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Abstract

Background: Genome assembly remains an unsolved problem. Assembly projects face a range of hurdles that

confound assembly. Thus a variety of tools and approaches are needed to improve draft genomes.

Results: We used a custom assembly workflow to optimize consensus genome map assembly, resulting in an

assembly equal to the estimated length of the Tribolium castaneum genome and with an N50 of more than 1 Mb. We

used this map for super scaffolding the T. castaneum sequence assembly, more than tripling its N50 with the program

Stitch.

Conclusions: In this article we present software that leverages consensus genome maps assembled from extremely

long single molecule maps to increase the contiguity of sequence assemblies. We report the results of applying these

tools to validate and improve a 7x Sanger draft of the T. castaneum genome.
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Background
The quality and contiguity of genome assemblies, which

impacts downstream analysis, varies greatly [1–3]. Ini-

tial assembly drafts, whether based on lower coverage

Sanger or higher coverage next-generation sequencing

(NGS) reads, are often highly fragmented. Physical maps

of bacterial artificial chromosome (BAC) clones can be

used to validate and scaffold sequence assemblies, but the

molecular, human, and computational resources required

to significantly improve a draft genome are often not avail-

able to researchers working on non-model organisms. The

BioNano Irys�System linearizes and images nicked and

fluorescently labeled long DNA strands to generate sin-

gle molecule physical maps. The Irys System provides

affordable, high throughput physical maps of significantly

higher contiguity with which to validate draft assemblies

and extend scaffolds [4].
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Genome assembly and scaffolding algorithms are inher-

ently limited by the length of the DNA molecules used

as starting material to generate data. Specifically, if

repetitive, polymorphic or low complexity regions are

longer than the single molecules used to generate data,

then they cannot be resolved by bioinformatics tools with

certainty. The specifications for PacBio P6-C4 chemistry

[5] indicate that PacBio reads have an N50 of 14 kb with

a maximum length of 40 kb. Illumina Long Distance Jump

Libraries can also span 40 kb [6]. MinION nanopore

sequence reads have an average read length of < 7 kb

[7]. Illumina TruSeq synthetic long-reads can span up to

18.5 kb; however, they fail to assemble if the sequence

has problematic regions longer than the component

reads used to assemble the synthetic reads (e.g. in the

heterochromatin) [8]. The OpGen Argus [9] platform

produces optical maps that have a length of 150 kb to

2 Mb from up to 13 Gb data collected per run [10].

The Irys System from BioNano Genomics produces single

molecule maps that have an average length of 225 kb

from up to 96 Gb data collected per run after filtering

for molecules < 150 kb [11]. Genomic repeats can be
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much longer than the 5–40 kb that many technologies can

span with a single molecule. In fact, a recent study used

consensus genomemaps (assembled from single molecule

maps > 150 kb) to identify repeats that are hundreds of

kb in the human genome [12].

Sequence-based assembly methods are fraught with

platform-specific error profiles (e.g. resolving homopolyer

repeats or read-position effects on base quality) [13].

Map-based approaches offer an orthogonal genomic

resource that complements sequence-based approaches

but not their error profiles. For example, map-based error

profiles tend to consider errors in estimated molecule

or fragment length and errors associated with restriction

sites that are too close together, neither of which influence

sequence-based approaches [12, 14]. Both the BioNano

Irys System and OpGen Argos platform provide single

molecule maps from genomic DNA. OpGen may provide

higher resolution maps by using enzymes with a six rather

than a seven base pair recognition site, but BioNano’s

single molecule maps still deliver a more efficient and

affordable method for generating whole genome maps.

