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Tools and Appli
ations II: The IF Toolset?Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph SifakisVERIMAG, 2 avenue de Vignate, F-38610 Gi�eresAbstra
t. This paper presents an overview on the IF toolset whi
h isan environment for modelling and validation of heterogeneous real-timesystems. The toolset is built upon a ri
h formalism, the IF notation,allowing stru
tured automata-based system representations. Moreover,the IF notation is expressive enough to support real-time primitives andextensions of high-level modelling languages su
h as SDL and UML bymeans of stru
ture preserving mappings.The 
ore part of the IF toolset 
onsists of a synta
ti
 transformation
omponent and an open exploration platform. The synta
ti
 transfor-mation 
omponent provides language level a

ess to IF des
riptions andhas been used to implement stati
 analysis and optimisation te
hniques.The exploration platform gives a

ess to the graph of possible exe
u-tions. It has been 
onne
ted to di�erent state-of-the-art model-
he
kingand test-
ase generation tools.A methodology for the use of the toolset is presented at hand of a 
asestudy 
on
erning the Ariane-5 Flight Program for whi
h both an SDLand a UML model have been validated.1 Introdu
tionModelling plays a 
entral role in systems engineering. The use of models 
an prof-itably repla
e experimentation on a
tual systems with in
omparable advantagessu
h as:{ ease of 
onstru
tion by integration of heterogeneous 
omponents,{ generality by using generi
ity, abstra
tion, behavioural non determinism{ enhan
ed observability and 
ontrollability, espe
ially avoidan
e of probe ef-fe
t and of disturban
es due to experimentation{ �nally, possibility of analysis and predi
tability by appli
ation of formalmethods.Building models whi
h faithfully represent 
omplex systems is a non trivialproblem and a prerequisite to the appli
ation of formal analysis te
hniques.Usually, modelling te
hniques are applied at early phases of system developmentand at high abstra
tion level. Nevertheless, the need of a uni�ed view of thevarious life-
y
le a
tivities and of their interdependen
ies, motivated re
ently,the so 
alled model-based development [OMG03a,Sif01,STY03℄ whi
h heavily? This work was supported in part by the European Commission through the proje
tsIST-1999-29082 ADVANCE, IST-1999-20218 AGEDIS and IST-2001-33522 OMEGA



relies on the use of modelling methods and tools to provide support and guidan
efor system design and validation.Currently, validation of real-time systems is done by experimentation andmeasurement on spe
i�
 platforms in order to adjust design parameters andhopefully a
hieve 
onformity to QoS requirements. Model based developmentintends to repla
e experimentation on real prototypes by validation on virtualprototypes (models). Furthermore, a key idea is the use of su

essive modeltransformations in design methodologies to derive from some initial high leveldes
ription low level des
riptions 
lose to implementations. A
hieving su
h am-bitious goals raises hard and not yet 
ompletely resolved problems dis
ussed inthis se
tion.Heterogeneity. A real-time system is a layered system 
onsisting of an appli
a-tion software implemented as a set of intera
ting tasks, and of the underlyingexe
ution platform. It 
ontinuously intera
ts with an external environment toprovide a servi
e satisfying QoS requirements 
hara
terising the dynami
s of theintera
tion. Models of real-time systems should represent faithfully intera
tivebehaviour taking into a

ount implementation 
hoi
es related to resour
e man-agement and s
heduling as well as exe
ution speed of the underlying hardwareThe models of real-time systems involve heterogeneous 
omponents with dif-ferent exe
ution speeds and intera
tion modes. There exist two main sour
es ofheterogeneity: intera
tion and exe
ution.Heterogeneity of intera
tion results from the 
ombination of di�erent kindsof intera
tion.Intera
tions 
an be atomi
 or non atomi
. The result of atomi
 intera
tions
annot be altered through interferen
e with other intera
tions. Pro
ess algebrasand syn
hronous languages assume atomi
 intera
tions. Asyn
hronous 
ommu-ni
ation (SDL, UML) or method 
all are generally non atomi
 intera
tions. Theirinitiation and their 
ompletion 
an be separated by other events.Intera
tions 
an involve stri
t or non stri
t syn
hronisation. For instan
e,rendez-vous and method 
alls require stri
t intera
tions. On the 
ontrary, broad-
ast of syn
hronous languages and asyn
hronous 
ommuni
ation do not needstri
t syn
hronisation. A pro
ess (sender) 
an initiate an intera
tion indepen-dently of the possibility of 
ompletion by its environment.Heterogeneity of exe
ution results from the 
ombination of two exe
utionparadigms.Syn
hronous exe
ution is typi
ally adopted in hardware, in syn
hronous lan-guages, and in time triggered ar
hite
tures and proto
ols. It 
onsiders that asystem exe
ution is a sequen
e of steps. It assumes syn
hrony, meaning that thesystem's environment does not 
hange during a step, or equivalently \that thesystem is in�nitely faster than its environment". The syn
hronous paradigm hasa built-in strong assumption of fairness: in a step all the system 
omponentsexe
ute a quantum 
omputation de�ned by using either quantitative or logi
altime.The asyn
hronous paradigm does not adopt any notion of global exe
utionstep. It is used in languages for the des
ription of distributed systems su
h as SDL



and UML, and programming languages su
h as Ada and Java. The la
k of built-in me
hanisms for sharing resour
es between 
omponents 
an be 
ompensatedthrough s
heduling. This paradigm is also 
ommon to all exe
ution platformssupporting multiple threads, tasks, et
.Modelling time. Models for real-time systems should allow modelling progressof time in order to express various kinds of timing information e.g., exe
utiontimes of a
tions, arrival times of events, deadlines, laten
y.Timed models 
an be de�ned as extensions of untimed models by addingtime variables used to measure the time elapsed sin
e their initialisation. They
an be represented as ma
hines that 
an perform two kinds of state 
hanges:a
tions and time steps. A
tions are timeless state 
hanges of the untimed system;their exe
ution may depend on and modify time variables. In a time step, alltime variables in
rease uniformly. There exists a variety of timed formalismsextensions of Petri nets [Sif77℄, pro
ess algebras [NS91℄ and timed automata[AD94℄. Any exe
utable untimed des
ription e.g., appli
ation software, 
an beextended into a timed one by adding expli
itly time variables or other timing
onstraints.Timed models use a notion of logi
al time. Contrary to physi
al time, logi
altime progress 
an blo
k, espe
ially as a result of in
onsisten
y of timing 
on-straints. The behaviour of a timed model is 
hara
terised by the set of its runs,that is the set of maximal sequen
es of 
onse
utive states rea
hed by perform-ing transitions or time steps. The time elapsed between two states of a run is
omputed by summing up the durations of all the time steps between them. Fora timed model to represent a system, it is ne
essary that it is well-timed in thesense that in all its runs time diverges.As a rule, in timed models there may exist states from whi
h time 
annotprogress. If time 
an progress from any state of a timed model, then it is alwayspossible to wait and postpone the exe
ution of a
tions whi
h means that it isnot possible to model a
tion urgen
y. A
tion urgen
y at a state is modelled bydisallowing time progress. This possibility of stopping time progress goes againstour intuition about physi
al time and 
onstitutes a basi
 di�eren
e between thenotions of physi
al and logi
al time. It has deep 
onsequen
es on timed systemsmodelling by 
omposition of timed 
omponents.Often timed extensions of untimed systems are built in an ad ho
 mannerat the risk of produ
ing over-
onstrained or in
omplete des
riptions. It is essen-tial to develop a methodology for adding 
ompositionally timing information tountimed models to get a 
orresponding timed model.The IF toolset is an environment for modelling and validation of heteroge-neous real-time systems. It is 
hara
terised by the following features:{ Support for high level modelling with formalisms su
h as SDL, UML used byusers in some CASE tool. This is essential to ease usability by pra
titionersand to allow the use of state-of-the-art modelling te
hnology. Furthermore,the use of high level formalisms allows validating realisti
 models whi
h 
anbe simpli�ed if ne
essary by using automated tools. This avoids starting with



