
HAL Id: hal-00361307
https://hal.archives-ouvertes.fr/hal-00361307

Submitted on 13 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tools and Applications II: The IF Toolset
Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, Joseph Sifakis

To cite this version:
Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, Joseph Sifakis. Tools and Applications II: The
IF Toolset. International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, Sep 2004, Bertinoro, Italy. pp.237-267, �10.1007/b110123�. �hal-00361307�

https://hal.archives-ouvertes.fr/hal-00361307
https://hal.archives-ouvertes.fr

Tools and Appliations II: The IF Toolset?Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph SifakisVERIMAG, 2 avenue de Vignate, F-38610 Gi�eresAbstrat. This paper presents an overview on the IF toolset whih isan environment for modelling and validation of heterogeneous real-timesystems. The toolset is built upon a rih formalism, the IF notation,allowing strutured automata-based system representations. Moreover,the IF notation is expressive enough to support real-time primitives andextensions of high-level modelling languages suh as SDL and UML bymeans of struture preserving mappings.The ore part of the IF toolset onsists of a syntati transformationomponent and an open exploration platform. The syntati transfor-mation omponent provides language level aess to IF desriptions andhas been used to implement stati analysis and optimisation tehniques.The exploration platform gives aess to the graph of possible exeu-tions. It has been onneted to di�erent state-of-the-art model-hekingand test-ase generation tools.A methodology for the use of the toolset is presented at hand of a asestudy onerning the Ariane-5 Flight Program for whih both an SDLand a UML model have been validated.1 IntrodutionModelling plays a entral role in systems engineering. The use of models an prof-itably replae experimentation on atual systems with inomparable advantagessuh as:{ ease of onstrution by integration of heterogeneous omponents,{ generality by using generiity, abstration, behavioural non determinism{ enhaned observability and ontrollability, espeially avoidane of probe ef-fet and of disturbanes due to experimentation{ �nally, possibility of analysis and preditability by appliation of formalmethods.Building models whih faithfully represent omplex systems is a non trivialproblem and a prerequisite to the appliation of formal analysis tehniques.Usually, modelling tehniques are applied at early phases of system developmentand at high abstration level. Nevertheless, the need of a uni�ed view of thevarious life-yle ativities and of their interdependenies, motivated reently,the so alled model-based development [OMG03a,Sif01,STY03℄ whih heavily? This work was supported in part by the European Commission through the projetsIST-1999-29082 ADVANCE, IST-1999-20218 AGEDIS and IST-2001-33522 OMEGA

relies on the use of modelling methods and tools to provide support and guidanefor system design and validation.Currently, validation of real-time systems is done by experimentation andmeasurement on spei� platforms in order to adjust design parameters andhopefully ahieve onformity to QoS requirements. Model based developmentintends to replae experimentation on real prototypes by validation on virtualprototypes (models). Furthermore, a key idea is the use of suessive modeltransformations in design methodologies to derive from some initial high leveldesription low level desriptions lose to implementations. Ahieving suh am-bitious goals raises hard and not yet ompletely resolved problems disussed inthis setion.Heterogeneity. A real-time system is a layered system onsisting of an applia-tion software implemented as a set of interating tasks, and of the underlyingexeution platform. It ontinuously interats with an external environment toprovide a servie satisfying QoS requirements haraterising the dynamis of theinteration. Models of real-time systems should represent faithfully interativebehaviour taking into aount implementation hoies related to resoure man-agement and sheduling as well as exeution speed of the underlying hardwareThe models of real-time systems involve heterogeneous omponents with dif-ferent exeution speeds and interation modes. There exist two main soures ofheterogeneity: interation and exeution.Heterogeneity of interation results from the ombination of di�erent kindsof interation.Interations an be atomi or non atomi. The result of atomi interationsannot be altered through interferene with other interations. Proess algebrasand synhronous languages assume atomi interations. Asynhronous ommu-niation (SDL, UML) or method all are generally non atomi interations. Theirinitiation and their ompletion an be separated by other events.Interations an involve strit or non strit synhronisation. For instane,rendez-vous and method alls require strit interations. On the ontrary, broad-ast of synhronous languages and asynhronous ommuniation do not needstrit synhronisation. A proess (sender) an initiate an interation indepen-dently of the possibility of ompletion by its environment.Heterogeneity of exeution results from the ombination of two exeutionparadigms.Synhronous exeution is typially adopted in hardware, in synhronous lan-guages, and in time triggered arhitetures and protools. It onsiders that asystem exeution is a sequene of steps. It assumes synhrony, meaning that thesystem's environment does not hange during a step, or equivalently \that thesystem is in�nitely faster than its environment". The synhronous paradigm hasa built-in strong assumption of fairness: in a step all the system omponentsexeute a quantum omputation de�ned by using either quantitative or logialtime.The asynhronous paradigm does not adopt any notion of global exeutionstep. It is used in languages for the desription of distributed systems suh as SDL

and UML, and programming languages suh as Ada and Java. The lak of built-in mehanisms for sharing resoures between omponents an be ompensatedthrough sheduling. This paradigm is also ommon to all exeution platformssupporting multiple threads, tasks, et.Modelling time. Models for real-time systems should allow modelling progressof time in order to express various kinds of timing information e.g., exeutiontimes of ations, arrival times of events, deadlines, lateny.Timed models an be de�ned as extensions of untimed models by addingtime variables used to measure the time elapsed sine their initialisation. Theyan be represented as mahines that an perform two kinds of state hanges:ations and time steps. Ations are timeless state hanges of the untimed system;their exeution may depend on and modify time variables. In a time step, alltime variables inrease uniformly. There exists a variety of timed formalismsextensions of Petri nets [Sif77℄, proess algebras [NS91℄ and timed automata[AD94℄. Any exeutable untimed desription e.g., appliation software, an beextended into a timed one by adding expliitly time variables or other timingonstraints.Timed models use a notion of logial time. Contrary to physial time, logialtime progress an blok, espeially as a result of inonsisteny of timing on-straints. The behaviour of a timed model is haraterised by the set of its runs,that is the set of maximal sequenes of onseutive states reahed by perform-ing transitions or time steps. The time elapsed between two states of a run isomputed by summing up the durations of all the time steps between them. Fora timed model to represent a system, it is neessary that it is well-timed in thesense that in all its runs time diverges.As a rule, in timed models there may exist states from whih time annotprogress. If time an progress from any state of a timed model, then it is alwayspossible to wait and postpone the exeution of ations whih means that it isnot possible to model ation urgeny. Ation urgeny at a state is modelled bydisallowing time progress. This possibility of stopping time progress goes againstour intuition about physial time and onstitutes a basi di�erene between thenotions of physial and logial time. It has deep onsequenes on timed systemsmodelling by omposition of timed omponents.Often timed extensions of untimed systems are built in an ad ho mannerat the risk of produing over-onstrained or inomplete desriptions. It is essen-tial to develop a methodology for adding ompositionally timing information tountimed models to get a orresponding timed model.The IF toolset is an environment for modelling and validation of heteroge-neous real-time systems. It is haraterised by the following features:{ Support for high level modelling with formalisms suh as SDL, UML used byusers in some CASE tool. This is essential to ease usability by pratitionersand to allow the use of state-of-the-art modelling tehnology. Furthermore,the use of high level formalisms allows validating realisti models whih anbe simpli�ed if neessary by using automated tools. This avoids starting with

simpli�ed models onstruted in an ad ho manner as it is the ase for othertools using low level desription languages e.g., automata.{ Translation of high level models into an intermediate representation, the IFnotation, that serves as a semanti model. This representation is rih andexpressive enough to desribe the main onepts and onstruts of sourelanguages. It ombines omposition of extended timed automata and dy-nami priorities to enompass heterogeneous interation. Priorities play animportant role for the desription of sheduling poliies as well as the restri-tion of asynhronous behaviour to model run-to-ompletion exeution. Weonsider a lass of timed automata whih are by onstrution well-timed.The developed translation methods for SDL and UML preserve the overallstruture of the soure model and the size of the generated IF desriptioninreases linearly with the size of the soure model. IF is used as a basis formodel simpli�ation by means of stati analysis tehniques and the applia-tion of light strutural analysis tehniques e.g., heking suÆient onditionsfor deadlok-freedom of proesses. It is also used for the generation of lowerlevel models e.g., labelled transitions systems used for veri�ation purposes.{ Combined use of various validation tehniques inluding model-heking,stati analysis on the intermediate representation and simulation. A method-ology has been studied at Verimag for omplex real-time appliations.{ Expression of requirements to be validated on models by using observers.These an be onsidered as a speial lass of models equipped with primitivesfor monitoring and heking for divergene from some nominal behaviour.Our hoie for monitors rather than delarative formalisms suh as temporallogi or Live Sequene harts [DH99℄ is motivated by our onern to belose to industrial pratie and to avoid as muh as possible inonsistenyin requirements.The paper is organised as follows. Setion 2 presents the overall arhitetureof the IF toolset. Setion 3 is the main setion of the paper. It starts with a pre-sentation of IF inluding its main onepts and onstruts and their semantis.Then the overall arhiteture of the toolset and its features for simulation, anal-ysis and validation are desribed. Finally the translation priniple from UML toIF is explained by showing how the main UML onepts and onstruts an bemapped into IF.Setion 4 presents an example illustrating the appliation of the toolset tothe modelling and validation of the Ariane-5 Flight Program. For this non trivialase study, we provide a validation methodology and results. Setion 5 presentsonluding remarks about the toolset and the underlying modelling and valida-tion methodology.2 Setting the ontext - the overall arhitetureFigure 1 desribes the overall arhiteture of the toolset, the most importantomponents as well as their inter-onnetions. We distinguish three di�erent de-

