
HAL Id: hal-00361307
https://hal.archives-ouvertes.fr/hal-00361307

Submitted on 13 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tools and Applications II: The IF Toolset
Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, Joseph Sifakis

To cite this version:
Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, Joseph Sifakis. Tools and Applications II: The
IF Toolset. International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, Sep 2004, Bertinoro, Italy. pp.237-267, �10.1007/b110123�. �hal-00361307�

https://hal.archives-ouvertes.fr/hal-00361307
https://hal.archives-ouvertes.fr

Tools and Appli
ations II: The IF Toolset?Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph SifakisVERIMAG, 2 avenue de Vignate, F-38610 Gi�eresAbstra
t. This paper presents an overview on the IF toolset whi
h isan environment for modelling and validation of heterogeneous real-timesystems. The toolset is built upon a ri
h formalism, the IF notation,allowing stru
tured automata-based system representations. Moreover,the IF notation is expressive enough to support real-time primitives andextensions of high-level modelling languages su
h as SDL and UML bymeans of stru
ture preserving mappings.The
ore part of the IF toolset
onsists of a synta
ti
 transformation
omponent and an open exploration platform. The synta
ti
 transfor-mation
omponent provides language level a

ess to IF des
riptions andhas been used to implement stati
 analysis and optimisation te
hniques.The exploration platform gives a

ess to the graph of possible exe
u-tions. It has been
onne
ted to di�erent state-of-the-art model-
he
kingand test-
ase generation tools.A methodology for the use of the toolset is presented at hand of a
asestudy
on
erning the Ariane-5 Flight Program for whi
h both an SDLand a UML model have been validated.1 Introdu
tionModelling plays a
entral role in systems engineering. The use of models
an prof-itably repla
e experimentation on a
tual systems with in
omparable advantagessu
h as:{ ease of
onstru
tion by integration of heterogeneous
omponents,{ generality by using generi
ity, abstra
tion, behavioural non determinism{ enhan
ed observability and
ontrollability, espe
ially avoidan
e of probe ef-fe
t and of disturban
es due to experimentation{ �nally, possibility of analysis and predi
tability by appli
ation of formalmethods.Building models whi
h faithfully represent
omplex systems is a non trivialproblem and a prerequisite to the appli
ation of formal analysis te
hniques.Usually, modelling te
hniques are applied at early phases of system developmentand at high abstra
tion level. Nevertheless, the need of a uni�ed view of thevarious life-
y
le a
tivities and of their interdependen
ies, motivated re
ently,the so
alled model-based development [OMG03a,Sif01,STY03℄ whi
h heavily? This work was supported in part by the European Commission through the proje
tsIST-1999-29082 ADVANCE, IST-1999-20218 AGEDIS and IST-2001-33522 OMEGA

relies on the use of modelling methods and tools to provide support and guidan
efor system design and validation.Currently, validation of real-time systems is done by experimentation andmeasurement on spe
i�
 platforms in order to adjust design parameters andhopefully a
hieve
onformity to QoS requirements. Model based developmentintends to repla
e experimentation on real prototypes by validation on virtualprototypes (models). Furthermore, a key idea is the use of su

essive modeltransformations in design methodologies to derive from some initial high leveldes
ription low level des
riptions
lose to implementations. A
hieving su
h am-bitious goals raises hard and not yet
ompletely resolved problems dis
ussed inthis se
tion.Heterogeneity. A real-time system is a layered system
onsisting of an appli
a-tion software implemented as a set of intera
ting tasks, and of the underlyingexe
ution platform. It
ontinuously intera
ts with an external environment toprovide a servi
e satisfying QoS requirements
hara
terising the dynami
s of theintera
tion. Models of real-time systems should represent faithfully intera
tivebehaviour taking into a

ount implementation
hoi
es related to resour
e man-agement and s
heduling as well as exe
ution speed of the underlying hardwareThe models of real-time systems involve heterogeneous
omponents with dif-ferent exe
ution speeds and intera
tion modes. There exist two main sour
es ofheterogeneity: intera
tion and exe
ution.Heterogeneity of intera
tion results from the
ombination of di�erent kindsof intera
tion.Intera
tions
an be atomi
 or non atomi
. The result of atomi
 intera
tions
annot be altered through interferen
e with other intera
tions. Pro
ess algebrasand syn
hronous languages assume atomi
 intera
tions. Asyn
hronous
ommu-ni
ation (SDL, UML) or method
all are generally non atomi
 intera
tions. Theirinitiation and their
ompletion
an be separated by other events.Intera
tions
an involve stri
t or non stri
t syn
hronisation. For instan
e,rendez-vous and method
alls require stri
t intera
tions. On the
ontrary, broad-
ast of syn
hronous languages and asyn
hronous
ommuni
ation do not needstri
t syn
hronisation. A pro
ess (sender)
an initiate an intera
tion indepen-dently of the possibility of
ompletion by its environment.Heterogeneity of exe
ution results from the
ombination of two exe
utionparadigms.Syn
hronous exe
ution is typi
ally adopted in hardware, in syn
hronous lan-guages, and in time triggered ar
hite
tures and proto
ols. It
onsiders that asystem exe
ution is a sequen
e of steps. It assumes syn
hrony, meaning that thesystem's environment does not
hange during a step, or equivalently \that thesystem is in�nitely faster than its environment". The syn
hronous paradigm hasa built-in strong assumption of fairness: in a step all the system
omponentsexe
ute a quantum
omputation de�ned by using either quantitative or logi
altime.The asyn
hronous paradigm does not adopt any notion of global exe
utionstep. It is used in languages for the des
ription of distributed systems su
h as SDL

and UML, and programming languages su
h as Ada and Java. The la
k of built-in me
hanisms for sharing resour
es between
omponents
an be
ompensatedthrough s
heduling. This paradigm is also
ommon to all exe
ution platformssupporting multiple threads, tasks, et
.Modelling time. Models for real-time systems should allow modelling progressof time in order to express various kinds of timing information e.g., exe
utiontimes of a
tions, arrival times of events, deadlines, laten
y.Timed models
an be de�ned as extensions of untimed models by addingtime variables used to measure the time elapsed sin
e their initialisation. They
an be represented as ma
hines that
an perform two kinds of state
hanges:a
tions and time steps. A
tions are timeless state
hanges of the untimed system;their exe
ution may depend on and modify time variables. In a time step, alltime variables in
rease uniformly. There exists a variety of timed formalismsextensions of Petri nets [Sif77℄, pro
ess algebras [NS91℄ and timed automata[AD94℄. Any exe
utable untimed des
ription e.g., appli
ation software,
an beextended into a timed one by adding expli
itly time variables or other timing
onstraints.Timed models use a notion of logi
al time. Contrary to physi
al time, logi
altime progress
an blo
k, espe
ially as a result of in
onsisten
y of timing
on-straints. The behaviour of a timed model is
hara
terised by the set of its runs,that is the set of maximal sequen
es of
onse
utive states rea
hed by perform-ing transitions or time steps. The time elapsed between two states of a run is
omputed by summing up the durations of all the time steps between them. Fora timed model to represent a system, it is ne
essary that it is well-timed in thesense that in all its runs time diverges.As a rule, in timed models there may exist states from whi
h time
annotprogress. If time
an progress from any state of a timed model, then it is alwayspossible to wait and postpone the exe
ution of a
tions whi
h means that it isnot possible to model a
tion urgen
y. A
tion urgen
y at a state is modelled bydisallowing time progress. This possibility of stopping time progress goes againstour intuition about physi
al time and
onstitutes a basi
 di�eren
e between thenotions of physi
al and logi
al time. It has deep
onsequen
es on timed systemsmodelling by
omposition of timed
omponents.Often timed extensions of untimed systems are built in an ad ho
 mannerat the risk of produ
ing over-
onstrained or in
omplete des
riptions. It is essen-tial to develop a methodology for adding
ompositionally timing information tountimed models to get a
orresponding timed model.The IF toolset is an environment for modelling and validation of heteroge-neous real-time systems. It is
hara
terised by the following features:{ Support for high level modelling with formalisms su
h as SDL, UML used byusers in some CASE tool. This is essential to ease usability by pra
titionersand to allow the use of state-of-the-art modelling te
hnology. Furthermore,the use of high level formalisms allows validating realisti
 models whi
h
anbe simpli�ed if ne
essary by using automated tools. This avoids starting with

