J Digit Imaging (2017) 30:400-405
DOI 10.1007/510278-017-9965-6

@ CrossMark

Toolkits and Libraries for Deep Learning

Bradley J. Erickson' - Panagiotis Korfiatis' - Zeynettin Akkus' -

Timothy Kline' - Kenneth Philbrick"

Published online: 17 March 2017

© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Deep learning is an important new area of machine
learning which encompasses a wide range of neural network
architectures designed to complete various tasks. In the medical
imaging domain, example tasks include organ segmentation, le-
sion detection, and tumor classification. The most popular net-
work architecture for deep learning for images is the
convolutional neural network (CNN). Whereas traditional ma-
chine learning requires determination and calculation of features
from which the algorithm learns, deep learning approaches learn
the important features as well as the proper weighting of those
features to make predictions for new data. In this paper, we will
describe some of the libraries and tools that are available to aid in
the construction and efficient execution of deep learning as ap-
plied to medical images.

Keywords Arttificial intelligence - Machine learning - Deep
learning - Convolutional neural network

Introduction

Deep learning is an important new area of machine learning
which encompasses a wide range of neural network architectures
designed to complete various tasks [1-4]. In the medical imaging
domain, example tasks include organ segmentation, lesion detec-
tion, and tumor classification [5—8]. The most popular network
architecture for deep learning for images is the convolutional
neural network (CNN). Whereas traditional machine learning
requires determination and calculation of features from which

>4 Bradley J. Erickson
bje@Mayo.edu

! Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA

@ Springer

the algorithm learns, deep learning approaches learn the impor-
tant features as well as the proper weighting of those features to
make predictions for new data. In this paper, we will describe
some of the libraries and tools that are available to aid in the
construction and efficient execution of deep learning as applied
to medical images.

How to Evaluate a Toolkit

There is not a single criterion for determining the best toolkit for
deep learning. Each toolkit was designed and built to address the
needs perceived by the developer(s) and also reflects their skills
and approaches to problems. Therefore in this report, we will
attempt to objectively assess each toolkit using a range of differ-
ent criteria, but in many cases, the assessment is subjective.
Therefore, this is mostly a description of the tools. From this, it
is hoped that readers can determine the toolkits that are most
likely to work well for them.

The criteria we describe include:

Language The computer language that the toolkit was written in
can impact the ability to use it effectively. This can be important
if you expect you will adjust some parts of the toolkit internals.
The language will also impact to at least some degree the lan-
guage(s) you can use for your development, though many of the
toolkits do have bindings or other mechanisms that allow you to
access the toolkit from a language different from what it was
written in.

Documentation The quality and coverage of documentation for
the toolkit as well as examples is critical to enable effective use of
a toolkit. Clearly, high quality documentation as well as exam-
ples that are similar to problems you will work on will be helpful
to efficiently developing a solution to your problem. Good

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-017-9965-6&domain=pdf

J Digit Imaging (2017) 30:400-405

401

documentation is also a sign that the tool is mature and not
changing rapidly.

Development Environment The ease of programming to cre-
ate a network needs a development environment. This is a highly
subjective assessment, and we have tried to identify objective
properties that will affect a person’s subjective evaluation. For
example, some toolkits have graphical integrated development
environment. Some will prefer this while others prefer a dedicat-
ed editor and command line. Some have visualization tools for
affirming the network is correct; others have visualization tools
for monitoring the learning progress.

Execution Speed This is the speed of actually classifying or
segmenting the image using a trained network. While it will
involve hundreds to thousands of calculations per pixel, this
can usually be accomplished in seconds for medical uses.
Usually, this is substantially faster than training and is usually
much less important than training speed for medical applications.

Training Speed While execution of a trained network can be
important in some cases, the training time is usually many orders
of magnitude slower. Therefore, training speed is likely to be of
greater consequence than execution speed. The training speed
depends on how efficient the math libraries are and how well
those libraries take advantage of the available computational re-
sources, and also depends heavily on the nature of the task and
images. For instance, the memory available to the processor and
the bandwidth from storage to processing unit will have a huge
effect on performance when training large datasets, especially
when all data must be accessed at each iteration. As such, esti-
mation of speed will be a very rough estimate.