UML tools

IF tools

IF
LTS level tools

EXPLORATION PLATFORM

simulator LTS generator

test generator

IF static
analysis

live variable
analysis

SDL-UML-IF frontend

UML2IF &
SDL2IF

translators

UML
validation

driver

dead-code
elimination

variable
abstraction

evaluator

Other LTS verification tools (CADP)

minimization, comparison, composition...

SDL TOOLS
ObjectGEODE, TAU

UML TOOLS
Rose,

Rhapsody, Argo

IF
exporters LTS

Fig. 1. IF toolset arhiteture.sription levels: the spei�ation level (UML, SDL), the intermediate desriptionlevel (IF), and the Labelled Transition Systems (LTS) level.Spei�ation level. This orresponds to the desription provided by the user insome existing spei�ation language. To be proessed, desriptions are automati-ally translated into their IF desriptions. Currently, the main input spei�ationformalisms are UML and SDL.Regarding UML, any UML tool an be used as long as it an export the modelin XMI [OMG01℄, the standard XML format. The IF toolset inludes a translatorfrom UML whih produes IF desriptions. The translator aepts spei�ationsprodued by Rational Rose [IBM℄, Rhapsody [Ilo℄ or Argo Uml [RVR+℄.Intermediate desription level (IF). IF desriptions are generated from spei�-ations. IF is an intermediate representation based on timed automata extendedwith disrete data variables, ommuniation primitives, dynami proess re-ation and destrution. This representation is expressive enough to desribe thebasi onepts of modelling and programming languages for distributed real-timesystems.The abstrat syntax tree of an IF desription an be aessed through anAPI. Sine all the data (variables, loks) and the ommuniation strutureare still expliit, high-level transformations based on stati analysis [Mu97℄ or

program sliing [Wei84,Tip94℄ an be applied. All these tehniques an be usedto transform the initial IF desription into a \simpler" one while preservingsafety properties. Moreover, this API is well-suited to implement exporters fromIF to other spei�ation formalisms.LTS level. The LTS are transition graphs desribing the exeutions of IF de-sriptions. An exploration API allows to represent and store states as well as toompute on demand the suessors of a given state. This API an be linked with\generi" exploration programs performing any kind of on-the-y analysis.Using the exploration API, several validation tools have been developed andonneted to work on IF desriptions. They over a broad range of features: in-terative/random/guide simulation, on-the-y model heking using observers,on-the-y temporal logi model heking, exhaustive state spae generation,sheduling analysis, test ase generation. Moreover, through this API are on-neted the Cadp toolbox [FGK+96℄ for the validation of �nite models as wellas Tgv [FJJV96,JM99℄ for test ase generation using on-the-y tehniques.3 Desription of the formalism/tehnique/system/tool3.1 The IF notationIF is a notation for systems of omponents (alled proesses), running in par-allel and interating either through shared variables or asynhronous signals.Proesses desribe sequential behaviours inluding data transformations, om-muniations and proess reation. Furthermore, the behaviour of a proess maybe subjet to timing onstraints. The number of proesses may hange over time:they may be reated and deleted dynamially.The semantis of a system is the LTS obtained by interleaving the behaviourof its proesses. To enfore sheduling poliies, the set of runs of the LTS an befurther restrited using dynami priorities.Proesses. The behaviour of a proess is desribed as a timed automaton,extended with data. A proess has a unique proess identi�er (pid) and loalmemory onsisting of variables (inluding loks), ontrol states and a queue ofpending messages (reeived and not yet onsumed).A proess an move from one ontrol state to another by exeuting sometransition. As for state harts [Har87,HP98℄, ontrol states an be hierarhiallystrutured to fatorize ommon behaviour. Control states an be stable or un-stable. A sequene of transitions between two stable states de�nes a step. Theexeution of a step is atomi, meaning that it orresponds to a single transitionin the LTS representing the semantis. Notie that several transitions may beenabled at the same time, in whih ase the hoie is made non-deterministially.Transitions an be either triggered by signals in the input queue or be sponta-neous. Transitions an also be guarded by prediates on variables, where a guardis the onjuntion of a data guard and a time guard. A transition is enabled ina state if its trigger signal is present and its guard evaluates to true. Signals in

the input queue are a priori onsumed in a �fo fashion, but one an speify intransitions whih signals should be \saved" in the queue for later use.Transition bodies are sequential programs onsisting of elementary ations(variable or lok assignments, message sending, proess reation/destrution,resoure requirement/release, et) and strutured using elementary ontrol-owstatements (like if-then-else, while-do, et). In addition, transition bodies anuse external funtions/proedures, written in an external programming language(C/C++).Signals and signalroutes. Signals are typed and an have data parameters.Signals an be addressed diretly to a proess (using its pid) and/or to a signalroute whih will deliver it to one or more proesses. The destination proessstores reeived signals in a �fo bu�er.Signalroutes represent speialised ommuniation media transporting signalsbetween proesses. The behaviour of a signalroute is de�ned by its delivery poliy(FIFO or multi-set), its onnetion poliy (peer to peer, uniast or multiast),its delaying poliy (\zero delay", \delay" or \rate") and �nally its reliability(\reliable" or \lossy"). More omplex ommuniation media an be spei�edexpliitly as IF proesses.In partiular, signalroutes an be onneted at one end with an impliitlyde�ned \environment proess" env. In transitions triggered by signals from theenvironment, the trigger signal is onsidered as present whenever the transitionguard evaluates to true.Data. The IF notation provides the prede�ned basi types bool, integer, real, pidand lok, where lok is used for variables measuring time progress. Strutureddata types are built using the type onstrutors enumeration, range, array, reordand abstrat. Abstrat data types an be used for manipulating external typesand ode.
idle init

reates[th < N℄?request!!threadth:=th+1 [done℄ s(1)[request℄
?doneth:=th-1

"work"!donestop
server(1) thread(0)

Fig. 2. Illustration of the multi-threaded server example.

Example 1. The IF desription below desribes a system onsisting of a serverproess reating up to N thread proesses for handling request signals. Agraphial representation of the system is given in Figure 2.system Server;signal request(); // signals with parameter typessignal done(pid);signalroute entry(1) // signalroutes and their signalsfrom env to serverwith request;signalroute s(1) #delay[1,2℄from thread to serverwith done; // de�nition of proess typesproess thread(0); // and initial number of instanesfpar parent pid, route pid; // formal parameters reeived at reationstate init #start ; // 1 state + 1 outgoing transitioninformal "work"; // informal ation labelled \work"output done() // sending of the done signalvia route to parent; // reeived by parentstop; // terminate proess, destroy instaneendstate;endproess;proess server(1);var th integer; // loal variablesstate idle #start ; // 1 state + 2 outgoing transitionsprovided th < N; // �rst transition: guardinput request(); // triggerfork thread(self, fsg0); // reate thread proess and passing// own pid and signalroute s as paramstask th := th + 1;nextstate -; // end of transition - bak to idleinput done(); // seond transitiontask th := th - 1;nextstate -;endstate;endproess;endsystem;Composition (System). The semantis assoiates with a system a global LTS.At any point of time, its state is de�ned as the tuple of the states of its livingomponents: the states of a proess are the possible evaluations of its attributes(ontrol state, variables and signal queue ontent). The states of a signalrouteare lists of signals \in transit". The transitions of the global LTS representing