simpli�ed models
onstru
ted in an ad ho
 manner as it is the
ase for othertools using low level des
ription languages e.g., automata.{ Translation of high level models into an intermediate representation, the IFnotation, that serves as a semanti
 model. This representation is ri
h andexpressive enough to des
ribe the main
on
epts and
onstru
ts of sour
elanguages. It
ombines
omposition of extended timed automata and dy-nami
 priorities to en
ompass heterogeneous intera
tion. Priorities play animportant role for the des
ription of s
heduling poli
ies as well as the restri
-tion of asyn
hronous behaviour to model run-to-
ompletion exe
ution. We
onsider a
lass of timed automata whi
h are by
onstru
tion well-timed.The developed translation methods for SDL and UML preserve the overallstru
ture of the sour
e model and the size of the generated IF des
riptionin
reases linearly with the size of the sour
e model. IF is used as a basis formodel simpli�
ation by means of stati
 analysis te
hniques and the appli
a-tion of light stru
tural analysis te
hniques e.g.,
he
king suÆ
ient
onditionsfor deadlo
k-freedom of pro
esses. It is also used for the generation of lowerlevel models e.g., labelled transitions systems used for veri�
ation purposes.{ Combined use of various validation te
hniques in
luding model-
he
king,stati
 analysis on the intermediate representation and simulation. A method-ology has been studied at Verimag for
omplex real-time appli
ations.{ Expression of requirements to be validated on models by using observers.These
an be
onsidered as a spe
ial
lass of models equipped with primitivesfor monitoring and
he
king for divergen
e from some nominal behaviour.Our
hoi
e for monitors rather than de
larative formalisms su
h as temporallogi
 or Live Sequen
e
harts [DH99℄ is motivated by our
on
ern to be
lose to industrial pra
ti
e and to avoid as mu
h as possible in
onsisten
yin requirements.The paper is organised as follows. Se
tion 2 presents the overall ar
hite
tureof the IF toolset. Se
tion 3 is the main se
tion of the paper. It starts with a pre-sentation of IF in
luding its main
on
epts and
onstru
ts and their semanti
s.Then the overall ar
hite
ture of the toolset and its features for simulation, anal-ysis and validation are des
ribed. Finally the translation prin
iple from UML toIF is explained by showing how the main UML
on
epts and
onstru
ts
an bemapped into IF.Se
tion 4 presents an example illustrating the appli
ation of the toolset tothe modelling and validation of the Ariane-5 Flight Program. For this non trivial
ase study, we provide a validation methodology and results. Se
tion 5 presents
on
luding remarks about the toolset and the underlying modelling and valida-tion methodology.2 Setting the
ontext - the overall ar
hite
tureFigure 1 des
ribes the overall ar
hite
ture of the toolset, the most important
omponents as well as their inter-
onne
tions. We distinguish three di�erent de-

UML tools

IF tools

IF

LTS level tools

EXPLORATION PLATFORM

simulator
 LTS generator

test generator

IF static

analysis

live variable

analysis

SDL-UML-IF frontend

UML2IF &

SDL2IF

translators

UML

validation

driver

dead-code

elimination

variable

abstraction

evaluator

Other LTS verification tools (CADP)

minimization, comparison, composition...

SDL TOOLS

ObjectGEODE, TAU

UML TOOLS

Rose,

Rhapsody, Argo

IF

exporters
 LTS

Fig. 1. IF toolset ar
hite
ture.s
ription levels: the spe
i�
ation level (UML, SDL), the intermediate des
riptionlevel (IF), and the Labelled Transition Systems (LTS) level.Spe
i�
ation level. This
orresponds to the des
ription provided by the user insome existing spe
i�
ation language. To be pro
essed, des
riptions are automati-
ally translated into their IF des
riptions. Currently, the main input spe
i�
ationformalisms are UML and SDL.Regarding UML, any UML tool
an be used as long as it
an export the modelin XMI [OMG01℄, the standard XML format. The IF toolset in
ludes a translatorfrom UML whi
h produ
es IF des
riptions. The translator a

epts spe
i�
ationsprodu
ed by Rational Rose [IBM℄, Rhapsody [Ilo℄ or Argo Uml [RVR+℄.Intermediate des
ription level (IF). IF des
riptions are generated from spe
i�-
ations. IF is an intermediate representation based on timed automata extendedwith dis
rete data variables,
ommuni
ation primitives, dynami
 pro
ess
re-ation and destru
tion. This representation is expressive enough to des
ribe thebasi

on
epts of modelling and programming languages for distributed real-timesystems.The abstra
t syntax tree of an IF des
ription
an be a

essed through anAPI. Sin
e all the data (variables,
lo
ks) and the
ommuni
ation stru
tureare still expli
it, high-level transformations based on stati
 analysis [Mu
97℄ or

program sli
ing [Wei84,Tip94℄
an be applied. All these te
hniques
an be usedto transform the initial IF des
ription into a \simpler" one while preservingsafety properties. Moreover, this API is well-suited to implement exporters fromIF to other spe
i�
ation formalisms.LTS level. The LTS are transition graphs des
ribing the exe
utions of IF de-s
riptions. An exploration API allows to represent and store states as well as to
ompute on demand the su

essors of a given state. This API
an be linked with\generi
" exploration programs performing any kind of on-the-
y analysis.Using the exploration API, several validation tools have been developed and
onne
ted to work on IF des
riptions. They
over a broad range of features: in-tera
tive/random/guide simulation, on-the-
y model
he
king using observers,on-the-
y temporal logi
 model
he
king, exhaustive state spa
e generation,s
heduling analysis, test
ase generation. Moreover, through this API are
on-ne
ted the Cadp toolbox [FGK+96℄ for the validation of �nite models as wellas Tgv [FJJV96,JM99℄ for test
ase generation using on-the-
y te
hniques.3 Des
ription of the formalism/te
hnique/system/tool3.1 The IF notationIF is a notation for systems of
omponents (
alled pro
esses), running in par-allel and intera
ting either through shared variables or asyn
hronous signals.Pro
esses des
ribe sequential behaviours in
luding data transformations,
om-muni
ations and pro
ess
reation. Furthermore, the behaviour of a pro
ess maybe subje
t to timing
onstraints. The number of pro
esses may
hange over time:they may be
reated and deleted dynami
ally.The semanti
s of a system is the LTS obtained by interleaving the behaviourof its pro
esses. To enfor
e s
heduling poli
ies, the set of runs of the LTS
an befurther restri
ted using dynami
 priorities.Pro
esses. The behaviour of a pro
ess is des
ribed as a timed automaton,extended with data. A pro
ess has a unique pro
ess identi�er (pid) and lo
almemory
onsisting of variables (in
luding
lo
ks),
ontrol states and a queue ofpending messages (re
eived and not yet
onsumed).A pro
ess
an move from one
ontrol state to another by exe
uting sometransition. As for state
harts [Har87,HP98℄,
ontrol states
an be hierar
hi
allystru
tured to fa
torize
ommon behaviour. Control states
an be stable or un-stable. A sequen
e of transitions between two stable states de�nes a step. Theexe
ution of a step is atomi
, meaning that it
orresponds to a single transitionin the LTS representing the semanti
s. Noti
e that several transitions may beenabled at the same time, in whi
h
ase the
hoi
e is made non-deterministi
ally.Transitions
an be either triggered by signals in the input queue or be sponta-neous. Transitions
an also be guarded by predi
ates on variables, where a guardis the
onjun
tion of a data guard and a time guard. A transition is enabled ina state if its trigger signal is present and its guard evaluates to true. Signals in

the input queue are a priori
onsumed in a �fo fashion, but one
an spe
ify intransitions whi
h signals should be \saved" in the queue for later use.Transition bodies are sequential programs
onsisting of elementary a
tions(variable or
lo
k assignments, message sending, pro
ess
reation/destru
tion,resour
e requirement/release, et
) and stru
tured using elementary
ontrol-
owstatements (like if-then-else, while-do, et
). In addition, transition bodies
anuse external fun
tions/pro
edures, written in an external programming language(C/C++).Signals and signalroutes. Signals are typed and
an have data parameters.Signals
an be addressed dire
tly to a pro
ess (using its pid) and/or to a signalroute whi
h will deliver it to one or more pro
esses. The destination pro
essstores re
eived signals in a �fo bu�er.Signalroutes represent spe
ialised
ommuni
ation media transporting signalsbetween pro
esses. The behaviour of a signalroute is de�ned by its delivery poli
y(FIFO or multi-set), its
onne
tion poli
y (peer to peer, uni
ast or multi
ast),its delaying poli
y (\zero delay", \delay" or \rate") and �nally its reliability(\reliable" or \lossy"). More
omplex
ommuni
ation media
an be spe
i�edexpli
itly as IF pro
esses.In parti
ular, signalroutes
an be
onne
ted at one end with an impli
itlyde�ned \environment pro
ess" env. In transitions triggered by signals from theenvironment, the trigger signal is
onsidered as present whenever the transitionguard evaluates to true.Data. The IF notation provides the prede�ned basi
 types bool, integer, real, pidand
lo
k, where
lo
k is used for variables measuring time progress. Stru
tureddata types are built using the type
onstru
tors enumeration, range, array, re
ordand abstra
t. Abstra
t data types
an be used for manipulating external typesand
ode.
idle init

reates[th
 < N℄?request!!threadth
:=th
+1 [done℄
s(1)[request℄
?doneth
:=th
-1

"work"!donestop
server(1) thread(0)

Fig. 2. Illustration of the multi-threaded server example.