simpli�ed models 
onstru
ted in an ad ho
 manner as it is the 
ase for othertools using low level des
ription languages e.g., automata.{ Translation of high level models into an intermediate representation, the IFnotation, that serves as a semanti
 model. This representation is ri
h andexpressive enough to des
ribe the main 
on
epts and 
onstru
ts of sour
elanguages. It 
ombines 
omposition of extended timed automata and dy-nami
 priorities to en
ompass heterogeneous intera
tion. Priorities play animportant role for the des
ription of s
heduling poli
ies as well as the restri
-tion of asyn
hronous behaviour to model run-to-
ompletion exe
ution. We
onsider a 
lass of timed automata whi
h are by 
onstru
tion well-timed.The developed translation methods for SDL and UML preserve the overallstru
ture of the sour
e model and the size of the generated IF des
riptionin
reases linearly with the size of the sour
e model. IF is used as a basis formodel simpli�
ation by means of stati
 analysis te
hniques and the appli
a-tion of light stru
tural analysis te
hniques e.g., 
he
king suÆ
ient 
onditionsfor deadlo
k-freedom of pro
esses. It is also used for the generation of lowerlevel models e.g., labelled transitions systems used for veri�
ation purposes.{ Combined use of various validation te
hniques in
luding model-
he
king,stati
 analysis on the intermediate representation and simulation. A method-ology has been studied at Verimag for 
omplex real-time appli
ations.{ Expression of requirements to be validated on models by using observers.These 
an be 
onsidered as a spe
ial 
lass of models equipped with primitivesfor monitoring and 
he
king for divergen
e from some nominal behaviour.Our 
hoi
e for monitors rather than de
larative formalisms su
h as temporallogi
 or Live Sequen
e 
harts [DH99℄ is motivated by our 
on
ern to be
lose to industrial pra
ti
e and to avoid as mu
h as possible in
onsisten
yin requirements.The paper is organised as follows. Se
tion 2 presents the overall ar
hite
tureof the IF toolset. Se
tion 3 is the main se
tion of the paper. It starts with a pre-sentation of IF in
luding its main 
on
epts and 
onstru
ts and their semanti
s.Then the overall ar
hite
ture of the toolset and its features for simulation, anal-ysis and validation are des
ribed. Finally the translation prin
iple from UML toIF is explained by showing how the main UML 
on
epts and 
onstru
ts 
an bemapped into IF.Se
tion 4 presents an example illustrating the appli
ation of the toolset tothe modelling and validation of the Ariane-5 Flight Program. For this non trivial
ase study, we provide a validation methodology and results. Se
tion 5 presents
on
luding remarks about the toolset and the underlying modelling and valida-tion methodology.2 Setting the 
ontext - the overall ar
hite
tureFigure 1 des
ribes the overall ar
hite
ture of the toolset, the most important
omponents as well as their inter-
onne
tions. We distinguish three di�erent de-
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Fig. 1. IF toolset ar
hite
ture.s
ription levels: the spe
i�
ation level (UML, SDL), the intermediate des
riptionlevel (IF), and the Labelled Transition Systems (LTS) level.Spe
i�
ation level. This 
orresponds to the des
ription provided by the user insome existing spe
i�
ation language. To be pro
essed, des
riptions are automati-
ally translated into their IF des
riptions. Currently, the main input spe
i�
ationformalisms are UML and SDL.Regarding UML, any UML tool 
an be used as long as it 
an export the modelin XMI [OMG01℄, the standard XML format. The IF toolset in
ludes a translatorfrom UML whi
h produ
es IF des
riptions. The translator a

epts spe
i�
ationsprodu
ed by Rational Rose [IBM℄, Rhapsody [Ilo℄ or Argo Uml [RVR+℄.Intermediate des
ription level (IF). IF des
riptions are generated from spe
i�-
ations. IF is an intermediate representation based on timed automata extendedwith dis
rete data variables, 
ommuni
ation primitives, dynami
 pro
ess 
re-ation and destru
tion. This representation is expressive enough to des
ribe thebasi
 
on
epts of modelling and programming languages for distributed real-timesystems.The abstra
t syntax tree of an IF des
ription 
an be a

essed through anAPI. Sin
e all the data (variables, 
lo
ks) and the 
ommuni
ation stru
tureare still expli
it, high-level transformations based on stati
 analysis [Mu
97℄ or



program sli
ing [Wei84,Tip94℄ 
an be applied. All these te
hniques 
an be usedto transform the initial IF des
ription into a \simpler" one while preservingsafety properties. Moreover, this API is well-suited to implement exporters fromIF to other spe
i�
ation formalisms.LTS level. The LTS are transition graphs des
ribing the exe
utions of IF de-s
riptions. An exploration API allows to represent and store states as well as to
ompute on demand the su

essors of a given state. This API 
an be linked with\generi
" exploration programs performing any kind of on-the-
y analysis.Using the exploration API, several validation tools have been developed and
onne
ted to work on IF des
riptions. They 
over a broad range of features: in-tera
tive/random/guide simulation, on-the-
y model 
he
king using observers,on-the-
y temporal logi
 model 
he
king, exhaustive state spa
e generation,s
heduling analysis, test 
ase generation. Moreover, through this API are 
on-ne
ted the Cadp toolbox [FGK+96℄ for the validation of �nite models as wellas Tgv [FJJV96,JM99℄ for test 
ase generation using on-the-
y te
hniques.3 Des
ription of the formalism/te
hnique/system/tool3.1 The IF notationIF is a notation for systems of 
omponents (
alled pro
esses), running in par-allel and intera
ting either through shared variables or asyn
hronous signals.Pro
esses des
ribe sequential behaviours in
luding data transformations, 
om-muni
ations and pro
ess 
reation. Furthermore, the behaviour of a pro
ess maybe subje
t to timing 
onstraints. The number of pro
esses may 
hange over time:they may be 
reated and deleted dynami
ally.The semanti
s of a system is the LTS obtained by interleaving the behaviourof its pro
esses. To enfor
e s
heduling poli
ies, the set of runs of the LTS 
an befurther restri
ted using dynami
 priorities.Pro
esses. The behaviour of a pro
ess is des
ribed as a timed automaton,extended with data. A pro
ess has a unique pro
ess identi�er (pid) and lo
almemory 
onsisting of variables (in
luding 
lo
ks), 
ontrol states and a queue ofpending messages (re
eived and not yet 
onsumed).A pro
ess 
an move from one 
ontrol state to another by exe
uting sometransition. As for state 
harts [Har87,HP98℄, 
ontrol states 
an be hierar
hi
allystru
tured to fa
torize 
ommon behaviour. Control states 
an be stable or un-stable. A sequen
e of transitions between two stable states de�nes a step. Theexe
ution of a step is atomi
, meaning that it 
orresponds to a single transitionin the LTS representing the semanti
s. Noti
e that several transitions may beenabled at the same time, in whi
h 
ase the 
hoi
e is made non-deterministi
ally.Transitions 
an be either triggered by signals in the input queue or be sponta-neous. Transitions 
an also be guarded by predi
ates on variables, where a guardis the 
onjun
tion of a data guard and a time guard. A transition is enabled ina state if its trigger signal is present and its guard evaluates to true. Signals in