Data formats

The tools described make use of three file formats devel-

oped by BioNano. The Irys System images extremely long

molecules of genomic DNA that are nick-labeled at seven

bp motifs using one or more nicking endonucleases and

fluorescently labeled nucleotides. Molecules captured in

TIFF images are converted to BNX format text files that

describe the detected label position for each molecule

(Fig. 1(1–2)). The individual molecules described in BNX

files are referred to as single molecule maps. Consensus

Map (CMAP) files include the molecule map lengths

and label positions for long genomic regions that are

either inferred from assembly of raw single molecule maps

(Fig. 1(7–8)) or in silico from sequence scaffolds (Fig. 1

(3–4)). Individual maps in these two types of CMAP

files are referred to as a consensus genome map or an

in silico map, respectively. The alignment between two

CMAP files is stored as an XMAP file that includes

alignment coordinates and an alignment confidence score

(Fig. 1(10)).

Other software tools for scaffolding with BioNano data

BioNano Genomics developed the Hybrid Scaffold tool

to create more contiguous consensus genome maps using

information from both sequence and BioNano genome

map data. These more contiguous maps can then be

used to create more contiguous sequence assemblies.

The Hybrid Scaffold software first creates hybrid in

silico/consensus genome map contigs based on an align-

ment between the two. The output genome maps are

called hybrid scaffolds and are aligned to the original in

silico maps. This alignment is used to output a FASTA

file of sequence super scaffolds. These sequences include

seven base pair ambiguous-base motifs to indicate where

labels occur within gaps. Because they extend into regions

with consensus genome maps but without sequence data

theymay begin or end with gaps. TheHybrid Scaffold pro-

gram only generates hybrid in silico/consensus genome

map contigs, and therefore super scaffolds, if no conflicts

(e.g. negative gap lengths or otherwise conflicting align-

ments) are indicated in the alignment of in silico and

consensus genome maps. In this conservative approach,

all conflicting alignments are excluded from the hybrid

scaffold genome map and flagged for further evaluation at

the sequence level.

Motivation

We designed tools and workflows to optimize the use

of single molecule maps in the construction of whole

genome maps and then use the best resultant consen-

sus genome maps to improve contiguity of draft genome

sequence assemblies. Single-molecule maps were assem-

bled into BioNano genome maps de novo using software

tools developed at BioNano [12]. As with sequence-based

assembly algorithms, it was noted that testing a range

of assembly parameters can improve final assembly qual-

ity for the BioNano Assembler. Additionally, applying

error correction to molecule map stretch was found to

improve assembly quality. Therefore, we created Assem-

bleIrysCluster to normalize molecule map stretch and

automate the writing of assembly scripts that use var-

ious parameters. We created the Stitch tool to super

scaffold sequence-based assemblies using alignments to

the optimal BioNano genome map. The Hybrid Scaf-

fold and Stitch tools for genome finishing both take

alignments from the BioNano RefAligner as input. Both

tools were developed simultaneously but were ultimately

found to be useful for distinct applications. We vali-

dated AssembleIrysCluster and Stitch using the Tribolium

castaneum genome [15] because this project has genetic

map resources [16] that offer independent corroboration.

Genetic maps were not used as input for Stitch. In this

case, the super scaffolds created by Stitch were compared

to the order of scaffolds within ChLGs predicted by the

genetic map.

Implementation
Overview

The tools described below take raw molecule maps as

input, assemble genomemaps, and then use these genome

maps to super scaffold draft sequence assemblies. The

tool AssembleIrysCluster generates consensus genome

maps for a range of assembly parameters. We developed

AssembleIrysCluster to prepare BNX files for assembly

and produce nine customized assembly scripts (Fig. 2c–g).

Next, genome maps from the user-selected best assembly
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Fig. 1 Data analysis steps. (1) Autodetect analyzes TIFF images of molecules and (2) outputs BNX text files. (3) Sequence scaffolds are digested in

silico with fa2cmap_multi producing (4) in silicomaps. (5) AssembleIryscluster uses in silicomaps, BNX files and estimated genome size to

(6) normalize molecule stretch and set assembly parameters. (7) Assembler produces (8) a consensus genome map. (9) RefAligner aligns the

consensus genome maps to the in silicomaps producing (10) an XMAP alignment file. (11) XMAP, of in silicomaps and consensus genome maps

(see arrows with dashed lines) are used by stitch to produce (12) super scaffolded (stitched) sequence scaffolds. (13) Until no more super scaffolds

are created the stitched sequence scaffolds are digested in silico with fa2cmap_multi producing (14) a CMAP that is aligned to (9) the consensus

genome maps and steps 10–15 are iterated. Arrows with dotted rather than dashed lines are used to as input during iterations

are used by the tool Stitch to validate and super scaffold

sequence assemblies (Fig. 3).