GPU Support Graphical processing units or GPUs can signif-
icantly increase the rate at which networks learn. Special libraries
like cuDNN are an example of how the special type of calcula-
tions required for deep learning have been adapted and optimized
for computation by a GPU. Most toolkits leverage cuDNN as
their way to support GPUs. Some are able to support multiple
GPUs with little developer effort, some require more effort, and
some simply cannot support more than one GPU. Supporting
more than one GPU will often result in substantial performance
gains that nearly match the number of cards added. As noted
above, the coupling of storage with processing will have a large
impact on performance.

Maturity Level This is our subjective estimate of how mature a
toolkit is. We estimated this using a combination of a large user
base, few bug fixes in the last few months, and a good support
community.

Model Library In some cases, toolkits also have a library of
code that creates networks, and may even have the weights

associated with the nodes. One of the most recognized of these
is the Caffe “model zoo”, where one may download many of the
popular reference networks and weights.

GitHub Commits This is the number of changes made to the
toolkit code since the project was placed on GitHub. This is an
objective measure, but can be misleading, as a toolkit may have
been developed using some other mechanism, and only recently
placed on GitHub. This will result in a low number of commits
compared to its true maturity. Conversely, if a toolkit was started
in a very early stage or with many bugs, there can be many
commits despite a low level of maturity.

GitHub Contributors This reflects how many different people
are contributing to the project on GitHub. In general, more con-
tributors reflect a vibrant community with many users and also
likely a broader range of users/applications.

Toolkits
Caffe

Caffe is one of the most mature toolkits, and was developed by
Berkeley Vision and Learing Center. It is modular and fast and
supports multiple GPUs with little extra effort. It uses a JSON-
like text file to describe the network architecture as well as the
solver methods. Also has model zoo, which is a website where
you can download Caffe models as well as network weights.
This can help you get going very quickly with examples.
However, tuning hyperparameters is more tedious than other
toolkits, in part because a different solver and model file needs
to be separately defined for each set of hyperparameters. Figure 1
provides a snippet of code for the LeNet CNN architecture. The
model consists of a 7-layer convolutional network consisting of
convolution max pooling and activation layer.

Deeplearning4j

Deeplearning4j is a multi-platform toolkit with GPU support
developed by Andrej Karpathy and written in Java with a Scala
APL This is also a mature toolkit (written in Lua) with many
examples available on the Internet. This is not heavily used in
medical imaging, and use appears to be declining in the medical
field. It has good performance and supports multiple GPUs.

Tensorflow

Tensorflow is a rather new library (at least to public view) that
was developed by Google, but already has strong adoption.
Performance is good, and supports multiple GPUs and CPUs.
Some view it as more difficult to use directly, but tools are ad-
dressing this challenge. Tensorflow provides tools for tuning a

@ Springer

402

J Digit Imaging (2017) 30:400-405

Fig. 1 Example code
implementing LeNet CNN
written in Caffe

n = caffe.NetSpec()

n.convl =

def lenet (lmdb, batch size):

L.Convolution (n.data,

n.data, n.label = L.Data(batch size=batch size, backend=P.Data.LMDB,

source=1lmdb, transform param = dict(scale=1./255),ntop=2)

kernel size=5, num output=20,

weight filler=dict (type='xavier’))

n.pooll =
n.conv2 =

L.Pooling(n.convl,
L.Convolution (n.pooll,

kernel size=2, stride=2, pool=P.Pooling.MAX)
kernel size=5, num output=50,

weight filler=dict (type='xavier’))

n.pool2 =

L.Pooling(n.conv2,

kernel size=2, stride=2, pool=P.Pooling.MAX)

n.fcl = L.InnerProduct (n.pool2, num output=500,

weight filler=dict (type='xavier’))

n.relul = L.ReLU(n.fcl, in_place=True)

n.score =

L.InnerProduct (n.relul, num output=10,

weight filler=dict (type='xavier’))

n.loss =
return n.to proto()

network and monitoring performance like Tensorboard. It also
has an educational tool available as a web app. (http://
playground.tensorflow.org/).