a system are steps of proesses and signal deliveries from signalroutes to signalqueues where in any global state there is an outgoing transition for all enabledtransitions of all omponents (interleaving semantis). The formal de�nition ofthe semantis an be found in [BL02b℄.System models may be highly nondeterministi, due to the nondeterminismof the environment whih is onsidered as open and to the onurreny betweentheir proesses. For the validation of funtional properties, leaving this seondtype of nondeterminism non resolved is important in order to verify orretnessindependently of any partiular exeution order. Nevertheless, going towards animplementation means resolving a part of this non determinism and hoosing anexeution order satisfying time related and other nonfuntional onstraints.In IF, suh additional restritions an be enfored by dynami priorities de-�ned by rules speifying that whenever for two proess instanes some ondition(state prediate) holds, then one has less priority than the other. An example isp1 � p2 if p1:group = p2:group and p2:ounter < p1:ounterwhih for any proess instanes whih are part of some \group", gives priorityto those with the smallest values of the variable ounter (e.g., the less frequentlyserved).Time. The time model of IF is that of timed automata with urgeny [BST98℄,[BS00℄ where the exeution of a transition is an event de�ning an instant of statehange, whereas time is progressing in states. Urgeny is expressed by means ofan urgeny attribute of transitions. This attribute an take the values eager,lazy or delayable. Eager transitions are exeuted at the point of time at whihthey beome enabled - if they are not disabled by another transition. Delayabletransitions annot be disabled by time progress. Lazy transitions may be disabledby time progress.Like in timed automata, time distanes between events are measured byvariables of type \lok". Cloks an be reated, set to some value or reset(deleted) in any transition. They an be used in time guards to restrit the timepoints at whih transitions an be taken.Loal loks allow the spei�ation of timing onstraints, suh as durations oftasks (modelled by time passing in a state assoiated with this task, see examplebelow), deadlines for events in the same proess. Global time onstraints, suhas end-to-end delays, an be expressed by means of global loks or by observers(explained in the next setion).Example 2. A timed version of the thread proess of the example 1 is given. Anextra state work introdued for distinguishing the instant at whih work startsand the instant at whih it ends and and to onstrain the duration betweenthem. The intention is to model an exeution time of \work" of 2 to 4 timeunits.The thread proess goes immediately to the work state - the start transitionis eager - and sets the lok wait is set to 0 in order to start measuring timeprogress. The transition exiting the work state is delayable with a time guard

expressing the onstraint that the time sine the lok wait has been set shouldbe at least 2 but not more than 4.proess thread(0);fpar parent pid, route pid;var wait lok;state init #start ;urgeny eager;informal "work";set wait := 0;nextstate work;endstate;
state work ;urgeny delayable;when wait >= 2 and wait <= 4;output done()via route to parent;stop;endstate;endproess;Resoures. In order to express mutual exlusion it is possible to delare sharedresoures. These resoures an be used through partiular ations of the form\require some-resoure" and \release some-resoure".Observers. Observers express in an operational way safety properties of a sys-tem by haraterising its aeptable exeution sequenes. They also provide asimple and exible mehanism for ontrolling model generation. They an beused to selet parts of the model to explore and to ut o� exeution paths thatare irrelevant with respet to given riteria. In partiular, observers an be usedto restrit the environment of the system.Observers are desribed in the same way as IF proesses i.e., as extendedtimed automata. They di�er from IF proesses in that they an reat syn-hronously to events and onditions ourring in the observed system. Observersare lassi�ed into:{ pure observers - whih express requirements to be heked on the system.{ ut observers - whih in addition to monitoring, guide simulation by seletingexeution paths. For example, they are used to restrit the behaviour of theenvironment{ intrusive observers - whih may also alter the system's behaviour by sendingsignals and hanging variables.Observation and intrusion mehanisms. For monitoring the system state, ob-servers an use primitives for retrieving values of variables, the urrent state ofthe proesses, the ontents of queues, et.For monitoring ations performed by a system, observers use onstruts forretrieving events together with data assoiated with them. Events are generatedwhenever the system exeutes one of the following ations: signal output, signaldelivery, signal input, proess reation and destrution and informal statements.Observers an also monitor time progress, by using their own loks or bymonitoring the loks of the system.

Expression of properties. In order to express properties, observer states an bemarked as ordinary, error or suess. Error and suess are both terminatingstates. Reahing a suess state (an error state) means satisfation (non satis-fation). Cut observers use a ut ation whih stops exploration.Example 3. The following example illustrates the use of observers to express asimple safety property of a protool with one transmitter and one reeiver, suhas the alternating bit protool. The property is: Whenever a put(m) message isreeived by the transmitter proess, the transmitter does not return to stateidle before a get(m) with the same m is issued by the reeiver proess.pure observer safety1;var m data;var n data;var t pid;state idle #start ;math input put(m) by t;nextstate wait;endstate;state wait;provided (ftransmittergt)instate idle;nextstate err;math output put(n)
nextstate err;math output get(n);nextstate deision;endstate;state deision #unstable ;provided n = m;nextstate idle;provided n <> m;nextstate wait;endstate;state err #error ;endstate;endobserver;3.2 Simulation, Analysis and ValidationCore omponents of the IF toolset. The ore omponents of the IF toolsetare shown in Figure 3.Syntati Transformations Component. This omponent deals with syntatitransformations inluding the onstrution of an abstrat syntax tree (AST)from an IF desription. The tree is a olletion of C++ objets representing allthe syntati elements present in IF desriptions. The AST reets preisely thesyntati struture of IF desriptions: a system inludes proesses, signalroutes,types; a proess inludes states and variables; states inlude their outgoing tran-sitions and so on.This omponent has an interfae giving aess to the abstrat syntax tree.Primitives are available to traverse the tree and to onsult or to modify its el-ements. There are primitives allowing to write the tree bak as an IF textualdesription. The syntati transformation omponent has been used to buildseveral appliations. The most important ones are ode generators (either sim-ulation ode or appliation ode), stati analysis transformations (operating atsyntati level), translations to other languages (inluding a translation to thePromela language of Spin [Hol91℄) and pretty printers.

dynami shedulingasynhronous exeution(time, hannels,...)odeprede�ned state spaerepresentationproess odespei�appliation
LTS exploration tools:- debugging

Exploration platform

- model heking- test generation
syntatitransformation tools:- stati analyser- ode generator

reader writerIF AST IF C/C++

Fig. 3. Funtional view of the IF Core Components.Exploration Platform. This omponent has an API providing aess to the LTSorresponding to IF desriptions. The interfae o�ers primitives for representingand aessing states and labels as well as basi primitives for traversing LTS:an init funtion whih gives the initial state, and a suessor funtion whihomputes the set of enabled transitions and suessor states from a given state.These are the key primitives for implementing any on-the-y forward enumera-tive exploration or validation algorithm.Figure 3 shows the struture of the exploration platform. The main features ofthe platform are simulation of the proess exeution, non-determinism resolution,management of time and representation of the state spae.The exploration platform an be seen as an operating system where proessinstanes are plugged-in and jointly exeuted. Proess instanes are either appli-ation spei� (oming from IF desriptions) or generi (suh as time or hannelhandling proesses).Simulation time is handled by a speialised proess managing lok alloa-tion/dealloation, omputing time progress onditions and �ring timed transi-tions. There are two implementations available, one for disrete time and one fordense time. For disrete time, lok values are expliitly represented by integers.Time progress is omputed with respet to the next enabled deadline. For densetime, lok valuations are represented using variable-size Di�erene Bound Ma-tries (DBMs) as in tools dediated to timed automata suh as Kronos [Yov97℄and Uppaal [LPY98℄.

The exploration platform omposes all ative proesses and omputes globalstates and the orresponding system behaviour. The exploration platform on-sists of two layers sharing a ommon state representation:{ Asynhronous exeution layer. This layer implements the general interleav-ing exeution of proesses. The platform asks suessively eah proess toexeute its enabled steps. During a proess exeution, the platform managesall inter-proess operations: message delivery, time onstraints heking, dy-nami reation and destrution, traking of events. After a ompletion ofa step by a proess, the platform takes a snapshot of the performed step,stores it and delivers it to the seond layer.{ Dynami sheduling layer. This layer ollets all the enabled steps. It uses aset of dynami priority rules to �lter them. The remaining ones, whih aremaximal with respet to the priorities, are delivered to the user appliationvia the exploration API.

messages
hunks

ontentsqueue zones (DBMs)
statestates

proesses
Fig. 4. Internal state representation.{ State representation. Global states are impliitly stored by the platform. Theinternal state representation is shown in �gure 4. It preserves the struturalinformation and seeks for maximal sharing. The layered representation in-volves a unique table of messages. Queues are lists of messages, representedby suÆx sharing. On top of them, there is a table of proess states, all ofthem sharing queues in the table of queues. Proesses are then grouped into�xed size state hunks, and �nally, global states are variable-size lists ofhunks. Tables an be represented either by using hash tables with ollisionor by binary trees. This sheme allows to expliitly represent several millionsof strutured states.

