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Abstract The safe and reliable operations in industrial

manufacturing processes play a crucial role in the economic

productivity. Machining process disturbances such as colli-

sion, overload, breakdown, and tool wear tend to cause pro-

duction system failures. The current study aims at investigat-

ing the limitations of tool wear prediction on the milling of

CGI 450 plates, through the simultaneous detection of accel-

eration and spindle drive current sensor signals. Tool wear

prediction has been accomplished, by utilizing the experimen-

tal results that derived from third degree regression models

and pattern recognition systems. These results indicate that

predictability is affected by the mean signal energy, acquired

from the vibration acceleration signals.

Keywords Tool wear .Monitoring . Predictability . Fused

sensorial signals . Pattern recognition

1 Introduction

Themilling process that belongs in the category of mechanical

material removal processes forms the backbone of industrial

manufacturing practices, by providing great flexibility, since

the shape and the kinematics of the tool and workpiece define

the parts’ geometry [1]. A milling cutter’s design and its

respective cutting edges come in a vast range of shapes and

sizes [2]. The current practice in industrial environments im-

plies the usage of trial and error techniques for the very first

machined parts so as to evaluate and fine tune the machining

process. This approach not only does it require a significant

amount of time, but potentially, it also contains a significant

number of errors, thus reducing the performance of the pro-

cess in terms of profit, people, and pollution [3]. Amajor issue

is the occurrence of tool wear. There is significant theoretical

study [1, 4, 5], and there is a background comprising literature

that deals with corresponding sensing, processing methods

[6], and reliability assessment [7]. This is due to the fact that

successful monitoring [1] of the tool wear during machining

may provide significant benefits in terms of cost and machin-

ing quality [8]. It is reported [9] that using wear sensors, a tool

cost saving up to 40 % may be reached. Thus, the trend is that

the tool status be identified in terms of tool wear level via

online sensing methods. The optimal goal is that this informa-

tion be finally incorporated into the machining policy design

and process planning. The first step to do that is to adopt a

monitoring strategy, using available and suitable sensors.

Concerning a primary classification of related sensors, they

are divided into direct and indirect [10], depending on their

relation to the phenomenon studied. The most frequently im-

plemented monitoring systems involve in-direct sensors [11].

In these types of systems, auxiliary quantities which are af-

fected by tool wear are measured. These quantities have been

empirically correlated with those deriving from machining

phenomena [12].

Sensors and sensing devices, such as torque [13], acoustic

emission [14], or even feed rate [15], are classified in detail

into [6]. As regards milling operations, numerous studies have

proven the link between tool condition monitoring and various

indirectly linked quantities/measures. The effectiveness of

acoustic emissions (AE), excited by machining-related
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mechanical phenomena has been documented in [16–18].

However, they are primarily used in detecting tool breakage

and not wear, due to the fact that the breakage phenomenon

causes an eminent peak in the AE signal [19–21]. In the same

framework of mechanical vibration sensing, surface rough-

ness measurements [22] and cutting forces [23–25] (or eddy

currents [26]) have been utilized. Cutting force signals may be

affected by the dynamic behavior of the machine [27] or limit

the machining envelope [28–30]. Spindle motor current is

another factor, affected by the cutting force, and it has also

been used in tool condition monitoring. The implementation

of signal filtering to minimize the machine noise increases the

stability of such systems’ performance. Between spindle cur-

rent consumption and cutting force monitoring, the tool wear

level identification is accomplished [31]. Such an approach is

characterized as having a low cost when compared to that of

conventional monitoring methods. Trends of the last two de-

cades, in the field of machining monitoring, highlight the ef-

fectiveness of techniques, based on the signal acquisition of

different types of sensors, also known as sensor fusion [29].

This kind of systems provides effective and efficient integra-

tion with information sourcing from different sensors of dif-

ferent nature to achieve an integrated description of the tool’s

status while machining [32–37]. A major drawback of these

methods is that they usually require a great amount of data.