Example 1. The IF des
ription below des
ribes a system
onsisting of a serverpro
ess
reating up to N thread pro
esses for handling request signals. Agraphi
al representation of the system is given in Figure 2.system Server;signal request(); // signals with parameter typessignal done(pid);signalroute entry(1) // signalroutes and their signalsfrom env to serverwith request;signalroute
s(1) #delay[1,2℄from thread to serverwith done; // de�nition of pro
ess typespro
ess thread(0); // and initial number of instan
esfpar parent pid, route pid; // formal parameters re
eived at
reationstate init #start ; // 1 state + 1 outgoing transitioninformal "work"; // informal a
tion labelled \work"output done() // sending of the done signalvia route to parent; // re
eived by parentstop; // terminate pro
ess, destroy instan
eendstate;endpro
ess;pro
ess server(1);var th
 integer; // lo
al variablesstate idle #start ; // 1 state + 2 outgoing transitionsprovided th
 < N; // �rst transition: guardinput request(); // triggerfork thread(self, f
sg0); //
reate thread pro
ess and passing// own pid and signalroute
s as paramstask th
 := th
 + 1;nextstate -; // end of transition - ba
k to idleinput done(); // se
ond transitiontask th
 := th
 - 1;nextstate -;endstate;endpro
ess;endsystem;Composition (System). The semanti
s asso
iates with a system a global LTS.At any point of time, its state is de�ned as the tuple of the states of its living
omponents: the states of a pro
ess are the possible evaluations of its attributes(
ontrol state, variables and signal queue
ontent). The states of a signalrouteare lists of signals \in transit". The transitions of the global LTS representing

a system are steps of pro
esses and signal deliveries from signalroutes to signalqueues where in any global state there is an outgoing transition for all enabledtransitions of all
omponents (interleaving semanti
s). The formal de�nition ofthe semanti
s
an be found in [BL02b℄.System models may be highly nondeterministi
, due to the nondeterminismof the environment whi
h is
onsidered as open and to the
on
urren
y betweentheir pro
esses. For the validation of fun
tional properties, leaving this se
ondtype of nondeterminism non resolved is important in order to verify
orre
tnessindependently of any parti
ular exe
ution order. Nevertheless, going towards animplementation means resolving a part of this non determinism and
hoosing anexe
ution order satisfying time related and other nonfun
tional
onstraints.In IF, su
h additional restri
tions
an be enfor
ed by dynami
 priorities de-�ned by rules spe
ifying that whenever for two pro
ess instan
es some
ondition(state predi
ate) holds, then one has less priority than the other. An example isp1 � p2 if p1:group = p2:group and p2:
ounter < p1:
ounterwhi
h for any pro
ess instan
es whi
h are part of some \group", gives priorityto those with the smallest values of the variable
ounter (e.g., the less frequentlyserved).Time. The time model of IF is that of timed automata with urgen
y [BST98℄,[BS00℄ where the exe
ution of a transition is an event de�ning an instant of state
hange, whereas time is progressing in states. Urgen
y is expressed by means ofan urgen
y attribute of transitions. This attribute
an take the values eager,lazy or delayable. Eager transitions are exe
uted at the point of time at whi
hthey be
ome enabled - if they are not disabled by another transition. Delayabletransitions
annot be disabled by time progress. Lazy transitions may be disabledby time progress.Like in timed automata, time distan
es between events are measured byvariables of type \
lo
k". Clo
ks
an be
reated, set to some value or reset(deleted) in any transition. They
an be used in time guards to restri
t the timepoints at whi
h transitions
an be taken.Lo
al
lo
ks allow the spe
i�
ation of timing
onstraints, su
h as durations oftasks (modelled by time passing in a state asso
iated with this task, see examplebelow), deadlines for events in the same pro
ess. Global time
onstraints, su
has end-to-end delays,
an be expressed by means of global
lo
ks or by observers(explained in the next se
tion).Example 2. A timed version of the thread pro
ess of the example 1 is given. Anextra state work introdu
ed for distinguishing the instant at whi
h work startsand the instant at whi
h it ends and and to
onstrain the duration betweenthem. The intention is to model an exe
ution time of \work" of 2 to 4 timeunits.The thread pro
ess goes immediately to the work state - the start transitionis eager - and sets the
lo
k wait is set to 0 in order to start measuring timeprogress. The transition exiting the work state is delayable with a time guard

expressing the
onstraint that the time sin
e the
lo
k wait has been set shouldbe at least 2 but not more than 4.pro
ess thread(0);fpar parent pid, route pid;var wait
lo
k;state init #start ;urgen
y eager;informal "work";set wait := 0;nextstate work;endstate;
state work ;urgen
y delayable;when wait >= 2 and wait <= 4;output done()via route to parent;stop;endstate;endpro
ess;Resour
es. In order to express mutual ex
lusion it is possible to de
lare sharedresour
es. These resour
es
an be used through parti
ular a
tions of the form\require some-resour
e" and \release some-resour
e".Observers. Observers express in an operational way safety properties of a sys-tem by
hara
terising its a

eptable exe
ution sequen
es. They also provide asimple and
exible me
hanism for
ontrolling model generation. They
an beused to sele
t parts of the model to explore and to
ut o� exe
ution paths thatare irrelevant with respe
t to given
riteria. In parti
ular, observers
an be usedto restri
t the environment of the system.Observers are des
ribed in the same way as IF pro
esses i.e., as extendedtimed automata. They di�er from IF pro
esses in that they
an rea
t syn-
hronously to events and
onditions o

urring in the observed system. Observersare
lassi�ed into:{ pure observers - whi
h express requirements to be
he
ked on the system.{
ut observers - whi
h in addition to monitoring, guide simulation by sele
tingexe
ution paths. For example, they are used to restri
t the behaviour of theenvironment{ intrusive observers - whi
h may also alter the system's behaviour by sendingsignals and
hanging variables.Observation and intrusion me
hanisms. For monitoring the system state, ob-servers
an use primitives for retrieving values of variables, the
urrent state ofthe pro
esses, the
ontents of queues, et
.For monitoring a
tions performed by a system, observers use
onstru
ts forretrieving events together with data asso
iated with them. Events are generatedwhenever the system exe
utes one of the following a
tions: signal output, signaldelivery, signal input, pro
ess
reation and destru
tion and informal statements.Observers
an also monitor time progress, by using their own
lo
ks or bymonitoring the
lo
ks of the system.

Expression of properties. In order to express properties, observer states
an bemarked as ordinary, error or su

ess. Error and su

ess are both terminatingstates. Rea
hing a su

ess state (an error state) means satisfa
tion (non satis-fa
tion). Cut observers use a
ut a
tion whi
h stops exploration.Example 3. The following example illustrates the use of observers to express asimple safety property of a proto
ol with one transmitter and one re
eiver, su
has the alternating bit proto
ol. The property is: Whenever a put(m) message isre
eived by the transmitter pro
ess, the transmitter does not return to stateidle before a get(m) with the same m is issued by the re
eiver pro
ess.pure observer safety1;var m data;var n data;var t pid;state idle #start ;mat
h input put(m) by t;nextstate wait;endstate;state wait;provided (ftransmittergt)instate idle;nextstate err;mat
h output put(n)
nextstate err;mat
h output get(n);nextstate de
ision;endstate;state de
ision #unstable ;provided n = m;nextstate idle;provided n <> m;nextstate wait;endstate;state err #error ;endstate;endobserver;3.2 Simulation, Analysis and ValidationCore
omponents of the IF toolset. The
ore
omponents of the IF toolsetare shown in Figure 3.Synta
ti
 Transformations Component. This
omponent deals with synta
ti
transformations in
luding the
onstru
tion of an abstra
t syntax tree (AST)from an IF des
ription. The tree is a
olle
tion of C++ obje
ts representing allthe synta
ti
 elements present in IF des
riptions. The AST re
e
ts pre
isely thesynta
ti
 stru
ture of IF des
riptions: a system in
ludes pro
esses, signalroutes,types; a pro
ess in
ludes states and variables; states in
lude their outgoing tran-sitions and so on.This
omponent has an interfa
e giving a

ess to the abstra
t syntax tree.Primitives are available to traverse the tree and to
onsult or to modify its el-ements. There are primitives allowing to write the tree ba
k as an IF textualdes
ription. The synta
ti
 transformation
omponent has been used to buildseveral appli
ations. The most important ones are
ode generators (either sim-ulation
ode or appli
ation
ode), stati
 analysis transformations (operating atsynta
ti
 level), translations to other languages (in
luding a translation to thePromela language of Spin [Hol91℄) and pretty printers.

dynami
 s
hedulingasyn
hronous exe
ution(time,
hannels,...)
odeprede�ned state spa
erepresentationpro
ess
odespe
i�
appli
ation
LTS exploration tools:- debugging

Exploration platform

- model
he
king- test generation
synta
ti
transformation tools:- stati
 analyser-
ode generator

reader writerIF AST IF C/C++

Fig. 3. Fun
tional view of the IF Core Components.Exploration Platform. This
omponent has an API providing a

ess to the LTS
orresponding to IF des
riptions. The interfa
e o�ers primitives for representingand a

essing states and labels as well as basi
 primitives for traversing LTS:an init fun
tion whi
h gives the initial state, and a su

essor fun
tion whi
h
omputes the set of enabled transitions and su

essor states from a given state.These are the key primitives for implementing any on-the-
y forward enumera-tive exploration or validation algorithm.Figure 3 shows the stru
ture of the exploration platform. The main features ofthe platform are simulation of the pro
ess exe
ution, non-determinism resolution,management of time and representation of the state spa
e.The exploration platform
an be seen as an operating system where pro
essinstan
es are plugged-in and jointly exe
uted. Pro
ess instan
es are either appli-
ation spe
i�
 (
oming from IF des
riptions) or generi
 (su
h as time or
hannelhandling pro
esses).Simulation time is handled by a spe
ialised pro
ess managing
lo
k allo
a-tion/deallo
ation,
omputing time progress
onditions and �ring timed transi-tions. There are two implementations available, one for dis
rete time and one fordense time. For dis
rete time,
lo
k values are expli
itly represented by integers.Time progress is
omputed with respe
t to the next enabled deadline. For densetime,
lo
k valuations are represented using variable-size Di�eren
e Bound Ma-tri
es (DBMs) as in tools dedi
ated to timed automata su
h as Kronos [Yov97℄and Uppaal [LPY98℄.