the input queue are a priori 
onsumed in a �fo fashion, but one 
an spe
ify intransitions whi
h signals should be \saved" in the queue for later use.Transition bodies are sequential programs 
onsisting of elementary a
tions(variable or 
lo
k assignments, message sending, pro
ess 
reation/destru
tion,resour
e requirement/release, et
) and stru
tured using elementary 
ontrol-
owstatements (like if-then-else, while-do, et
). In addition, transition bodies 
anuse external fun
tions/pro
edures, written in an external programming language(C/C++).Signals and signalroutes. Signals are typed and 
an have data parameters.Signals 
an be addressed dire
tly to a pro
ess (using its pid) and/or to a signalroute whi
h will deliver it to one or more pro
esses. The destination pro
essstores re
eived signals in a �fo bu�er.Signalroutes represent spe
ialised 
ommuni
ation media transporting signalsbetween pro
esses. The behaviour of a signalroute is de�ned by its delivery poli
y(FIFO or multi-set), its 
onne
tion poli
y (peer to peer, uni
ast or multi
ast),its delaying poli
y (\zero delay", \delay" or \rate") and �nally its reliability(\reliable" or \lossy"). More 
omplex 
ommuni
ation media 
an be spe
i�edexpli
itly as IF pro
esses.In parti
ular, signalroutes 
an be 
onne
ted at one end with an impli
itlyde�ned \environment pro
ess" env. In transitions triggered by signals from theenvironment, the trigger signal is 
onsidered as present whenever the transitionguard evaluates to true.Data. The IF notation provides the prede�ned basi
 types bool, integer, real, pidand 
lo
k, where 
lo
k is used for variables measuring time progress. Stru
tureddata types are built using the type 
onstru
tors enumeration, range, array, re
ordand abstra
t. Abstra
t data types 
an be used for manipulating external typesand 
ode.
idle init
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 < N℄?request!!threadth
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server(1) thread(0)

Fig. 2. Illustration of the multi-threaded server example.



Example 1. The IF des
ription below des
ribes a system 
onsisting of a serverpro
ess 
reating up to N thread pro
esses for handling request signals. Agraphi
al representation of the system is given in Figure 2.system Server;signal request(); // signals with parameter typessignal done(pid);signalroute entry(1) // signalroutes and their signalsfrom env to serverwith request;signalroute 
s(1) #delay[1,2℄from thread to serverwith done; // de�nition of pro
ess typespro
ess thread(0); // and initial number of instan
esfpar parent pid, route pid; // formal parameters re
eived at 
reationstate init #start ; // 1 state + 1 outgoing transitioninformal "work"; // informal a
tion labelled \work"output done() // sending of the done signalvia route to parent; // re
eived by parentstop; // terminate pro
ess, destroy instan
eendstate;endpro
ess;pro
ess server(1);var th
 integer; // lo
al variablesstate idle #start ; // 1 state + 2 outgoing transitionsprovided th
 < N; // �rst transition: guardinput request(); // triggerfork thread(self, f
sg0); // 
reate thread pro
ess and passing// own pid and signalroute 
s as paramstask th
 := th
 + 1;nextstate -; // end of transition - ba
k to idleinput done(); // se
ond transitiontask th
 := th
 - 1;nextstate -;endstate;endpro
ess;endsystem;Composition (System). The semanti
s asso
iates with a system a global LTS.At any point of time, its state is de�ned as the tuple of the states of its living
omponents: the states of a pro
ess are the possible evaluations of its attributes(
ontrol state, variables and signal queue 
ontent). The states of a signalrouteare lists of signals \in transit". The transitions of the global LTS representing



a system are steps of pro
esses and signal deliveries from signalroutes to signalqueues where in any global state there is an outgoing transition for all enabledtransitions of all 
omponents (interleaving semanti
s). The formal de�nition ofthe semanti
s 
an be found in [BL02b℄.System models may be highly nondeterministi
, due to the nondeterminismof the environment whi
h is 
onsidered as open and to the 
on
urren
y betweentheir pro
esses. For the validation of fun
tional properties, leaving this se
ondtype of nondeterminism non resolved is important in order to verify 
orre
tnessindependently of any parti
ular exe
ution order. Nevertheless, going towards animplementation means resolving a part of this non determinism and 
hoosing anexe
ution order satisfying time related and other nonfun
tional 
onstraints.In IF, su
h additional restri
tions 
an be enfor
ed by dynami
 priorities de-�ned by rules spe
ifying that whenever for two pro
ess instan
es some 
ondition(state predi
ate) holds, then one has less priority than the other. An example isp1 � p2 if p1:group = p2:group and p2:
ounter < p1:
ounterwhi
h for any pro
ess instan
es whi
h are part of some \group", gives priorityto those with the smallest values of the variable 
ounter (e.g., the less frequentlyserved).Time. The time model of IF is that of timed automata with urgen
y [BST98℄,[BS00℄ where the exe
ution of a transition is an event de�ning an instant of state
hange, whereas time is progressing in states. Urgen
y is expressed by means ofan urgen
y attribute of transitions. This attribute 
an take the values eager,lazy or delayable. Eager transitions are exe
uted at the point of time at whi
hthey be
ome enabled - if they are not disabled by another transition. Delayabletransitions 
annot be disabled by time progress. Lazy transitions may be disabledby time progress.Like in timed automata, time distan
es between events are measured byvariables of type \
lo
k". Clo
ks 
an be 
reated, set to some value or reset(deleted) in any transition. They 
an be used in time guards to restri
t the timepoints at whi
h transitions 
an be taken.Lo
al 
lo
ks allow the spe
i�
ation of timing 
onstraints, su
h as durations oftasks (modelled by time passing in a state asso
iated with this task, see examplebelow), deadlines for events in the same pro
ess. Global time 
onstraints, su
has end-to-end delays, 
an be expressed by means of global 
lo
ks or by observers(explained in the next se
tion).Example 2. A timed version of the thread pro
ess of the example 1 is given. Anextra state work introdu
ed for distinguishing the instant at whi
h work startsand the instant at whi
h it ends and and to 
onstrain the duration betweenthem. The intention is to model an exe
ution time of \work" of 2 to 4 timeunits.The thread pro
ess goes immediately to the work state - the start transitionis eager - and sets the 
lo
k wait is set to 0 in order to start measuring timeprogress. The transition exiting the work state is delayable with a time guard



expressing the 
onstraint that the time sin
e the 
lo
k wait has been set shouldbe at least 2 but not more than 4.pro
ess thread(0);fpar parent pid, route pid;var wait 
lo
k;state init #start ;urgen
y eager;informal "work";set wait := 0;nextstate work;endstate;
state work ;urgen
y delayable;when wait >= 2 and wait <= 4;output done()via route to parent;stop;endstate;endpro
ess;Resour
es. In order to express mutual ex
lusion it is possible to de
lare sharedresour
es. These resour
es 
an be used through parti
ular a
tions of the form\require some-resour
e" and \release some-resour
e".Observers. Observers express in an operational way safety properties of a sys-tem by 
hara
terising its a

eptable exe
ution sequen
es. They also provide asimple and 
exible me
hanism for 
ontrolling model generation. They 
an beused to sele
t parts of the model to explore and to 
ut o� exe
ution paths thatare irrelevant with respe
t to given 
riteria. In parti
ular, observers 
an be usedto restri
t the environment of the system.Observers are des
ribed in the same way as IF pro
esses i.e., as extendedtimed automata. They di�er from IF pro
esses in that they 
an rea
t syn-
hronously to events and 
onditions o

urring in the observed system. Observersare 
lassi�ed into:{ pure observers - whi
h express requirements to be 
he
ked on the system.{ 
ut observers - whi
h in addition to monitoring, guide simulation by sele
tingexe
ution paths. For example, they are used to restri
t the behaviour of theenvironment{ intrusive observers - whi
h may also alter the system's behaviour by sendingsignals and 
hanging variables.Observation and intrusion me
hanisms. For monitoring the system state, ob-servers 
an use primitives for retrieving values of variables, the 
urrent state ofthe pro
esses, the 
ontents of queues, et
.For monitoring a
tions performed by a system, observers use 
onstru
ts forretrieving events together with data asso
iated with them. Events are generatedwhenever the system exe
utes one of the following a
tions: signal output, signaldelivery, signal input, pro
ess 
reation and destru
tion and informal statements.Observers 
an also monitor time progress, by using their own 
lo
ks or bymonitoring the 
lo
ks of the system.



