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Abstract

Tool condition monitoring (TCM) has become essential to achieve high-quality machining as well as cost-effective

production. Identification of the cutting tool state during machining before it reaches its failure stage is critical. This paper

presents a novel big data approach for tool wear classification based on signal imaging and deep learning. By combining

these two techniques, the approach is able to work with the raw data directly, avoiding the use of statistical pre-processing or

filter methods. This aspect is fundamental when dealing with large amounts of data that hold complex evolving features. The

imaging process serves as an encoding procedure of the sensor data, meaning that the original time series can be re-created

from the image without loss of information. By using an off-the-shelf deep learning implementation, the manual selection

of features is avoided, thus making this novel approach more general and suitable when dealing with large datasets. The

experimental results have revealed that deep learning is able to identify intrinsic features of sensory raw data, achieving in

some cases a classification accuracy above 90%.

Keywords Smart manufacturing · Tool wear classification · Time series imaging · Convolutional neural network ·

Deep learning

1 Introduction

The manufacturing industry has gone through several

paradigm changes along the years. Industrie 4.0, also

referred as smart industry, is a new paradigm that pro-

poses the integration of information and communication

technologies (ICT) into a decentralised production. With

manufacturing machines fully networked to share data and

controlled by advanced computational intelligence tech-

niques, this paradigm is looking to improve productivity,

quality, sustainability and reduce costs [1, 2].
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The estimation of the remaining useful life (RUL)

of industrial components is an important task in smart

manufacturing. Early detection of cutting tool degradation

facilitates the reduction of failures, and hence decreases

manufacturing costs and improves productivity. It can also

help maintain the quality of the workpiece, as it has been

demonstrated that there is a correlation between the surface

roughness of the workpiece and the cutting tool wear [3].

Real-time tool wear measurement is difficult to put in

practice as the tool is continuously in contact with the

workpiece during machining. For this reason, a plethora of

indirect approaches for tool wear estimation (also referred

as Prognosis) have been proposed utilising sensor signals

such as cutting forces, vibrations, acoustic emissions and

power consumption [4].

Prognostic approaches can be divided into two cate-

gories: model-based and data-driven. The first ones rely

on the a priori knowledge of the underlying physical laws

and probability distributions that describe the dynamic

behaviour of a system [5–8]. Although these have proven

to be successful, an in-depth understanding and exper-

tise of the physical processes that lead to tool failure is

required.

On the other hand, data-driven approaches model the data

by means of a learning process, avoiding any assumptions
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on its underlying distribution. Most data-driven methods

that have been used for tool wear prediction are based

on machine learning, particularly artificial neural networks

(ANN), support vector machines (SVM) and decision trees

(DT) [9]. However, these techniques are limited in their

ability to process raw (i.e. unstructured or unformatted)

data, which has a negative effect on their generalisation

capabilities [10].

The large amount of data in smart manufacturing imposes

challenges such as the proliferation of multivariate data,

high dimensionality of feature space and multicollinearity

among data measurements [2, 11]. This paper presents

in detail the methodology of a novel approach for tool

wear classification recently used in [12] as a component

of an on-line monitoring framework. Its automatic feature

learning and high-volume processing capabilities make

deep learning a viable advanced analytics method for

tool wear classification despite the large volumes of data

required. The proposed classification methodology is based

on two components: an imaging step and a deep learning

step. The imaging technique employed encodes sensor

signals in such a way that its complex features as well

as the exhibited temporal correlations are captured by the

deep learning, avoiding manual selection. An analysis of the

challenges and strategies used to build a big data classifying

approach is performed through a set of experiments using

the PHM 2010 challenge dataset [13], where the technical

procedures of how the data was generated and collected are

not entirely known. This provides a way to perform an un-

biased blind test and proof of the generalisation capabilities

of the methodology.

The rest of the manuscript is organised as follows:

Section 2 presents details of how machine learning has been

applied to tool wear prediction. Section 3 introduces the

proposed approach giving details of the signals imaging

and the deep learning methodology. The experimental setup

and the results and discussion are presented in Section 4.

Finally, conclusions and future work are presented in

Section 5.

2 Related work

Tool wear has been widely studied as it is a very

common phenomenon in manufacturing processes such as

milling, drilling and turning. It is well known that different

machining parameters such as spindle speed, feed rate and

cutting tool characteristics as well as the workpiece material

have an effect on tool wear progression [14]. Although

this progression can be mathematically estimated [15,

16], these models rarely capture the stochastic properties

of real machining processes and tool-to-tool performance

variation [17]. Over the last two decades, it has been

demonstrated that data-driven models can achieve higher

accuracy, although these have also shown some drawbacks

[10].

Some of the most common data-driven methods are

based on traditional machine learning algorithms. SVMs,

for example, have been successfully applied for tool

condition monitoring in [18]. The authors use automatic

relevance determination (ARD) on acoustic emission

data to select nine features as inputs for classification.