Theano

Theano is a tool for creating networks using symbolic logic, and
is written in Python, but takes advantage of the efficient code
base of numpy, which improves performance over standard
Python. The symbolic approach may be a challenge for some
to learn, but Theano is good for building networks, but more
challenging to create complete solutions. Theano includes com-
putation of the gradients used in learning as a “free” byproduct of
net creation, which may be useful for those wishing to focus
more on network architecture than gradient computations.
Documentation quality is fair.

Keras

Keras is a library written in Python that utilizes as backend either
Theano or Tensorflow (Fig. 2). It is easier to build complete
solutions, and is easy to read, in that each line of code creates
one layer of a network. This toolkit seems to have the greatest
selection of state-of-the-art algorithms (optimizers, normalization
routines, activation functions). Although Keras supports both
Theano and Tensorflow backends the assumption for the dimen-
sion of the input data is different so careful design is needed in
order for the code to be able to work using both back ends. The
project is well documented and a set of examples aiming at a
wide variety of problems is provided. Pretrained models of com-
monly used architectures for transfer learning implementation are
also provided. At the time of this writing, it was announced that
Tensorflow would be adopting Keras as a preferred high-level
package. This is not surprising, given that the Keras author—
Francois Chollet—is a Google software engineer. Version 2.0
was just announced and promises deeper integration with
Tensorflow.

@ Springer

L.SoftmaxWithLoss (n.score, n.label)

MXNet

MXNet is a deep learning framework written in C++ with many
language bindings, and supports distributed computing, includ-
ing multi-GPU. It provides access to both lower-level constructs
as well as higher/symbolic level API. Performance is considered
to be on par with other good systems, including Tensorflow,
Caffe, etc. A number of tutorials and training examples are avail-
able on GitHub and it has a “model zoo”, which is a collection
networks that have been trained on various problems.

Lasagne

Lasagne is written in Python and is built on top of Theano. It is
essentially a thin wrapper to make building networks easier than
using Theano directly. As such, its performance largely reflects
the underlying performance of Theano.

Cognitive Network Toolkit (CNTK)

CNTK is developed by Microsoft, and is described as “Visual
Studio” for Machine learning. For those that have used Visual
Studio for programming, this may be a gentler and more efficient
way to get into deep learning. Performance is generally good. It
is a rather recent addition to the publicly available toolkits, and
usage is currently less than many others.

DIGITS

DIGITS was developed by NVIDIA, and is a web-based tool for
developing deep networks. In many ways, it is like Caffe, and
uses a text file not a programming language, to describe the
network and parameters. It has a network visualization tool so
errors in the text file are more easily identified. In addition, it has
tools for visualizing the learning process and has multiple GPU
support.

http://playground.tensorflow.org
http://playground.tensorflow.org

J Digit Imaging (2017) 30:400-405

403

Fig. 2 Example code def lenet():
implementing LeNet CNN model = Sequential ()
written in Keras model.add (Convolution2D(6,5,5,border mode='valid’,input shape=(1,28,28))
model.add (MaxPooling2D(pool size=(2,2)))
model.add (Activtion(“sigmoid”))
model.add (Convolution2D(16,5,5,border mode='valid’))
model.add (MaxPooling2D(pool size=(2,2)))
model.add (Activtion(“sigmoid”))
model.add (Dropout (0.5))
model.add (Convolution2D(120,1,1,border mode=’'valid’))
model.add (Flatten())
model.add (Dense (84))
model.add (Activation (“sigmoid”))
model.add (Dense (10))
(

model.add (Activation (“softmax”))

Torch

Torch is a mature toolkit for machine learning that is written in
C. It has good documentation and can be tailored to address
specific needs. Because it is written in C, performance is very
good.

PyTorch

PyTorch is very recent entry—it was released during the writ-
ing of this manuscript. It is a python front end to the Torch
computational engine. This should provide the high perfor-
mance of Torch with good GPU support with a friendlier
python front end. The distinction the authors claim is that this
more than a wrapper—that there is deep integration to keep
points that can allow more flexibility in how the networks are
constructed (Fig. 3).

