter
calls in the inlined ε′, with their counterparts from γ.
(4) Perform remove unused properties/operations.

Table 4: Extractions



1 context DirectDebitTransactionInformation1
2 def: adr: PostalAddress1 = dbtr.pstlAdr
3

4 context DirectDebitTransactionInformation1
5 def: getAdrTp(adr PostalAddress1): AdressType2Code =
6 adr.adrTp

Listing 3: Extracted properties and operations.

Inline Variable. Inline variable is the inverse refactoring
to extract variable. There is either the possibility to re-
place one selected call to the variable, or all occurrences of
the variable at once. If the user selected a reference to the
variable, only this selected reference will be replaced by the
variable initialization. But if the user selection is the vari-
able declaration, all references to the selected variable will
be computed and replaced by the variable initialisation.

Extract Property/Operation. Besides the extraction of
variables, it is also possible to extract a property or opera-
tion. For example, instead of using a let expression, the ex-
pression dbtr.pstlAdr could be extracted from the example
constraint in Listing 1, resulting in a newly defined prop-
erty adr (cf. Listing 3, lines 1–2). Now, we can reuse this
property definition to ease the example constraint as well
as all other constraints defined on the same class. In some
cases it is also sensible to extract an operation instead of
a property. This is necessary if the expression we want to
extract includes references to parameters or variables within
the constraint we want to extract the expression from. In
this case, we can extract an operation having all this ex-
ternal references as parameters. Listing 3, lines 4–6 shows
an example for such an extracted operation from Listing 2.
We extracted the expression adr.adrTp which is a property
call having adr as its source expression. As adr is a locally
defined variable, we have to pass it as a parameter to the
operation.

Inline Property/Operation. Inline a property or oper-
ation is the inverse operation to the above extract proper-
ty/operation refactoring. There is either the possibility to
replace one selected call to the property/operation, or all
occurrences of the property/operation at once. If the user
selected a reference to the property/operation, only this se-
lected reference will be replaced by the property’s/opera-
tion’s expression. But if on the other hand the user selec-
tion is the property/operation definition, all references to
the selected property/definition will be computed and re-
placed by the respective expression. For operation inlining,
existing parameter calls of the operation’s expression must
be replaced with the names of their counterparts from the
operation call, as they may have other names in the inlined
context.

3.4 Separations
Separation refactorings (Table 5) are refactorings splitting
complex expressions into several, typically more readable
refactorings. Their counterparts are merge refactorings that,
in some cases, can improve readability as well.

Merge Chained Let Expressions. The OCL specifica-
tion allows for an arbitrary number of let expressions to be

MERGE CHAINED let EXPRESSIONS
Preconditions:
α should contain chained let expressions.
Steps:
(1) Find the first let expression ε whose child λ is a let expres-
sion.
(2) Move all variable declarations from λ to its parent ε main-
taining their order.
(3) In ε replace λ with its child expression.
(4) Repeat the refactoring until no further chained let expression
remain.

SPLIT BOOLEAN EXPRESSIONS
Preconditions:
α must conform to one of the three expression types (1–3).
Steps:
(1) Verify that the top level expression of α is a boolean-typed
expression β of one of the three types.
(1-1) If β is of type (1): ∀xi in β: create an εi = (xi implies y).
(1-2) If β is of type (2): ∀yi in β: create an εi = (x implies yi).
(1-3) If β is of type (3): ∀bi in β: create an εi = (a implies bi),
∀ci in β: create a γi = ((not a) implies ci).
(2) α’ = the connection of all εi (and all γi) with and.
(3) Replace α with α’.

SPLIT/MERGE CONSTRAINT
Preconditions:
(a) If a constraint shall be split, α must be an invariant, pre-, or
postcondition and its body expression must be a conjunction γ of
expressions.
(b) If several constraints shall be merged, α must contain only
invariants, only pre-, or only postconditions. Each constraint δ
in α must be defined on identical context declarations. If a δ is
pre- or postcondition, all variable names of the constraints in α
must be disjunct.
Steps:
(1) If a constraint δ shall be split up:
(1-1) Check if there is a conjunction at the top level of δ. If not,
end the refactoring.
(1-2) Remove the and operator and replace it with its first child
expression.
(1-3) Create a new constraint declaration δ′ according to δ within
the same context and place the second child expression from the
conjunction into δ′.
(1-4) Repeat from step (1-1) for both δ and δ′.
(2) If constraints κ ε α shall be merged:
(2-1) Let ∆ denote the set of all context declarations in α.
(2-2) ∀δiε∆, i > 1: adapt the names of all parameter’s ρj in δi to
the name of the corresponding ρj in δ1.
(2-2) Surround the expressions to be merged with brackets to
ensure precedence rules.
(2-3) Merge the expression using conjunctions.

SPLIT/MERGE CONTEXT DECLARATIONS
Preconditions:
For splitting a context declaration δ, more than one OCL con-
straint must belong to δ. For merging context declarations (set
∆), the expressions to be merged must have identical contexts.
Steps:
(1) If δ shall be split up, locate each constraint κ declared within
δ. ∀κiε∆, i > 1: Create a new context declaration δ′ with the
same context class or element and move κi to δ′.
(2) If ∆ shall be merged, verify that the contexts of each declara-
tion γiε∆ are identical. ∀κiε

⋃
j=2..n δj : Move constraint κi from

γj to δ1. Afterwards remove the remaining empty declarations
δiε∆, i > 1.