ANNs have also been extensively applied for tool wear

prediction. These commonly use a combination of cutting

parameters such as cutting speed, feed rate and axial cutting

length as well as statistical features of forces, vibrations

and acoustic emission [19–22]. In applications such as

drilling and milling, it has been shown how ANNs can

outperform regression models. In [9], a tool wear prediction

method based on random forests is proposed. Although

this approach has outperformed ANN- and SVM-based

methods, it relies on the manual selection of features to build

the internal classification structures.

Manual feature selection is a significant problem when

dealing with large amounts of shop floor–generated sensory

data. Its distribution as well as the number of features

available may change with time. Cloud-based architectures

recently proposed for collecting and managing sensory data

[2, 23] present new challenges to current TCM solutions. To

develop a more general approach, forthcoming approaches

should be able to cope not only with high volumes of

heterogeneous data but also with the constant evolution of

high-dimensional features. Most classical machine learning

techniques have been designed to work with data features

that do not change with time (static data). As a result, several

of these techniques either have been extended to handle the

temporal changes or rely on a prior selection of features

using other algorithms [24].

Deep learning has offered better solutions when dealing

with high-dimensional evolving features. These techniques

have made major advances in fields such as image

recognition [25, 26], speech recognition [27] and natural

language processing [28, 29], to name a few. Its capability to

process highly complex featured data has led to an emerging

study of deep learning applications for smart manufacturing.

For instance, recurrent neural networks (RNN) have been

successful for the long-term prognosis of rolling bearing

health status [30]. In [31], a local feature-based gated

recurrent unit network is applied to tool wear prediction,

gearbox fault diagnosis and bearing fault detection. The bi-

directional recurrent structure proposed by the authors can

access the sequential data in two directions–forward and

backward–so that the model can fully explore the ‘past and

future’ of each state.

Another successful deep learning architecture is the

convolutional neural network (CNN) [32], which is the

Int J Adv Manuf Technol (2019) 104:3647–36623648



one addressed in this work. CNNs have become the

de facto standard for deep learning tasks as they have

achieved state-of-the-art performance in image recognition

tasks. The architecture of a CNN is based on the

architecture of the ANN, but further extended with a

combination of convolutional and sub-sampling layers

that allow the discovery of relevant features. This is

explained in more detail in Section 3.2. CNNs are developed

primarily for 2D signals such as images and video

frames. Some successful applications are the detection of

vehicles in complex satellite images [33], the classification

of galaxy morphology [34], brain tumour segmentation

from MRI images [35], among others. Their success

in the classification of two-dimensional data has led to

further development of CNNs for time series classification

(one-dimensional data). Some applications include the

classification of electrocardiogram beats for detecting heart

failure [36] and the use of accelerometer readings for human

activity recognition [37].

CNNs have also been applied in manufacturing prob-

lems. For example, this technique has been used for the

detection of faulty bearings [38–40] by feeding raw vibra-

tion data directly to the CNN, achieving good accuracy and

reducing the computational complexity of the extraction of

fixed features. In [41], real-time structural health monitor-

ing is performed using 1D CNNs. The authors use vibration

signals from damaged and undamaged joints of a girder to

train several CNNs, one for each joint. Their objective is

to detect the structural damage (if any), and identify the

location of the damaged joint(s) in the girder. The authors

report an outstanding performance and computational effi-

ciency of the approach when dealing with large-scale

experiments.

Some previous work on tool wear prediction using a

CNN combined with bi-directional long short-term memory

(LSTM) has been done [42]. The proposed approach

is able to extract local features of the data, achieving

good accuracy when compared with other deep learning

techniques such as RNNs. However, the method performs

a substantial size reduction of the original data, losing

information at the flute level. This will be further discussed

in Section 5.

Manual feature selection is still a limitation for tool wear

prediction approaches to achieve generalisation. To address

this, this paper extends preliminary experiments of a novel

deep learning–based method that will allow the automatic

discovery of intricate structures in sensor signals that relate

to the tool condition, and from this provide a classification

of the tool state. The approach is blind to the type of signals

given or their underlying distribution, so no assumptions nor

manual feature selections are needed. At the same time, the

model is blind to the type of wear being classified. Although

in this work flank wear has been used as a measure of the

tool condition, the proposed methodology could be used for

other types of tool wear as well.

3Methodology

This section presents the two main steps of the methodol-

ogy: the imaging of sensor signals using Gramian Angular

Summation Fields [43] and the classification using CNNs.

The idea behind this approach is to visually recognise, clas-

sify and learn structures and patterns intrinsic to sensory

data without loss of information.

3.1 Time series imaging

There has been a recent interest on reformulating features

of time series to improve their identification, and hence

classification. Eckmann et al. introduced the method of

recurrence plots to visualise the repetitive patterns of

dynamical systems [44]. Silva et al. used this method

and proposed the use of a compression distance approach

to compare recurrence plots of time series as a way to

measure similarity [45]. Methods based on time series

to network mapping using the topology of the network

as a way to characterise the time series have also been

proposed [46, 47]. Most of these methods do not provide

a way to reconstruct the original data, making unclear how

the topological properties relate to the time series. Wang

et al. propose three techniques, two based on Gramian

Angular Fields (GAF) and one on Markov Transition

Fields (MTF) to image time series [43]. They argue that

compared with previous techniques, the original time series

can be re-constructed, allowing the user to understand how

the features introduced in the encoding process improve

classification. They reported GAF encoding methods were

able to achieve competitive results in a series of baseline

problems that include different domains such as medicine,

entomology, engineering and astronomy. Furthermore, this

method has been found to perform well compared with other

time series encoding techniques in applications such as the

classification of future trends of financial data [48].