The exploration platform
omposes all a
tive pro
esses and
omputes globalstates and the
orresponding system behaviour. The exploration platform
on-sists of two layers sharing a
ommon state representation:{ Asyn
hronous exe
ution layer. This layer implements the general interleav-ing exe
ution of pro
esses. The platform asks su

essively ea
h pro
ess toexe
ute its enabled steps. During a pro
ess exe
ution, the platform managesall inter-pro
ess operations: message delivery, time
onstraints
he
king, dy-nami

reation and destru
tion, tra
king of events. After a
ompletion ofa step by a pro
ess, the platform takes a snapshot of the performed step,stores it and delivers it to the se
ond layer.{ Dynami
 s
heduling layer. This layer
olle
ts all the enabled steps. It uses aset of dynami
 priority rules to �lter them. The remaining ones, whi
h aremaximal with respe
t to the priorities, are delivered to the user appli
ationvia the exploration API.

messages

hunks

ontentsqueue zones (DBMs)
statestates

pro
esses
Fig. 4. Internal state representation.{ State representation. Global states are impli
itly stored by the platform. Theinternal state representation is shown in �gure 4. It preserves the stru
turalinformation and seeks for maximal sharing. The layered representation in-volves a unique table of messages. Queues are lists of messages, representedby suÆx sharing. On top of them, there is a table of pro
ess states, all ofthem sharing queues in the table of queues. Pro
esses are then grouped into�xed size state
hunks, and �nally, global states are variable-size lists of
hunks. Tables
an be represented either by using hash tables with
ollisionor by binary trees. This s
heme allows to expli
itly represent several millionsof stru
tured states.

The exploration platform and its interfa
e has been used as ba
k-ends ofdebugging tools (intera
tive or random simulation), model
he
king (in
ludingexhaustive model generation, on the
y �-
al
ulus evaluation, model
he
kingwith observers), test
ase generation, and optimisation (shortest path
omputa-tion).This ar
hite
ture provides features for validating heterogeneous systems. Ex-ploration is not limited to IF des
riptions: all kinds of
omponents with an ad-equate interfa
e
an be exe
uted in parallel on the exploration platform. It isindeed possible to use C/C++
ode (either dire
tly, or instrumented a

ordingly)of already implemented
omponents.Another advantage of the ar
hite
ture is that it
an be extended by addingnew intera
tion primitives and exploration strategies. Presently, the explorationplatform supports asyn
hronous (interleaved) exe
ution and asyn
hronous point-to-point
ommuni
ation between pro
esses. Di�erent exe
ution modes, like syn-
hronous or run-to-
ompletion, or additional intera
tion me
hanisms, su
h asbroad
ast or rendez-vous, are obtained by using dynami
 priorities [AGS00℄.Con
erning the exploration strategies, redu
tion heuristi
s su
h as partial-order redu
tion or some form of symmetry redu
tion are already in
orporatedin the exploration platform. More spe
i�
 heuristi
s may be added dependingon a parti
ular appli
ation domain.Stati
 Analysis. Pra
ti
al experien
e with IF has shown that simpli�
ation bymeans of stati
 analysis is
ru
ial for dealing su

essfully with
omplex spe
i�-
ations. Even simple analysis su
h as live variables analysis or dead-
ode elim-ination
an signi�
antly redu
e the size of the state spa
e of the model. Theavailable stati
 analysis te
hniques are:Live variables analysis This te
hnique transforms an IF des
ription into anequivalent smaller one by removing globally dead variables and signal parametersand by resetting lo
ally dead variables [Mu
97℄. Initially, all the lo
al variables ofthe pro
esses and signal parameters are
onsidered to be dead, unless otherwisespe
i�ed by the user. Shared variables are
onsidered to be always live. Theanalysis alternates lo
al (standard) live variables
omputation on ea
h pro
essand inter-pro
ess liveness attributes propagation through input/output signalparameters until a global �xpoint is rea
hed.Dead-
ode elimination. This te
hnique transforms an IF des
ription by removingunrea
hable
ontrol states and transitions under some user-given assumptionsabout the environment. It solves a simple stati
 rea
hability problem by
omput-ing, for ea
h pro
ess separately, the set of
ontrol states and transitions whi
h
an be stati
ally rea
hed starting from the initial
ontrol state. The analysis
omputes an upper approximation of the set of pro
esses that
an be e�e
tively
reated.Variable abstra
tion. This te
hnique allows to
ompute abstra
tions by elimi-nating variables and their dependen
ies whi
h are not relevant to the user. The

omputation pro
eeds as for live variables analysis: pro
esses are analysed sep-arately, and the results obtained are propagated between them by using theinput/output dependen
ies. Contrary to the previous te
hniques whi
h are ex-a
t, simpli�
ation by variable abstra
tion may introdu
e additional behaviours.Nevertheless, it always redu
es the size of the state representation.By using variable abstra
tion it is possible to extra
t automati
ally systemdes
riptions for symboli
 veri�
ation tools a

epting only spe
i�
 types of datae.g., TreX [ABS01℄ whi
h a

epts only
ounters,
lo
ks and queues. Moreover,this te
hnique allows to
ompute �nite-state abstra
tions for model
he
king.Validation
omponents.Model-
he
king using Evaluator. The Evaluator tool implements an on-the-
y model
he
king algorithm for the alternation free �-
al
ulus [Koz83℄. This is abran
hing time logi
, based upon propositional
al
ulus with �xpoint operators.The syntax is des
ribed by the following grammar:' ::= T j X j :' j ' ^ ' j < a > ' j �X:'For a given LTS representing a spe
i�
ation, the semanti
s of a formula isde�ned as the set of states satisfying it, as follows:{ T (true) holds in any state{ : and ^ are the usual boolean operators{ < a > ' is true in a state if there exists a transition labelled by a leading toa state whi
h satis�es '{ �X:' denotes the usual least �x point operator (where X is a free variableof ' representing a set of states)This logi

an be used to de�ne ma
ros expressing usual requirements su
has: "there is no deadlo
k", "any a
tion a is eventually followed by an a
tionb", "it is not possible to perform an a
tion a followed by an a
tion b, withoutperforming an a
tion
 in between", et
.Comparison or minimisation with Aldebaran. Aldebaran [BFKM97℄ is atool for the
omparison of LTS modulo behavioural preorder or equivalen
e re-lations. Usually, one LTS represents the system behaviour, and the other itsrequirements. Moreover, Aldebaran
an also be used to redu
e a given LTSmodulo a behavioural equivalen
e, possibly by taking into a

ount an observa-tion
riterion.The preorders and equivalen
es available in Aldebaran in
lude usual sim-ulation and bisimulation relations su
h as strong bisimulation [Par81℄, observa-tional bisimulation [Mil80℄, bran
hing bisimulation [vGW89℄, safety bisimulation[BFG+91℄, et
. The
hoi
e of the relation depends on the
lass of properties tobe preserved.

Test
ase generation using Tgv. Tgv [FJJV96,JM99℄ is a tool for test genera-tion developed by Irisa and Verimag. It is used to automati
ally generate test
ases for
onforman
e testing of distributed rea
tive systems. It generates test
ases from a formal spe
i�
ation of the system and a test purpose.3.3 Translating UML to IFThe toolset supports generation of IF des
riptions from both SDL [BFG+99℄and UML [OGO04℄. We des
ribe the prin
iples of the translation from UML toIF.UML modelling. We
onsider a subset of UML in
luding its obje
t-orientedfeatures and whi
h is expressive enough for the spe
i�
ation of real-time systems.The elements of models are
lasses with stru
tural features and relationships(asso
iations, inheritan
e) and behaviour des
riptions through state ma
hinesand operations.The translation tool adopts a parti
ular semanti
s for
on
urren
y based onthe UML distin
tion between a
tive and passive obje
ts. Informally, a set ofpassive obje
ts form together with an a
tive obje
t an a
tivity group. A
tivitygroups are exe
uted in run-to-
ompletion fashion, whi
h means that there is no
on
urren
y between the obje
ts of the same a
tivity group. Requests (asyn-
hronous signals or method
alls)
oming from outside an a
tivity group arequeued and treated one by one. More details on this semanti
s
an be found in[DJPV02,HvdZ03℄.The tool resolves some
hoi
es left open by UML, su
h as the
on
rete syntaxof the a
tion language used in state ma
hines and operations.Additionally, we use a spe
ialisation of the standard UML pro�le for S
hedul-ing, Performan
e and Time [OMG03b℄. Our pro�le, formally des
ribed in [GOO03℄,provides two kinds of me
hanisms for timing: imperative me
hanisms in
ludingtimers,
lo
ks and timed transition guards, and de
larative me
hanisms in
lud-ing linear
onstraints on time distan
es between events.To provide
onne
tivity with existing CASE tools su
h as Rational Rose[IBM℄, Rhapsody [Ilo℄ or Argo Uml [RVR+℄, the toolset reads models usingthe standard XML representation for UML (XMI [OMG01℄).The prin
iples of the mapping from UML to IF. Runtime UML entities(obje
ts,
all sta
ks, pending messages, et
.) are identi�able as a part of the sys-tem state in IF. This allows tra
ing ba
k to UML spe
i�
ations from simulationand veri�
ation.Obje
ts and
on
urren
y model. Every UML
lass X is mapped to a pro
essPX with a lo
al variable for ea
h attribute or asso
iation of X . As inheritan
e is
attened, all inherited attributes and asso
iations are repli
ated in the pro
esses
orresponding to ea
h sub
lass. The
lass state ma
hine is translated into thepro
ess behaviour.