AssembleIrysCluster: molecule stretch

In the first stage, AssembleIrysCluster adjusts single

moleculemap stretch (Fig. 2c). BioNano software operates

under the assumption that imaged molecules contain 500

bases per pixel (bpp). Stretch, or bpp, can deviate from

500 bpp and this discrepancy can vary from scan to scan

within a flowcell (Additional file 1). Sequence scaffolds are

considered to be more accurate than raw BNX molecules

in terms of label positions. Therefore molecule maps in

BNX files are split by scan, and after alignment to the

in silico maps, an empirical average bpp value is deter-

mined for the molecule maps in each scan. The bpp

indicated by this alignment is used by RefAligner to

adjust molecule map bpp to 500. Once stretch has been

evaluated and normalized, the split BNX files are merged

into a single file (Fig. 2e).

We observed consistent patterns of empirically deter-

mined bpp between flowcells using the same flowcell

model and chemistry when signal-to-noise ratios are opti-

mal and the degree of genomic divergence between the

samples used for the in silico maps and molecule maps

are low (Additional file 1). To identify the low quality

flowcells, bpp observed in alignments of scans are plotted

as a quality control (QC) graph by AssembleIrysCluster

(Fig. 2d).

AssembleIrysCluster: customization of BioNano assembly

scripts

In the next stage, AssembleIrysCluster creates vari-

ous assembly scripts to explore a range of parameter

sets around the the assembler default parameters with
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Fig. 2 Assembly workflow for assemble_SGE_cluster.pl. a The Irys instrument produces tiff files that are converted into BNX text files. b One BNX file

is produced for each flowcell on a IrysChip. c BNX files are split by scan and aligned to the sequence reference. Stretch (bases per pixel) is

recalculated for each scan from the alignment. d Quality check graphs are created for each pre-adjusted flowcell BNX. e Adjusted flowcell BNXs are

merged. f The first assemblies are run with a variety of p-value thresholds. g The best first assembly (red oval) is chosen and a version of this

assembly is produced with a variety of minimummolecule length filters

the goal of selecting the optimal assembly for down-

stream analysis (Fig. 2f–g). Single molecule maps in

the adjusted merged BNX file are aligned to the in

silico maps. An alignment error profile generated by

RefAligner is used with the estimated genome length

to calculate default assembly parameters; and the eight

other scripts that include variants of these parame-

ters. Initially, three assemblies are run, the first with

p-ValueThresholdDefault =
1e−5

GenomeLength(Mb)
, the sec-

ond with p-ValueThresholdStrict =
p-ValueThreshold

10
and the third with p-ValueThresholdRelaxed =

p-ValueThreshold × 10 (Fig. 2f). The minimum

molecule length is set to 150 kb. If one of these runs

does not produce a satisfactory assembly, then two

minimum molecule length variants (180 and 100 kb)

are tested with the p-ValueThreshold of the cur-

rent best assembly (Fig. 2g). Between three and nine

assemblies are run until a satisfactory assembly is

produced.

BioNano assembly optimization

The ultimate goal is to produce consensus genome maps

that can be used to guide sequence-based haploid refer-

ence genome assembly. While single molecule maps can

be used to reconstruct haplotypes [17], genome assembly

involves collapsing polymorphisms arbitrarily into a con-

sensus reference genome. Therefore the cumulative length

of ideal consensus genome maps should equal the haploid

genome length. Additionally, 100 % of the consensus

genome maps would align non-redundantly to 100 % of

the in silico maps. In practice, the best BioNano assembly

is selected based on similarity to the estimated haploid

genome length and minimal alignment redundancy to the

reference in silicomaps.

