
METHOD Open Access

Tools and best practices for data
processing in allelic expression analysis
Stephane E. Castel1,2*, Ami Levy-Moonshine3, Pejman Mohammadi1,2, Eric Banks3 and Tuuli Lappalainen1,2*

Abstract

Allelic expression analysis has become important for integrating genome and transcriptome data to characterize
various biological phenomena such as cis-regulatory variation and nonsense-mediated decay. We analyze the
properties of allelic expression read count data and technical sources of error, such as low-quality or double-counted
RNA-seq reads, genotyping errors, allelic mapping bias, and technical covariates due to sample preparation and
sequencing, and variation in total read depth. We provide guidelines for correcting such errors, show that our quality
control measures improve the detection of relevant allelic expression, and introduce tools for the high-throughput
production of allelic expression data from RNA-sequencing data.

Background
Integrating genome and transcriptome data has become

a widespread approach for understanding genome func-

tion. Allelic expression (AE; also called allele-specific

expression or allelic imbalance) analysis is becoming an

increasingly important tool for this, as it quantifies

expression variation between the two haplotypes of a

diploid individual distinguished by heterozygous sites

(Fig. 1a). This approach can be used to capture many

biological phenomena (Fig. 1b): effects of genetic

regulatory variants in cis [1–8], nonsense-mediated

decay triggered by variants causing a premature stop

codon [9–12], and imprinting [13, 14]. Standard RNA-

sequencing (RNA-seq) data capture AE only when

higher expression of one parental allele is shared

between individual cells (Additional file 1), as opposed

to random monoallelic expression of single cells that

typically cancels out when a pool of polyclonal cells is

analyzed [15, 16].

In this paper, we describe a new tool in the Genome

Analyzer Toolkit (GATK) software package for efficient

retrieval of raw allelic count data from RNA-seq data,

and analyze the properties of AE data and the sources of

errors and technical variation, with suggested guidelines

for accounting for them. While most types of errors may

be rare, they are easily enriched among sites with allelic

imbalance, and can sometimes mimic the biological sig-

nal of interest, thus warranting careful analysis. Our

focus is on methods for obtaining accurate data of AE

rather than building a graphical user interface (GUI)

pipeline [17] or downstream statistical analysis of its bio-

logical sources [9, 13, 18–20]. The example data in most

of our analysis are the open-access RNA-seq data set of

the lymphoblastoid cell lines (LCLs) of 1000 Genomes

individuals from the Geuvadis project [5].

Results and discussion

Unit of AE data

The biological signal of interest in AE analysis is the

relative expression of a given transcript from the two

parental chromosomes. Typical AE data seek to capture

this by counts of RNA-seq reads carrying reference and

alternative alleles over heterozygous sites in an individ-

ual [heterozygous single-nucleotide polymorphisms

(het-SNPs)], and this is the focus of our analysis unless

mentioned otherwise. The Geuvadis samples with a

median depth of 55 million mapped reads have about

5000 het-SNPs covered by ≥30 RNA-seq reads, distrib-

uted across about 3000 genes and 4000 exons (Fig. 2;

Additional file 2). The exact number varies due to dif-

ferences in sequencing depth, its distribution across

genes, and individual DNA heterozygosity. About one

half of these genes contain multiple het-SNPs per

individual, which could be aggregated to better detect

AE across the gene (Fig. 2d). However, alternative spli-

cing can introduce true biological variation in AE in

* Correspondence: scastel@nygenome.org; tlappalainen@nygenome.org
1New York Genome Center, New York, NY, USA
Full list of author information is available at the end of the article

© 2015 Castel et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Castel et al. Genome Biology  (2015) 16:195 

DOI 10.1186/s13059-015-0762-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-015-0762-6&domain=pdf
mailto:scastel@nygenome.org
mailto:tlappalainen@nygenome.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


different exons, and incorrect phasing needs to be

accounted for in downstream analysis [13]. Additionally,

summing up data from multiple SNPs is not appropriate

if the same RNA-seq reads overlap both sites. In the

Geuvadis data, 9 % of the reads used in AE analysis in

fact overlap more than one het-SNP (Figure S2d in

Additional file 2), but this will become more frequent as

read lengths increase [21]. In the future, better tools are

needed to partition RNA-seq reads to either of the two

haplotypes according to all het-SNPs that they overlap

[22]. In fact, this could help to phase exonic sites

separated by long introns.

AE analysis of small insertions or deletions (indels)

has proven to be technically very challenging and it is

rarely attempted even though frameshift indels are an

important class of protein-truncating variant. Alignment

errors over indel loci are pervasive due to multiple mis-

matches of reads carrying alternative alleles, and lower

genotyping quality adds further error [12]. In Rivas et al.

[12] we describe the first approach for large-scale analysis

of AE over indels, but further methods development is war-

ranted for better sensitivity and computational scalability.