Pylearn2

Pylearn2 is a machine learning research library developed by
Laboratoire d’Informatique des Systémes Adaptatifs (LISA)
at University of Montreal [9]. Pylearn2 offers a collection of

Fig. 3 Example of PyTorch code
and block diagram equivalent

classical machine learning algorithms as well as deep neural
network algorithms written in Python. However, Pylearn2 is
not as complete other toolkits such as Keras or MXNet.

Chainer

Chainer is a bit different from other toolkits because it builds
the network as part of its computation. Its authors describe it
that most tools are “Define-then-run” which means you define
the architecture and then run it. Chainer attempts to build and
optimize its architecture as part of the learning process, or as
they call it “Define-by-Run.” Chainer stores its computations
rather than the programming logic. This allows it to fully
leverage the power of Python.

Other Libraries

Besides the abovementioned libraries that a more broadly uti-
lized, there are more open source solutions that focus on more
specific tasks. For instance, Nolearn offers a good implemen-
tation of deep belief networks. Sklearn-theano offers a
programming syntax that matches the one of scikit-learn (that
is the main library for machine learning in Python) to work

Back-propagation
uses the dynamical

y built graph

from torch.autograd import Variable

x = Variable(torch.randn(1l, 10))

prev_h = Variable(torch.randn(1l, 20))

W_h = Variable(torch.randn(20, 20))

W x = Variable(torch.randn(20, 10)) 5

- i2h
i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_h, prev h.t())

next h = i2h + h2h
next h = next_h.tanh()

next_h.backward (torch.ones (1, 20))

h2h

@ Springer

https://github.com/sklearn-theano/sklearn-theano

404

J Digit Imaging (2017) 30:400-405

Table 1 Captures the ranking of the open software libraries based on
the stars and forks received by the community on GitHub, an online
repository for open source projects

Framework Stars Forks Contributors Language
Caffe 15,057 9338 222 C++
Keras 10,875 10,875 327 Python
MXNet 7471 2764 250 C++
Torch 6163 1793 113 Lua
Convnetjs 6128 1198 15 JavaScript
Deeplearning4j 5090 1970 103 Java
Tensorflow 4505 667 573 Python
Paddle 4069 1024 53 C++
DSSTNE 3531 559 22 C++
Chainer 1983 512 96 Python
DIGITS 1800 1052 34 Python
H20 1628 714 70 Java

with the Theano library. Paddle is offering better capabilities
for natural language processing, while H20 solutions are ori-
ented to big data analytics offering solutions that combine well
with software solutions like Spark.

Table 1 Open source projects ranked based on the stars and
forks received by the users.

Comparison of Toolkits

There are a few open efforts to provide benchmarks that com-
pare the performance of these tools. One example can be
found at https://github.com/soumith/convnet-benchmarks.
This site compares several toolkits with several different
CNN-style deep learning networks, including: AlexNet,
GoogleNet, and OxfordNet on a specific set of test hardware.
Based on their results, Torch is faster than both Tensorflow
and Caffe.

Although the majority of the deep neural network libraries
are well supported by the online community, not all the librar-
ies support multiple GPUs. The available solutions support
parallelization of the computation in multiple GPUs; however,
the limiting factor is that the GPUs have to be in the same
workstation. Limited support also exists for solutions that can
parallelize the computations among different servers (for in-
stance MXNet).

The majority of the libraries support GPU or CPU execu-
tion of the code with the CPU solutions being significantly
slower. NVIDIA offers a series of GPU cards that support the
necessary libraries for deep learning. For rather small neural
networks, GPU cards offering 6 GB of RAM are adequate.
However, as the models get larger for instance UNET [5] or
RESNET [10] the memory requirements significantly increase
and GPU cards with 12 or 24Gb RAM should be considered.
Currently, the solutions available cover a range of users, from

@ Springer

novice to experienced. Tools like NVIDIA DIGITS and
deeplearning4j offer good solutions for beginners interested
in exploring deep neural networks, suitable for training and
educational purposes. On the other hand, libraries like
Theano, Tensorflow, and Torch are more appropriate for ex-
perienced users who need to have much more control over
network architectures. Fortunately, there are libraries that cov-
er the most widely used programming languages.