Stitch: alignment filters

For each RefAligner alignment the user designates a refer-

ence file with in silicomaps from either a draft or reference

quality genome or, if the user is aligning two files that both

contain consensus genome maps, then a file of consensus

genome maps. Additionally, the user specifies a query file

with either single molecule maps or consensus genome

maps.

We designed the Stitch algorithm to use alignments

of query consensus genome maps to reference in silico

maps in order to predict the higher order arrangement of

sequence scaffolds (Fig. 3). RefAligner assumes the align-

ment reference has the error profile of in silico maps and

the query has the error profile of consensus genomemaps.

Therefore alignments are run with the in silico maps as

the reference, and are inverted and sorted by consensus

genome map coordinates for efficient parsing by Stitch

(Fig. 3a–b).

Before inferring super scaffolds from XMAP files, Stitch

filters low quality alignments by confidence score. Align-

ments of in silico and consensus genome maps are

assigned a confidence score that is the −log10 of the

FalsePositivep-Value. Misaligned labels and sizing error

increase the alignment FalsePositivep-Value and decrease

confidence scores [18].



Shelton et al. BMC Genomics  (2015) 16:734 Page 5 of 16

PASS

PASS

PASS

FAIL

PASS

FAIL

PASS

 (A)

 (B)

 (C)

 (D)

 (E)

 (F)

 (G)

 (H)

consensus genome map 1 consensus genome map 2

consensus genome map 1 consensus genome map 2

consensus genome map 1 consensus genome map 2

consensus genome map 1 consensus genome map 2

consensus genome map 1 consensus genome map 2

consensus genome map 1 consensus genome map 2

consensus genome map 1 consensus genome map 2

consensus genome map 1

consensus genome map 1

consensus genome map 2

consensus genome map 2

consensus genome map 2

consensus genome map 2

consensus genome map 2

+ in silico map 1 + in silico map 2 - in silico map 3 + in silico map 4

+ in silico map 1 + in silico map 2 - in silico map 3 + in silico map 4

+ in silico map 1

+ in silico map 2

+ in silico map 2

+ in silico map 2

+ in silico map 4

- in silico map 3

- in silico map 3

+ in silico map 1 + in silico map 2 - in silico map 3 + in silico map 4

+ in silico map 1 + in silico map 2 - in silico map 3 + in silico map 4

+ in silico map 1 + in silico map 2 - in silico map 3 + in silico map 4

+ in silico map 1 + in silico map 2 - in silico map 3 + in silico map 4

+ in silico map 1 + in silico map 2 - in silico map 3 + in silico map 4

Fig. 3 Steps of the stitch.pl algorithm. Consensus genome maps (blue) are shown aligned to in silicomaps (green). Alignments are indicated with

grey lines. CMAP orientation for in silicomaps is indicated with a “+” or “-” for positive or negative orientation respectively. a The in silicomaps are

used as the reference. b The alignment is inverted and used as input for stitch.pl. c The alignments are filtered based on alignment length (purple)

relative to total possible alignment length (black) and confidence. Here assuming all alignments have high confidence scores and the minimum

percent aligned is 30 % two alignments fail for aligning over less than 30 % of the potential alignment length for that alignment. d Filtering

produces an XMAP of high quality alignments with short (local) alignments removed. e High quality scaffolding alignments are filtered for longest

and highest confidence alignment for each in silicomap. The third alignment (unshaded) is filtered because the second alignment is the longest

alignment for in silicomap 2. f Passing alignments are used to super scaffold (captured gaps indicated in dark green). g Stitch is iterated and

additional super scaffolding alignments are found using second best scaffolding alignments. h Iteration takes advantage of cases where in silico

maps scaffold consensus genome maps as in silicomap 2 does. Stitch is run iteratively until all super scaffolding alignments are found

Super scaffolds are built from overlapping alignments.