Ea
h a
tivity group is managed at runtime by a spe
ial IF pro
ess, of typegroup manager, whi
h is responsible of sequentialising requests
oming from ob-je
ts outside the a
tivity group, and of forwarding them to the obje
ts insidewhen the group is stable. Run-to-
ompletion is implemented by using the dy-nami
 priority rule y � x if x:leader = ywhi
h means that all obje
ts of a group have higher priorities than their groupmanager. For every obje
t x, x:leader points to the manager pro
ess of theobje
t's a
tivity group. Thus, as long as at least one obje
t inside an a
tivitygroup
an exe
ute, its group manager will not initiate a new run-to-
ompletionstep. Noti
e that adopting a di�erent exe
ution mode
an be done easily by justeliminating or adding new priority rules.Operations and polymorphism. The adopted semanti
s distinguishes betweenprimitive operations - des
ribed by a method with an asso
iated a
tion - andtriggered operations - des
ribed dire
tly in the state ma
hine of their owner
lass. Triggered operations are mapped to a
tions embedded dire
tly in the statema
hine of the
lass.Ea
h primitive operation is mapped to a handler pro
ess whose run-timeinstan
es represent the a
tivations and the sta
k frames
orresponding to
alls.An operation
all (either primitive or triggered) is expressed in IF by usingthree signals: a
all signal
arrying the
all parameters, a return signal
arryingthe return value, and a
ompletion signal indi
ating
ompletion of
omputationof the operation, whi
h may be di�erent from return. Therefore, the a
tion ofinvoking an operation is represented in IF by sending a
all signal. If the
alleris in the same a
tivity group, then the
all is dire
ted to the target obje
t andis handled immediately. Alternatively, if the
aller is in a di�erent group, the
all is dire
ted to the obje
t's group manager and is handled in a subsequentrun-to-
ompletion step.The handling of in
oming primitive
alls by an obje
t is modelled as follows:in every state of the
allee obje
t (pro
ess), upon re
eption of a
all signal, the
allee
reates a new instan
e of the operation's handler. The
allee then waitsuntil
ompletion, before re-entering the same stable state in whi
h it re
eivedthe
all.Mapping operation a
tivations into separate pro
esses has several advan-tages:{ It provides a simple solution for handling polymorphi
 (dynami
ally bound)
alls in an inheritan
e hierar
hy. The re
eiver obje
t knows its own identity,and
an answer any
all signal by
reating the appropriate version of theoperation handler from the hierar
hy.{ It allows for extensions to other types of
alls than the ones
urrently sup-ported by the semanti
s (e.g. non-blo
king
alls). It also preserves modularityand readability of the generated model.{ It allows to distinguish the relevent instants in the
ontext of timing analysis.

Mapping of UML observers. In order to spe
ify and verify dynami
 propertiesof UML models, we de�ne a notion of UML observer [OGO04℄ whi
h is similarto IF observers (see se
tion 3.1).Observers are des
ribed by
lasses stereotyped with �observer�. They
anown attributes and methods, and
an be
reated dynami
ally. We de�ned in[OGO04℄ event types su
h as operation invo
ation, operation return, obje
t
re-ation, et
.Several examples of observers are provided in se
tion 4.3.Mapping of real-time
on
epts. The mapping of UML timers and
lo
ks to IFis straightforward. De
larative
onstraints on duration between events are ex-pressed by means of
lo
ks and time guards or observers [OGO04℄.4 An example: the Ariane-5 Flight Program1We present a real-world
ase study on the modelling and validation of the FlightProgram of Ariane-5 by using the IF toolset.This work has been initiated by EADS Laun
h Vehi
les in order to evaluatethe maturity and appli
ability of formal validation te
hniques. This evaluation
onsisted in formally spe
ifying some parts of an existing software, on a re-engineering basis, and verifying some
riti
al requirements on this spe
i�
ation.The Ariane-5 Flight Program is the embedded software whi
h autonomously
ontrols the Ariane-5 laun
her during its
ight, from the ground, through theatmosphere, and up to the �nal orbit.The spe
i�
ation and validation have been studied in two di�erent
ontexts:{ A �rst study
arried out on a re-engineered SDL model has been
ondu
tedin 2001. The SDL model was translated automati
ally to IF, simpli�ed bystati
 analysis, simulated and veri�ed using �-
al
ulus properties as well asbehavioural model minimisation and
omparison.{ A se
ond study
arried out on a re-engineered UML model, has been
on-du
ted more re
ently in the framework of the IST OMEGA proje
t [Con03℄.The goal was to evaluate both the appropriateness of extensions of UML tomodel this type of real-time system, and the usability of IF validation tools.In this study, the UML model has been translated automati
ally to IF, sim-pli�ed by stati
 analysis, simulated and veri�ed against properties expressedas observers.We summarise the relevant results of both experiments, and we give prin
i-ples of a veri�
ation methodology that
an be used in
onne
tion with the IFtoolset. For su
h large examples, push-button veri�
ation is not suÆ
ient andsome iterative
ombination of analysis and validation is ne
essary to
ope with
omplexity.1 Ariane-5 is an European Spa
e Agen
y Proje
t delegated to CNES (Centre Nationald'Etudes Spatiales).

4.1 Overview of the Ariane-5 Flight ProgramThe Ariane-5 example has a relatively large UML model: 23
lasses, ea
h onewith operations and a state ma
hine. Its translation into IF has 7000 lines of
ode.The laun
her
ight. An Ariane-5 laun
h begins with ignition of the mainstage engine (ep
 - Etage Prin
ipal Cryote
hnique). Upon
on�rmation that itis operating properly, the two solid booster stages (eap - Etage A

�el�erateur �aPoudre) are ignited to a
hieve lift-o�.After burn-out, the two solid boosters (eap) are jettisoned and Ariane-5
ontinues its
ight through the upper atmosphere propelled only by the
ryogeni
main stage (ep
). The fairing is jettisoned too, as soon as the atmosphere is thinenough for the satellites not to need prote
tion. The main stage is rendered inertimmediately upon shut-down. The laun
h traje
tory is designed to ensure thatthe stages fall ba
k safely into the o
ean.The storable propellant stage (eps - Etage �a Propergol Sto
kable) takes overto pla
e the geostationary satellites in orbit. Payload separation and attitudinalpositioning begin as soon as the laun
her's upper se
tion rea
hes the
orrespond-ing orbit. Ariane-5's missions ends 40 minutes after the �rst ignition
ommand.A �nal task remains to be performed - that of passivation. This essentiallyinvolves emptying the tanks
ompletely to prevent an explosion that would breakthe propellant stage into pie
es.The Flight Program. The Flight Program entirely
ontrols the laun
her,without any human intera
tion, beginning 6 minutes 30 se
onds before lift-o�,and ending 40 minutes later, when the laun
her terminates its mission.The main fun
tions of the Flight Program are the following ones:{
ight
ontrol, involves navigation, guidan
e and
ontrol algorithms,{
ight regulation, involves observation and
ontrol of various
omponents ofthe propulsion stages (engines ignition and extin
tion, boosters ignition, et
),{
ight
on�guration, involves management of laun
her
omponents (stage sep-aration, payload separation, et
).We fo
used on regulation and
on�guration fun
tions. The
ight
ontrol is arelatively independent syn
hronous rea
tive
ontrol system.The environment. In order to obtain a realisti
 fun
tional model of the FlightProgram restri
ted to regulation and
on�guration fun
tionalities, we need totake into a

ount its environment. This has been modelled by two external
omponents abstra
ting the a
tual behaviour of the
ight
ontrol part and theground:{ the
ight
ontrol in
ludes several pro
esses des
ribing a nominal behaviour.They send, with some
ontrolled degree of un
ertainty, the right
ight
om-mands, with the right parameters at the right moments in time.

{ the ground part abstra
ts the nominal behaviour of the laun
h proto
ol onthe ground side. It passes progressively the
ontrol of the laun
her to the onboard
ight program, by providing the laun
h date and all the
on�rmationsneeded for laun
hing. Furthermore, it remains ready to take ba
k the
ontrol,if some malfun
tioning is dete
ted during the laun
h pro
edure.Requirements. With the help of EADS engineers, we identi�ed a set of abouttwenty fun
tional safety requirements ensuring the right servi
e of the FlightProgram. The requirements have been
lassi�ed into three
lasses:{ general requirements, not ne
essarily spe
i�
 to the Flight Program but
om-mon to all
riti
al real-time systems. They in
lude basi
 untimed propertiessu
h as the absen
e of deadlo
ks, livelo
ks or signal loss, and basi
 timedproperties su
h as the absen
e of timelo
ks, Zeno behaviours or deadlinesmissed;{ overall system requirements, spe
i�
 to the Flight Program and
on
erningits global behaviour. For example, the global sequen
e of the
ight phases isrespe
ted: ground, vul
ain ignition, booster ignition, ...;{ lo
al
omponent requirements, spe
i�
 to the Flight Program and regardingthe fun
tionality of some of its parts. This
ategory in
ludes for example
he
king the o

urren
e of some a
tions in some
omponent (e.g, payloadseparation o

urs eventually during an attitudinal positioning phase, or thestop sequen
e no. 3
an o

ur only after lift-o�, or the state of engine valves
onforms to the
ight phase, et
.)4.2 UML modelThe Ariane-5 Flight Program is modelled in UML as a
olle
tion of obje
ts
ommuni
ating mostly through asyn
hronous signals, and whose behaviour isdes
ribed by state ma
hines. Operations (with an abstra
t body) are used tomodel the guidan
e, navigation and
ontrol tasks. For the modelling of timedbehaviour and timing properties, we are using the OMEGA real-time UML pro-�le [GOO03℄, whi
h provides basi
 primitives su
h as timers and
lo
ks. Themodel shown in �gure 5 is
omposed of:{ a global
ontroller
lass responsible for
ight
on�guration (A
y
li
);{ a model of the regulation
omponents (e.g. EAP, EPC
orresponding to thelaun
her's stages);{ a model of the regulated equipment (e.g. Valves, Pyros);{ an abstra
t model of the
y
li
 GNC tasks (Cy
li
s, Thrust monitor, et
.);{ an abstra
t model of the environment (
lassesGround for the external eventsand Bus for modelling the
ommuni
ation with syn
hronous GNC tasks).The behaviour of the
ight regulation
omponents (eap, ep
) involves mainlythe exe
ution of the �ring/extin
tion sequen
e for the
orresponding stage of thelaun
her (see for example a fragment of the EPC stage
ontroller's state ma
hine