As a pre-processing step, our approach uses the GAF

imaging technique proposed by [43], particularly the one

based on the summation of angular fields, Gramian Angular

Summation Fields (GASF). This encoding method consists

of two steps. First, the time series is represented in a

polar coordinate system instead of the typical Cartesian

coordinates. Thus, given a time series X = x1, x2, ..., xn of

n real-valued observations, X is rescaled so that all values

fall in the interval [−1, 1] by:

x̃i
−1 =

xi − max(X) + (xi − min(X))

max(X) − min(X)
(1)
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The time series X̃ can then be represented in polar

coordinates by encoding the value as the angular cosine and

the time stamp as the radius applying Eqs. 2 and 3:

φ = arcos(x̃i), −1 ≤ x̃i ≤ 1, x̃i ∈ X̃ (2)

r =
ti

N
, ti ∈ N (3)

In Eq. 3, ti is the time stamp and N is a constant

factor to regularise the span of the polar coordinate system.

Figure 1 shows an example of forces on z-dimension and its

representation in polar coordinates.

As time increases, corresponding values on the polar

coordinate system warp among different angular points

on the spanning circles. This representation preserves the

temporal relations and can easily be exploited to identify

Fig. 1 Forces on y-axis acquired from a dynamometer are encoded

as polar coordinates by applying Eqs. 2 and 3. As time increases, the

corresponding values of the signal in polar coordinates wrap among

different angular points on the spanning circles, keeping the temporal

relations

the temporal correlation within different time intervals. This

temporal correlation is represented as:

G =

⎡

⎢

⎢

⎢

⎣

cos(φ1 + φ1) . . . cos(φ1 + φn)

cos(φ2 + φ1) . . . cos(φ2 + φn)
...

. . .
...

cos(φn + φ1) . . . cos(φn + φn)

⎤

⎥

⎥

⎥

⎦

(4)

cos(φi + φj ) = X̃′ · X̃ −

√

I − X̃2

′

·

√

I − X̃2 (5)

where I is a unit full row vector ([1,1,...,1]). Figure 2 shows

the resulting image of applying the encoding method to the

time series presented in Fig. 1.

The GASF image provides a way to preserve temporal

dependency. Time increases as the position in the image

moves from top–left to bottom–right. G(i,j ||i−j |=k) repre-

sents the relative correlation by superposition of directions

with respect to time interval k. The main diagonal Gi,i is

the special case when k = 0, which contains the original

value/angular information. The dimension of the resulting

GASF image is n × n when the time series is of length

n. To reduce the size of the image, piecewise aggregation

approximation (PAA) is applied to smooth the time series

while keeping trends [49]. As explained in the Experiments

section, the amount of time series data that is acquired from

the sensors is large (more than 200,000 measurements), so

PAA is fundamental to keep the images at a reasonable size

without losing time coherence.

To label the images, three regions have been identified

as defined in [50]. According to the literature, the tool

life in milling operations is typically divided into three

stages/classes: a break-in region, which occurs with a rapid

wear rate; the steady-state wear region with uniform wear

rate; and a failure region, which again occurs with a rapid

wear rate [51]. Figure 3 presents a tool degradation curve

example with the classes that were used to label the images.

Fig. 2 Example of the encoding of forces in the y-axis as an image

using GASF. The colour represents the intensity of the relative

correlation between two points in the time series, which is a value

between −1 and 1. There is no PAA smothing applied to the resulting

image, so the resolution (300 × 300 pixels) is the same as in the

original signal
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Fig. 3 Tool flank wear as a

function of cutting time (cut

events of cutter c6 used in the

experiments). For each region, a

sample image of forces in y-axis

is provided

3.2 Deep learning for time series classification

To identify the current state of wear of a tool by using sensor

signals, the approach applied needs to be capable of picking

up the temporal dependencies present in the signals. Sensor

signals are expected to show changes in their temporal

structures as the tool wears out. A classification tool should

be capable of identifying those changes and map them to a

predefined wear class.

Time series classification methods are generally divided

into two categories: sequence-based methods and feature-

based methods. Among both of these categories, k-nearest

neighbour (k-NN), which is a sequence-based method,

has proven to be very difficult to beat. This is specially

true when paired with dynamic time warping (DTW). The

drawback of this approach is its lengthy computation time.

As the training set grows, the computation time, and hence

the prediction time, increases linearly.

An approach that can provide constant prediction time

as well as a way to extract relevant features automatically

is deep learning. CNNs in particular have been successful

in handling large volumes of data. Although they have

been primarily used for visual tasks, voice recognition

and language processing, new developments have looked

towards time series classification.