Table 5: Separations

present in one OCL constraint. Often, they are forming a
chain at the beginning of the constraint’s body expression
which can be combined to one single, often more readable
let expression.



Split boolean expressions. This refactoring to split a
boolean expression was proposed by Correa and Werner [3].
The motivation for applying this refactoring is to split a large
expression into several expressions connected by boolean and
operators. While this alone may not seem worthwhile, the
result allows using the split constraint refactoring explained
below for further splitting. The refactoring can be applied
to modify three types of boolean expressions:

(x1 ... or xn) implies y

(x1 implies y) ... and (xn implies y)
(1)

(x implies (y1 ... and yn))

(x implies y1) ... and (x implies yn)
(2)

if a then (b1 ... and bm)

else (c1 ... and cn) endif
(a implies b1) ... and (a implies bm)

and ((not a) implies c1) ... and ((not a) implies cn)

(3)

Split/merge Constraint. Splitting an OCL constraint
into multiple constraints is a refactoring related to the split
and chain refactoring introduced by Correa and Werner [3].
This refactoring is designed for complex OCL constraints
that consist of several boolean conditions bound together
by logical and operators. For example, the invariant shown
in Listing 1 could be split into several invariants checking
the non-initialisation of several properties individually. As
such a restructuring is only applicable for constraints used
for consistency checks and not for rules specifying semantics
for operations and properties, this refactoring can only be
applied on invariants, pre- and postconditions. The opposite
refactoring merge constraint can be applied to merge several
constraints defined on the same context into one constraint.

Split/merge Context Declarations. The refactorings
merge and split context declaration unify multiple constraints
under one or split them to multiple context declarations
(e.g., multiple invariants defined on the same class can share
a common context declaration or can use individual ones).
These refactorings are motivated by the fact that, especially
in models with a large number of OCL expressions, placing
each individual expression within its own context classifier
provides the user with a clearer separation of the individual
expressions. However, in some cases using individual context
declarations may improve readability, especially if the indi-
vidual constraint’s expressions require many lines of codes
leading to situations where the context declaration of follow-
ing constraints would not be visible on the screen together
with its body expression.

4. REALISATION
For providing an extensible tool where refactorings can be
added, a framework is required. Therefore, we implemented
the catalogue above with the generic model refactoring frame-
work Refactory [9] for the Eclipse-based tool Dresden OCL.

Dresden OCL provides a collection of tools for parsing, eval-
uating and editing OCL expressions for languages based on
the Eclipse Modeling Framework (EMF), as well as XML

and Java. Since the constraint editor from Dresden OCL it-
self is EMF-based, Refactory could be used easily to provide
OCL-refactorings because it also supports EMF languages.
Our tool has been tested on several models and metamodels,
among them various UML models, the Modelica metamodel
and the UML.

Detailed information on our publicly available tool can be
found under http://www.dresden-ocl.org/refactoring.

5. CONCLUSION
In this paper we analysed the OCL-exclusive refactorings
published in [3]. We showed that they have deficiencies and
provided a new extended catalogue which corrects existing
OCL refactorings and encloses additional ones. Finally, we
shortly presented a tool which provides refactoring support
for Dresden OCL realised with the tool Refactory. It is the
first refactoring tool for OCL being freely available.

In future work we will investigate OCL co-refactoring for
maintaining OCL constraints and constrained models in par-
allel as well as further OCL refactorings not discussed in this
catalogue.

Acknowledgements
This research has been co-funded by the European Social
Fund and the Federal State of Saxony within the project
ZESSY QualiTune #0809518061. We also like to thank
Nomos Software for providing their OCL constraints.

6. REFERENCES
[1] J. Cabot and E. Teniente. Transforming OCL

constraints: a context change approach. In ACM
symposium on Applied computing, 2006.

[2] J. Chimiak-Opoka, B. Demuth, A. Awenius,
D. Chiorean, S. Gabel, L. Hamann, and E. Willink.
OCL Tools Report based on the IDE4OCL Feature
Model. In OCL and Textual Modelling, 2011.

[3] A. Correa and C. Werner. Refactoring object
constraint language specifications. Software and
Systems Modeling, 2007.

[4] A. Correa, C. Werner, and M. Barros. Refactoring to
improve the understandability of specifications written
in object constraint language. Software, IET,
3(2):69–90, 2009.

[5] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[6] M. Giese and D. Larsson. Simplifying Transformations
of OCL Constraints. In Model Driven Engineering
Languages and Systems. Springer, 2005.

[7] K. Hassam, S. Sadou, V. Gloahec, and R. Fleurquin.
Assistance System for OCL Constraints Adaptation
during Metamodel Evolution. In CSMR2011, 2011.

[8] S. Marković and T. Baar. Refactoring OCL Annotated
UML Class Diagrams. Software and Systems
Modeling, 2008.

[9] J. Reimann, M. Seifert, and U. Aßmann. On the reuse
and recommendation of model refactoring
specifications. Software and Systems Modeling, 2012.

[10] C. Wilke and B. Demuth. UML is still inconsistent!
How to improve OCL Constraints in the UML 2.3
Superstructure. EASST, 2011.

http://www.dresden-ocl.org/refactoring

	Introduction
	Refactoring for OCL revisited
	OCL Refactoring Catalogue
	Realisation
	Conclusion
	References