In addition to classical AE analysis to detect differ-

ences in total expression level of two haplotypes, it is

also possible to analyze allelic differences in transcript

structure or splicing [allelic splicing (AS)] [5, 21]. These

methods compare the exon distribution of reads and

their mates carrying different alleles of a heterozygous

site, and work increasingly well for longer total fragment

lengths. In these analyses, the data structure is some-

what more complex than reference/non-reference read

counts in AE, depending on the specific algorithm.

While this paper focuses on classical AE analysis of

SNPs, most of the quality analysis steps apply to indel

AE and AS analyses as well.

Tools to retrieve allele counts

Allele counts are the starting point for all AE analyses,

and many previous tools can retrieve these counts.

However, they also perform other analyses that require

additional input data and increase the runtime. Here we

present simple tools that can be used to retrieve only

allele counts, using the minimum required inputs in

standard formats. We present two solutions: 1) a highly

Fig. 1 Allelic expression and its sources. a Schematic illustration of AE. b Biological sources of AE, with the x-axis denoting the approximate
sharing of AE across tissues of an individual, and the y-axis having the estimated sharing of AE signal in one tissue across different individuals
[5, 8, 12, 13, 15]. SNP single-nucleotide polymorphism

Fig. 2 Genomic coverage of AE data in Geuvadis CEU samples. a Cumulative distribution of RNA-seq read coverage per het-SNP (each line represents
one sample). b, c The number of het-SNPs (b) and protein-coding genes (c) per sample as a function of coverage cutoff. d The number of
protein-coding genes with AE data versus the number of het-SNPs they contain. Each line is the median for all samples at a specific coverage level
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efficient Python tool that processes results from SAM-

tools mpileup, the framework used by the majority of

existing AE analysis pipelines; and 2) an easy to use tool

in the widely used GATK v.3.4 [23, 24] called ASERead-

Counter, which does not require any additional setup,

and includes a variety of easily customizable read pro-

cessing options as well as professional maintenance and

documentation, similar to other GATK tools. Both oper-

ate on aligned RNA-seq reads and count the reference

and alternative allele reads that passed filters for map-

ping and base quality at each bi-allelic heterozygous

variant. The GATK tool offers several additional options

for processing RNA-seq reads: by default each read frag-

ment is counted only once if the base calls are consistent

at the site of interest, and duplicate reads are filtered

(see below). Other options allow filtering for coverage

and for sites or reads with deletions. The output of

both is one file per RNA-seq input file, with one line

per site displaying the counts for each allele as well as

counts of filtered reads, and can be used for down-

stream analyses. The tools yield consistent results, with

runtimes comparable to a previously published tool [25]

(Additional file 3).

Quality control of allele counting

Retrieving allele counts from RNA-seq data over a list of

heterozygous sites is conceptually very simple, but

several non-trivial filtering steps need to be undertaken

to ensure that only high-quality reads representing inde-

pendent RNA/cDNA molecules are counted. The first

commonly applied filter is to remove reads with a poten-

tially erroneous base over the heterozygous site based on

low base quality. Furthermore, potential overlap of mates

in paired-end RNA-seq data needs to be accounted for, so

that each fragment, representing one RNA molecule, is

counted only once per het-SNP. In the Geuvadis data, an

average of 4.4 % of reads mapping to het-SNPs per sample

are derived from overlapping mates, but this number will

vary by the insert size (Figure S4a in Additional file 4).

In RNA-seq analysis, duplicate reads with identical

start and end positions are common (15 % of reads in

Geuvadis AE analysis), because highly expressed genes

get saturated with reads (Figure S4b, d in Additional file 4).

Thus, by default, duplicates are usually not removed from

RNA-seq data to avoid underestimating expression levels

in highly expressed genes [5]. However, we observe consist-

ent albeit infrequent signs of PCR artifacts in the Geuvadis

AE data, especially affecting lowly covered sites — where

duplicates are mostly true PCR duplicates, since saturation

is unlikely. Removing duplicate reads reduces technical

sources of AE at these sites, while having a minimal

effect on highly covered, read-saturated SNPs (Figure S4e

in Additional file 4). Thus, we suggest that removing

duplicate reads is a good default approach for AE

analysis, and it is implemented as a default in the GATK

tool. However, it is important that the retained read is

either chosen randomly or by base quality, and not by

mapping score, so as not to bias towards the reference

allele.

The most difficult problem in AE analysis and a po-

tential source of false positive AE is ensuring that 1) all

the reads counted over a site indeed originate from that

genomic locus, and 2) all reads from that locus are

counted. RNA-seq studies with shorter or single-end

RNA-seq reads are more susceptible to these problems.

First, to make sure that no alien reads get erroneously

assigned to a locus, only uniquely mapping reads should

be used. This implies that highly homologous loci — such

as microRNAs — are not amenable to AE analysis.