Study [38] indicates that less costly andmountable current and

voltage sensors may offer an alternative to force sensors for

industrial tool condition monitoring. As regards the methods

of acquired signal processing, an evaluation of approaches

was originally presented in [24]. It is apparent that in order

for an accurate interpretation of the information produced to

be provided, a high level of signal processing and analysis is

required. The simplest method is through the use of a constant

threshold. If the latter is crossed tool wear or tool breakage can

be detected. The use of a dynamic threshold is considered

being a more reliable approach to various case studies [27].

Numerous domains such as the time domain [39], the spec-

trum [39], and the hybrid [40] have been utilized so far

throughout the literature along with reviews. There are also

statistical processing [41], pattern recognition methods [42],

or even semi-empirical methods, such as autoregressive

models [43]. Even more sophisticated methods of processing

and decision making involve the hidden Markov models,

ANFIS [44], fractal characterization [45], or support vector

machines [46]. Besides, there are numerous works [41, 45,

13] that correlate the tool wear with various parameters (such

as RPMs and feed rate).

Part of the current study in the FoFdation project [47] is

based, among others, on achieving the creation of a tool of-

fering a realistic adaptive approach that compensates for the

condition changes, during the milling process. Tool wear pre-

diction is a functionality aiming at preventing a catastrophic

behavior. Correlation between the cutting force and the tool

wear has proven sufficient and it has been utilized as a means

of tool wear prediction. Replicating the same machining con-

ditions, in overlap [48] and in mixing up and down milling

[49], in case of a different machine tool, additional studies

have also correlated tool wear with electrical current [31].

The missing link (mechanism) between the investigations is

the cutting force. In the current study, the first set of studies

following, aims to investigate into the type of components of

raw vibration and/or electrical signals that carry tool-wear-

related information.

A multiple sensor system for the monitoring of milling

operations has been developed for the current investigation.

The objective is that tool wear be correlated with spindle

torque and the accelerometer signals. The choice of the sen-

sors has beenmade under the prism of low cost and easiness to

integrate in real industrial environments. The strategy of the

wear experiments, including process parameters and machin-

ing motion profile, has been designed so to allow the incor-

poration of statistical parameters that may alter the prediction

relationship. Such parameters may be: the cutting force varia-

tions, the statistical behaviour of the vibrations and the rela-

tionship between spindle current and cutting force. The pre-

dictions have also been correlated with the machine tool dy-

namic behaviour, as it is proven that they have a close rela-

tionship [14, 32]. The machine tool behaviour affects the cut-

ting forces, which are used for the monitoring of tool wear

[15] and thus affect the tool wear predictability. To this end,

from the signal’s processing point of view, a regression model

has been developed for the estimation of tool wear, based on

experimental data, and the pattern recognition systems used,

for both single and fused sensors’ data processing. A correla-

tion has also been implemented with machine tool dynamics,

aiming to study the system’s predictability. Metrics have been

applied to measure the predictability and study the tool wear

prediction.

2 Experimental setup

2.1 Material and equipment

The CGI 450 was the material used in the tool wear machining

experiments [50]. For the current set of experimental investi-

gation, the workpiece dimensions have been selected to be

equal to 250 mm×250 mm×50 mm. Placement and fixturing

of the CGI plates on the mill bed have been as indicated in

Fig. 1. Material properties and chemical composition are

shown in Tables 1 and 2, respectively.

The cutting tool used in the current experimental investi-

gation is SANDVIK 365 face milling with 5 PVD titanium

nitride coated carbide inserts, namely the N365-1505ZNE-

KW4 1020. Its tool diameter is equal to 50 mm. The cutting

tool’s selection is aligned with the standards of the same type
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of industrial applications in terms of average cutting speeds

[50, 51]. Finally, the machine tool used is an XYZ three-axis

vertical milling machine with a Prototrak controller and a 5

HP spindle type.

2.2 Monitoring equipment

A PC-based data acquisition system (Fig. 2) has been used,

consisting of an eight-channel dynamic signal acquisition

module and a dedicated analog-to-digital converter per chan-

nel. The acceleration sensor was a triaxial accelerometer with

an effective frequency range, up to 7 kHz, and a sensitivity of

100mV/g. The current measurement has been performed via a

power analyzer and inductive clamps. There was a special jig

(Fig. 1) for mounting of the accelerometer as closely as pos-

sible to the machining area.