CNNs have been inspired by the way the visual cortex

in the human brain works. Neurons of the visual cortex

have a local receptive field which reacts to visual stimuli

located in a limited region of the visual field [52]. These

receptive fields may overlap, tiling together the whole

visual field. Some neurons have larger receptive fields

which react to more complex patterns that are further

combinations of lower level patterns. The discovery of

these basic functionalities of the human brain inspired the

idea of developing an artificial neural network architecture

whereby higher level neurons are based on the outputs

of neighbouring lower level neurons, to detect complex

patterns. In 1998, LeCun et al. [32] proposed the LeNet-5

architecture, which contains the main building blocks of a

CNN: the convolution layer and the pooling layer.

A convolution layer is formed by a series of neurons that

are connected to neurons of a previous layer based on the

their receptive field. For example, in the first convolution

layer, each neuron is not connected to each individual

pixel of the input image, but to only those pixels within a

receptive field. Then each neuron in the second convolution

layer is connected to neurons within a small rectangle in

the first layer. The first convolution layer is responsible for

detecting the lower level features, and further convolutions

assemble these features into higher level ones. The set of

weights (i.e. filter) of a neuron in each convolution layer

will depend on the type of feature it is “looking” for. For

example, a particular filter would be able to detect vertical

lines while another one could detect horizontal ones. During

the convolution, the filter is compared with different areas

of the image, obtaining a feature map, that highlights the

areas in an image that are most similar to the filter (see

Fig. 4a). As images posses a variety of different features,

each convolution neuron would have more than one set of

weights or filters. The training process will enable the CNN

to find the most useful filters for the particular classification

task. In the case of the force classification that is addressed

here, the training process will find those filters that allow

it to recognise in a first instance features at a flute level

regardless of where in the image they are located. Then,

higher level convolutions allow the determination of the

state of the tool considering all flutes.

The pooling layer is another important building block

of the CNN. This layer downscales the output of

the convolution, thus reducing dimensionality, the local

sensitivity of the network and computational complexity

(see Fig. 4b) [32]. A typical CNN architecture stacks
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Fig. 4 Low-level features of

forces are picked up by the first

layer, which are then assembled

into higher level features in the

following layers

several convolutions (that may include a rectified linear

unit (ReLU) step to speed up the training) and pooling

layers which reduce the size of the image as it gets deeper.

Finally, at the top of the stack, a multilayer neural network

is connected to the last convolution/pooling to perform the

classification.

In this paper, the CIFAR-10 architecture from Tensorflow

has been used [53]. This is an off-the-shelf CNN

architecture that has proven to achieve high accuracy on

the classification of 3-channel images (see Fig. 5). This

architecture has two convolution layers stacked with their

corresponding ReLU and pooling layers. Each convolution

applies 64 filters. As will be presented in the next

section, the implemented CNN will take 3-channel images

generated from the force sensors and use these for training.

The deep learning structure will be able to pick up

the relevant features that relate to tool wear condition.

Figure 6 shows a schematic of how the approach has been

implemented.

4 Experiments and results

Tool wear classification was performed using a dataset

that was originally made available by the PHM2010 Data

Challenge [13]. The dataset contains sensory data of six

3-flute cutters (labelled c1, ..., c6) used in a high-speed

CNC machine (Röders Tech RFM760) under dry milling

conditions until a significant wear stage. The experiment

with each cutter was carried out as follows. The workpiece

surface was machined line-by-line along the x-axis with

a 6-mm three-flute cutter. After finishing one pass along

the x-axis (axial depth of 0.2 mm and radial depth of

0.125 mm), the tool was retracted to start a new pass.

This was done until the complete surface was removed.

Then, the tool was removed from the tool holder and taken

to a LEICA MZ12 microscope, where the corresponding

flank wear (Vb) for each individual flute was measured. In

order to capture cutting forces throughout the experiment,

a Kistler quartz 3-component platform dynamometer was

Fig. 5 CNN architecture based on the Tensorflow implementation for the CIFAR-10 dataset (adapted from [53])
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Fig. 6 Framework proposed combining time series imaging and deep learning for tool wear classification. Forces in the three dimensions are

individually encoded using GASF and put together as 3-channel images. From those images, 70% is used for training a CNN model and then 30%

used for testing

mounted between the workpiece and the machining table. A

schematic of this setup is shown in Fig. 7. To measure the

vibrations, three Kistler piezo accelerometers were mounted

on the workpiece. Finally, an acoustic emission sensor was

mounted on the workpiece to monitor the high-frequency

stress wave generated by the cutting process. For each

cutter, the seven signal channels (forces in the x-, y- and

z-axes, vibrations in the x-, y- and z-axes and acoustic

emission) were recorded while removing 315 layers of the

stainless steel workpiece (see Table 1). Table 2 shows the

details of the process conditions during the cutting tests.

The total size of the dataset for each cutter is about 3.2 GB,

making in total nearly 20 GB for all cutters. In this work,

only three of the six cutters (c1, c4 and c6) were used

as these were labelled with their corresponding tool wear

measurements. More details on the machining setup can be

found in [54].