An even more difficult caveat in AE analysis is allelic

mapping bias: in RNA-seq data aligned to the reference

genome, a read carrying the alternative allele of a variant

has at least one mismatch, and thus has a lower probabil-

ity to align correctly than the reference reads [26–28].

Simulated data in Panousis et al. [27] indicates substantial

variation between sites — in most cases reads mapped

correctly, but 12 % of SNPs and 46 % of indels had allele

ratio bias >5 % with some having a full loss of mapping of

the alternative allele. Loci with homology elsewhere in the

genome are particularly problematic as reads have nearly

equally good alternative loci to align to. Furthermore, even

a site with no bias in itself can become biased due to a

flanking (sometimes unknown) variant that shares over-

lapping reads with the site of interest. In addition, map-

ping bias varies depending on the specific alignment

software used (Additional file 5).

Various strategies can be employed to control for the

effect of mapping bias on AE analysis. The simplest ap-

proach that can be applied to AE data without realign-

ment is to filter sites with likely bias [5, 8, 28]. In

previous work [5, 8, 29–31] and in this paper, unless

mentioned otherwise, we remove about 20 % of het-

SNPs that either fall within regions of low mappability

(ENCODE 50 bp mappability score < 1) or show map-

ping bias in simulations [27]. This reduces the number

of sites with strong bias by about 50 % (Fig. 3b) but the

genome-wide reference ratio remaining slightly above

0.5 indicates residual bias (Figure S6a in Additional file 6).

Using this ratio as a null in statistical tests instead of

0.5 [5, 6] can improve results (Figure S6b–e in Add-

itional file 6). More exhaustive but computationally in-

tensive approaches include alignment to personalized

genomes [18, 32, 33], or use of a variant-aware aligner,

such as GSNAP [34]. These methods yield comparable re-

sults and eliminate average genome-wide bias (Fig. 3a;

Additional file 5), but the fact that applying a mappability

filter still removes monoallelic sites implies that not all bias

is eliminated (Fig. 3b). In particular, in personalized or
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variant-aware approaches sites with homology else-

where in the genome can have very substantial allelic

mapping bias towards either the reference or non-

reference allele, which occurs when reads carrying one

allele map perfectly and reads with the other allele align

to multiple loci. A novel approach is the specific re-

moval of reads that show mapping bias with software

such as WASP [35], which generally performs well, al-

though some signs of residual bias still remain. Additional

file 7 presents a summary of the strengths and weaknesses

of each strategy. Altogether, while many approaches yield

reasonably accurate data, allelic mapping bias remains a

problem that cannot be perfectly eliminated with available

solutions.

Quality control of genotype data

AE analysis relies on data of heterozygous sites to distin-

guish the two parental alleles. These genotype data are

ideally retrieved from DNA-sequencing or genotyping

arrays, but the RNA-seq data themselves can also be

used for calling genetic variants and finding heterozy-

gous sites [36–39]. However, true allelic imbalance can

lead to heterozygous sites being called homozygous in

RNA-based genotype calling and lead to substantial error

in monoallelic genes due to, e.g., imprinting, and more

subtle bias in expression quantitative trait loci (eQTL)

genes (Figure S7a in Additional file 8).

Even when using heterozygous genotypes called from

DNA data, genotyping error can be an important source

of false signals of allelic imbalance, because AE data from

a homozygous site appear as monoallelically expressed. In

genotype data that has passed normal quality control (QC),

including Hardy-Weinberg equilibrium test, genotype error

will lead to rare cases of monoallelic expression per site,

not shared across many individuals (Fig. 1b). False hetero-

zygous genotype calls are rare but not negligible in AE

analysis using SNP genotypes from arrays or from modern

sequencing data, but much more common in imputed

data (Fig. 4a). Calculating the genome-wide proportion of

monoallelic AE sites per individual is a sensitive method

for genotyping quality control (Fig. 4a, arrowheads).