Overlapping alignments are similar to global alignments,

i.e., alignments spanning from end to end for two

maps of roughly equal length, but to search for over-

lap alignment gaps after the ends of either map are

not penalized. The RefAligner scoring scheme does not

currently have a parameter to favor overlapping align-

ments, e.g., to initialize the dynamic programming matrix

with no penalties and take the maximum score of the

final row or column in the matrix. RefAligner reports

local alignments between two maps and applies a fixed

penalty based on the user-defined likelihood of unaligned

labels at the ends of the alignment. Raising or lower-

ing this penalty selects for local or global alignments,

respectively, but neither option favors overlapping align-

ments specifically. Stitch filters by the percent of the

total possible alignment length that is aligned (Fig. 3c).

To approximate scoring that favors overlapping align-

ments, Stitch uses thresholds for minimum percent

of total possible aligned length, the percent aligned

threshold (PAT).

Similar to scoring structures that favor overlapping

alignments, PAT filters out local alignments. However,

unlike a scoring structure, PAT is applied after alignment

and therefore cannot result in the aligner exploring possi-

ble extensions into an overlap but instead favors a shorter

local alignment with a higher cumulative score. There-

fore Stitch accepts alignments with less than 100 % PAT.

Default values for the PAT were determined empirically

after reviewing the degree to which filtered alignments

agreed with the independently derived genetic maps of

T. castaneum and by visual inspection of alignments.

In practice we used two sets of alignment filters and kept

alignments that passed one or both sets. The first set had

a low PAT and a high confidence score threshold. The sec-

ond set had a higher PAT and a lower confidence score

and was intended to identify longer overlaps especially in

regions of the genome where label density is low.
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Stitch: super scaffolding

Scaffolding alignments are selected from the remaining

high quality alignments (i.e., more than one in silico map

aligns to the same consensus genome map (Fig. 3d)). For

each in silico map with more than one high quality, scaf-

folding alignment the longest alignment for the in silico

map is selected (Fig. 3d–e). If alignment length is identical

then the highest confidence alignment is selected. If con-

fidence scores are identical then an alignment is chosen

arbitrarily.

Gap lengths between in silico maps are inferred from

scaffolding alignments and used to create new super scaf-

folds (Fig. 3f) in a new genome FASTA file and associated

AGP file. If gap lengths are estimated to be negative, Stitch

adds a 100 bp spacer gap to the sequence file and indicates

that the gap is type “U” for unknown in the AGP.

Stitch only makes use of one alignment per in silicomap

each iteration. Stitch can be run iteratively (Fig. 1(10–15))

such that each successive output FASTA file is converted

into in silico maps and aligned to the original consen-

sus genome maps. This alignment is inverted and used

as input for the next iteration. Subsequent iterations of

Stitch will make use of any in silicomaps that join growing

super scaffolds, effectively using both sequence data and

genome maps to stitch together the final super scaffolds

(Fig. 3g–h).

Stitch: flagging potential Mis-assemblies

This algorithm is meant to be an intermediate refinement

of draft genomes prior to further fine scale refinement at

the sequence level. Inconsistencies between the consensus

genome maps and the in silico maps are reported in out-

put logs to facilitate downstream sequence editing. If an

alignment passes initial confidence score and PAT filter-

ing but has a PAT less than 60 %, this is reported as a

partial alignment. A partial alignment may occur if either

the sequence scaffold or the consensus genome map is the

result of a chimeric or erroneous assembly. Additionally,

if a gap length is estimated to be negative, it may indi-

cate that the sequence scaffolds can be joined with a local

assembly or that an incorrect assembly needs to be bro-

ken within a scaffold. Assembly errors in the consensus

genome maps or spurious alignments could also result in

either of these cases. Ideally researchers could make use of

the alignment of genomic sequence reads to the genome

sequence assembly and the alignment of single molecule

maps to the consensus genome maps to determine which

assembly is likely to be incorrect.