The exploration platform and its interfae has been used as bak-ends ofdebugging tools (interative or random simulation), model heking (inludingexhaustive model generation, on the y �-alulus evaluation, model hekingwith observers), test ase generation, and optimisation (shortest path omputa-tion).This arhiteture provides features for validating heterogeneous systems. Ex-ploration is not limited to IF desriptions: all kinds of omponents with an ad-equate interfae an be exeuted in parallel on the exploration platform. It isindeed possible to use C/C++ ode (either diretly, or instrumented aordingly)of already implemented omponents.Another advantage of the arhiteture is that it an be extended by addingnew interation primitives and exploration strategies. Presently, the explorationplatform supports asynhronous (interleaved) exeution and asynhronous point-to-point ommuniation between proesses. Di�erent exeution modes, like syn-hronous or run-to-ompletion, or additional interation mehanisms, suh asbroadast or rendez-vous, are obtained by using dynami priorities [AGS00℄.Conerning the exploration strategies, redution heuristis suh as partial-order redution or some form of symmetry redution are already inorporatedin the exploration platform. More spei� heuristis may be added dependingon a partiular appliation domain.Stati Analysis. Pratial experiene with IF has shown that simpli�ation bymeans of stati analysis is ruial for dealing suessfully with omplex spei�-ations. Even simple analysis suh as live variables analysis or dead-ode elim-ination an signi�antly redue the size of the state spae of the model. Theavailable stati analysis tehniques are:Live variables analysis This tehnique transforms an IF desription into anequivalent smaller one by removing globally dead variables and signal parametersand by resetting loally dead variables [Mu97℄. Initially, all the loal variables ofthe proesses and signal parameters are onsidered to be dead, unless otherwisespei�ed by the user. Shared variables are onsidered to be always live. Theanalysis alternates loal (standard) live variables omputation on eah proessand inter-proess liveness attributes propagation through input/output signalparameters until a global �xpoint is reahed.Dead-ode elimination. This tehnique transforms an IF desription by removingunreahable ontrol states and transitions under some user-given assumptionsabout the environment. It solves a simple stati reahability problem by omput-ing, for eah proess separately, the set of ontrol states and transitions whihan be statially reahed starting from the initial ontrol state. The analysisomputes an upper approximation of the set of proesses that an be e�etivelyreated.Variable abstration. This tehnique allows to ompute abstrations by elimi-nating variables and their dependenies whih are not relevant to the user. The

omputation proeeds as for live variables analysis: proesses are analysed sep-arately, and the results obtained are propagated between them by using theinput/output dependenies. Contrary to the previous tehniques whih are ex-at, simpli�ation by variable abstration may introdue additional behaviours.Nevertheless, it always redues the size of the state representation.By using variable abstration it is possible to extrat automatially systemdesriptions for symboli veri�ation tools aepting only spei� types of datae.g., TreX [ABS01℄ whih aepts only ounters, loks and queues. Moreover,this tehnique allows to ompute �nite-state abstrations for model heking.Validation omponents.Model-heking using Evaluator. The Evaluator tool implements an on-the-y model heking algorithm for the alternation free �-alulus [Koz83℄. This is abranhing time logi, based upon propositional alulus with �xpoint operators.The syntax is desribed by the following grammar:' ::= T j X j :' j ' ^ ' j < a > ' j �X:'For a given LTS representing a spei�ation, the semantis of a formula isde�ned as the set of states satisfying it, as follows:{ T (true) holds in any state{ : and ^ are the usual boolean operators{ < a > ' is true in a state if there exists a transition labelled by a leading toa state whih satis�es '{ �X:' denotes the usual least �x point operator (where X is a free variableof ' representing a set of states)This logi an be used to de�ne maros expressing usual requirements suhas: "there is no deadlok", "any ation a is eventually followed by an ationb", "it is not possible to perform an ation a followed by an ation b, withoutperforming an ation in between", et.Comparison or minimisation with Aldebaran. Aldebaran [BFKM97℄ is atool for the omparison of LTS modulo behavioural preorder or equivalene re-lations. Usually, one LTS represents the system behaviour, and the other itsrequirements. Moreover, Aldebaran an also be used to redue a given LTSmodulo a behavioural equivalene, possibly by taking into aount an observa-tion riterion.The preorders and equivalenes available in Aldebaran inlude usual sim-ulation and bisimulation relations suh as strong bisimulation [Par81℄, observa-tional bisimulation [Mil80℄, branhing bisimulation [vGW89℄, safety bisimulation[BFG+91℄, et. The hoie of the relation depends on the lass of properties tobe preserved.

Test ase generation using Tgv. Tgv [FJJV96,JM99℄ is a tool for test genera-tion developed by Irisa and Verimag. It is used to automatially generate testases for onformane testing of distributed reative systems. It generates testases from a formal spei�ation of the system and a test purpose.3.3 Translating UML to IFThe toolset supports generation of IF desriptions from both SDL [BFG+99℄and UML [OGO04℄. We desribe the priniples of the translation from UML toIF.UML modelling. We onsider a subset of UML inluding its objet-orientedfeatures and whih is expressive enough for the spei�ation of real-time systems.The elements of models are lasses with strutural features and relationships(assoiations, inheritane) and behaviour desriptions through state mahinesand operations.The translation tool adopts a partiular semantis for onurreny based onthe UML distintion between ative and passive objets. Informally, a set ofpassive objets form together with an ative objet an ativity group. Ativitygroups are exeuted in run-to-ompletion fashion, whih means that there is noonurreny between the objets of the same ativity group. Requests (asyn-hronous signals or method alls) oming from outside an ativity group arequeued and treated one by one. More details on this semantis an be found in[DJPV02,HvdZ03℄.The tool resolves some hoies left open by UML, suh as the onrete syntaxof the ation language used in state mahines and operations.Additionally, we use a speialisation of the standard UML pro�le for Shedul-ing, Performane and Time [OMG03b℄. Our pro�le, formally desribed in [GOO03℄,provides two kinds of mehanisms for timing: imperative mehanisms inludingtimers, loks and timed transition guards, and delarative mehanisms inlud-ing linear onstraints on time distanes between events.To provide onnetivity with existing CASE tools suh as Rational Rose[IBM℄, Rhapsody [Ilo℄ or Argo Uml [RVR+℄, the toolset reads models usingthe standard XML representation for UML (XMI [OMG01℄).The priniples of the mapping from UML to IF. Runtime UML entities(objets, all staks, pending messages, et.) are identi�able as a part of the sys-tem state in IF. This allows traing bak to UML spei�ations from simulationand veri�ation.Objets and onurreny model. Every UML lass X is mapped to a proessPX with a loal variable for eah attribute or assoiation of X . As inheritane isattened, all inherited attributes and assoiations are repliated in the proessesorresponding to eah sublass. The lass state mahine is translated into theproess behaviour.

Eah ativity group is managed at runtime by a speial IF proess, of typegroup manager, whih is responsible of sequentialising requests oming from ob-jets outside the ativity group, and of forwarding them to the objets insidewhen the group is stable. Run-to-ompletion is implemented by using the dy-nami priority rule y � x if x:leader = ywhih means that all objets of a group have higher priorities than their groupmanager. For every objet x, x:leader points to the manager proess of theobjet's ativity group. Thus, as long as at least one objet inside an ativitygroup an exeute, its group manager will not initiate a new run-to-ompletionstep. Notie that adopting a di�erent exeution mode an be done easily by justeliminating or adding new priority rules.Operations and polymorphism. The adopted semantis distinguishes betweenprimitive operations - desribed by a method with an assoiated ation - andtriggered operations - desribed diretly in the state mahine of their ownerlass. Triggered operations are mapped to ations embedded diretly in the statemahine of the lass.Eah primitive operation is mapped to a handler proess whose run-timeinstanes represent the ativations and the stak frames orresponding to alls.An operation all (either primitive or triggered) is expressed in IF by usingthree signals: a all signal arrying the all parameters, a return signal arryingthe return value, and a ompletion signal indiating ompletion of omputationof the operation, whih may be di�erent from return. Therefore, the ation ofinvoking an operation is represented in IF by sending a all signal. If the alleris in the same ativity group, then the all is direted to the target objet andis handled immediately. Alternatively, if the aller is in a di�erent group, theall is direted to the objet's group manager and is handled in a subsequentrun-to-ompletion step.The handling of inoming primitive alls by an objet is modelled as follows:in every state of the allee objet (proess), upon reeption of a all signal, theallee reates a new instane of the operation's handler. The allee then waitsuntil ompletion, before re-entering the same stable state in whih it reeivedthe all.Mapping operation ativations into separate proesses has several advan-tages:{ It provides a simple solution for handling polymorphi (dynamially bound)alls in an inheritane hierarhy. The reeiver objet knows its own identity,and an answer any all signal by reating the appropriate version of theoperation handler from the hierarhy.{ It allows for extensions to other types of alls than the ones urrently sup-ported by the semantis (e.g. non-bloking alls). It also preserves modularityand readability of the generated model.{ It allows to distinguish the relevent instants in the ontext of timing analysis.