Removing genotyping error is relatively straightfor-

ward for analysis of moderate allelic imbalance (such as

that caused by cis-regulatory variants): removing mono-

allelic variants removes sites with false genotypes and re-

sults in little loss of truly interesting data. However,

highly covered sites are rarely strictly monoallelic even

in a homozygous state due to rare errors in sequencing

and alignment (Figure S7b in Additional file 8). Thus,

we propose a genotype error filter where the average

amount of such sequencing noise per sample is first esti-

mated from alleles other than reference (REF) or alterna-

tive (ALT) (Figure S7c in Additional file 8). Then,

binomial testing is used to estimate if the counts of REF/

ALT alleles are significantly higher than this noise, and

sites where homozygosity cannot be thus rejected are

flagged as possible errors (Fig. 4b). Additionally, it may

be desirable to flag fully monoallelic sites with low total

counts, where homozygosity cannot be significantly

rejected, but heterozygosity is not supported either. This

test can also be applied to study designs with RNA-seq

data from multiple samples (e.g., tissues or treatments) of

a given individual, genotyped only once, since genotyping

error causes consistent monoallelic expression in every tis-

sue. In the Geuvadis data set with 1000 Genomes phase 1

genotypes and sites covered by eight or more reads, an

Fig. 3 Strategies for reducing mapping bias in AE analysis. a Summary of various strategies to correct for mapping bias (Baseline = STAR aligned
only, Filtering = STAR aligned with bias and mappability filters, P. Genome = STAR aligned to a personalized genome generated with Allele-Seq,
WASP = STAR aligned with removal of biased reads using WASP, Variant Aware = GSNAP in variant aware alignment mode). The boxplot (axis on
the left) shows reference ratios for AE sites covered by eight or more reads. The mean reference ratio for each strategy is shown with a white

dash; the solid black line indicates a reference ratio of 0.5, while dotted lines indicate ±0.05. The percentages of sites that are monoallelic reference
(grey circle) or alternative (grey diamond) are plotted against the secondary axis. The number of sites with AE data for each strategy is shown as a
percentage of the baseline strategy underneath their respective labels. Outliers are hidden for ease of viewing. b Percentage of sites that are
removed when bias and mappability filters are applied to resulting data from all strategies, shown for each reference ratio bin
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average of 4.3 % of sites per sample are excluded by these

criteria [1 % false discovery rate (FDR)].

Unfortunately, genotyping error is very difficult to dis-

tinguish from a true biological pattern of strong monoal-

lelic expression, shared across all studied tissues, and

present in a small number of samples, such as analysis

of nonsense-mediated decay triggered by a rare variant,

or a rare severe regulatory mutation (Fig. 1). The only

real solution is rigorous genotype quality control and/or

validation, and taking the possibility of confounding by

genotyping error into account in interpretation of the

results.

Sample mislabeling or mixing of the RNA-seq samples

can lead to a substantial number false positive hits — as

opposed to reduction of power in eQTL studies. Fortu-

nately, simple metrics from AE analysis provide a sensi-

tive way to detect sample contamination and mislabeling

[40]. DNA-RNA heterozygous concordance — i.e., the

proportion of DNA-heterozygous sites that are hetero-

zygous also in RNA data — and a measure of allelic im-

balance detect outliers and indicate the type of error

(Figure S7d in Additional file 8).

Technical covariates

RNA-seq has become a mature and highly reproducible

technique, but it is not immune to technical covariates

such as the laboratory which experiments were per-

formed in, aspects of library construction and complex-

ity, and sequencing metrics [40]. Gene expression

studies are particularly susceptible to these technical fac-

tors, because read counts between samples are compared.

AE analysis has the advantage that only read counts

within samples are compared (allele versus allele), which

makes it less susceptible to technical artifacts. We ana-

lyzed the correlation of the proportion of significant

AE sites (binomial test, nominal p < 0.05) with various

technical covariates in the Geuvadis data (Fig. 5a). In

raw AE count data, we observe a high correlation with

the library depth (unique reads; R2 = 0.24) — expect-

edly, since total read count of AE sites determines the

statistical power to see significant effects (see below).

In AE data corrected for variation in read counts by

scaling the counts to 30, all technical correlations are

very small and mostly non-significant, in stark contrast

to gene expression level data that display strong batch

effects (Fig. 5b). Thus, when appropriate measures are

taken, AE analysis is an extremely robust approach that

suffers less from technical factors than gene expression

studies.

Statistical tests for AE

A binomial test is the classic way to determine whether

the ratio of the two alleles is significantly different from

the expected 0.5, and has been widely used [2, 5, 8, 31].

However, AE data are overdispersed compared with

what is expected under a binomial distribution, likely as

a result of both biological and technical factors [35, 41,

42]. These technical factors arise from systematic arti-

facts such as allelic mapping bias, as well as from imper-

fect reproducibility (measurement error), which we were

able to estimate using eight technical replicates of five

Geuvadis samples [40]. Accounting for duplicates and

overlapping read mates reduced measurement error be-

tween replicates (Additional file 9), with very low level

of residual variation between replicates except for the

highly covered sites (>500), although we note that this

may not apply to all data sets. The other QC measures

described above remove systematic artifacts and reduce

the inflation of binomial p values further (Fig. 6a). None-

theless, the binomial p values remain inflated, and espe-

cially highly covered sites are likely to have remaining

systematic artifacts (Fig. 6b). This suggests that a simple

Fig. 4 Quality control of genotype data for AE analysis. a Median percentage of het-SNPs where RNA-seq reads from both alleles are observed
across all tissues for GTEx samples, genotyped with different platforms: exome-seq (yellow), Illumina OMNI 5 M SNP array (blue), and sites imputed
from OMNI 5 M genotype array (red). Grey arrowheads indicate outlier individuals that are likely to have lower genotype quality. b Total het-SNP
read count versus the read count of the lesser-covered allele for an individual Geuvadis sample. Sites flagged as putative genotyping errors are
marked in red, with RNA-seq data not rendering support for heterozygosity
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binomial test may not be an appropriate statistical test