The open communities behind these libraries offer a wide
variety of examples making application of deep neural net-
work models easier. Additionally, Docker- (http://docker.
com) based solutions with all the necessary tools are
provided for almost all the libraries.

Conclusions

Writing a deep learning algorithm “from scratch” is prob-
ably beyond the skillset of most medical imaging re-
searchers. It is much more efficient to utilize the tremen-
dous resources available in a deep learning toolkit. There
are many deep learning toolkits available, and we have
described many in this paper. Selecting the best toolkit
will depend on the skills and background of the research-
er, and may also be impacted by the project and available
resources. As such, it is worth spending some time to
evaluate available toolkits when a project is begun, to be
sure that the best one is chosen for the situation.

Acknowledgments Supported by the National Cancer Institute U0
CA160045 and NIDDK P30 DK090728.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. LeCun Y, Bengio Y. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks.
1995;3361:1995.

2. Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for
deep belief nets. Neural Comput.MIT Press; 2006;18:1527—-1554

3. Kirizhevsky A, Sutskever I, Hinton GE. Imagenet classification with
deep Convolutional neural networks. In: Pereira F, Burges C,
Bottou L, Weinberger KQ, editors. Advances in Neural
Information Processing Systems 25. 2012. https://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf

4. Srivastava N, Hinton GR, Krizhevsky A, Sutskever I, Salakhutdinov
R. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research. 2014;15:1929—
1958.

https://github.com/soumith/convnet-benchmarks
http://docker.com
http://docker.com
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

J Digit Imaging (2017) 30:400-405

405

5.

Ronneberger O, Fischer P, Brox T. U-net: convolutional networks
for biomedical image segmentation. In: Navab N, Hornegger J,
Wells WM, Frangi AF, editors.Medical Image Computing and
Computer-Assisted Intervention—MICCAI 2015.Springer
International Publishing; 2015. p. 234-241

Anthimopoulos M, Christodoulidis S, Ebner L, Christe A,
Mougiakakou S. Lung pattern classification for interstitial lung
diseases using a deep convolutional neural network. IEEE Trans
Med Imaging. 2016; doi:10.1109/TM1.2016.2535865

van Grinsven M, van Ginneken B, Hoyng C, Theelen T, Sanchez C.
Fast convolutional neural network training using selective data

10.

sampling: application to hemorrhage detection in color fundus im-
ages. IEEE Trans Med Imaging. 2016; doi:10.1109/TMI.2016.
2526689

Wang S, Summers RM. Machine learning and radiology. Med
Image Anal. 2012;16:933-951.

Goodfellow 1J, Warde-Farley D, Lamblin P, et al. Pylearn2: a ma-
chine learning research library. arXiv [stat. ML]. 2013. http:/arxiv.
org/abs/1308.4214

Szegedy C, loffe S, Vanhoucke V, Alemi A. Inception-v4,
inception-resnet and the impact of residual connections on learning.
arXiv [cs.CV]. 2016. http://arxiv.org/abs/1602.07261

@ Springer

http://dx.doi.org/10.1109/TMI.2016.2535865
http://dx.doi.org/10.1109/TMI.2016.2526689
http://dx.doi.org/10.1109/TMI.2016.2526689
http://arxiv.org/abs/1308.4214
http://arxiv.org/abs/1308.4214
http://arxiv.org/abs/1602.07261

	Toolkits and Libraries for Deep Learning
	Abstract
	Introduction
	How to Evaluate a Toolkit

	Toolkits
	Caffe
	Deeplearning4j
	Tensorflow
	Theano
	Keras
	MXNet
	Lasagne
	Cognitive Network Toolkit (CNTK)
	DIGITS
	Torch
	PyTorch
	Pylearn2
	Chainer
	Other Libraries
	Comparison of Toolkits

	Conclusions
	References