Mapping of UML observers. In order to speify and verify dynami propertiesof UML models, we de�ne a notion of UML observer [OGO04℄ whih is similarto IF observers (see setion 3.1).Observers are desribed by lasses stereotyped with �observer�. They anown attributes and methods, and an be reated dynamially. We de�ned in[OGO04℄ event types suh as operation invoation, operation return, objet re-ation, et.Several examples of observers are provided in setion 4.3.Mapping of real-time onepts. The mapping of UML timers and loks to IFis straightforward. Delarative onstraints on duration between events are ex-pressed by means of loks and time guards or observers [OGO04℄.4 An example: the Ariane-5 Flight Program1We present a real-world ase study on the modelling and validation of the FlightProgram of Ariane-5 by using the IF toolset.This work has been initiated by EADS Launh Vehiles in order to evaluatethe maturity and appliability of formal validation tehniques. This evaluationonsisted in formally speifying some parts of an existing software, on a re-engineering basis, and verifying some ritial requirements on this spei�ation.The Ariane-5 Flight Program is the embedded software whih autonomouslyontrols the Ariane-5 launher during its ight, from the ground, through theatmosphere, and up to the �nal orbit.The spei�ation and validation have been studied in two di�erent ontexts:{ A �rst study arried out on a re-engineered SDL model has been ondutedin 2001. The SDL model was translated automatially to IF, simpli�ed bystati analysis, simulated and veri�ed using �-alulus properties as well asbehavioural model minimisation and omparison.{ A seond study arried out on a re-engineered UML model, has been on-duted more reently in the framework of the IST OMEGA projet [Con03℄.The goal was to evaluate both the appropriateness of extensions of UML tomodel this type of real-time system, and the usability of IF validation tools.In this study, the UML model has been translated automatially to IF, sim-pli�ed by stati analysis, simulated and veri�ed against properties expressedas observers.We summarise the relevant results of both experiments, and we give prini-ples of a veri�ation methodology that an be used in onnetion with the IFtoolset. For suh large examples, push-button veri�ation is not suÆient andsome iterative ombination of analysis and validation is neessary to ope withomplexity.1 Ariane-5 is an European Spae Ageny Projet delegated to CNES (Centre Nationald'Etudes Spatiales).

4.1 Overview of the Ariane-5 Flight ProgramThe Ariane-5 example has a relatively large UML model: 23 lasses, eah onewith operations and a state mahine. Its translation into IF has 7000 lines ofode.The launher ight. An Ariane-5 launh begins with ignition of the mainstage engine (ep - Etage Prinipal Cryotehnique). Upon on�rmation that itis operating properly, the two solid booster stages (eap - Etage A�el�erateur �aPoudre) are ignited to ahieve lift-o�.After burn-out, the two solid boosters (eap) are jettisoned and Ariane-5ontinues its ight through the upper atmosphere propelled only by the ryogenimain stage (ep). The fairing is jettisoned too, as soon as the atmosphere is thinenough for the satellites not to need protetion. The main stage is rendered inertimmediately upon shut-down. The launh trajetory is designed to ensure thatthe stages fall bak safely into the oean.The storable propellant stage (eps - Etage �a Propergol Stokable) takes overto plae the geostationary satellites in orbit. Payload separation and attitudinalpositioning begin as soon as the launher's upper setion reahes the orrespond-ing orbit. Ariane-5's missions ends 40 minutes after the �rst ignition ommand.A �nal task remains to be performed - that of passivation. This essentiallyinvolves emptying the tanks ompletely to prevent an explosion that would breakthe propellant stage into piees.The Flight Program. The Flight Program entirely ontrols the launher,without any human interation, beginning 6 minutes 30 seonds before lift-o�,and ending 40 minutes later, when the launher terminates its mission.The main funtions of the Flight Program are the following ones:{ ight ontrol, involves navigation, guidane and ontrol algorithms,{ ight regulation, involves observation and ontrol of various omponents ofthe propulsion stages (engines ignition and extintion, boosters ignition, et),{ ight on�guration, involves management of launher omponents (stage sep-aration, payload separation, et).We foused on regulation and on�guration funtions. The ight ontrol is arelatively independent synhronous reative ontrol system.The environment. In order to obtain a realisti funtional model of the FlightProgram restrited to regulation and on�guration funtionalities, we need totake into aount its environment. This has been modelled by two externalomponents abstrating the atual behaviour of the ight ontrol part and theground:{ the ight ontrol inludes several proesses desribing a nominal behaviour.They send, with some ontrolled degree of unertainty, the right ight om-mands, with the right parameters at the right moments in time.

{ the ground part abstrats the nominal behaviour of the launh protool onthe ground side. It passes progressively the ontrol of the launher to the onboard ight program, by providing the launh date and all the on�rmationsneeded for launhing. Furthermore, it remains ready to take bak the ontrol,if some malfuntioning is deteted during the launh proedure.Requirements. With the help of EADS engineers, we identi�ed a set of abouttwenty funtional safety requirements ensuring the right servie of the FlightProgram. The requirements have been lassi�ed into three lasses:{ general requirements, not neessarily spei� to the Flight Program but om-mon to all ritial real-time systems. They inlude basi untimed propertiessuh as the absene of deadloks, liveloks or signal loss, and basi timedproperties suh as the absene of timeloks, Zeno behaviours or deadlinesmissed;{ overall system requirements, spei� to the Flight Program and onerningits global behaviour. For example, the global sequene of the ight phases isrespeted: ground, vulain ignition, booster ignition, ...;{ loal omponent requirements, spei� to the Flight Program and regardingthe funtionality of some of its parts. This ategory inludes for exampleheking the ourrene of some ations in some omponent (e.g, payloadseparation ours eventually during an attitudinal positioning phase, or thestop sequene no. 3 an our only after lift-o�, or the state of engine valvesonforms to the ight phase, et.)4.2 UML modelThe Ariane-5 Flight Program is modelled in UML as a olletion of objetsommuniating mostly through asynhronous signals, and whose behaviour isdesribed by state mahines. Operations (with an abstrat body) are used tomodel the guidane, navigation and ontrol tasks. For the modelling of timedbehaviour and timing properties, we are using the OMEGA real-time UML pro-�le [GOO03℄, whih provides basi primitives suh as timers and loks. Themodel shown in �gure 5 is omposed of:{ a global ontroller lass responsible for ight on�guration (Ayli);{ a model of the regulation omponents (e.g. EAP, EPC orresponding to thelaunher's stages);{ a model of the regulated equipment (e.g. Valves, Pyros);{ an abstrat model of the yli GNC tasks (Cylis, Thrust monitor, et.);{ an abstrat model of the environment (lassesGround for the external eventsand Bus for modelling the ommuniation with synhronous GNC tasks).The behaviour of the ight regulation omponents (eap, ep) involves mainlythe exeution of the �ring/extintion sequene for the orresponding stage of thelaunher (see for example a fragment of the EPC stage ontroller's state mahine

Cyclics

minor_cycle : Integer
fasvol : Integer
incg : Integer
guidance_period : Integer = 8

<<Active>>

Guidance_Task
<<Active>>

1

1

+Guidance_Task1

+Cyclics
1

Thrust_Monitor

nb : Integer
nb_conf : Integer = 3
T1delh1 : Timer
H0 : Timer
H0_time : Integer

<<Triggered>> Decide_EAP_Separation()

(from GNC)

1
1

+Cyclics

1

+Thrust_Monitor

1

Valves

<<Triggered>> Open()
<<Triggered>> Close()

(from Environment)