for allelic imbalance because it could result in a high

number of false positives. However, given that most

genes have eQTLs [4, 5, 8], biological sources of AE are

expected to be extremely widespread, which is further

supported by high heritability of AE [2]. Thus, while

various statistical models have been put forward, many

of which use variations of a beta-binomial model to infer

the level of overdispersion [35, 41, 42], it remains inher-

ently difficult to distinguish biological sources of over-

dispersion from putative technical effects. One approach

is to analyze AE across individuals and tissues to control

for confounders and capture the biological signal of

interest — such as cis-regulatory variation [35, 41], im-

printing [13], or nonsense-mediated decay [20]. How-

ever, many of the statistical approaches to analyze AE

data are just emerging, and their full benchmarking is

beyond the scope of this paper. For reference, a list of

the currently available tools and publications that

analyze AE data, including their specific biological

application, statistical test used, and required inputs,

can be found in Additional file 10.

Often during AE analysis the intent is to compare

allelic imbalance between different sites, or between

individuals. This is complicated by the highly variable

total read counts at het-SNPs (Fig. 2a), since they lead

to substantial differences in statistical power at differ-

ent sites. These differences are driven by differences in

library depth between samples, as well as biologically

variable expression levels between genes and samples.

Such differences can cause samples to cluster by ex-

perimental batch (Fig. 6c). If the goal of the analysis is

to capture AE, patterns introduced by expression levels

are often not desirable. While this problem ultimately

needs to be addressed with tailored statistical ap-

proaches, it can be alleviated with a straightforward

minimum effect size cutoff that reduces the enrich-

ment of significant sites in highly covered het-SNPs

(Fig. 6b), and accounts for the strongest dependency of

total read counts (Fig. 6d). An experimental approach

Fig. 5 Technical covariates of AE. a Correlation of AE with technical covariates, measured as correlation (R2) between each covariate and the
percentage of significant AE sites in a sample (binomial p < 0.05, het-SNPs with ≥30 reads), both before and after scaling to 30 reads. b Correlation of
gene expression with technical covariates. As the gene expression statistic we use the median correlation of each sample to all other samples
(D-statistic). Correlation to a biological covariate (population) is shown for comparison. Correlations were calculated from all Geuvadis samples
by Spearman correlation for continuous covariates, or linear regression for categorical covariates. **p < 0.01, *p < 0.05, after Bonferroni correction. RIN
RNA integrity number, Stdev standard deviation
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is to use an assay that yields high read counts, such as

mmPCR-seq, instead of or alongside RNA-seq data [9,

12, 13, 43].

QC measures improve the power to detect biologically

relevant AE

Regardless of the specific application, the QC measures

proposed here should increase true signals of AE, result-

ing in improved power to detect biological phenomena

of interest. To demonstrate this, we analyzed AE at 1154

genes with known eQTL (eGenes) in 343 European

individuals using Geuvadis LCL RNA-seq data [5].

Individuals who are heterozygous for an eQTL SNP (eSNP)

are expected to show increased AE within the eGene

compared with those who are homozygous. Applying QC

measures increased the significance of the difference

in AE and reduced the variance of AE at eGenes

(Additional file 11). Altogether this increased the power

to distinguish between AE levels in eSNP heterozygous

versus homozygous eGenes, with a 6.8 % increase in true

positives, and 59.3 % decrease in false positives after

applying QC measures (Fig. 7a, b). The measures also

significantly increased the difference in the proportion

of individuals exhibiting allelic imbalance (AE > 0.25)

between the two classes (Fig. 7c), and resulted in a robust

enrichment of sites within heterozygous eQTL across the

spectrum of allelic imbalance (Fig. 7d). These results

clearly illustrate the immediate benefit of ensuring AE data

used for analysis are of high quality by applying the QC

measures outlined here.

Fig. 6 QC measures reduce false positives, demonstrated with a binomial test for allelic imbalance. a QQ plot of p values generated from binomial
testing after various QC measures. Baseline = STAR aligned testing against a null of 0.5 without any correction for double counting, mapping bias, or
genotyping error; No Double Counting = as Baseline but without duplicates and overlapping mate pairs counted once; Site Filter= as No Double
Counting but without biased and low mappability het-SNPs; Adjusted Null = As Site Filter but using mean per base reference ratio as the binomial null;
WASP Filter= as Site Filter but with WASP filtering of reads; Monoallelic Filter= as Adjusted Null but removing monoallelic sites to account for putative
genotyping error. b Histogram showing distribution of coverage for sites with significant (5 % FDR) allelic imbalance according to a binomial test
(primary axis), and the percentage of all het-SNPs that show significant allelic imbalance in each coverage bin using increasing allelic effect cutoffs
(secondary axis). c, d Multidimensional scaling (MDS) clustering of Geuvadis samples based on proportion of sites with significant AE that
differs between sample pairs. Samples are colored by sequencing laboratory and labeled by population. If significant sites are assigned based
on a simple binomial test (FDR 5 %), the samples cluster first by sequencing laboratory due to lab-specific differences in coverage (c). This effect
is mostly removed in (d) by requiring significant sites to have FDR 5 % and effect size > 0.15
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Conclusion