Expression of properties. In order to express properties, observer states 
an bemarked as ordinary, error or su

ess. Error and su

ess are both terminatingstates. Rea
hing a su

ess state (an error state) means satisfa
tion (non satis-fa
tion). Cut observers use a 
ut a
tion whi
h stops exploration.Example 3. The following example illustrates the use of observers to express asimple safety property of a proto
ol with one transmitter and one re
eiver, su
has the alternating bit proto
ol. The property is: Whenever a put(m) message isre
eived by the transmitter pro
ess, the transmitter does not return to stateidle before a get(m) with the same m is issued by the re
eiver pro
ess.pure observer safety1;var m data;var n data;var t pid;state idle #start ;mat
h input put(m) by t;nextstate wait;endstate;state wait;provided (ftransmittergt)instate idle;nextstate err;mat
h output put(n)
nextstate err;mat
h output get(n);nextstate de
ision;endstate;state de
ision #unstable ;provided n = m;nextstate idle;provided n <> m;nextstate wait;endstate;state err #error ;endstate;endobserver;3.2 Simulation, Analysis and ValidationCore 
omponents of the IF toolset. The 
ore 
omponents of the IF toolsetare shown in Figure 3.Synta
ti
 Transformations Component. This 
omponent deals with synta
ti
transformations in
luding the 
onstru
tion of an abstra
t syntax tree (AST)from an IF des
ription. The tree is a 
olle
tion of C++ obje
ts representing allthe synta
ti
 elements present in IF des
riptions. The AST re
e
ts pre
isely thesynta
ti
 stru
ture of IF des
riptions: a system in
ludes pro
esses, signalroutes,types; a pro
ess in
ludes states and variables; states in
lude their outgoing tran-sitions and so on.This 
omponent has an interfa
e giving a

ess to the abstra
t syntax tree.Primitives are available to traverse the tree and to 
onsult or to modify its el-ements. There are primitives allowing to write the tree ba
k as an IF textualdes
ription. The synta
ti
 transformation 
omponent has been used to buildseveral appli
ations. The most important ones are 
ode generators (either sim-ulation 
ode or appli
ation 
ode), stati
 analysis transformations (operating atsynta
ti
 level), translations to other languages (in
luding a translation to thePromela language of Spin [Hol91℄) and pretty printers.
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Fig. 3. Fun
tional view of the IF Core Components.Exploration Platform. This 
omponent has an API providing a

ess to the LTS
orresponding to IF des
riptions. The interfa
e o�ers primitives for representingand a

essing states and labels as well as basi
 primitives for traversing LTS:an init fun
tion whi
h gives the initial state, and a su

essor fun
tion whi
h
omputes the set of enabled transitions and su

essor states from a given state.These are the key primitives for implementing any on-the-
y forward enumera-tive exploration or validation algorithm.Figure 3 shows the stru
ture of the exploration platform. The main features ofthe platform are simulation of the pro
ess exe
ution, non-determinism resolution,management of time and representation of the state spa
e.The exploration platform 
an be seen as an operating system where pro
essinstan
es are plugged-in and jointly exe
uted. Pro
ess instan
es are either appli-
ation spe
i�
 (
oming from IF des
riptions) or generi
 (su
h as time or 
hannelhandling pro
esses).Simulation time is handled by a spe
ialised pro
ess managing 
lo
k allo
a-tion/deallo
ation, 
omputing time progress 
onditions and �ring timed transi-tions. There are two implementations available, one for dis
rete time and one fordense time. For dis
rete time, 
lo
k values are expli
itly represented by integers.Time progress is 
omputed with respe
t to the next enabled deadline. For densetime, 
lo
k valuations are represented using variable-size Di�eren
e Bound Ma-tri
es (DBMs) as in tools dedi
ated to timed automata su
h as Kronos [Yov97℄and Uppaal [LPY98℄.



The exploration platform 
omposes all a
tive pro
esses and 
omputes globalstates and the 
orresponding system behaviour. The exploration platform 
on-sists of two layers sharing a 
ommon state representation:{ Asyn
hronous exe
ution layer. This layer implements the general interleav-ing exe
ution of pro
esses. The platform asks su

essively ea
h pro
ess toexe
ute its enabled steps. During a pro
ess exe
ution, the platform managesall inter-pro
ess operations: message delivery, time 
onstraints 
he
king, dy-nami
 
reation and destru
tion, tra
king of events. After a 
ompletion ofa step by a pro
ess, the platform takes a snapshot of the performed step,stores it and delivers it to the se
ond layer.{ Dynami
 s
heduling layer. This layer 
olle
ts all the enabled steps. It uses aset of dynami
 priority rules to �lter them. The remaining ones, whi
h aremaximal with respe
t to the priorities, are delivered to the user appli
ationvia the exploration API.

messages

hunks


ontentsqueue zones (DBMs)
statestates

pro
esses
Fig. 4. Internal state representation.{ State representation. Global states are impli
itly stored by the platform. Theinternal state representation is shown in �gure 4. It preserves the stru
turalinformation and seeks for maximal sharing. The layered representation in-volves a unique table of messages. Queues are lists of messages, representedby suÆx sharing. On top of them, there is a table of pro
ess states, all ofthem sharing queues in the table of queues. Pro
esses are then grouped into�xed size state 
hunks, and �nally, global states are variable-size lists of
hunks. Tables 
an be represented either by using hash tables with 
ollisionor by binary trees. This s
heme allows to expli
itly represent several millionsof stru
tured states.



The exploration platform and its interfa
e has been used as ba
k-ends ofdebugging tools (intera
tive or random simulation), model 
he
king (in
ludingexhaustive model generation, on the 
y �-
al
ulus evaluation, model 
he
kingwith observers), test 
ase generation, and optimisation (shortest path 
omputa-tion).This ar
hite
ture provides features for validating heterogeneous systems. Ex-ploration is not limited to IF des
riptions: all kinds of 
omponents with an ad-equate interfa
e 
an be exe
uted in parallel on the exploration platform. It isindeed possible to use C/C++ 
ode (either dire
tly, or instrumented a

ordingly)of already implemented 
omponents.Another advantage of the ar
hite
ture is that it 
an be extended by addingnew intera
tion primitives and exploration strategies. Presently, the explorationplatform supports asyn
hronous (interleaved) exe
ution and asyn
hronous point-to-point 
ommuni
ation between pro
esses. Di�erent exe
ution modes, like syn-
hronous or run-to-
ompletion, or additional intera
tion me
hanisms, su
h asbroad
ast or rendez-vous, are obtained by using dynami
 priorities [AGS00℄.Con
erning the exploration strategies, redu
tion heuristi
s su
h as partial-order redu
tion or some form of symmetry redu
tion are already in
orporatedin the exploration platform. More spe
i�
 heuristi
s may be added dependingon a parti
ular appli
ation domain.Stati
 Analysis. Pra
ti
al experien
e with IF has shown that simpli�
ation bymeans of stati
 analysis is 
ru
ial for dealing su

essfully with 
omplex spe
i�-
ations. Even simple analysis su
h as live variables analysis or dead-
ode elim-ination 
an signi�
antly redu
e the size of the state spa
e of the model. Theavailable stati
 analysis te
hniques are:Live variables analysis This te
hnique transforms an IF des
ription into anequivalent smaller one by removing globally dead variables and signal parametersand by resetting lo
ally dead variables [Mu
97℄. Initially, all the lo
al variables ofthe pro
esses and signal parameters are 
onsidered to be dead, unless otherwisespe
i�ed by the user. Shared variables are 
onsidered to be always live. Theanalysis alternates lo
al (standard) live variables 
omputation on ea
h pro
essand inter-pro
ess liveness attributes propagation through input/output signalparameters until a global �xpoint is rea
hed.Dead-
ode elimination. This te
hnique transforms an IF des
ription by removingunrea
hable 
ontrol states and transitions under some user-given assumptionsabout the environment. It solves a simple stati
 rea
hability problem by 
omput-ing, for ea
h pro
ess separately, the set of 
ontrol states and transitions whi
h
an be stati
ally rea
hed starting from the initial 
ontrol state. The analysis
omputes an upper approximation of the set of pro
esses that 
an be e�e
tively
reated.Variable abstra
tion. This te
hnique allows to 
ompute abstra
tions by elimi-nating variables and their dependen
ies whi
h are not relevant to the user. The