Cyclics

minor_cycle : Integer

fasvol : Integer

incg : Integer

guidance_period : Integer = 8

<<Active>>

Guidance_Task

<<Active>>

1

1

+Guidance_Task
1

+Cyclics

1

Thrust_Monitor

nb : Integer

nb_conf : Integer = 3

T1delh1 : Timer

H0 : Timer

H0_time : Integer

<<Triggered>> Decide_EAP_Separation()

(from GNC)

1

1

+Cyclics

1

+Thrust_Monitor

1

Valves

<<Triggered>> Open()

<<Triggered>> Close()

(from Environment)

<<Active>>

Acyclic

fasvol : Integer

H0_time : Integer

tqdp : Timer

H0 : Timer

Tpstot_prep : Timer

Tpstar_prep : Timer

Tpstot_eaprel : Timer

Tpstar_eaprel : Timer

End_QDP : Boolean

Early_sep : Timer

Late_sep : Timer

clock : Timer

<<Active>>

1

1

+Acyclic
1

+Cyclics

1

1

1

+Acyclic

1

+Guidance_Task

1

1

1

+Thrust_Monitor

1

+Acyclic

1

EPC

current_is_ok : Boolean

clock : Timer

H0 : Timer

H0_time : Integer

(from Stages)

<<Active>>

1

1

+EPC

1

+Acyclic

1

1

1

+Cyclics

1

+EPC

1

1

1

+EPC

1
+Guidance_Task

1

1

1

+Thrust_Monitor

1

+EPC
 1

1
 1

+EPC_EVBO

1

+EVBO

1
1
 1

+EPC_EVVP

1

+EVVP

1
1
 1

+EPC_EVVCH

1

+EVVCH

1
1
 1

+EPC_EVVCO

1

+EVVCO

1
1
 1

+EPC_EVVGH

1

+EVVGH

1
1

+EPC

1

EAP

H0 : Timer

H0_time : Integer

<<Triggered>> EAP_Preparation()

<<Triggered>> EAP_Release()

(from Stages)

<<Active>>

1
1

+EAP

1

+Acyclic

1

1

1

+EAP
 1

+EPC
 1

Pyro

(from Environment)

<<Active>>

1
 1

+EAP_Pyro1

1

+Pyro1

1
1
 1

+EAP_Pyro2

1

+Pyro2

1
1
 1

+EAP_Pyro3

1

+Pyro3

1
Fig.5.Stru
tureoftheUMLspe
i�
ation(part).

Wait_Igniti

on_Time

Open_EVB

O

Wait_Start

Abort

timeout(clock) /

current_is_ok:=EVVP.

Open()

Stop1

Stop2

[current_is_ok = false]

[current_is_ok = true]

Wait_Clos

e_EVBO

timeout(clock) / begin current_is_ok:=EVBO.Close();

Cyclics!Anomaly();Acyclic!Anomaly();Guidance_Task!An

omaly(); EAP!Anomaly(); Thrust_Monitor!Anomaly() end

 / clock.set(TimeConstants.MS_100)

Wait_Clos

e_EVVP

 / clock.set(TimeConstants.MS_100)

Start(H0_time) / begin

clock.set(298900);

H0.set(H0_time) end

timeout(clock) / begin

clock.set(TimeConstants.MS_100);

current_is_ok:=EVBO.Open() end

[current_is_ok = false] / clock.reset()
[current_is_ok = true]

timeout(clock) / current_is_ok:=EVVP.Close()

Fig. 6. Behaviour of the EPC regulation pro
ess (part).in �gure 6). The sequen
e is time-driven, with the possibility of safe abortion in
ase of anomaly.The
ight
on�guration part implements several tasks: eap separation, ep
separation, payload separation, et
. In their
ase too, the separation dates areprovided by the
ontrol part, depending on the
urrent
ight evolution.4.3 Validation using the IF toolsetValidation is a
omplex a
tivity, involving the iterated appli
ation of veri�
ationand analysis phases as depi
ted in �gure 7.Translation to IF and basi
 stati
 analysis provides a �rst sanity
he
k ofthe model. In this step, the user
an �nd simple
ompile-time errors in the model(name errors, type errors, et
.) but also more elaborate information (uninitialisedor unused variables, unused signals, dead
ode).

Basic Static Analysis

Requirements

Model Exploration

Advanced Static Analysis

Model Generation

Model Checking

Environment

Specification

Translation to IF +

Fig. 7. Validation methodology in IF.Model exploration. The validation pro
ess
ontinues with a debugging phase.Without being exhaustive, the user begins to explore the model in a guided orrandom manner. Simulation states do not need to be stored as the
ompletemodel is not expli
itly
onstru
ted at this moment.The aim of this phase is to inspe
t and validate known nominal s
enarios ofthe spe
i�
ation. Moreover, the user
an test simple safety properties, whi
h musthold on all exe
ution paths. Su
h properties are generi
 ones, su
h as absen
e ofdeadlo
ks and signal loss, or more spe
i�
 ones su
h as lo
al assertions.Advan
ed stati
 analysis. The aim is to simplify the IF des
ription. We usethe following stati
 analysis te
hniques to redu
e both the state ve
tor and thestate spa
e, while
ompletely preserving its behaviour:{ A spe
i�
 analysis te
hnique is the elimination of redundant
lo
ks [DY96℄.Two
lo
ks are dependent in a
ontrol state if their di�eren
e is
onstant and
an be stati
ally
omputed at that state.The initial Sdl version of the Flight Program used no less than 130 timers.Using our stati
 analysis tool we were able to redu
e them to only 55 timers,fun
tionally independent ones. Afterwards, the whole spe
i�
ation has beenrewritten taking into a

ount the redundan
y dis
overed by the analyser.{ A se
ond optimisation identi�es live equivalent states by introdu
ing sys-temati
 resets for dead variables in
ertain states of the spe
i�
ation.For this
ase study, the live redu
tion has not been parti
ularly e�e
tive dueto the redu
ed number of variables (others than
lo
ks) used in the spe
i-�
ation. Our initial attempts to generate the model without live redu
tionfailed. Finally, using live redu
tion we were able to build the model but still,it was of unmanageable size, about 2 � 106 states and 18 � 106 transitions.

{ The last optimisation is dead-
ode elimination. We used this te
hnique toautomati
ally eliminate some
omponents whi
h do not perform any relevanta
tion.LTS generation. The LTS generation phase aims to build the state graph ofthe spe
i�
ation by exhaustive simulation. In order to
ope with the
omplexity,the user
an
hoose an adequate state representation e.g., dis
rete or denserepresentation of time as well as an exploration strategy e.g., traversal order,use of partial order redu
tions, s
heduling poli
ies, et
.The use of partial order redu
tion has been ne
essary to
onstru
t tra
tablemodels. We applied a simple stati
 partial order redu
tion whi
h eliminates spu-rious interleaving between internal steps o

urring in di�erent pro
esses at thesame time. Internal steps are those whi
h do not perform visible
ommuni
ationa
tions, neither signal emission or a

ess to shared variables. This partial orderredu
tion imposes a �xed exploration order between internal steps and preservesall the properties expressed in terms of visible a
tions.Example 4. By using partial order redu
tion on internal steps, we redu
ed thesize of the model by 3 orders of magnitude i.e, from 2 � 106 states and 18 � 106transitions to 1:6�103 states and 1:65�103 transitions, whi
h
an be easily handledby the model
he
ker.We
onsidered two di�erent models of the environment. A time-deterministi
one, where a
tions take pla
e at pre
ise moments in time and a time-nondeterministi
one where a
tions take pla
e within prede�ned time intervals. Table 1 presents inea
h
ase the sizes of the models obtained depending on the generation strategyused. time timedeterministi
 non-deterministi
� live redu
tion state state� partial order explosion explosionmodel + live redu
tion 2201760 st. stategeneration � partial order 18706871 tr. explosion+ live redu
tion 1604 st. 195718 st.+ partial order 1642 tr. 278263 tr.modelmodel minimisation � 1 se
. � 20 se
.veri�
ation model
he
king � 15 se
. � 120 se
.Table 1. Veri�
ation Results. The model minimisation and model
he
king experi-ments are performed on the smallest available models i.e, obtained with both live andpartial order redu
tion.