Post analysis: software updates

Since completion of the T. castaneum genome

update we have released updates for both Stitch and

AssembleIrysCluster. Stitch (version 1.4.5) now allows

the user to set a minimum negative gap length filter for

alignments. In the event that two in silico maps have

a negative gap length smaller than this value, which is

equivalent to a longer overlap of the sequence scaffolds,

Stitch will automatically exclude both in silico maps

from consideration when super scaffolding. This new

feature allows users to further customize the stringency

of the Stitch output. In addition, BioNano Genomics

has updated Assembler to automate per-scan stretch

adjustment. Finally the KSU K-INBRE Bioinformatics

Core has moved to producing assemblies on a Xeon

Phi server with 1488 threads (6 × 60 × 4 Xeon Phi

co-processor threads + 24 × 2 Xeon host threads) and

256 GB of host RAM + 6 × 8 GB Xeon Phi Ram, and

Linux CentOS 7 operating system. Because of all of

these changes we opted to create a new assembly work-

flow rather than update AssembleIrysCluster. The most

current assembly workflow, AssembleIrysXeonPhi main-

tains all the functionality of AssembleIrysCluster (e.g.

adjusting stretch by scan and writing assembly scripts

with all combinations of three p-ValueThresholds and

three Minlen parameters) but runs on our new machine

with the latest release of the BioNano Assembler and

RefAligner.

Post analysis: tutorials and complete pipelines

Additionally, since completion of the T. castaneum

genome update we have created three pipelines for Bio-

Nano data complete with sample datasets and tutorials.

The Sewing machine pipeline iteratively super scaffolds

genome FASTA files with BioNano genome maps using

stitch.pl and the BioNano tool RefAligner until no new

super scaffolds can be produced. The pipeline runs align-

ments with both default and relaxed parameters. These

alignments are then used by stitch.pl to superscaffold a

fragmented genome FASTA. The “Raw data-to-finished

assembly and assembly analysis” pipeline for BioNano

molecule maps with a sequence-based genome FASTA

prepares raw molecule maps and writes and runs a series

of assemblies for them. Then the user selects the best

assembly and uses this to super scaffold the reference

FASTA genome file and summarize the final assem-

bly metrics and alignments. The “Raw data-to-finished

de novo assembly and assembly analysis” pipeline for

BioNano molecule maps is for de novo projects. Both of

the last two pipelines are broken into stages at points

were the user must select the best set of parameters

from assemblies or alignments that have been run by

the pipeline.

Results and discussion
Dataset generation

High molecular weight DNA was isolated from young

Tribolium castaneum pupae from the GA2 line that was

inbred 20 generations. The GA2 line was also used for the
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genome sequence-based assembly. Ethical approval was

not sought for the study because the study organism is an

insect.

Using Knickers (BioNano Genomics), an in silico label

density calculator, we estimated that the Tribolium

castaneum genome had 8.66 and 5.51 labels per 100 kb

for the nt.BspQI and nt.BbvCI enzymes (New England

BioLabs) respectively. The ideal number of labels per

100 kb is between 10 and 15 therefore we nicked with

both enzymes. DNA was nicked, labeled with fluores-

cent nucleotides, and repaired according to BioNano pro-

tocol; and 93 BNX files were produced from the Irys

genome mapping system (Fig. 4 and Additional file 2).

Four corrupted files (cumulative length = 0) were excluded

from this analysis. All T. castaneum BNX files have been

deposited to labarchives (doi:10.6070/H4V69GK3).

The high number of BNX files produced is due to several

factors. Typically one BNX file is produced per flow-

cell; however, in certain cases after the initial number

of scans, additional scans were run producing an addi-

tional BNX file. Another reason for the large number

of files is that data was originally generated using the

IrysChip�V1 while the Irys System was under beta test-

ing. Over time, maximum cumulative length per BNX file

increased (Fig. 4 and Additional file 2). After the upgrade

to the IrysChip V2, an increase was also observed in

maximum data per BNX file (Fig. 4 and Additional file 2).