<<Active>>

Acyclic

fasvol : Integer
H0_time : Integer
tqdp : Timer
H0 : Timer
Tpstot_prep : Timer
Tpstar_prep : Timer
Tpstot_eaprel : Timer
Tpstar_eaprel : Timer
End_QDP : Boolean
Early_sep : Timer
Late_sep : Timer
clock : Timer

<<Active>>

1

1

+Acyclic1

+Cyclics

1

1

1

+Acyclic

1

+Guidance_Task
1

1

1

+Thrust_Monitor

1

+Acyclic
1

EPC

current_is_ok : Boolean
clock : Timer
H0 : Timer
H0_time : Integer

(from Stages)

<<Active>>
1

1

+EPC

1

+Acyclic

1

1

1

+Cyclics

1

+EPC
1

1

1

+EPC

1+Guidance_Task

1

1

1

+Thrust_Monitor

1

+EPC 1

1 1

+EPC_EVBO

1

+EVBO

11 1

+EPC_EVVP

1

+EVVP

11 1

+EPC_EVVCH

1

+EVVCH

11 1

+EPC_EVVCO

1

+EVVCO

11 1

+EPC_EVVGH

1

+EVVGH

11

+EPC

1

EAP

H0 : Timer
H0_time : Integer

<<Triggered>> EAP_Preparation()
<<Triggered>> EAP_Release()

(from Stages)

<<Active>>

11

+EAP

1

+Acyclic

1

1

1

+EAP 1

+EPC 1

Pyro
(from Environment)

<<Active>>
1 1

+EAP_Pyro1

1

+Pyro1

11 1

+EAP_Pyro2

1

+Pyro2

11 1

+EAP_Pyro3

1

+Pyro3

1Fig.5.StrutureoftheUMLspei�ation(part).

Wait_Igniti
on_Time

Open_EVB
O

Wait_Start

Abort

timeout(clock) /
current_is_ok:=EVVP.

Open()

Stop1

Stop2

[current_is_ok = false]

[current_is_ok = true]

Wait_Clos
e_EVBO

timeout(clock) / begin current_is_ok:=EVBO.Close();
Cyclics!Anomaly();Acyclic!Anomaly();Guidance_Task!An
omaly(); EAP!Anomaly(); Thrust_Monitor!Anomaly() end

 / clock.set(TimeConstants.MS_100)

Wait_Clos
e_EVVP

 / clock.set(TimeConstants.MS_100)

Start(H0_time) / begin
clock.set(298900);

H0.set(H0_time) end

timeout(clock) / begin
clock.set(TimeConstants.MS_100);

current_is_ok:=EVBO.Open() end

[current_is_ok = false] / clock.reset()[current_is_ok = true]

timeout(clock) / current_is_ok:=EVVP.Close()

Fig. 6. Behaviour of the EPC regulation proess (part).in �gure 6). The sequene is time-driven, with the possibility of safe abortion inase of anomaly.The ight on�guration part implements several tasks: eap separation, epseparation, payload separation, et. In their ase too, the separation dates areprovided by the ontrol part, depending on the urrent ight evolution.4.3 Validation using the IF toolsetValidation is a omplex ativity, involving the iterated appliation of veri�ationand analysis phases as depited in �gure 7.Translation to IF and basi stati analysis provides a �rst sanity hek ofthe model. In this step, the user an �nd simple ompile-time errors in the model(name errors, type errors, et.) but also more elaborate information (uninitialisedor unused variables, unused signals, dead ode).

Basic Static Analysis

Requirements

Model Exploration

Advanced Static Analysis

Model Generation

Model Checking

Environment

Specification

Translation to IF +

Fig. 7. Validation methodology in IF.Model exploration. The validation proess ontinues with a debugging phase.Without being exhaustive, the user begins to explore the model in a guided orrandom manner. Simulation states do not need to be stored as the ompletemodel is not expliitly onstruted at this moment.The aim of this phase is to inspet and validate known nominal senarios ofthe spei�ation. Moreover, the user an test simple safety properties, whih musthold on all exeution paths. Suh properties are generi ones, suh as absene ofdeadloks and signal loss, or more spei� ones suh as loal assertions.Advaned stati analysis. The aim is to simplify the IF desription. We usethe following stati analysis tehniques to redue both the state vetor and thestate spae, while ompletely preserving its behaviour:{ A spei� analysis tehnique is the elimination of redundant loks [DY96℄.Two loks are dependent in a ontrol state if their di�erene is onstant andan be statially omputed at that state.The initial Sdl version of the Flight Program used no less than 130 timers.Using our stati analysis tool we were able to redue them to only 55 timers,funtionally independent ones. Afterwards, the whole spei�ation has beenrewritten taking into aount the redundany disovered by the analyser.{ A seond optimisation identi�es live equivalent states by introduing sys-temati resets for dead variables in ertain states of the spei�ation.For this ase study, the live redution has not been partiularly e�etive dueto the redued number of variables (others than loks) used in the spei-�ation. Our initial attempts to generate the model without live redutionfailed. Finally, using live redution we were able to build the model but still,it was of unmanageable size, about 2 � 106 states and 18 � 106 transitions.

{ The last optimisation is dead-ode elimination. We used this tehnique toautomatially eliminate some omponents whih do not perform any relevantation.LTS generation. The LTS generation phase aims to build the state graph ofthe spei�ation by exhaustive simulation. In order to ope with the omplexity,the user an hoose an adequate state representation e.g., disrete or denserepresentation of time as well as an exploration strategy e.g., traversal order,use of partial order redutions, sheduling poliies, et.The use of partial order redution has been neessary to onstrut tratablemodels. We applied a simple stati partial order redution whih eliminates spu-rious interleaving between internal steps ourring in di�erent proesses at thesame time. Internal steps are those whih do not perform visible ommuniationations, neither signal emission or aess to shared variables. This partial orderredution imposes a �xed exploration order between internal steps and preservesall the properties expressed in terms of visible ations.Example 4. By using partial order redution on internal steps, we redued thesize of the model by 3 orders of magnitude i.e, from 2 � 106 states and 18 � 106transitions to 1:6�103 states and 1:65�103 transitions, whih an be easily handledby the model heker.We onsidered two di�erent models of the environment. A time-deterministione, where ations take plae at preise moments in time and a time-nondeterministione where ations take plae within prede�ned time intervals. Table 1 presents ineah ase the sizes of the models obtained depending on the generation strategyused. time timedeterministi non-deterministi� live redution state state� partial order explosion explosionmodel + live redution 2201760 st. stategeneration � partial order 18706871 tr. explosion+ live redution 1604 st. 195718 st.+ partial order 1642 tr. 278263 tr.modelmodel minimisation � 1 se. � 20 se.veri�ation modelheking � 15 se. � 120 se.Table 1. Veri�ation Results. The model minimisation and model heking experi-ments are performed on the smallest available models i.e, obtained with both live andpartial order redution.

0

2

EPC!Fire_1

3

EPC!Fire_2

1

EPC!Anomaly

EPC!Anomaly 4

EPC!Fire_3

5

EAP!Anomaly

EAP!Fire EPC!AnomalyFig. 8. Minimal model.Model heking. One the model has been generated, three model hekingtehniques have been applied to verify requirements on the spei�ation:1. Model heking of �-alulus formulae using Evaluator.Example 5. The requirement expressing that \the stop sequene no. 3 oursonly during the ight phase, and never on the ground phase" an be expressedby the following �-alulus formula, veri�ed with Evaluator:: �X: < EPC!Stop 3 > T _ < EAP !Fire > XThis formula means that the system annot exeute the stop sequene no. 3without exeuting the �ring of the eap �rst.2. Constrution of redued models using Aldebaran. A seond approah, usu-ally muh more intuitive for a non expert end-user, onsists in omputing anabstrat model (with respet to given observation riteria) of the overall be-haviour of the spei�ation. Possible inorret behaviours an be deteted byvisualising suh a model.Example 6. All safety properties involving the �ring ations of the two prini-pal stages, eap and ep, and the detetion of anomalies are preserved on theLTS in �gure 8 generated by Aldebaran. It is the quotient model with re-spet to safety equivalene [BFG+91℄ while keeping observable only the ationsabove. For instane it is easy to hek on this abstrat model that, whenever ananomaly ours before ation EPC!Fire 3 (ignition of the Vulain engine), thennor this ation nor EAP!Fire ation are exeuted and therefore the entire launhproedure is aborted.Table 1 gives the average time required for verifying eah kind of propertyby temporal logi model heking and model minimisation respetively.

valve_not_abused

t : Timer

<<Observer>>

initial

wait

match invoke ::EADS::Environment::Valves::Close() / t.set(0)

match invoke ::EADS::Environment::Valves::Open() / t.set(0)