0

2

EPC!Fire_1

3

EPC!Fire_2

1

EPC!Anomaly

EPC!Anomaly 4

EPC!Fire_3

5

EAP!Anomaly

EAP!Fire EPC!AnomalyFig. 8. Minimal model.Model
he
king. On
e the model has been generated, three model
he
kingte
hniques have been applied to verify requirements on the spe
i�
ation:1. Model
he
king of �-
al
ulus formulae using Evaluator.Example 5. The requirement expressing that \the stop sequen
e no. 3 o

ursonly during the
ight phase, and never on the ground phase"
an be expressedby the following �-
al
ulus formula, veri�ed with Evaluator:: �X: < EPC!Stop 3 > T _ < EAP !Fire > XThis formula means that the system
annot exe
ute the stop sequen
e no. 3without exe
uting the �ring of the eap �rst.2. Constru
tion of redu
ed models using Aldebaran. A se
ond approa
h, usu-ally mu
h more intuitive for a non expert end-user,
onsists in
omputing anabstra
t model (with respe
t to given observation
riteria) of the overall be-haviour of the spe
i�
ation. Possible in
orre
t behaviours
an be dete
ted byvisualising su
h a model.Example 6. All safety properties involving the �ring a
tions of the two prin
i-pal stages, eap and ep
, and the dete
tion of anomalies are preserved on theLTS in �gure 8 generated by Aldebaran. It is the quotient model with re-spe
t to safety equivalen
e [BFG+91℄ while keeping observable only the a
tionsabove. For instan
e it is easy to
he
k on this abstra
t model that, whenever ananomaly o

urs before a
tion EPC!Fire 3 (ignition of the Vul
ain engine), thennor this a
tion nor EAP!Fire a
tion are exe
uted and therefore the entire laun
hpro
edure is aborted.Table 1 gives the average time required for verifying ea
h kind of propertyby temporal logi
 model
he
king and model minimisation respe
tively.

valve_not_abused

t : Timer

<<Observer>>

initial

wait

match invoke ::EADS::Environment::Valves::Close() / t.set(0)

match invoke ::EADS::Environment::Valves::Open() / t.set(0)

KO

<<error>>

match invoke ::EADS::Environment::Valves::Open()

match invoke ::EADS::Environment::Valves::Close()

[t >= 50]

Fig. 9. A timed safety property of the Ariane-5 model.
liftoff_aborted_right

v : Valves

t : Timer

<<Observer>>

ok

aborting

aborted

not_yet

aborted

not_yet

 / t.set(0)

[t >= 2000]

ko

<<error>>

[v.EPC.EAP.Pyro1 @ Ignition_done or

v.EPC.EAP.Pyro2 @ Ignition_done or

v.EPC.EAP.Pyro3 @ Ignition_done]

match send ::EADS::Signals::Request_EAP_Preparation()

match send ::EADS::Signals::Request_EAP_Release()

[(v.EPC.EVBO @ Open or v.EPC.EVBO @ Failed_Open) or

(v.EPC.EVVCH @ Open or v.EPC.EVVCH @ Failed_Open) or

(v.EPC.EVVCO @ Open or v.EPC.EVVCO @ Failed_Open) or

(v.EPC.EVVGH @ Open or v.EPC.EVVGH @ Failed_Open) or

(v.EPC.EVVP @ Open or v.EPC.EVVP @ Failed_Open)]

match accept ::EADS::Environment::Valves::Open() by v

[v @ Open]

[v @ Failed_Open]

Fig. 10. A timed safety property of the Ariane-5 model.

wait_start

wait_ignition_

p1

p1_ignited

ko

<<error>>

ok
choice

match send ::EADS::Signals::Start(void) / begin mc :=

g.Acyclic.MissionConstants; tc := g.Acyclic.TimeConstants end

[g.Acyclic.EAP.Pyro1

@ Ignition_done]

[now >= (tc.MN_5 * 2 + mc.Tpstar_prep)]

[g.Acyclic.EAP.Pyro2 @ Ignition_done]

[now >= (tc.MN_5 * 2 + mc.Tpstot_prep)]

[now < (tc.MN_5*2 + mc.Tpstot_prep)]

liftoff_performed_right2

g : Ground

mc : MissionConstants

tc : TimeConstants

<<Observer>>

Fig. 11. A timed safety property of the Ariane-5 model.3. Model
he
king with observers. We also used UML observers to express and
he
k requirements. Observers allow us to express in a mu
h simpler mannermost safety requirements of the Ariane-5 spe
i�
ation. Additionally, they allowto express quantitative timing properties, something whi
h is diÆ
ult to expresswith �-
al
ulus formulas.Example 7. Figures 9 to 11 show some of the properties that were
he
ked onthe UML model:Figure 9: between any two
ommands sent by the
ight program to the valvesthere should elapse at least 50ms.Figure 10: if some instan
e of
lass Valve fails to open (i.e. enters the stateFailed Open) then{ No instan
e of the Pyro
lass rea
hes the state Ignition done.{ All instan
es of
lass Valve shall rea
h one of the states Failed Close orClose after at most 2 se
onds sin
e the initial valve failure.{ The events EAP Preparation and EAP Release are never emitted.Figure 11: if the Pyro1 obje
t (of
lass Pyro) enters the state Ignition done,then the Pyro2 obje
t shall enter the state Ignition done at a system time be-tween T imeConstants:MN 5�2+Tpstot prep and T imeConstants:MN 5�2 + Tpstar prep.

5 Con
lusionThe IF toolset is the result of a long term resear
h e�ort for theory, methods andtools for model-based development. It o�ers a unique
ombination of features formodelling and validation in
luding support for high level modelling, stati
 anal-ysis, model-
he
king and simulation. Its has been designed with spe
ial
are foropenness to modelling languages and validation tools thanks to the de�nition ofappropriate API's. For instan
e, it has been
onne
ted to expli
it model
he
kingtools su
h as Spin [Hol91℄ and Cadp [FGK+96℄, to symboli
 and regular model
he
ker tools su
h as TreX [ABS01℄, Lash [BL02a℄, the PVS-based abstra
tiontool Invest [BLO98℄ and to the automati
 test generation and exe
ution toolsTgv [FJJV96℄, Agatha [LRG01℄ and Spider [HN04℄.The IF notation is expressive and ri
h enough to map in a stru
tural mannermost of UML
on
epts and
onstru
ts su
h as
lasses, state ma
hines with a
-tions, a
tivity groups with run-to-
ompletion semanti
s. The mapping
attensthe des
ription only for inheritan
e and syn
hronous
alls and this is ne
essaryfor validation purposes. It preserves all relevant information about the stru
tureof the model. This provides a basis for
ompositional analysis and validationte
hniques that should be further investigated.The IF notation relies on a framework for modelling real-time systems basedon the use of priorities and of types of urgen
y studied at Verimag [BST98℄,[BS00℄, [AGS02℄. The
ombined use of behaviour and priorities naturally leadsto layered models and allows
ompositional modelling of real-time systems, inparti
ular of aspe
ts related to resour
e sharing and s
heduling. S
heduling poli-
ies
an be modelled as sets of dynami
 priority rules. The framework supports
omposition of s
heduling poli
ies and provides
omposability results for dead-lo
k freedom of the s
heduled system. Priorities are also an elegant me
hanismfor restri
ting non determinism and
ontrolling exe
ution. Run-to-
ompletionexe
ution and mutual ex
lusion
an be modelled in a straightforward manner.Finally, priorities prove to be a powerful tool for modelling both heterogeneousintera
tion and heterogeneous exe
ution as advo
ated in [GS03℄. The IF toolsetfully supports this framework. It embodies prin
iples for stru
turing and enri
h-ing des
riptions with timing information as well as expertise gained through itsuse in several large proje
ts su
h as the IST proje
ts OMEGA [Con03,GH04℄,AGEDIS [Con02℄ and ADVANCE [Con01℄.The
ombination of di�erent validation te
hniques enlarges the s
ope of ap-pli
ation of the IF toolset. Approa
hes
an di�er a

ording to the
hara
teristi
sof the model. For data intensive models, stati
 analysis te
hniques
an be used tosimplify the model before veri�
ation, while for
ontrol intensive models partialorder te
hniques and observers are very useful to
ope with state explosion. Inany
ase, the
ombined use of stati
 analysis and model
he
king by skilled usersproves to be a powerful means to break
omplexity. Clearly, the use of high levelmodelling languages involves some additional
ost in
omplexity with respe
t tolow level modelling languages e.g., languages based on automata. Nevertheless,this is a pri
e to pay for validation of real life systems whose faithful modellingrequires dynami
ally
hanging models with in�nite state spa
e. In our method-

ology, abstra
tion and simpli�
ation
an be
arried out automati
ally by stati
analysis.The use of observers for requirements proves to be very
onvenient and easyto use
ompared to logi
-based formalisms. They allow a natural des
ription,espe
ially of real-time properties relating timed o

urren
es of several events.The \operational" des
ription style is mu
h more easy to master and understandby pra
titioners. The limitation to safety properties is not a serious one for well-timed systems. In fa
t, IF des
riptions are by
onstru
tion well-timed - time
an always progress due to the use of urgen
y types. Liveness properties be
omebounded response, that is safety properties.The IF toolset is unique in that it supports rigorous high level modelling ofreal-time systems and their properties as well as a
omplete validation method-ology. Compared to
ommer
ially available modelling tools, it o�ers more power-ful validation features. For graphi
al editing and version management, it needs afront end that generates either XMI or SDL. We are
urrently usingRational RoseandObje
tGeode. We have also
onne
tions fromRhapsody andArgo Uml.Compared to other validation tools, the IF toolset presents many similaritieswith Spin. Both tools o�er features su
h as a high level input language, integra-tion of external
ode, use of enumerative model
he
king te
hniques as well asstati
 optimisations. In addition, IF allows the modelling of real-time
on
eptsand the toolset has an open ar
hite
ture whi
h eases the
onne
tion with othertools.Referen
es[ABS01℄ A. Anni
hini, A. Bouajjani, and M. Sighireanu. TReX: A Tool for Rea
h-ability Analysis of Complex Systems. In Pro
eedings of CAV'01, (Paris,Fran
e), volume 2102 of LNCS. Springer, 2001.[AD94℄ R. Alur and D.L. Dill. A Theory of Timed Automata. Theoreti
al ComputerS
ien
e, 126:183{235, 1994.[AGS00℄ K. Altisen, G. G�ossler, and J. Sifakis. A Methodology for the Constru
tionof S
heduled Systems. In M. Joseph, editor, pro
. FTRTFT 2000, volume1926 of LNCS, pages 106{120. Springer-Verlag, 2000.[AGS02℄ K. Altisen, G. G�ossler, and J. Sifakis. S
heduler Modeling Based on theController Snthesis Paradigm. Journal of Real-Time Systems, spe
ial issueon "
ontrol-theoreti
al approa
hes to real-time
omputing", 23(1/2):55{84,2002.[BFG+91℄ A. Bouajjani, J.Cl. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safetyfor Bran
hing Time Semanti
s. In Pro
eedings of ICALP'91, volume 510 ofLNCS. Springer, July 1991.[BFG+99℄ M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, andJ. Sifakis. IF: An Intermediate Representation for SDL and its Appli
ations.In R. Dssouli, G. Bo
hmann, and Y. Lahav, editors, Pro
eedings of SDLFORUM'99 (Montreal, Canada), pages 423{440. Elsevier, June 1999.[BFKM97℄ M. Bozga, J.Cl. Fernandez, A. Kerbrat, and L. Mounier. Proto
ol Veri�
a-tion with the Aldebaran Toolset. Software Tools for Te
hnology Transfer,1(1+2):166{183, De
ember 1997.