omputation pro
eeds as for live variables analysis: pro
esses are analysed sep-arately, and the results obtained are propagated between them by using theinput/output dependen
ies. Contrary to the previous te
hniques whi
h are ex-a
t, simpli�
ation by variable abstra
tion may introdu
e additional behaviours.Nevertheless, it always redu
es the size of the state representation.By using variable abstra
tion it is possible to extra
t automati
ally systemdes
riptions for symboli
 veri�
ation tools a

epting only spe
i�
 types of datae.g., TreX [ABS01℄ whi
h a

epts only 
ounters, 
lo
ks and queues. Moreover,this te
hnique allows to 
ompute �nite-state abstra
tions for model 
he
king.Validation 
omponents.Model-
he
king using Evaluator. The Evaluator tool implements an on-the-
y model 
he
king algorithm for the alternation free �-
al
ulus [Koz83℄. This is abran
hing time logi
, based upon propositional 
al
ulus with �xpoint operators.The syntax is des
ribed by the following grammar:' ::= T j X j :' j ' ^ ' j < a > ' j �X:'For a given LTS representing a spe
i�
ation, the semanti
s of a formula isde�ned as the set of states satisfying it, as follows:{ T (true) holds in any state{ : and ^ are the usual boolean operators{ < a > ' is true in a state if there exists a transition labelled by a leading toa state whi
h satis�es '{ �X:' denotes the usual least �x point operator (where X is a free variableof ' representing a set of states)This logi
 
an be used to de�ne ma
ros expressing usual requirements su
has: "there is no deadlo
k", "any a
tion a is eventually followed by an a
tionb", "it is not possible to perform an a
tion a followed by an a
tion b, withoutperforming an a
tion 
 in between", et
.Comparison or minimisation with Aldebaran. Aldebaran [BFKM97℄ is atool for the 
omparison of LTS modulo behavioural preorder or equivalen
e re-lations. Usually, one LTS represents the system behaviour, and the other itsrequirements. Moreover, Aldebaran 
an also be used to redu
e a given LTSmodulo a behavioural equivalen
e, possibly by taking into a

ount an observa-tion 
riterion.The preorders and equivalen
es available in Aldebaran in
lude usual sim-ulation and bisimulation relations su
h as strong bisimulation [Par81℄, observa-tional bisimulation [Mil80℄, bran
hing bisimulation [vGW89℄, safety bisimulation[BFG+91℄, et
. The 
hoi
e of the relation depends on the 
lass of properties tobe preserved.



Test 
ase generation using Tgv. Tgv [FJJV96,JM99℄ is a tool for test genera-tion developed by Irisa and Verimag. It is used to automati
ally generate test
ases for 
onforman
e testing of distributed rea
tive systems. It generates test
ases from a formal spe
i�
ation of the system and a test purpose.3.3 Translating UML to IFThe toolset supports generation of IF des
riptions from both SDL [BFG+99℄and UML [OGO04℄. We des
ribe the prin
iples of the translation from UML toIF.UML modelling. We 
onsider a subset of UML in
luding its obje
t-orientedfeatures and whi
h is expressive enough for the spe
i�
ation of real-time systems.The elements of models are 
lasses with stru
tural features and relationships(asso
iations, inheritan
e) and behaviour des
riptions through state ma
hinesand operations.The translation tool adopts a parti
ular semanti
s for 
on
urren
y based onthe UML distin
tion between a
tive and passive obje
ts. Informally, a set ofpassive obje
ts form together with an a
tive obje
t an a
tivity group. A
tivitygroups are exe
uted in run-to-
ompletion fashion, whi
h means that there is no
on
urren
y between the obje
ts of the same a
tivity group. Requests (asyn-
hronous signals or method 
alls) 
oming from outside an a
tivity group arequeued and treated one by one. More details on this semanti
s 
an be found in[DJPV02,HvdZ03℄.The tool resolves some 
hoi
es left open by UML, su
h as the 
on
rete syntaxof the a
tion language used in state ma
hines and operations.Additionally, we use a spe
ialisation of the standard UML pro�le for S
hedul-ing, Performan
e and Time [OMG03b℄. Our pro�le, formally des
ribed in [GOO03℄,provides two kinds of me
hanisms for timing: imperative me
hanisms in
ludingtimers, 
lo
ks and timed transition guards, and de
larative me
hanisms in
lud-ing linear 
onstraints on time distan
es between events.To provide 
onne
tivity with existing CASE tools su
h as Rational Rose[IBM℄, Rhapsody [Ilo℄ or Argo Uml [RVR+℄, the toolset reads models usingthe standard XML representation for UML (XMI [OMG01℄).The prin
iples of the mapping from UML to IF. Runtime UML entities(obje
ts, 
all sta
ks, pending messages, et
.) are identi�able as a part of the sys-tem state in IF. This allows tra
ing ba
k to UML spe
i�
ations from simulationand veri�
ation.Obje
ts and 
on
urren
y model. Every UML 
lass X is mapped to a pro
essPX with a lo
al variable for ea
h attribute or asso
iation of X . As inheritan
e is
attened, all inherited attributes and asso
iations are repli
ated in the pro
esses
orresponding to ea
h sub
lass. The 
lass state ma
hine is translated into thepro
ess behaviour.



Ea
h a
tivity group is managed at runtime by a spe
ial IF pro
ess, of typegroup manager, whi
h is responsible of sequentialising requests 
oming from ob-je
ts outside the a
tivity group, and of forwarding them to the obje
ts insidewhen the group is stable. Run-to-
ompletion is implemented by using the dy-nami
 priority rule y � x if x:leader = ywhi
h means that all obje
ts of a group have higher priorities than their groupmanager. For every obje
t x, x:leader points to the manager pro
ess of theobje
t's a
tivity group. Thus, as long as at least one obje
t inside an a
tivitygroup 
an exe
ute, its group manager will not initiate a new run-to-
ompletionstep. Noti
e that adopting a di�erent exe
ution mode 
an be done easily by justeliminating or adding new priority rules.Operations and polymorphism. The adopted semanti
s distinguishes betweenprimitive operations - des
ribed by a method with an asso
iated a
tion - andtriggered operations - des
ribed dire
tly in the state ma
hine of their owner
lass. Triggered operations are mapped to a
tions embedded dire
tly in the statema
hine of the 
lass.Ea
h primitive operation is mapped to a handler pro
ess whose run-timeinstan
es represent the a
tivations and the sta
k frames 
orresponding to 
alls.An operation 
all (either primitive or triggered) is expressed in IF by usingthree signals: a 
all signal 
arrying the 
all parameters, a return signal 
arryingthe return value, and a 
ompletion signal indi
ating 
ompletion of 
omputationof the operation, whi
h may be di�erent from return. Therefore, the a
tion ofinvoking an operation is represented in IF by sending a 
all signal. If the 
alleris in the same a
tivity group, then the 
all is dire
ted to the target obje
t andis handled immediately. Alternatively, if the 
aller is in a di�erent group, the
all is dire
ted to the obje
t's group manager and is handled in a subsequentrun-to-
ompletion step.The handling of in
oming primitive 
alls by an obje
t is modelled as follows:in every state of the 
allee obje
t (pro
ess), upon re
eption of a 
all signal, the
allee 
reates a new instan
e of the operation's handler. The 
allee then waitsuntil 
ompletion, before re-entering the same stable state in whi
h it re
eivedthe 
all.Mapping operation a
tivations into separate pro
esses has several advan-tages:{ It provides a simple solution for handling polymorphi
 (dynami
ally bound)
alls in an inheritan
e hierar
hy. The re
eiver obje
t knows its own identity,and 
an answer any 
all signal by 
reating the appropriate version of theoperation handler from the hierar
hy.{ It allows for extensions to other types of 
alls than the ones 
urrently sup-ported by the semanti
s (e.g. non-blo
king 
alls). It also preserves modularityand readability of the generated model.{ It allows to distinguish the relevent instants in the 
ontext of timing analysis.