2.3 Experimental procedure

As per the findings of previous studies [31, 47–49], the tool

path during machining is shown in Fig. 3, with the feed direc-

tion during cutting along the y-axis. Each pass consists of six

passages, and the cutting path of the tool is denoted with a

dashed line. Dotted parts in Fig. 3 schematic indicate no cut-

ting regions. The axial depth of cut has been set to 0.5 mm

with the width of cut equal to 50 % of the tool diameter

(25 mm). Cutting conditions have been selected for the upper

operating region of the tools aiming at the acceleration of tool

wear progression. The feed per tooth has been constant (equal

to 0.15 mm) in all cases, while the cutting speed varied as

indicated in Table 3. Three values of the spindle rotational

velocity have been selected, namely 1350, 2175, and 3000

RPMs, resulting in cutting speeds equal to 210, 338, and

467 m/min respectively. The feed rate has been equal to

1000 mm/min, while the depth of cut was equal to 0.5 mm.

Targeting tool wear, dry cutting conditions have been selected.

The experiment consisted of machining straight lines with

cutting parameters as described above. Following a predefined

time period, the process had been paused in order for the

inserts to be changed. The accelerometer signals and spindle

current have been monitored during each pass for 5-s inter-

vals. The tool wear level has been assessed by optical micros-

copy measurements for each full set of inserts.

3 Results

3.1 Microscope photos

Worn inserts have been removed from the tool and examined

under a camera, equipped with an optical microscope. A ref-

erence mark has been added to each picture for measurement

purposes. Figure 4 shows a microscopy photo of the flank and

crater wear. For the purposes of the study, a mean value has

been calculated out of five values of each experimental run,

one for each insert.

3.2 Tool wear levels and Taylor curves

Figures 5, 6, and 7 indicate the progression of the mean flank

wear [μm] over machining time for the three levels of RPMs,

as indicated in Table 3. Taking into account the final measure-

ment of each diagram, the mean tool wear rate can be approx-

imately estimated at 120/660=0.18, 126/660=0.19, and 180/

826=0.22 μm/s, for increasing values of RPMs, which is in

accordance with the tool wear theory and Taylor’s model [52].

Fig. 1 Experimental setup and accelerometer mounting

Table 1 Material

mechanical properties CGI 450 mechanical properties

Ultimate tens. strength 450–500 MPa

Yield strength 315–365 MPa

Elastic modulus 145–155 GPa

Density 7–7.2 gn

Hardness 207–255 BHN

Source: Doukas et al. [31]

Table 2 Material

chemical composition CGI 450 chemical composition

Pearlite >90

C 3.6–3.8

SI 2.1–2.5

CE 4.4–4.7

Mn 0.2–0.4

S <0.022

Mg <0.014

CeMM 0.01–0.03

Cu 0.7–1.0

Sn 0.08–0.10

Source: Doukas et al. [31]
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3.3 Spindle current measurements

The corresponding spindle electrical current measurements

are shown in Figs. 8, 9, and 10, for various cutting speeds

according to the experimental data (Table 3). Each curve cor-

responds to a single experiment with a variation number of

passes. The measurements indicate an increasing trend,

implying that there is a correlation between the tool wear level

and the spindle current signals.

3.4 Accelerometer measurements

As indicated in [31], the high over low frequency band (HoL)

index, based on a primary filter bank analysis and the mean

Fig. 2 Monitoring system

schematic

Fig. 3 Machining strategy

schematic
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square of the acceleration, can be utilized. It is worth noting

that the mean square of the acceleration is equal to the mean

signal power, since the mean value of acceleration has been

approximately equal to zero, which is predictable, considering

that during monitoring, the accelerometer’s motion is of con-

stant velocity, due to constant feed rate value. The progress of

the signal’s spectrum magnitude is shown below for the case

of 3000 RPMs (Fig. 11).