[BL02a℄ B. Boigelot and L. Latour. The Liege Automata-based Symboli
 HandlerLASH. http://www.monte�ore.ulg.a
.be/ boigelot/resear
h/lash, 2002.[BL02b℄ M. Bozga and Y. Lakhne
h. IF-2.0: Common Language Operational Se-manti
s. Te
hni
al report, Verimag, 2002.[BLO98℄ S. Bensalem, Y. Lakhne
h, and S. Owre. Computing Abstra
tions of In-�nite State Systems Compositionally and Automati
ally. In A. Hu andM. Vardi, editors, Pro
eedings of CAV'98 (Van
ouver, Canada), volume1427 of LNCS, pages 319{331. Springer, June 1998.[BS00℄ S. Bornot and J. Sifakis. An Algebrai
 Framework for Urgen
y. Informationand Computation, 163:172{202, 2000.[BST98℄ S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgen
y in Timed Systems.In International Symposium: Compositionality - The Signi�
ant Di�eren
e,volume 1536 of LNCS. Springer-Verlag, 1998.[Con01℄ ADVANCE Consortium. http://www.liafa.jussieu.fr/ advan
e - website ofthe IST ADVANCE proje
t, 2001.[Con02℄ AGEDIS Consortium. http://www.agedis.de - website of the IST AGEDISproje
t, 2002.[Con03℄ OMEGA Consortium. http://www-omega.imag.fr - website of the ISTOMEGA proje
t., 2003.[DH99℄ W. Damm and D. Harel. LSCs: Breathing Life into Message Sequen
eCharts. In P. Cian
arini, A. Fante
hi, and R. Gorrieri, editors, FMOODS'99IFIP TC6/WG6.1 Third International Conferen
e on Formal Methods forOpen Obje
t-Based Distributed Systems. Kluwer A
ademi
 Publishers, 1999.Journal Version to appear in Journal on Formal Methods in System Design,July 2001.[DJPV02℄ W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: AFormal Semanti
s of Con
urren
y and Communi
ation in Real-Time UML.In Pro
eedings of FMCO'02, LNCS. Springer Verlag, November 2002.[DY96℄ C. Daws and S. Yovine. Redu
ing the Number of Clo
k Variables of TimedAutomata. In Pro
eedings of RTSS'96 (Washington, DC, USA), pages 73{82. IEEE Computer So
iety Press, De
ember 1996.[FGK+96℄ J.Cl. Fernandez, H. Garavel, A. Kerbrat, R. Matees
u, L. Mounier, andM. Sighireanu. CADP: A Proto
ol Validation and Veri�
ation Toolbox.In R. Alur and T.A. Henzinger, editors, Pro
eedings of CAV'96 (NewBrunswi
k, USA), volume 1102 of LNCS, pages 437{440. Springer, August1996.[FJJV96℄ J.C. Fernandez, C. Jard, T. J�eron, and C. Viho. Using On-the-
y Veri-�
ation Te
hniques for the Generation of Test Suites. In Pro
eedings ofCAV'96, number 1102 in LNCS. Springer, 1996.[GH04℄ S. Graf and J. Hooman. Corre
t development of embedded systems. InEuropean Workshop on Software Ar
hite
ture: Languages, Styles, Models,Tools, and Appli
ations (EWSA 2004),
o-lo
ated with ICSE 2004, St An-drews, S
otland, LNCS, May 2004.[GOO03℄ S. Graf, I. Ober, and I. Ober. Timed Annotations in UML. In Work-shop SVERTS on Spe
i�
ation and Validation of UML models for RealTime and Embedded Systems, a satellite event of UML 2003, San Fran-
is
o, O
tober 2003, Verimag te
hni
al report 2003/10/22 or http://www-verimag.imag.fr/EVENTS/2003/SVERTS/, O
tober 2003.[GS03℄ G. G�ossler and J. Sifakis. Composition for Component-Based Modeling. Inpro
. FMCO'02, volume 2852 of LNCS. Springer-Verlag, 2003.

[Har87℄ D. Harel. State
harts: A Visual Formalism for Complex Systems. S
i.Comput. Programming 8, 231-274, 1987.[HN04℄ A. Hartman and K. Nagin. The AGEDIS Tools for Model Based Testing.In Pro
eedings of ISSTA'2004, 2004.[Hol91℄ Gerard J. Holzmann. Design and Validation of Computer Proto
ols. Pren-ti
e Hall Software Series, 1991.[HP98℄ D. Harel and M. Politi. Modeling Rea
tive Systems with State
harts: TheSTATEMATE Approa
h. M
Graw-Hill, 1998.[HvdZ03℄ J. Hooman and M.B. van der Zwaag. A Semanti
s of Communi
ating Re-a
tive Obje
ts with Timing. In Pro
eedings of SVERTS'03 (Spe
i�
ationand Validation of UML models for Real Time and Embedded Systems), SanFran
is
o, O
tober 2003.[IBM℄ IBM. Rational ROSE Development Environment.[Ilo℄ Ilogix. Rhapsody Development Environment.[JM99℄ T. J�eron and P. Morel. Test Generation Derived from Model Che
king. InN. Halbwa
hs and D. Peled, editors, Pro
eedings of CAV'99 (Trento, Italy),volume 1633 of LNCS, pages 108{122. Springer, July 1999.[Koz83℄ D. Kozen. Results on the Propositional �-Cal
ulus. Theoreti
al ComputerS
ien
e, 1983.[LPY98℄ K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Journalon Software Tools for Te
hnology Transfer, 1:134{152, 1998.[LRG01℄ D. Lugato, N. Rapin, and J.P. Gallois. Veri�
ation and tests generationfor SDL industrial spe
i�
ations with the AGATHA toolset. In Real-TimeTools Workshop aÆliated to CONCUR 2001, Aalborg, Denmark, 2001.[Mil80℄ R. Milner. A Cal
ulus of Communi
ation Systems, volume 92 of LNCS.Springer, 1980.[Mu
97℄ S. Mu
hni
k. Advan
ed Compiler Design Implementation. Morgan Kauf-mann Publishers, 1997.[NS91℄ X. Ni
ollin and J. Sifakis. An Overview and Synthesis on Timed Pro
essAlgebras. In Pro
. CAV'91, volume 575 of LNCS. Springer-Verlag, July1991.[OGO04℄ I. Ober, S. Graf, and I. Ober. Model Che
king of UML Models via a Map-ping to Communi
ating Extended Timed Automata. In 11th InternationalSPIN Workshop on Model Che
king of Software, 2004, volume LNCS 2989,pages 127{145, 2004.[OMG01℄ OMG. Uni�ed Modeling Language Spe
i�
ation (A
tion Semanti
s). OMGAdopted Spe
i�
ation, De
ember 2001.[OMG03a℄ OMG. Model Driven Ar
hite
ture. http://www.omg.org/mda, 2003.[OMG03b℄ OMG. Standard uml Pro�le for S
hedulability, Performan
e and Time,v. 1.0. OMG do
ument formal/2003-09-01, September 2003.[Par81℄ D. Park. Con
urren
y and Automata on In�nite Sequen
es. Theoreti
alComputer S
ien
e, 104:167{183, Mar
h 1981.[RVR+℄ A. Ramirez, Ph. Vanpeperstraete, A. Rue
kert, K. Odutola, J. Bennett, andL. Tolke. ArgoUML Environment.[Sif77℄ J. Sifakis. Use of Petri Nets for Performan
e Evaluation. In Pro
. 3rd Intl.Symposium on Modeling and Evaluation, pages 75{93. IFIP, North Holland,1977.[Sif01℄ J. Sifakis. Modeling Real-Time Systems| Challenges andWork Dire
tions.In T.A. Henzinger and C. M. Kirs
h, editors, Pro
. EMSOFT'01, volume2211 of LNCS. Springer-Verlag, 2001.

[STY03℄ J. Sifakis, S. Tripakis, and S. Yovine. Building Models of Real-Time Systemsfrom Appli
ation Software. Pro
. IEEE, 91(1):100{111, 2003.[Tip94℄ F. Tip. A Survey of Program Sli
ing Te
hniques. Te
hni
al Report CS-R9438, CWI, Amsterdam, The Netherlands, 1994.[vGW89℄ R.J. van Glabbeek and W.P. Weijland. Bran
hing-Time and Abstra
tionin Bisimulation Semanti
s. Te
hni
al Report CS-R8911, CWI, Amsterdam,The Netherlands, 1989.[Wei84℄ M. Weiser. Program Sli
ing. IEEE Transa
tions on Software Engineering,SE-10(4):352{357, 1984.[Yov97℄ S. Yovine. KRONOS: A Veri�
ation Tool for Real-Time Systems. SoftwareTools for Te
hnology Transfer, 1(1+2):123{133, De
ember 1997.