In this paper, we have introduced tools for retrieving

high-quality AE data from RNA-seq data sets. We

have described how the quality of the input data af-

fects AE analysis, and outlined the QC approaches

that are needed to obtain accurate estimates of AE

from RNA-seq data (Additional files 12 and 13).

Altogether, we show that carefully collected and fil-

tered AE estimates from modern RNA-seq data are re-

markably robust to technical variation in RNA-seq

data, highlighting their utility for detecting diverse

biological phenomena of genetic and epigenetic vari-

ation. Increasingly standardized production of AE data

advances wider data sharing and integration across

studies, although the genotype data included in AE

estimates by default pose limitations on data access.

The increasing amounts of AE data from large-scale

RNA-seq studies hold great promise for capturing

regulatory variation even in small numbers of samples,

allowing integrated analysis of the personalized gen-

ome and its function.

Materials and methods
GATK ASEReadCounter tool and benchmarking

The tool and accompanying documentation are avail-

able in GATK v.3.4, which can be downloaded from

[44]. The Python script which processes the output

from SAMtools mpileup can be found at [45]. Bench-

marking was run using GATK v.3.4 and SAMtools 1.2

on STAR aligned reads from the Geuvadis sample

NA06986.2.M_111215_4 using heterozygous bi-allelic sites

from 1000 Genomes phase 1. Reads were coordinate

sorted, indexed, and WASP filtered to produce a BAM file

containing 56,362,192 reads. Runtime benchmarking was

Fig. 7 QC measures improve the power to detect biologically relevant AE at genes that have eQTLs (eGenes), where individuals that are
heterozygous for the top eQTL SNP (eSNP) are expected to have more AE than homozygous individuals. Plot of median AE in heterozygous
versus homozygous individuals for each eGene, before (a) and after (b) QC measures. Red points indicate a significant (1 % FDR) difference in AE level
in the expected direction (AE het > AE homo, true positive), blue points indicate a significant difference in the opposite direction (AE het < AE homo,
false positive), and the number of true and false positives is listed. c Boxplot of the percentage of individuals showing allelic imbalance
(AE > 0.25) who are either heterozygous or homozygous for the top eQTL at each eGene before and after QC measures. Outliers are hidden
for ease of viewing. d Mean percentage of het-SNPs that are found within heterozygous eGenes in bins of AE across individuals before and
after QC measures. Error bars represent the standard error of the mean, and asterisks indicate a significant difference (1 % FDR) after applying
QC measures for that bin
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performed using 100 %, 75 %, and 50 % of the reads

sampled from the file, and is reported as the mean of

10 runs with the 95 % confidence interval shown. For

comparison ASEQ v.1.1.8 was run in pileup mode.

Benchmarking was run on CentOS 6.5 with Java version

1.6 on an Intel Xeon CPU E7- 8830 @ 2.13GHz.

Filtering homozygous sites

In order to identify potentially homozygous sites miscalled

as a heterozygous SNP we model the number of reads that

can be observed due to technical error of the experimental

and upstream computational pipeline. Let us assume there

are a total of n reads originating from a site homozygous

for an allele R. Assuming a noise rate ε, by which a read

can erroneously support another allele A, the distribution

of total number of reads aligned to allele A, nA, is given by

binomial distribution. Hence, the probability of observing

nA or more reads assigned to allele A in a site homozygous

for R is given by:

p x≥nAj RRð Þ ¼ 1−BinCDF nA; n; εð Þ;

where BinCDF(nA, n, ε) is the binomial cumulative dis-

tribution function. Conversely, the probability of observ-

ing nR(n = nR + nA) or more reads assigned to allele R in

a site homozygous for A is given by:

p x≥nRj AAð Þ ¼ 1−BinCDF nR; n; εð Þ;

under the assumption that the noise rate is equal for all

alleles. Therefore, the probability of observing extreme

allelic imbalance due to the null hypothesis, homozygosity

for one of the alleles, can be calculated by summing up the

two above probabilities corresponding to the two tails of

the distribution. In order to derive an empirical estimate of

the noise rate ε we used the ratio between the total sum of

reads assigned to other alleles, those different from the

designated reference or alternative allele at each site, to the

total number of reads in a library divided by two. For this

purpose we exclude the sites with more than 5 % of the

reads aligned to other alleles from the analysis.