Initial experiments were carried out with a data subset

comprising a single cutting tool for the training and test

sets, with a total data set size of 1 GB. In this case,

the cutter labelled c6, from which 315 cuts and tool

wear measurements are available, was used. Force signals

were selected as the only input for the CNN to avoid a

computationally expensive training process for this proof of

concept.

To prepare the dataset for training and testing of the

CNN, each cutting force Fx , Fy and Fz corresponding to

a removed layer was encoded as three separate images.

Since the time series that corresponds to one layer can

be as long as 219,000 measurements, a representative

portion of the complete time series was taken. This was

done by selecting a subsequence of 2,000 measurements

that correspond to the middle of the layer, thus capturing

different material hardness. Applying the GASF method

Fig. 7 Schematic of the

experimental setup used in [54]

to collect forces, vibrations and

frequency stress waves of the

cutting process
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Table 1 Signal channels and measurement data of the complete dataset

Signal channel Measurement data

Channel 1 Fx - cutting force in the X-dimension

Channel 2 Fy - cutting force in the Y-dimension

Channel 3 Fz - cutting force in the Z-dimension

Channel 4 Vx - vibration in the X-dimension

Channel 5 Vy - vibration in the Y-dimension

Channel 6 Vz - vibration in the Z-dimension

Channel 7 AE - acoustic emission

This study uses only those channels related to forces (top part of the

table)

explained in Section 3, an image for each force (Fx , Fy and

Fz) was obtained. These were then reduced from a size of

2k × 2k pixels into images of 512 × 512 pixels using PAA

and then combined into a 3-channel image. The associated

wear class to this image is then determined by the flank

wear value that was measured when the layer was removed.

Although this experimental setup is particular to flank wear,

the images could be labelled using other types of wear such

as crater wear. Regardless of the type of wear measure used,

the training process should be able to capture the features

on the input that relate to the particular wear measure used.

As an example, Fig. 8 shows forces on the x-axis at

different stages of the milling experiment. From what can

be observed in this figure, the forces tend to be more

uniform (i.e. shapes tend to get more circular) as the tool

starts to wear out. The size reduction does not affect the

time coherence of the data, allowing each individual flute

temporal information to still be kept after PAA.

In total, the pre-processing step produced 315 3-channel

images, one for each cutting event. This set of images was

divided 70% for training and 30% for testing. The CNN

was trained using the softmax regression method, which

applies a softmax nonlinearity to the output of the network

and calculates the cross-entropy between the normalised

predictions and the actual labels. The parameters used for

the training process are shown in Table 3.

Table 2 Operating conditions during dry milling

Parameter Value

Spindle speed 10,400 RPM

Feed rate 1555 mm/min

Y depth of cut 0.125 mm

Z depth of cut 0.2 mm

Sampling rate 50 kHz/channel

Material Stainless steel

Cutting tool 6 mm ball nose tungsten carbide cutter

Once the model was trained, it was tested on the

remaining 95 images. Table 4 presents a confusion matrix

with the results obtained. Based on the test set, the estimated

accuracy of our model is 90%. Break-in wear was correctly

classified for 82% of the cases, steady wear 94% of the

cases and failure wear correctly classified 75% of the cases.

The number of incorrect predictions suggest that the number

of cases for break-in and failure regions may need to be

increased.

As it can be observed in Fig. 8, the number of cuts

that fall in the break-in region is 50, while the number

of cuts in the steady-state are 200. This means that two-

thirds of the data available would be categorised as steady-

state. If the training set is generated by randomly sampling

from the complete dataset, it is likely that two-thirds of

those samples are steady-state class. This class imbalance

problem has been well documented in the literature [55–

57]. Failure cases tend to be considerably less abundant than

steady wear cases. The less represented classes are more

likely to be misclassified than the majority examples due to

the design principles of the learning process. The training

process optimises the overall classification accuracy which

results in the misclassification of the minority classes.

Therefore, several techniques could be applied to balance

the number of samples of each class. Because the time

series corresponding to one layer of the workpiece can be as

long as 220,000 measurements, the data can be resampled.

This would generate more than one sample from each layer,

particularly with the break-in and failure cases. At the same

time, an undersampling can be done by adding another class

for the cases that are approaching the failure region. Thus, a

fourth class that identifies this region could, in fact, be more

useful as currently the low-wear region covers a wide range

of tool wear values. It is important to remark that tool wear

progresses differently depending on the type of tool, type of

material, cutting parameters and other cutting conditions. It

is not possible to identify the degree of class imbalance for

a tool for which no prior data has been collected. Therefore,

class imbalance needs to be detected and acted upon as part

of the data preparation prior to model training.

A balanced number of cases among all classes will be

crucial to achieve accuracy homogeneity across all wear

regions. The overall results are nevertheless promising,

showing that the CNN was successfully capable of

capturing the intrinsic structures of the sensory data. This

method is then scalable to include the remaining cut data.