Mapping of UML observers. In order to spe
ify and verify dynami
 propertiesof UML models, we de�ne a notion of UML observer [OGO04℄ whi
h is similarto IF observers (see se
tion 3.1).Observers are des
ribed by 
lasses stereotyped with �observer�. They 
anown attributes and methods, and 
an be 
reated dynami
ally. We de�ned in[OGO04℄ event types su
h as operation invo
ation, operation return, obje
t 
re-ation, et
.Several examples of observers are provided in se
tion 4.3.Mapping of real-time 
on
epts. The mapping of UML timers and 
lo
ks to IFis straightforward. De
larative 
onstraints on duration between events are ex-pressed by means of 
lo
ks and time guards or observers [OGO04℄.4 An example: the Ariane-5 Flight Program1We present a real-world 
ase study on the modelling and validation of the FlightProgram of Ariane-5 by using the IF toolset.This work has been initiated by EADS Laun
h Vehi
les in order to evaluatethe maturity and appli
ability of formal validation te
hniques. This evaluation
onsisted in formally spe
ifying some parts of an existing software, on a re-engineering basis, and verifying some 
riti
al requirements on this spe
i�
ation.The Ariane-5 Flight Program is the embedded software whi
h autonomously
ontrols the Ariane-5 laun
her during its 
ight, from the ground, through theatmosphere, and up to the �nal orbit.The spe
i�
ation and validation have been studied in two di�erent 
ontexts:{ A �rst study 
arried out on a re-engineered SDL model has been 
ondu
tedin 2001. The SDL model was translated automati
ally to IF, simpli�ed bystati
 analysis, simulated and veri�ed using �-
al
ulus properties as well asbehavioural model minimisation and 
omparison.{ A se
ond study 
arried out on a re-engineered UML model, has been 
on-du
ted more re
ently in the framework of the IST OMEGA proje
t [Con03℄.The goal was to evaluate both the appropriateness of extensions of UML tomodel this type of real-time system, and the usability of IF validation tools.In this study, the UML model has been translated automati
ally to IF, sim-pli�ed by stati
 analysis, simulated and veri�ed against properties expressedas observers.We summarise the relevant results of both experiments, and we give prin
i-ples of a veri�
ation methodology that 
an be used in 
onne
tion with the IFtoolset. For su
h large examples, push-button veri�
ation is not suÆ
ient andsome iterative 
ombination of analysis and validation is ne
essary to 
ope with
omplexity.1 Ariane-5 is an European Spa
e Agen
y Proje
t delegated to CNES (Centre Nationald'Etudes Spatiales).



4.1 Overview of the Ariane-5 Flight ProgramThe Ariane-5 example has a relatively large UML model: 23 
lasses, ea
h onewith operations and a state ma
hine. Its translation into IF has 7000 lines of
ode.The laun
her 
ight. An Ariane-5 laun
h begins with ignition of the mainstage engine (ep
 - Etage Prin
ipal Cryote
hnique). Upon 
on�rmation that itis operating properly, the two solid booster stages (eap - Etage A

�el�erateur �aPoudre) are ignited to a
hieve lift-o�.After burn-out, the two solid boosters (eap) are jettisoned and Ariane-5
ontinues its 
ight through the upper atmosphere propelled only by the 
ryogeni
main stage (ep
). The fairing is jettisoned too, as soon as the atmosphere is thinenough for the satellites not to need prote
tion. The main stage is rendered inertimmediately upon shut-down. The laun
h traje
tory is designed to ensure thatthe stages fall ba
k safely into the o
ean.The storable propellant stage (eps - Etage �a Propergol Sto
kable) takes overto pla
e the geostationary satellites in orbit. Payload separation and attitudinalpositioning begin as soon as the laun
her's upper se
tion rea
hes the 
orrespond-ing orbit. Ariane-5's missions ends 40 minutes after the �rst ignition 
ommand.A �nal task remains to be performed - that of passivation. This essentiallyinvolves emptying the tanks 
ompletely to prevent an explosion that would breakthe propellant stage into pie
es.The Flight Program. The Flight Program entirely 
ontrols the laun
her,without any human intera
tion, beginning 6 minutes 30 se
onds before lift-o�,and ending 40 minutes later, when the laun
her terminates its mission.The main fun
tions of the Flight Program are the following ones:{ 
ight 
ontrol, involves navigation, guidan
e and 
ontrol algorithms,{ 
ight regulation, involves observation and 
ontrol of various 
omponents ofthe propulsion stages (engines ignition and extin
tion, boosters ignition, et
),{ 
ight 
on�guration, involves management of laun
her 
omponents (stage sep-aration, payload separation, et
).We fo
used on regulation and 
on�guration fun
tions. The 
ight 
ontrol is arelatively independent syn
hronous rea
tive 
ontrol system.The environment. In order to obtain a realisti
 fun
tional model of the FlightProgram restri
ted to regulation and 
on�guration fun
tionalities, we need totake into a

ount its environment. This has been modelled by two external
omponents abstra
ting the a
tual behaviour of the 
ight 
ontrol part and theground:{ the 
ight 
ontrol in
ludes several pro
esses des
ribing a nominal behaviour.They send, with some 
ontrolled degree of un
ertainty, the right 
ight 
om-mands, with the right parameters at the right moments in time.



{ the ground part abstra
ts the nominal behaviour of the laun
h proto
ol onthe ground side. It passes progressively the 
ontrol of the laun
her to the onboard 
ight program, by providing the laun
h date and all the 
on�rmationsneeded for laun
hing. Furthermore, it remains ready to take ba
k the 
ontrol,if some malfun
tioning is dete
ted during the laun
h pro
edure.Requirements. With the help of EADS engineers, we identi�ed a set of abouttwenty fun
tional safety requirements ensuring the right servi
e of the FlightProgram. The requirements have been 
lassi�ed into three 
lasses:{ general requirements, not ne
essarily spe
i�
 to the Flight Program but 
om-mon to all 
riti
al real-time systems. They in
lude basi
 untimed propertiessu
h as the absen
e of deadlo
ks, livelo
ks or signal loss, and basi
 timedproperties su
h as the absen
e of timelo
ks, Zeno behaviours or deadlinesmissed;{ overall system requirements, spe
i�
 to the Flight Program and 
on
erningits global behaviour. For example, the global sequen
e of the 
ight phases isrespe
ted: ground, vul
ain ignition, booster ignition, ...;{ lo
al 
omponent requirements, spe
i�
 to the Flight Program and regardingthe fun
tionality of some of its parts. This 
ategory in
ludes for example
he
king the o

urren
e of some a
tions in some 
omponent (e.g, payloadseparation o

urs eventually during an attitudinal positioning phase, or thestop sequen
e no. 3 
an o

ur only after lift-o�, or the state of engine valves
onforms to the 
ight phase, et
.)4.2 UML modelThe Ariane-5 Flight Program is modelled in UML as a 
olle
tion of obje
ts
ommuni
ating mostly through asyn
hronous signals, and whose behaviour isdes
ribed by state ma
hines. Operations (with an abstra
t body) are used tomodel the guidan
e, navigation and 
ontrol tasks. For the modelling of timedbehaviour and timing properties, we are using the OMEGA real-time UML pro-�le [GOO03℄, whi
h provides basi
 primitives su
h as timers and 
lo
ks. Themodel shown in �gure 5 is 
omposed of:{ a global 
ontroller 
lass responsible for 
ight 
on�guration (A
y
li
);{ a model of the regulation 
omponents (e.g. EAP, EPC 
orresponding to thelaun
her's stages);{ a model of the regulated equipment (e.g. Valves, Pyros);{ an abstra
t model of the 
y
li
 GNC tasks (Cy
li
s, Thrust monitor, et
.);{ an abstra
t model of the environment (
lassesGround for the external eventsand Bus for modelling the 
ommuni
ation with syn
hronous GNC tasks).The behaviour of the 
ight regulation 
omponents (eap, ep
) involves mainlythe exe
ution of the �ring/extin
tion sequen
e for the 
orresponding stage of thelaun
her (see for example a fragment of the EPC stage 
ontroller's state ma
hine
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omaly(); EAP!Anomaly(); Thrust_Monitor!Anomaly() end