Mapping strategies for AE analysis

For all analyses, unless otherwise noted, reads were

mapped using STAR v.2.4.0f1 and the two-pass mapping

strategy as recommended by the Broad Institute [39].

Briefly, splice junctions are detected during a first pass

mapping, and these are used to inform a second round

of mapping. All reads were mapped to hg19 and Gencode

v19 annotations were used.

For mapping to a personalized genome, the vcf2diploid

tool, part of AlleleSeq, was used to generate both a mater-

nal and paternal genome for NA06986 from the phased

1000 Genomes phase 1 reference using het-SNPs only.

Reads were then mapped to both genomes separately using

STAR two-pass strategy (as above). Reads which aligned

uniquely to only one genome were kept, and in cases where

reads mapped uniquely to both genomes, the alignment

with the higher alignment quality was used.

Mapping using GSNAP was performed with default

settings and splice site annotations from hg19 refGene.

Variant-aware alignment was performed using the “-d”

option for NA06986 from the phased 1000 Genomes

phase 1 reference using het-SNPs only, as described in

the GSNAP documentation.

Multidimensional scaling clustering of samples by AE

data

A pairwise distance matrix was produced for all

Geuvadis samples using AE data and used for classical

multidimensional scaling (cmdscale) in R. The first two

dimensions were then plotted against each other for all

samples. The distance between two samples was calcu-

lated as follows: Pairwise distance = Total number of sites

with significant AE in only one sample/Total number of

shared sites. A binomial test with a 5 % FDR was used for

significance with either no effect size cutoff (Fig. 6c) or a

minimum effect size of 0.15 (Fig. 6d).

Measuring AE at eQTL genes

RNA-seq data from 343 Geuvadis European individuals

was used to generate allele counts at het-SNPs. For each

individual, AE (AE = |0.5 − Reference ratio |) was calcu-

lated for all sites with ≥16 reads, each site was intersected

against all Geuvadis European genes with a significant

eQTL (eGene, 5 % FDR), and the median AE of all sites

covering each eGene was calculated. The genotype of each

individual for the top eQTL for each gene was then deter-

mined to be either heterozygous or homozygous. For each

eGene with at least 30 measurements of AE in both

heterozygous and homozygous individuals the significance

of the difference in AE between the two classes was

calculated using a Wilcoxon rank sum test (1 % FDR). To

determine the enrichment of sites within eSNP heterozy-

gous eGenes across the AE spectrum, the percentage of

these sites was calculated in bins of AE for each individual.

Units of AE

For a single variant:

Reference ratio = Reference reads/Total reads

Allelic expression (effect size) = |0.5 – Reference ratio|

Data availability

RNA-seq data from the Geuvadis Consortium alongside

1000 Genomes phase 1 genotype data were used for all

analyses. RNA-Seq FASTQ files are available from

the European Nucleotide Archive under accession

[ENA:ERP001942].
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Additional files

Additional file 1: Figure S1. Allelic expression signal from a population of
monoclonal versus polyclonal cells. In the latter, standard RNA-sequencing will
show allelic imbalance only when the two alleles are systematically differentially
expressed, e.g., due to a regulatory variant or imprinting. (TIFF 3238 kb)

Additional file 2: Figure S2. Genomic coverage of allelic expression data
in Geuvadis CEU samples (extended). a Total number of unique het-SNPs
covered by increasing read depth as a function of the number of individuals.
b Boxplot of the total number of exons per individual containing at least one
het-SNP for each depth level. c Median number of exons as a function of the
number of het-SNPs per feature at increasing read depths. d Distribution of
percentage of reads mapping to het-SNPs that cover more than one het-SNP
for all Geuvadis samples (median = 8.8 %). (TIFF 1735 kb)

Additional file 3: Figure S3. Performance of GATK ASEReadCounter
(GATK) tool compared with SAMtools mpileup with output processed
by a custom Python script. a Mean runtime in minutes to produce allele
counts from a processed BAM file with 100 %, 75 %, and 50 % of the
reads sampled (see "Materials and methods"). ASEQ running in pileup
mode is included as a comparison. Error bars show a 95 % confidence
interval generated from ten runs. Plot (b) and distribution (c) of reference
ratios for sites covered by ≥30 reads calculated using read counts
generated using either the GATK or SAMtools mpileup. (TIFF 4277 kb)

Additional file 4: Figure S4. Effect of overlapping and duplicate reads
on AE analysis of Geuvadis samples. a Histogram of percent overlapping
mates of paired-end reads at het-SNPs used for AE analysis. b Histogram
of percentage of duplicate reads at het-SNPs used for AE analysis. c Total
coverage versus percentage of duplicate reads at AE sites. d Percentage
of duplicate reads in coverage level bins for Geuvadis samples with the
minimum (77.5 %, red), median (83.9 %, yellow) and maximum (89.6 %,
green) read complexity at het-SNPs. Complexity is defined as Total number
of reads mapping to het-SNPs after removing duplicates/Number of
reads before removing duplicates. e Effect of duplicate removal on allelic
expression effect size [AE = |0.5 – Reference reads/Total reads|,
∆AE = AE(Duplicates removed) – AE(No duplicates removed)] on het-SNPs
binned by coverage level, sites where ∆AE = 0 are not shown. (TIFF 2407 kb)