KO
<<error>>

match invoke ::EADS::Environment::Valves::Open()

match invoke ::EADS::Environment::Valves::Close()

[t >= 50]

Fig. 9. A timed safety property of the Ariane-5 model.
liftoff_aborted_right

v : Valves
t : Timer

<<Observer>>

ok

aborting

aborted

not_yet

aborted

not_yet

 / t.set(0)

[t >= 2000]

ko
<<error>>

[v.EPC.EAP.Pyro1 @ Ignition_done or
v.EPC.EAP.Pyro2 @ Ignition_done or
v.EPC.EAP.Pyro3 @ Ignition_done]

match send ::EADS::Signals::Request_EAP_Preparation()

match send ::EADS::Signals::Request_EAP_Release()

[(v.EPC.EVBO @ Open or v.EPC.EVBO @ Failed_Open) or
(v.EPC.EVVCH @ Open or v.EPC.EVVCH @ Failed_Open) or
(v.EPC.EVVCO @ Open or v.EPC.EVVCO @ Failed_Open) or
(v.EPC.EVVGH @ Open or v.EPC.EVVGH @ Failed_Open) or

(v.EPC.EVVP @ Open or v.EPC.EVVP @ Failed_Open)]

match accept ::EADS::Environment::Valves::Open() by v

[v @ Open]
[v @ Failed_Open]

Fig. 10. A timed safety property of the Ariane-5 model.

wait_start

wait_ignition_
p1

p1_ignited

ko
<<error>>

okchoice

match send ::EADS::Signals::Start(void) / begin mc :=
g.Acyclic.MissionConstants; tc := g.Acyclic.TimeConstants end

[g.Acyclic.EAP.Pyro1
@ Ignition_done]

[now >= (tc.MN_5 * 2 + mc.Tpstar_prep)]

[g.Acyclic.EAP.Pyro2 @ Ignition_done]

[now >= (tc.MN_5 * 2 + mc.Tpstot_prep)]

[now < (tc.MN_5*2 + mc.Tpstot_prep)]

liftoff_performed_right2

g : Ground
mc : MissionConstants
tc : TimeConstants

<<Observer>>

Fig. 11. A timed safety property of the Ariane-5 model.3. Model heking with observers. We also used UML observers to express andhek requirements. Observers allow us to express in a muh simpler mannermost safety requirements of the Ariane-5 spei�ation. Additionally, they allowto express quantitative timing properties, something whih is diÆult to expresswith �-alulus formulas.Example 7. Figures 9 to 11 show some of the properties that were heked onthe UML model:Figure 9: between any two ommands sent by the ight program to the valvesthere should elapse at least 50ms.Figure 10: if some instane of lass Valve fails to open (i.e. enters the stateFailed Open) then{ No instane of the Pyro lass reahes the state Ignition done.{ All instanes of lass Valve shall reah one of the states Failed Close orClose after at most 2 seonds sine the initial valve failure.{ The events EAP Preparation and EAP Release are never emitted.Figure 11: if the Pyro1 objet (of lass Pyro) enters the state Ignition done,then the Pyro2 objet shall enter the state Ignition done at a system time be-tween T imeConstants:MN 5�2+Tpstot prep and T imeConstants:MN 5�2 + Tpstar prep.

5 ConlusionThe IF toolset is the result of a long term researh e�ort for theory, methods andtools for model-based development. It o�ers a unique ombination of features formodelling and validation inluding support for high level modelling, stati anal-ysis, model-heking and simulation. Its has been designed with speial are foropenness to modelling languages and validation tools thanks to the de�nition ofappropriate API's. For instane, it has been onneted to expliit model hekingtools suh as Spin [Hol91℄ and Cadp [FGK+96℄, to symboli and regular modelheker tools suh as TreX [ABS01℄, Lash [BL02a℄, the PVS-based abstrationtool Invest [BLO98℄ and to the automati test generation and exeution toolsTgv [FJJV96℄, Agatha [LRG01℄ and Spider [HN04℄.The IF notation is expressive and rih enough to map in a strutural mannermost of UML onepts and onstruts suh as lasses, state mahines with a-tions, ativity groups with run-to-ompletion semantis. The mapping attensthe desription only for inheritane and synhronous alls and this is neessaryfor validation purposes. It preserves all relevant information about the strutureof the model. This provides a basis for ompositional analysis and validationtehniques that should be further investigated.The IF notation relies on a framework for modelling real-time systems basedon the use of priorities and of types of urgeny studied at Verimag [BST98℄,[BS00℄, [AGS02℄. The ombined use of behaviour and priorities naturally leadsto layered models and allows ompositional modelling of real-time systems, inpartiular of aspets related to resoure sharing and sheduling. Sheduling poli-ies an be modelled as sets of dynami priority rules. The framework supportsomposition of sheduling poliies and provides omposability results for dead-lok freedom of the sheduled system. Priorities are also an elegant mehanismfor restriting non determinism and ontrolling exeution. Run-to-ompletionexeution and mutual exlusion an be modelled in a straightforward manner.Finally, priorities prove to be a powerful tool for modelling both heterogeneousinteration and heterogeneous exeution as advoated in [GS03℄. The IF toolsetfully supports this framework. It embodies priniples for struturing and enrih-ing desriptions with timing information as well as expertise gained through itsuse in several large projets suh as the IST projets OMEGA [Con03,GH04℄,AGEDIS [Con02℄ and ADVANCE [Con01℄.The ombination of di�erent validation tehniques enlarges the sope of ap-pliation of the IF toolset. Approahes an di�er aording to the harateristisof the model. For data intensive models, stati analysis tehniques an be used tosimplify the model before veri�ation, while for ontrol intensive models partialorder tehniques and observers are very useful to ope with state explosion. Inany ase, the ombined use of stati analysis and model heking by skilled usersproves to be a powerful means to break omplexity. Clearly, the use of high levelmodelling languages involves some additional ost in omplexity with respet tolow level modelling languages e.g., languages based on automata. Nevertheless,this is a prie to pay for validation of real life systems whose faithful modellingrequires dynamially hanging models with in�nite state spae. In our method-

ology, abstration and simpli�ation an be arried out automatially by statianalysis.The use of observers for requirements proves to be very onvenient and easyto use ompared to logi-based formalisms. They allow a natural desription,espeially of real-time properties relating timed ourrenes of several events.The \operational" desription style is muh more easy to master and understandby pratitioners. The limitation to safety properties is not a serious one for well-timed systems. In fat, IF desriptions are by onstrution well-timed - timean always progress due to the use of urgeny types. Liveness properties beomebounded response, that is safety properties.The IF toolset is unique in that it supports rigorous high level modelling ofreal-time systems and their properties as well as a omplete validation method-ology. Compared to ommerially available modelling tools, it o�ers more power-ful validation features. For graphial editing and version management, it needs afront end that generates either XMI or SDL. We are urrently usingRational RoseandObjetGeode. We have also onnetions fromRhapsody andArgo Uml.Compared to other validation tools, the IF toolset presents many similaritieswith Spin. Both tools o�er features suh as a high level input language, integra-tion of external ode, use of enumerative model heking tehniques as well asstati optimisations. In addition, IF allows the modelling of real-time oneptsand the toolset has an open arhiteture whih eases the onnetion with othertools.Referenes[ABS01℄ A. Annihini, A. Bouajjani, and M. Sighireanu. TReX: A Tool for Reah-ability Analysis of Complex Systems. In Proeedings of CAV'01, (Paris,Frane), volume 2102 of LNCS. Springer, 2001.[AD94℄ R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretial ComputerSiene, 126:183{235, 1994.[AGS00℄ K. Altisen, G. G�ossler, and J. Sifakis. A Methodology for the Construtionof Sheduled Systems. In M. Joseph, editor, pro. FTRTFT 2000, volume1926 of LNCS, pages 106{120. Springer-Verlag, 2000.[AGS02℄ K. Altisen, G. G�ossler, and J. Sifakis. Sheduler Modeling Based on theController Snthesis Paradigm. Journal of Real-Time Systems, speial issueon "ontrol-theoretial approahes to real-time omputing", 23(1/2):55{84,2002.[BFG+91℄ A. Bouajjani, J.Cl. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safetyfor Branhing Time Semantis. In Proeedings of ICALP'91, volume 510 ofLNCS. Springer, July 1991.[BFG+99℄ M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, andJ. Sifakis. IF: An Intermediate Representation for SDL and its Appliations.In R. Dssouli, G. Bohmann, and Y. Lahav, editors, Proeedings of SDLFORUM'99 (Montreal, Canada), pages 423{440. Elsevier, June 1999.[BFKM97℄ M. Bozga, J.Cl. Fernandez, A. Kerbrat, and L. Mounier. Protool Veri�a-tion with the Aldebaran Toolset. Software Tools for Tehnology Transfer,1(1+2):166{183, Deember 1997.