 / clock.set(TimeConstants.MS_100) 


Wait_Clos

e_EVVP


 / clock.set(TimeConstants.MS_100) 


Start(H0_time) / begin 

clock.set(298900); 


H0.set(H0_time) end


timeout(clock) / begin 

clock.set(TimeConstants.MS_100); 


current_is_ok:=EVBO.Open() end


[ current_is_ok = false ] / clock.reset()
[ current_is_ok = true ]


timeout(clock) / current_is_ok:=EVVP.Close()


Fig. 6. Behaviour of the EPC regulation pro
ess (part).in �gure 6). The sequen
e is time-driven, with the possibility of safe abortion in
ase of anomaly.The 
ight 
on�guration part implements several tasks: eap separation, ep
separation, payload separation, et
. In their 
ase too, the separation dates areprovided by the 
ontrol part, depending on the 
urrent 
ight evolution.4.3 Validation using the IF toolsetValidation is a 
omplex a
tivity, involving the iterated appli
ation of veri�
ationand analysis phases as depi
ted in �gure 7.Translation to IF and basi
 stati
 analysis provides a �rst sanity 
he
k ofthe model. In this step, the user 
an �nd simple 
ompile-time errors in the model(name errors, type errors, et
.) but also more elaborate information (uninitialisedor unused variables, unused signals, dead 
ode).
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Fig. 7. Validation methodology in IF.Model exploration. The validation pro
ess 
ontinues with a debugging phase.Without being exhaustive, the user begins to explore the model in a guided orrandom manner. Simulation states do not need to be stored as the 
ompletemodel is not expli
itly 
onstru
ted at this moment.The aim of this phase is to inspe
t and validate known nominal s
enarios ofthe spe
i�
ation. Moreover, the user 
an test simple safety properties, whi
h musthold on all exe
ution paths. Su
h properties are generi
 ones, su
h as absen
e ofdeadlo
ks and signal loss, or more spe
i�
 ones su
h as lo
al assertions.Advan
ed stati
 analysis. The aim is to simplify the IF des
ription. We usethe following stati
 analysis te
hniques to redu
e both the state ve
tor and thestate spa
e, while 
ompletely preserving its behaviour:{ A spe
i�
 analysis te
hnique is the elimination of redundant 
lo
ks [DY96℄.Two 
lo
ks are dependent in a 
ontrol state if their di�eren
e is 
onstant and
an be stati
ally 
omputed at that state.The initial Sdl version of the Flight Program used no less than 130 timers.Using our stati
 analysis tool we were able to redu
e them to only 55 timers,fun
tionally independent ones. Afterwards, the whole spe
i�
ation has beenrewritten taking into a

ount the redundan
y dis
overed by the analyser.{ A se
ond optimisation identi�es live equivalent states by introdu
ing sys-temati
 resets for dead variables in 
ertain states of the spe
i�
ation.For this 
ase study, the live redu
tion has not been parti
ularly e�e
tive dueto the redu
ed number of variables (others than 
lo
ks) used in the spe
i-�
ation. Our initial attempts to generate the model without live redu
tionfailed. Finally, using live redu
tion we were able to build the model but still,it was of unmanageable size, about 2 � 106 states and 18 � 106 transitions.



{ The last optimisation is dead-
ode elimination. We used this te
hnique toautomati
ally eliminate some 
omponents whi
h do not perform any relevanta
tion.LTS generation. The LTS generation phase aims to build the state graph ofthe spe
i�
ation by exhaustive simulation. In order to 
ope with the 
omplexity,the user 
an 
hoose an adequate state representation e.g., dis
rete or denserepresentation of time as well as an exploration strategy e.g., traversal order,use of partial order redu
tions, s
heduling poli
ies, et
.The use of partial order redu
tion has been ne
essary to 
onstru
t tra
tablemodels. We applied a simple stati
 partial order redu
tion whi
h eliminates spu-rious interleaving between internal steps o

urring in di�erent pro
esses at thesame time. Internal steps are those whi
h do not perform visible 
ommuni
ationa
tions, neither signal emission or a

ess to shared variables. This partial orderredu
tion imposes a �xed exploration order between internal steps and preservesall the properties expressed in terms of visible a
tions.Example 4. By using partial order redu
tion on internal steps, we redu
ed thesize of the model by 3 orders of magnitude i.e, from 2 � 106 states and 18 � 106transitions to 1:6�103 states and 1:65�103 transitions, whi
h 
an be easily handledby the model 
he
ker.We 
onsidered two di�erent models of the environment. A time-deterministi
one, where a
tions take pla
e at pre
ise moments in time and a time-nondeterministi
one where a
tions take pla
e within prede�ned time intervals. Table 1 presents inea
h 
ase the sizes of the models obtained depending on the generation strategyused. time timedeterministi
 non-deterministi
� live redu
tion state state� partial order explosion explosionmodel + live redu
tion 2201760 st. stategeneration � partial order 18706871 tr. explosion+ live redu
tion 1604 st. 195718 st.+ partial order 1642 tr. 278263 tr.modelmodel minimisation � 1 se
. � 20 se
.veri�
ation model
he
king � 15 se
. � 120 se
.Table 1. Veri�
ation Results. The model minimisation and model 
he
king experi-ments are performed on the smallest available models i.e, obtained with both live andpartial order redu
tion.
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EAP!Anomaly

EAP!Fire EPC!AnomalyFig. 8. Minimal model.Model 
he
king. On
e the model has been generated, three model 
he
kingte
hniques have been applied to verify requirements on the spe
i�
ation:1. Model 
he
king of �-
al
ulus formulae using Evaluator.Example 5. The requirement expressing that \the stop sequen
e no. 3 o

ursonly during the 
ight phase, and never on the ground phase" 
an be expressedby the following �-
al
ulus formula, veri�ed with Evaluator:: �X: < EPC!Stop 3 > T _ < EAP !Fire > XThis formula means that the system 
annot exe
ute the stop sequen
e no. 3without exe
uting the �ring of the eap �rst.2. Constru
tion of redu
ed models using Aldebaran. A se
ond approa
h, usu-ally mu
h more intuitive for a non expert end-user, 
onsists in 
omputing anabstra
t model (with respe
t to given observation 
riteria) of the overall be-haviour of the spe
i�
ation. Possible in
orre
t behaviours 
an be dete
ted byvisualising su
h a model.Example 6. All safety properties involving the �ring a
tions of the two prin
i-pal stages, eap and ep
, and the dete
tion of anomalies are preserved on theLTS in �gure 8 generated by Aldebaran. It is the quotient model with re-spe
t to safety equivalen
e [BFG+91℄ while keeping observable only the a
tionsabove. For instan
e it is easy to 
he
k on this abstra
t model that, whenever ananomaly o

urs before a
tion EPC!Fire 3 (ignition of the Vul
ain engine), thennor this a
tion nor EAP!Fire a
tion are exe
uted and therefore the entire laun
hpro
edure is aborted.Table 1 gives the average time required for verifying ea
h kind of propertyby temporal logi
 model 
he
king and model minimisation respe
tively.



valve_not_abused


t : Timer


<<Observer>>


initial


wait


match invoke ::EADS::Environment::Valves::Close() / t.set(0)


match invoke ::EADS::Environment::Valves::Open() / t.set(0)


KO

<<error>>


match invoke ::EADS::Environment::Valves::Open()


match invoke ::EADS::Environment::Valves::Close()


[ t >= 50 ]