Since the distinction between the vibrations and the wave

propagation can be made via a time scale [53], the detection of

the tool wear level, using vibration signals, can be straightfor-

ward, especially at wavelengths comparable to the tool wear

size [53, 54]. Utilizing the S wave velocity in nitride titanium

[55] and the fact that the tool wear characteristic length, as

measured, is about 100 μm, the frequency to be detected is in

the range of 100 MHz. Technological limitations of instru-

mentation utilized in the current study (i.e., accelerometer–

maximum frequency acquired) do not allow the aforemen-

tioned. Thus, only indirect effects can be detected on the sig-

nals, occurring from the change in the vibrations, sourcing

from the change of the cutting force. This fact implied that

the signal noise was fed into the HoL-related model, in accor-

dance with [31]. The RMS value of the electrical current sig-

nal could be used for the assessment of the wear level, while

for the accelerometer signals, a frequency domain analysis

seems to be the appropriate one for a useful indication of tool

wear levels. The physical phenomena taking place are multi-

fold and complex. However, partitions of the signal, even if

distorted due to the legacy system or ambient noise, may carry

pieces of information correlated with tool wear. In the follow-

ing sections, this prediction is studied and its limitations are

attempted to be correlated with the form of the signal itself.

4 Discussion of the results

The aim of the current study is to identify and predict the wear

state of the cutting tool. Two different methodologies are

followed. Initially, empirical models were used, i.e., regres-

sion between the tool wear and the metrics derived from each

one of the acquired signals individually (Figs. 12, 13, 14, 15,

16, 17, 18, and 19). As regards the spindle drive current,

normalized RMS values have been used. On the other hand,

acceleration has been taken into consideration in terms of HoL

index. Finally, pattern recognition systems have been imple-

mented using signals from one sensor (acceleration example

hereafter in Fig. 20) and signals from both sensors (accelera-

tion and electrical current in Fig. 23). The regression between

the tool wear and the normalized spindle current, as well as the

Table 3 Experiments data

Experimental plan

Depth of cut=0.5 mm

Width of cut=25 mm

Feed/z=0.15 mm (Feed rate=1 m/min)

Set 1 Set 2 Set 3

Vf=210 m/min 1350 rpm Vf=340 m/min 2175 rpm Vf=470 m/min

3000 rpm

Fig. 4 Microscopy photos

showing the progress of the tool

wear (a crater, b flank)
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Fig. 5 Tool wear (flank) over time, at 1350 rpm
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pattern recognition with the use of signals from both sensors,

point out specific trends that can be used for the prediction of

the tool wear. The diagrams below indicate the correlation

between the normalized spindle current and the tool wear.

All the trends, expressed by third degree polynomial regres-

sion, tend to be described by increasing functions. Increase in

the RPMs tends to produce more clear wear trends. At high

cutting speed values, the mean inclination tends to be positive

all over the curve.

The following diagrams (Figs. 15, 16, and 17) correlate the

forms of the curves acquired by correlating the tool wear–time

and the tool wear–electrical current. It can be observed that, as

the RPMs increase, the curves tend to follow identical paths.

This has to do with the behavior of the electrical current; its time

evolution becomes more linear in time as the RPMs increase.

As mentioned, the two curves (tool wear and spindle cur-

rent) are clearly in harmony with each other in all three cases

(Figs 15, 16, and 17). However, in the case of 1350 RPM, the

similarity between the two curves is not as apparent. This can be

interpreted by the sampling strategy described in Sect. 2.3. The

statistical nature of measurements in the present study (electrical

current mean value from different experiments) seems to be

affecting the efficiency of the tool wear prediction, especially

for the high values of electrical current. This is due to the elec-

trical current tendency in [31], where a noisy behavior is evident

and a standard deviation of 0.05 A can be measured. This value

interprets the uncertainty shown herein in Fig. 15. Finally, the

fact that tool wear is regarded in terms of a mean value from five

inserts, the uncertainty of 5 μm can be explained.

Furthermore, the measurements of the acceleration HoL

index are compared against the tool wear level. The index is

designed to capture the redistribution of energy in frequencies,

due to vibration changes caused by the increase in the tool

wear level and consequently in the cutting force changes.
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Fig. 6 Tool wear (flank) over time, at 2175 rpm
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Fig. 7 Tool wear (flank) over time, at 3000 rpm
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Fig. 8 Spindle current signals at 1350 rpm
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Fig. 9 Spindle current signals at 2175 rpm
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However, the scattering of the points, as displayed in (Figs 18

and 19) have restricted the acquirement of any algebraic rela-

tion. This is due to the statistical nature of measurements. Thus,

as an immediate conclusion, it can be stated that when Hol is

considered incrementally, referring to the same insert as in [31],

it is a good indicator of tool wear; however, statistically, it is

very sensitive to the statistical motion profile, owing to the

surface roughness. As shown further below in the fused sensor

data, the mean power of acceleration is more robust.