Additional file 5: Figure S5. Comparison of AE data generated with
different alignment strategies. a–d For each comparison the observed reference
ratios for het-SNPs that have AE data in both strategies are plotted against each
other (Shared het-SNPs), histograms show the reference ratios of sites that are
unique to only one analysis (Unique het-SNPs), and a density plot shows the
genome wide reference ratio distribution for each analysis. AS=personalized
genome generated with Allele-Seq and phased genotype data, GSNAP
vAWARE=GSNAP using variant aware alignment. No filtering of sites has been
done. All data come from Geuvadis LCL RNA-seq libraries from NA06986.
Only het-SNPs with eight or more reads are included. (TIFF 15560 kb)

Additional file 6: Figure S6. Low-level reference bias at het-SNPs
remains after filtering biased sites. a Boxplot of reference ratio (Reference/
Total) for each reference-alternative base combination for each Geuvadis
sample, mapped with STAR two-pass and filtered for sites with low
mappability or mapping bias in simulations as well as sites with potential
genotyping error as described before. Ratio is calculated by summing up
all REF and ALT read counts for that combination in a sample at sites that
have eight or more reads, and for sites with coverage > 75th percentile total
counts were scaled down to the 75th percentile to avoid sites with very high
coverage having a disproportionate effect on the overall ratio. b, c Binomial
test of AE on an example Geuvadis sample using an expected reference
ratio of 0.5 (b) or against the calculated mean scaled reference ratio (c)
(as described above), with sites of significant AE shown in red (5 % FDR).
d Histogram of reference ratios at significant sites from (b). e Histogram of
reference ratios at significant sites from (c). (TIFF 7345 kb)

Additional file 7: Table S1. Summary of methods for correcting
mapping bias in AE analysis. (XLSX 34 kb)

Additional file 8: Figure S7. Quality control of genotype data for allelic
expression analysis (extended). a Boxplot of per individual percentage
of false homozygous RNA-seq genotype calls at het-SNPs in genes with
cis-eQTLs in LCLs (FDR ≤ 0.05, Geuvadis), imprinted genes (based on [13]
excluding genes detected exclusively in Geuvadis data), and all other

genes. False homozygosity is defined as sites where variant calling using
LCL RNA-seq data indicate the individual is homozygous for a non-
reference allele, while DNA genotyping (1000 Genomes) indicates they
are heterozygous. Genotype calls were made using GATK and best practices
for RNA-seq genotype calling. b Percentage of het-SNPs where reads
from foreign alleles (≥1 blue, ≥2 green, ≥3 yellow, ≥4 red) are observed
as a function of coverage level using all Geuvadis RNA-seq data. Binned
by hundreds of reads/het-SNP. c Frequency of the proportion of reads
from foreign alleles (non-reference or alternative) observed (ε) in all
Geuvadis samples (median = 4.128 × 10-4). d Scatterplot of percentage of
significant AE sites (binomial test, p < 0.05) and percentage of biallelic
het-SNPs (one or more read for each allele), for five Geuvadis libraries
that have been contaminated with another sample in silico (0–75 %
contamination). (TIFF 2131 kb)

Additional file 9: Figure S8. QC measures reduce overdispersion in
technical replicates when testing for allelic imbalance using a binomial
test. Variance of allelic ratios as a function of total read counts, calculated
as the mean at a given SNP from a Geuvadis individual with eight
technical replicates (grey) with (b) or without (a) accounting for duplicate
reads and overlapping read mates. The lines denote locally weighted
smoothing of observed data (black) and theoretical variance for
binomially distributed data (red). (TIFF 3209 kb)

Additional file 10: Table S2. Summary of publications and tools that
analyze AE data, listing their specific application, the type of statistical
test performed, and the required input data. (XLSX 27 kb)

Additional file 11: Figure S9. QC measures improve the power to
detect biologically relevant allelic expression at genes that have eQTLs
(eGenes), where individuals that are heterozygous for the top eQTL SNP
(eSNP) are expected to have more allelic expression than homozygous
individuals (extended). a QC measures increase the significance of the
difference between heterozygous and homozygous individuals within
eGenes. b QC measures reduce the variance of allelic expression
between individuals within eGenes. (TIFF 2856 kb)

Additional file 12: Figure S10. Complete workflow for AE analysis
illustrating appropriate quality control measures and filters. (TIFF 782 kb)

Additional file 13: Table S3. Summary of QC problems for AE data,
proposed solutions, and potential drawbacks. (XLSX 31 kb)
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