Fig. 9. A timed safety property of the Ariane-5 model.
liftoff_aborted_right


v : Valves

t : Timer


<<Observer>>


ok


aborting


aborted


not_yet


aborted


not_yet


 / t.set(0)


[ t >= 2000 ]


ko

<<error>>


[ v.EPC.EAP.Pyro1 @ Ignition_done or 

v.EPC.EAP.Pyro2 @ Ignition_done or 

v.EPC.EAP.Pyro3 @ Ignition_done ]


match send ::EADS::Signals::Request_EAP_Preparation()


match send ::EADS::Signals::Request_EAP_Release()


[ (v.EPC.EVBO @ Open or v.EPC.EVBO @ Failed_Open) or 

(v.EPC.EVVCH @ Open or v.EPC.EVVCH @ Failed_Open) or 

(v.EPC.EVVCO @ Open or v.EPC.EVVCO @ Failed_Open) or 

(v.EPC.EVVGH @ Open or v.EPC.EVVGH @ Failed_Open) or 


(v.EPC.EVVP @ Open or v.EPC.EVVP @ Failed_Open) ]


match accept ::EADS::Environment::Valves::Open() by v


[ v @ Open ]

[ v @ Failed_Open ]


Fig. 10. A timed safety property of the Ariane-5 model.



wait_start
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p1


p1_ignited


ko

<<error>>


ok
choice


match send ::EADS::Signals::Start( void ) / begin mc := 

g.Acyclic.MissionConstants; tc := g.Acyclic.TimeConstants end


[ g.Acyclic.EAP.Pyro1 

@ Ignition_done ]


[ now >= (tc.MN_5 * 2 + mc.Tpstar_prep) ]


[ g.Acyclic.EAP.Pyro2 @ Ignition_done ]


[ now >= (tc.MN_5 * 2 + mc.Tpstot_prep) ]


[ now < (tc.MN_5*2 + mc.Tpstot_prep) ]


liftoff_performed_right2


g : Ground

mc : MissionConstants

tc : TimeConstants


<<Observer>>


Fig. 11. A timed safety property of the Ariane-5 model.3. Model 
he
king with observers. We also used UML observers to express and
he
k requirements. Observers allow us to express in a mu
h simpler mannermost safety requirements of the Ariane-5 spe
i�
ation. Additionally, they allowto express quantitative timing properties, something whi
h is diÆ
ult to expresswith �-
al
ulus formulas.Example 7. Figures 9 to 11 show some of the properties that were 
he
ked onthe UML model:Figure 9: between any two 
ommands sent by the 
ight program to the valvesthere should elapse at least 50ms.Figure 10: if some instan
e of 
lass Valve fails to open (i.e. enters the stateFailed Open) then{ No instan
e of the Pyro 
lass rea
hes the state Ignition done.{ All instan
es of 
lass Valve shall rea
h one of the states Failed Close orClose after at most 2 se
onds sin
e the initial valve failure.{ The events EAP Preparation and EAP Release are never emitted.Figure 11: if the Pyro1 obje
t (of 
lass Pyro) enters the state Ignition done,then the Pyro2 obje
t shall enter the state Ignition done at a system time be-tween T imeConstants:MN 5�2+Tpstot prep and T imeConstants:MN 5�2 + Tpstar prep.



5 Con
lusionThe IF toolset is the result of a long term resear
h e�ort for theory, methods andtools for model-based development. It o�ers a unique 
ombination of features formodelling and validation in
luding support for high level modelling, stati
 anal-ysis, model-
he
king and simulation. Its has been designed with spe
ial 
are foropenness to modelling languages and validation tools thanks to the de�nition ofappropriate API's. For instan
e, it has been 
onne
ted to expli
it model 
he
kingtools su
h as Spin [Hol91℄ and Cadp [FGK+96℄, to symboli
 and regular model
he
ker tools su
h as TreX [ABS01℄, Lash [BL02a℄, the PVS-based abstra
tiontool Invest [BLO98℄ and to the automati
 test generation and exe
ution toolsTgv [FJJV96℄, Agatha [LRG01℄ and Spider [HN04℄.The IF notation is expressive and ri
h enough to map in a stru
tural mannermost of UML 
on
epts and 
onstru
ts su
h as 
lasses, state ma
hines with a
-tions, a
tivity groups with run-to-
ompletion semanti
s. The mapping 
attensthe des
ription only for inheritan
e and syn
hronous 
alls and this is ne
essaryfor validation purposes. It preserves all relevant information about the stru
tureof the model. This provides a basis for 
ompositional analysis and validationte
hniques that should be further investigated.The IF notation relies on a framework for modelling real-time systems basedon the use of priorities and of types of urgen
y studied at Verimag [BST98℄,[BS00℄, [AGS02℄. The 
ombined use of behaviour and priorities naturally leadsto layered models and allows 
ompositional modelling of real-time systems, inparti
ular of aspe
ts related to resour
e sharing and s
heduling. S
heduling poli-
ies 
an be modelled as sets of dynami
 priority rules. The framework supports
omposition of s
heduling poli
ies and provides 
omposability results for dead-lo
k freedom of the s
heduled system. Priorities are also an elegant me
hanismfor restri
ting non determinism and 
ontrolling exe
ution. Run-to-
ompletionexe
ution and mutual ex
lusion 
an be modelled in a straightforward manner.Finally, priorities prove to be a powerful tool for modelling both heterogeneousintera
tion and heterogeneous exe
ution as advo
ated in [GS03℄. The IF toolsetfully supports this framework. It embodies prin
iples for stru
turing and enri
h-ing des
riptions with timing information as well as expertise gained through itsuse in several large proje
ts su
h as the IST proje
ts OMEGA [Con03,GH04℄,AGEDIS [Con02℄ and ADVANCE [Con01℄.The 
ombination of di�erent validation te
hniques enlarges the s
ope of ap-pli
ation of the IF toolset. Approa
hes 
an di�er a

ording to the 
hara
teristi
sof the model. For data intensive models, stati
 analysis te
hniques 
an be used tosimplify the model before veri�
ation, while for 
ontrol intensive models partialorder te
hniques and observers are very useful to 
ope with state explosion. Inany 
ase, the 
ombined use of stati
 analysis and model 
he
king by skilled usersproves to be a powerful means to break 
omplexity. Clearly, the use of high levelmodelling languages involves some additional 
ost in 
omplexity with respe
t tolow level modelling languages e.g., languages based on automata. Nevertheless,this is a pri
e to pay for validation of real life systems whose faithful modellingrequires dynami
ally 
hanging models with in�nite state spa
e. In our method-



ology, abstra
tion and simpli�
ation 
an be 
arried out automati
ally by stati
analysis.The use of observers for requirements proves to be very 
onvenient and easyto use 
ompared to logi
-based formalisms. They allow a natural des
ription,espe
ially of real-time properties relating timed o

urren
es of several events.The \operational" des
ription style is mu
h more easy to master and understandby pra
titioners. The limitation to safety properties is not a serious one for well-timed systems. In fa
t, IF des
riptions are by 
onstru
tion well-timed - time
an always progress due to the use of urgen
y types. Liveness properties be
omebounded response, that is safety properties.The IF toolset is unique in that it supports rigorous high level modelling ofreal-time systems and their properties as well as a 
omplete validation method-ology. Compared to 
ommer
ially available modelling tools, it o�ers more power-ful validation features. For graphi
al editing and version management, it needs afront end that generates either XMI or SDL. We are 
urrently usingRational RoseandObje
tGeode. We have also 
onne
tions fromRhapsody andArgo Uml.Compared to other validation tools, the IF toolset presents many similaritieswith Spin. Both tools o�er features su
h as a high level input language, integra-tion of external 
ode, use of enumerative model 
he
king te
hniques as well asstati
 optimisations. In addition, IF allows the modelling of real-time 
on
eptsand the toolset has an open ar
hite
ture whi
h eases the 
onne
tion with othertools.Referen
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