The position of the two greatest spectrum maxima (f1, f2)

in the arbitrary region [0, 280] Hz and their correlation with

the level of tool wear are depicted in Figs. 20 and 21. The

particular region has been selected due to its smoothness and

easiness of finding specific maxima, aiming at the creation of

a library, capable of providing the tool wear level that has

given these maxima. This analysis can be considered being a

pattern recognition system. Since the various points are

relatively separable, the creation of the aforementioned library

is feasible.

Finally, a pattern recognition system, based on fused sensors

data, has been set up to predict the tool wear level. It has been a

single-layer linear, in contrast to [42], the perceptron system

(Fig. 22), using both acceleration and current as inputs, with an

output was set to provide information on the tool wear level

(high, medium, low) compared to that of specific thresholds.

Results of this classification are shown in Figs. 23 and

24. Specifically, a set of linear systems has been used

for the identification of various tool wear levels. Three

fuzzy sets representing tool wear level classes have

been used in this study (low (L), medium (M), and high

(H)). The mean value across RPMs of the tool wear

thresholds, where this happens has been used as the

critical values among L, M, and H. Two lines in each

case, also depicted in the figures below, indicate the

thresholds between the various fuzzy tool wear sets.
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Fig. 10 Spindle current signals at 3000 rpm
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Fig. 11 Evolution of the obtained acceleration signals’ spectrum
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Fig. 12 Correlation between spindle current and tool wear for 1350 rpm
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Fig. 13 Correlation between spindle current and tool wear for 2175 rpm
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Having these lines as decision thresholds would cause a

cost C, in case that some points would be misclassified by

the perceptron system. This cost can be computed, given that

there are four potential events:

1. A: Changing tool

2. B: Not changing tool

3. H: High tool wear level

4. M: Medium tool wear level

and denoting simple costs as follows:

1. C1: The cost of changing tool

2. C2: The cost of throwing away the workpiece

Following the definition of the corresponding probabilities

below (given the shapes used to denoting classified measure-

ments in Fig. 23):

P
A

�

�

�
M

¼
Number of triangles crossing the threshold

Total number of triangles
ð1Þ

P
B

�

�

�
L

¼
Number of circles crossing the threshold

Total number of circles
ð2Þ

the cost is calculated to be equal to

C ¼ P
A

�

�

�
M

C1 þ P
B

�

�
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C2 ð3Þ
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Fig. 14 Correlation between spindle current and tool wear for 3000 rpm
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Fig. 15 Tool wear versus time (red line/axis) and electrical current (black

line/axis) for 1350 RPM
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Fig. 16 Tool wear versus time (red line/axis) and electrical current (black

line/axis) for 2175 RPM
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Fig. 17 Tool wear versus time (red line/axis) and electrical current (black

line/axis) for 3000 PM
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From the results, it is clear that the low tool wear level is

hard to be made distinct in the case of 3000 RPMs due to the

noise existence in both the current and the acceleration sig-

nals. The same occurs for the 1175 RPMs. However, in the

case of 2175 RPMs, the trend indicated that the high level of

tool wear existed for high values of current and low accelera-

tion RMS values. Moreover, since the predictability is cutting

speed dependent, it is of interest to compare the predictability

measures with those of the machine tool dynamics and conse-

quently, with the nature of the captured signals. The schematic

in Fig. 25 provides a graphic overview of the operational

analysis (OMA) [56] that has been taken into consideration.

The response of the machine tool in the present study has been

acquired only by using the result (vibration) during machin-

ing, as the machine tool has not be found to be linear in the

strict sense via a piezoelectric hammer. Moreover, the spec-

trum of the excitation; a combination of cutting forces and

vibrations due to the rotating spindle, could not be predicted/

estimated.