[BL02a℄ B. Boigelot and L. Latour. The Liege Automata-based Symboli HandlerLASH. http://www.monte�ore.ulg.a.be/ boigelot/researh/lash, 2002.[BL02b℄ M. Bozga and Y. Lakhneh. IF-2.0: Common Language Operational Se-mantis. Tehnial report, Verimag, 2002.[BLO98℄ S. Bensalem, Y. Lakhneh, and S. Owre. Computing Abstrations of In-�nite State Systems Compositionally and Automatially. In A. Hu andM. Vardi, editors, Proeedings of CAV'98 (Vanouver, Canada), volume1427 of LNCS, pages 319{331. Springer, June 1998.[BS00℄ S. Bornot and J. Sifakis. An Algebrai Framework for Urgeny. Informationand Computation, 163:172{202, 2000.[BST98℄ S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgeny in Timed Systems.In International Symposium: Compositionality - The Signi�ant Di�erene,volume 1536 of LNCS. Springer-Verlag, 1998.[Con01℄ ADVANCE Consortium. http://www.liafa.jussieu.fr/ advane - website ofthe IST ADVANCE projet, 2001.[Con02℄ AGEDIS Consortium. http://www.agedis.de - website of the IST AGEDISprojet, 2002.[Con03℄ OMEGA Consortium. http://www-omega.imag.fr - website of the ISTOMEGA projet., 2003.[DH99℄ W. Damm and D. Harel. LSCs: Breathing Life into Message SequeneCharts. In P. Cianarini, A. Fantehi, and R. Gorrieri, editors, FMOODS'99IFIP TC6/WG6.1 Third International Conferene on Formal Methods forOpen Objet-Based Distributed Systems. Kluwer Aademi Publishers, 1999.Journal Version to appear in Journal on Formal Methods in System Design,July 2001.[DJPV02℄ W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: AFormal Semantis of Conurreny and Communiation in Real-Time UML.In Proeedings of FMCO'02, LNCS. Springer Verlag, November 2002.[DY96℄ C. Daws and S. Yovine. Reduing the Number of Clok Variables of TimedAutomata. In Proeedings of RTSS'96 (Washington, DC, USA), pages 73{82. IEEE Computer Soiety Press, Deember 1996.[FGK+96℄ J.Cl. Fernandez, H. Garavel, A. Kerbrat, R. Mateesu, L. Mounier, andM. Sighireanu. CADP: A Protool Validation and Veri�ation Toolbox.In R. Alur and T.A. Henzinger, editors, Proeedings of CAV'96 (NewBrunswik, USA), volume 1102 of LNCS, pages 437{440. Springer, August1996.[FJJV96℄ J.C. Fernandez, C. Jard, T. J�eron, and C. Viho. Using On-the-y Veri-�ation Tehniques for the Generation of Test Suites. In Proeedings ofCAV'96, number 1102 in LNCS. Springer, 1996.[GH04℄ S. Graf and J. Hooman. Corret development of embedded systems. InEuropean Workshop on Software Arhiteture: Languages, Styles, Models,Tools, and Appliations (EWSA 2004), o-loated with ICSE 2004, St An-drews, Sotland, LNCS, May 2004.[GOO03℄ S. Graf, I. Ober, and I. Ober. Timed Annotations in UML. In Work-shop SVERTS on Spei�ation and Validation of UML models for RealTime and Embedded Systems, a satellite event of UML 2003, San Fran-iso, Otober 2003, Verimag tehnial report 2003/10/22 or http://www-verimag.imag.fr/EVENTS/2003/SVERTS/, Otober 2003.[GS03℄ G. G�ossler and J. Sifakis. Composition for Component-Based Modeling. Inpro. FMCO'02, volume 2852 of LNCS. Springer-Verlag, 2003.

[Har87℄ D. Harel. Stateharts: A Visual Formalism for Complex Systems. Si.Comput. Programming 8, 231-274, 1987.[HN04℄ A. Hartman and K. Nagin. The AGEDIS Tools for Model Based Testing.In Proeedings of ISSTA'2004, 2004.[Hol91℄ Gerard J. Holzmann. Design and Validation of Computer Protools. Pren-tie Hall Software Series, 1991.[HP98℄ D. Harel and M. Politi. Modeling Reative Systems with Stateharts: TheSTATEMATE Approah. MGraw-Hill, 1998.[HvdZ03℄ J. Hooman and M.B. van der Zwaag. A Semantis of Communiating Re-ative Objets with Timing. In Proeedings of SVERTS'03 (Spei�ationand Validation of UML models for Real Time and Embedded Systems), SanFraniso, Otober 2003.[IBM℄ IBM. Rational ROSE Development Environment.[Ilo℄ Ilogix. Rhapsody Development Environment.[JM99℄ T. J�eron and P. Morel. Test Generation Derived from Model Cheking. InN. Halbwahs and D. Peled, editors, Proeedings of CAV'99 (Trento, Italy),volume 1633 of LNCS, pages 108{122. Springer, July 1999.[Koz83℄ D. Kozen. Results on the Propositional �-Calulus. Theoretial ComputerSiene, 1983.[LPY98℄ K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Journalon Software Tools for Tehnology Transfer, 1:134{152, 1998.[LRG01℄ D. Lugato, N. Rapin, and J.P. Gallois. Veri�ation and tests generationfor SDL industrial spei�ations with the AGATHA toolset. In Real-TimeTools Workshop aÆliated to CONCUR 2001, Aalborg, Denmark, 2001.[Mil80℄ R. Milner. A Calulus of Communiation Systems, volume 92 of LNCS.Springer, 1980.[Mu97℄ S. Muhnik. Advaned Compiler Design Implementation. Morgan Kauf-mann Publishers, 1997.[NS91℄ X. Niollin and J. Sifakis. An Overview and Synthesis on Timed ProessAlgebras. In Pro. CAV'91, volume 575 of LNCS. Springer-Verlag, July1991.[OGO04℄ I. Ober, S. Graf, and I. Ober. Model Cheking of UML Models via a Map-ping to Communiating Extended Timed Automata. In 11th InternationalSPIN Workshop on Model Cheking of Software, 2004, volume LNCS 2989,pages 127{145, 2004.[OMG01℄ OMG. Uni�ed Modeling Language Spei�ation (Ation Semantis). OMGAdopted Spei�ation, Deember 2001.[OMG03a℄ OMG. Model Driven Arhiteture. http://www.omg.org/mda, 2003.[OMG03b℄ OMG. Standard uml Pro�le for Shedulability, Performane and Time,v. 1.0. OMG doument formal/2003-09-01, September 2003.[Par81℄ D. Park. Conurreny and Automata on In�nite Sequenes. TheoretialComputer Siene, 104:167{183, Marh 1981.[RVR+℄ A. Ramirez, Ph. Vanpeperstraete, A. Ruekert, K. Odutola, J. Bennett, andL. Tolke. ArgoUML Environment.[Sif77℄ J. Sifakis. Use of Petri Nets for Performane Evaluation. In Pro. 3rd Intl.Symposium on Modeling and Evaluation, pages 75{93. IFIP, North Holland,1977.[Sif01℄ J. Sifakis. Modeling Real-Time Systems| Challenges andWork Diretions.In T.A. Henzinger and C. M. Kirsh, editors, Pro. EMSOFT'01, volume2211 of LNCS. Springer-Verlag, 2001.

[STY03℄ J. Sifakis, S. Tripakis, and S. Yovine. Building Models of Real-Time Systemsfrom Appliation Software. Pro. IEEE, 91(1):100{111, 2003.[Tip94℄ F. Tip. A Survey of Program Sliing Tehniques. Tehnial Report CS-R9438, CWI, Amsterdam, The Netherlands, 1994.[vGW89℄ R.J. van Glabbeek and W.P. Weijland. Branhing-Time and Abstrationin Bisimulation Semantis. Tehnial Report CS-R8911, CWI, Amsterdam,The Netherlands, 1989.[Wei84℄ M. Weiser. Program Sliing. IEEE Transations on Software Engineering,SE-10(4):352{357, 1984.[Yov97℄ S. Yovine. KRONOS: A Veri�ation Tool for Real-Time Systems. SoftwareTools for Tehnology Transfer, 1(1+2):123{133, Deember 1997.