A second experiment was performed by adding a 4th

class that corresponds to the area prior to entering the failure

region (Fig. 9). This area is of particular interest to this

study as it considers a point in time were decisions could be

taken to extend the life of the tool. The number of instances

per case was also increased by taking two more sub-

sequences from each layer, for a total of three 2,000 sample
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Fig. 8 Sample images of

rescaled forces in the x-axis at

different stages of flank wear. It

can be observed how the shapes

in the image become more

circular as the signal becomes

smoother. It can also be

observed how the information

by individual flute is kept

sub-sequences from the middle of each layer (cut event);

enough so that the experiment could still be kept short for

the proof of concept. Sequences were again encoded into

images and labelled according to the wear value and the new

classes. A total of 954 images were produced, where 70%

was used for training and 30% for testing. The results are

shown in Table 5.

The overall accuracy of the classification was 89%,

which is about the same compared with the first experiment.

However, there was an improvement on the percentage

of cases correctly classified per class. For example, the

break-in wear region went up from 82% in the previous

experiment, whereas the steady wear region remains at 94%.

The severe wear region, which was introduced in this round

of experiments, is correctly classified 82% of the time.

Despite this, it can be seen that only 6 cases (9%) of the

severe region were classified as steady wear. The other 6

cases were classified as failure due to their proximity to

the failure values. Finally, the failure region cases were

accurately classified 82% of the time, which is again an

Table 3 O perating conditions during dry milling

Parameter Value

Max steps 1000 steps

Learning rate 0.01

Learning rate decay factor 0.1

Number of examples per epoch 100 images

Number of epochs per decay 100 epochs

Training set size 220 images

improvement over the first experiment. From the number of

cases, it can still be observed that there is a class imbalance

that could be affecting the training process.

In a third experiment, the class imbalance was addressed

using a stratified undersampling technique. In the previous

experiments, the datasets used for training were kept small

to avoid high computational load for a proof of concept.

However, it is possible to sample more subsequences from

each of the 315 cuts. For the c6 tool, it is possible to sample

up to 95 subsequences from each cut, generating a total

of 29,925 3-channel images. An undersampling strategy to

deal with class imbalance is suitable in this case as the

dataset is large enough to avoid losing critical features.

Using a strata based on the wear classes defined, sampling

of each class was done individually, making sure classes

such as steady state were undersampled to achieve an equal

number of samples across all classes. After performing the

undersampling, a training set consisting of 14,000 images

and a test set of 6,000 images were produced. These were

used to train and validate a new model.

As the size of the training had increased considerably,

images were reduced to 256 × 256. It was also decided to

move from a generic Tensorflow architecture implementa-

tion to a more tuned one, by changing the size of the filters

for both convolution layers from 5×5 to 16×16 for the first

convolution and from 5 × 5 to 8 × 8 for the second convolu-

tion. Given that the GASF images are typically capturing 7

complete revolutions of the tool (21 cycles of the signal as

the tool has 3 flutes), the kernel of the first convolution was

set to a size of 16, which allows capturing a complete signal

cycle. This means that the convolution will be searching for
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Table 4 Confusion matrix summarising the results on the test set

NT = 95 Actual break-in wear, N(%) Actual steady wear, N(%) Actual failure region, N(%)

Predicted break-in wear 14 (82.35%) 2 (0.03%) 0 (0%)

Predicted steady wear 3 (17.64%) 62 (93.93%) 3 (0.25%)

Predicted failure region 0 (0%) 2 (0.03%) 9 (0.75%)

Total 17 (100%) 66 (100%) 12 (100%)

The table shows the classification given by the CNN for all the cases on the test set, indicating the number of correctly classified as well as the

incorrectly classified. NT refers to the total number of images in the test set

Fig. 9 Four stages of tool wear

for cutters c1, c4 and c6, and

sample images of forces in the

y-axis that correspond to those

regions

Table 5 Confusion matrix summarising the results with four classes on the test set

NT = 282 Actual break-in Actual steady Actual severe Actual failure

Wear N(%) Wear N(%) Wear N(%) N(%)

Predicted break-in wear 32 (88.88%) 2 (1.5%) 0 (0%) 0 (0%)

Predicted steady wear 4 (11.11%) 125 (94%) 6 (8.69%) 0 (0%)

Predicted severe wear 0 (0%) 6 (4.5%) 57 (82.60%) 8 (18.18%)

Predicted failure region 0 (0%) 0 (0%) 6 (8.69%) 36 (81.81%)

Total 36 (100%) 133 (100%) 69 (100%) 44 (100%)

The table shows the classification given by the CNN for all the cases on the test set, indicating the number of correctly classified as well as the

incorrectly classified. NT refers to the total number of images in the test set

Fig. 10 Confusion matrices summarising the results of the M6 model (cutter c6) with four classes using the stratified undersampling technique
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features at a flute level. The stride of the kernel was set to 4

due to the size of the image, allowing a reduction of the fea-

ture map by a quarter. The pooling layer that follows uses

a kernel of size 3, which allows a further reduction of the

feature map to a size of 32×32. This is enough to keep the

detected low-level features that will be grouped into higher

level ones by the following convolution.