Figure 26 shows the correlation between the various pre-

dictability measures taken into account (a, b, d) and the mean

size of vibration (c), given by the RMS acceleration. The

horizontal axes are indicative of the cutting speed (in terms

of spindle rotational velocity) and the various metrics, normal-

ized with respect to the maximum values, which are depicted

in the vertical axes. The residues of the regression in the

Figs. 12, 13, and 14 are measured by the R2 index, divided

by the mean signal power. This is an indication of the inverse

predictability of the measurements. An additional predictabil-

ity metric is the number of discrete linear thresholds that can

be set, as it is depicted in Figs. 23 and 24. Both predictability
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metrics obtain high values at 2175 rpm and low values at

3000 rpm. This is also valid in the case of the obtained signal

energy levels (Fig. 26c). Finally, regarding the plane f1-f2
predicting tool wear, as shown in Figs 20 and 21, the distance

between the various points can be considered as an index of

predictability. The metric Dm, which is defined as the maxi-

mum distance over the mean distance between the points, has

been regarded. Since the values obtained are greater than one,

the normalized value from Eq. 4:

D
0

m ¼ 1= lnDm þ 1ð Þ ð4Þ

From the diagrams below, it can be seen that when the

machine vibrations are intense, due to different machining

conditions, the predictability of the tool wear is enhanced.

This trend has to be further compared with the machine’s

behavior. A modal analysis, however, reveals a nonlinear be-

havior of the machine, even below 1000 Hz. The transfer

function, with force as input and displacement as output, has

been considered. Even though the maxima seem to occur in

the same frequencies for different forces, the transfer functions

are not the same. Furthermore, the fact that the spindle is

raised or lowered brings about changes in the transfer func-

tion. Therefore, continuing with performing an operational

analysis on the machine, simply by rotating the spindle but

without cutting, it is found that the minimum energy in dis-

placement is around 2175 RPM, while the displacement

energy values are much greater at the remaining RPM values.

The load (cutting) changes this trend as seen in the accelera-

tion trend of Fig. 26c. It is indicated that the intensity of os-

cillation affects the predictability of tool wear in an unobvious

way (intensively and inversely proportionally). This dictates

that a study be conducted in an ideal situation, where there is

no statistical noise on the measurement. The effect of the

parameters, in Fig. 25, will then be taken into consideration.

5 Conclusions

Multiple sensor monitoring for the tool wear state has been

carried out on milling CGI 450 plates through the simulta-

neous detection of acceleration and spindle drive current sen-

sor signals. Tool wear prediction has been accomplished by

utilizing third degree regression models and pattern recogni-

tion systems. The electrical current signals provide clearer

prediction results since statistically their correlation to tool

wear is more immune to ambient noise when compared with

the correlation of the tool wear and acceleration metrics.

Moreover, sourcing from the current study, the electrical cur-

rent signal has been proven easier to process, since it consists

of simple values with minor fluctuations. When considering

the sensor fixturing, the electrical current signal retrieval poses

an additional advantage. As far as the fused sensor

Fig. 22 Input/output model of

the perceptron pattern recognition

system
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methodology is concerned, it is suggested that the monetary

costs due to misclassifying a tool wear measurement be en-

capsulated in terms of weights in the criterion for setting the

threshold in pattern recognition systems.

Regarding a rough quantification of the physical mecha-

nism, according to which the tool-wear-related information is

concealed within the acquired signals, there are specific con-

clusions that can be extracted. Since the cutting force is direct-

ly affected by tool wear, the spindle requires more current in

order for the milling process to be performed. Furthermore,

the change in the vibration of the machine tool is a critical

point, as it seems to be the main reason that the vibration

signals change when the toolwear levels increase. However,

it is up to the studies to investigate into the way that pure

information can be extracted, by removing noise related to

friction, machine tool components dynamics, and more.

The predictability of the tool wear in a system that uses

fused multisensorial data has been also investigated. The de-

rived results indicate that predictability is affected by the mean

signal energy, acquired from the vibration acceleration sig-

nals. An implication of that is that maximizing both predict-

ability and quality are contradictive optimization objectives.

Further research aims to separate the ambient noise and the

useful information from the acquired signals using numerical

models, along with a stricter formulation of the relationship

between the information and the system’s predictability.

Fig. 25 Input/output model of a

machine according to operational

analysis
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