Results with the new trained model are shown in Fig. 10,

where the model is labelled as M6, as it is the model that

corresponds to cutter c6. Overall, M6 was able to achieve a

96.4% accuracy on the test set. The classification accuracy

increased for both the break-in and failure regions to 99.7%

and 97.5% respectively when tested on c6. The lowest

accuracy was shown in the severe region, where a result of

92.6% correctly classified cases was achieved.

To understand the capabilities and limitations of the

approach when a different set of data is available, a

similar sampling and training was done with cutters c1

and c4, generating two additional models, M1 and M4,

respectively. Each of these models were validated against

the same cutter as well as the other two cutters. Accuracy

results per class are shown in Fig. 11 and the overall

results in Table 6. All experiments were carried out on a

2.80 GHz Intel Core i7-7600C CPU and 32GB RAM. The

average training time for one batch (100 images) is 7.6 s,

so a complete epoch takes approximately 16.5 min for any

model. The testing time for one sample using any model

is 0.2727 s. Although the training time is computationally

Table 6 Summary of the accuracy (in %) of each model (labelled M1,

M4 and M6) when validated against the same cutter and other cutters

Cutter

c1 (%) c4 (%) c6 (%)

M1 96 89.3 80.4

Model M4 79.6 96.8 80.9

M6 71.6 85.18 96.4

expensive, testing is not, which still makes it applicable

for real-time monitoring. Training time can be improved by

using a higher specification processor or GPU as well as by

parallelising the code and/or training one-class classifiers in

parallel.

As can be observed in Table 6, there is not one model

so far that works best when validated against all cutters.

However, the model developed with c1 (M1) achieves the

highest accuracy across the three models when validated

against other cutters (accuracy of 89.3% on c4, and an

accuracy of 80.4% on c6). M1 particularly struggles

classifying correctly the failure cases of c6 (see Fig. 11 first

row). Looking at Fig. 9, it can be seen that c1 wears out at

a very high rate during the first 20 cuts, reaching the steady

state earlier than the other two cutters, and developing a

lower tool wear after 315 cuts. This can explain why a model

developed with this tool might perform badly on highly

worn cutters as it does not provide enough examples of the

Fig. 11 Confusion matrices summarising the accuracy results (0–100 %) for M1 (top row) and M4 (bottom row) across c1, c4 and c6 using four

tool wear classes and the stratified undersampling for training/testing
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degree of wear that was developed by c6. Unfortunately,

a more in-depth analysis onto these differences in wear

degradation cannot be performed as no additional data

or meta-data is available regarding the conditions of the

PHM2010 data experiments. However, these results suggest

that a better model can be built if a combination of both

cutters’ data was used in the training process.

When analysing the results obtained with M6, it was

observed that this model is very good at identifying

failure cases when tested on c4. The model correctly

classifies tool failure 95.8% of the time. This model shows

again a weakness in identifying the severe region (see

Fig. 10). Most of the cases that are incorrectly classified are

identified as failure cases, which could be explained by the

abrupt change in wear rate of c4 when approaching failure.

M4 did not show particularly good results when identifying

tool failure. This model achieved 75% and 70% accuracy

when tested in c1 and c6. What is interesting to point out is

that M4 is particularly good at identifying the severe region

on c6, achieving a 97.7% accuracy. This again highlights

the importance of making sure that a training dataset be a

good representation of the search space in order to achieve

generalisation.

In general, the results of the three models show the

ability of the architecture used to learn force patterns and

relate those to wear classes. The architectural setup of the

CNN used in this last experiment allowed finding relevant

features at a flute level, which is necessary for the approach

to detect the current maximum wear regardless of the flute

that is developing the wear. This is important, as it ensures

that the technique can achieve good results regardless of

the tool used. The accuracy obtained in particular classes

shows the importance of presenting the CNN with samples

that are representative of all the input space during training.

A more robust model would need to be enriched with data

from different cutters to ensure this.

5 Comparison of the proposed approach
to previous work

The proposed approach has its advantages and disadvan-

tages when compared with other approaches. Making a

fair comparison in terms of accuracy is not straightforward

due to several factors. First, to compare against classical

machine learning, the best set of features would need to be

found and not chosen arbitrarily. There are a wide range

of algorithms for selecting and fusing features [58]; how-

ever, it is not in the scope of this paper to explore these.

In addition, each approach has an “ideal” parametrisation

depending on the problem and specific instantiation of the

methodology, for example, selecting the right number of

hidden layers and nodes in each layer of an ANN. For

this reason, the comparison is approached differently, by

describing the power of using GASF as a tool to auto-

matically encode raw signals into images. The features

of GASF images are ultimately exploited by an off-the-

shelf CNN implementation that outputs the different stages

of wear.

Most of the published works in tool wear prediction or

tool wear classification perform some type of specific data

pre-processing such as statistical feature selection using

mean, maximum, standard deviation and median. Wu et

al., for example, use these four features across multiple

sensor data to perform tool wear prediction using ANNs,

SVMs and random forests, the latter achieving the lowest

root mean square error (RMSE) [9]. In Zhao et al., a deep

learning approach using convolutional bi-directional LSTM

(CBLSTM) network to perform tool wear prediction is

presented. In this work, sensor signals are reduced from

200,000 measurements into 100 datums of maximum and

mean values, and these are fed into the CBLSTM model.

From three different configurations of the approach, the

authors report that CBLSTM with dropout achieves the

lowest RSME. [42]. The main disadvantage of manual

feature extraction is that, unless it is continuously re-applied

to update the models, it does not consider changes in the

data distribution related to either noise or the tool wear

phenomenon itself, making it unreliable in some cases. An

example of this can be seen in cutter c1. Inspecting the data

of this cutter, it was found that, although mean, maximum

and median statistics follow generally the same trend with

a tendency to increase with every cutting event, there is a

peculiar change in these statistics for cutter c1 as seen in

Fig. 12. The figure shows how there is a sudden increase

in the maximum force along the x-axis (also applies for the

mean, median and standard deviation) around cutting events

225 and 250, then the values return to their normal trend.

Although change was not much in the wear measurements

Fig. 12 Maximum force in newtons (N) in the x-axis at each cutting

event for cutters c1, c4 and c6
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during this period of time (from 131.25 to 136.9 mm), the

force values did show changes. This suggests that some

conditions of the experiment changed and were reflected on

the sensor readings but were not actually related to changes

in tool wear. From the results reported in Zhao et al., it is

interesting to note that the highest RMSE obtained is on

cutter c1, particularly during cutting events 225 and 250.

This strongly suggests that there is a sensitivity to maximum

and mean values, as the highest errors occur during the

aforementioned cutting events. Although the method in [42]

employs a deep learning approach, their results suggest that

the model is not picking up the information on how one

measurement changes in relation to another one in the time

series, like a typical deep neural network would do. In their

work, the dimensionality reduction performed averages 2k

measurements, corresponding to nearly 7 revolutions of the

tool, therefore losing the details of each individual flute.

As each flute might wear out at a different rate, retaining

flute level information is relevant as it provides a better

understanding of how the tool is wearing through time.

Figure 13 shows two force samples and their corresponding

GASF images between cutting events 225 and 250. By

visually inspecting the images, it can be inferred that not

much change in the force patterns has happened during

these cutting events. The GASF image encoding provides

the CNN the right level of information for it to learn

how the tool erodes at the flute level as well as how

patterns change from one flute to another regardless of the

actual force measurement made. From the results shown

in Fig. 11, it can be seen that M4 achieves an accuracy

of 83% on the severe cases of c1. Taking into account

that a third of the mean force measurements are showing

a significant increase (Fig. 12), the CNN is still quite

reliable in classifying these as severe (having only 17%

as failure).

A similar comparison with the work of Wu et al. [9] is

not straightforward as results are presented as total accuracy

on the test set, with no detail of which tools were used

for training and for testing. As a result, it is not possible

to determine from the reported results how the proposed

approaches are capable of dealing with the noise or changes

in the data distribution.

A current disadvantage of the GASF representation is

the loss of the magnitude information of the measurement

during normalisation, as this normalisation process is

performed individually by image, not taking into account

the maximum value of all the observations. A combination

of GASF and actual magnitude encoding could potentially

be more effective, particularly for the cases like in c1, where

conditions could change suddenly.

Fig. 13 Sample images of

rescaled forces in the x-axis

during cutting events: a 225 and

b 250. Although there is a

sudden increase on the mean

force during cutting events 225

and 250 (which is not visible

after normalisation), the wear

does not increase at that same

rate. In fact, the GASF images

suggest there is not much

change on the wear as the force

patterns are very similar
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6 Conclusions and future work

This paper presents an approach to tool wear classification

by means of sensory data imaging and deep learning. The

GASF encoding keeps the temporal correlations for each

flute, which is an advantage over classification methods

that are based on statistical features, where the features

of a particular flute are lost. Experimental results show

the ability of the CNN to capture and learn the features

on the raw data to correctly classify tool wear condition.

Overall, the percentage of accurately classified cases on

the test set is high, achieving in most cases above 80%

when testing in a new cutter. The moment prior to the

transition from critical wear to failure is in most cases

correctly identified, and the cases where it is incorrectly

classified were generally labelled as a failure, which from

an application standpoint means the replacement of the tool

would still be enacted. These results show the importance

of using a training sample set that can represent all of the

input space. In this case, the training set needs to be enriched

with samples from multiple cutters to ensure the successful

detection of the transition period from severe to failure. The

application of this work will allow for the extension of the

remaining useful life of the tool, improve cut quality and

ensure machining elements are replaced before failure.

Future work will include parallelisation of the architec-

ture and its implementation to run in GPUs as well as

incorporating the approach in a cloud architecture. Tech-

niques for partially retraining the architecture will also be

explored to study its adaptation capabilities when new data

becomes available. Additional work will also include exper-

imentation with more input channels on the GASF image to

feed in multiple sensor data and improve the accuracy of the

classification. Finally, further enhancements to the encod-

ing technique will be investigated such as incorporating the

magnitude information.
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