Molecule map quality metrics were calculated using

bnx_stats (version 1.0). We generated ∼250x coverage

of the T. castaneum genome for single molecule maps

>150 kb, the default minimum molecule map length. The

239,558 single molecule maps with lengths >150 kb had

an N50 of 202.63 kb and a cumulative length of 50.6 Gb

(Table 1). Histograms of per-molecule quality metrics for

maps after applying a minimum length filter of either 100,

150 and 180 kb are reported in Additional file 3.

To generate the in silico maps, we used the sequence-

based assembly scaffolds from version 5.0 of theTribolium

castaneum genome (Tcas5.0). Version 5.0 (Table 2) of

the T. castaneum genome is an updated version of the

sequence assembly that was created by adding 1.03 Mb of

sequence to version 3.0 [15]. Two hundred and twenty-

three of the 2240 scaffolds within Tcas5.0 were longer than

20 kb with more than 5 labels, the minimum requirements
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Table 1 Single molecule maps from T. castaneum filtered by

minimum length. Molecule map N50, cumulative length and

number of maps are listed for all three molecule length filters for

the T. castaneum genome data

Minimummolecule Molecule map Cumulative Number of

map length (kb) N50 (kb) length (Mb) molecule maps

100 165.35 82,738.71 503,414

150 202.64 50,579.12 239,558

180 232.57 34287.15 139,949

for an in silico map. These longer sequence scaffolds rep-

resent the bulk of the sequence assembly, 152.53 of the

160.74 Mb (Table 2).

Assembly: selecting the optimal BioNano assembly

Single molecule maps were assembled de novo into five

distinct BioNano genome maps for T. castaneum.

Molecule maps were prepared for assembly (Fig. 2c)

and noise parameters were estimated (Fig. 2d–e) using

AssembleIrysCluster (version 1.0). Specifically, Assem-

bleIrysCluster calculated three “-T” parameters (5e-10,

5e-09 and 5e-08) based on the estimated genome size, and

adjusted molecule map stretch and estimated molecule

map noise parameters based on alignment to in sil-

ico maps. Assemblies with these p-value thresholds are

named Relaxed-T , Default-T and Strict-T , respectively.

In the first round of selection, the Strict-T assem-

bly was the best of these three assemblies because it

has a cumulative size close to 200 Mb (Table 2 and

Fig. 5), the estimated size of the T. castaneum genome,

and a small difference between non-redundant aligned

length or breadth of alignment, and total aligned length

(Fig. 5, Table 3 and Additional file 4). Thus in the sec-

ond round of selection, Strict-T parameter was used

for two further assemblies that had relaxed minimum

Table 2 T. castaneum assembly summary. Assembly metrics for

Tcas5.0 (the starting sequence scaffolds), the Tcas5.0 in silico

maps, the consensus genome map of assembled molecule maps,

the automated output of Stitch (Tcas5.1), the manually curated

sequence assembly (Tcas5.2) and the sequence assembly

produced by the BioNano Hybrid Scaffold software for the

T. castaneum genome

N50 (Mb) Number Cumulative
Length (Mb)

Tcas5.0 sequence scaffolds 1.16 2240 160.74

Tcas5.0 in silicomaps 1.20 223 152.53

Consensus genome maps 1.35 216 200.47

Tcas5.1 sequence scaffolds 3.85 2148 165.72

Tcas5.2 sequence scaffolds 4.46 2150 165.92

Tcas BioNano hybrid scaffolds 1.83 2210 175.54

molecule length (Relaxed-Minlen) of 100 kb rather than

the 150 kb default or a strict minimum molecule length

(Strict-Minlen) of 180 kb. The Strict-TAndStrict-Minlen

assembly improved alignments by reducing redundancy

slightly. However the cumulative length of the assembly

was 21.45 Mb smaller than the estimated genome size.

The Strict-TAndRelaxed-Minlen assembly had a worse

cumulative length and alignment redundancy than the

Strict-T assembly. Because neither of the assemblies using

100 or 180 kb as the minimum molecule length improved

both assembly metrics when compared to the Strict-T

assembly, generated in the first round of selection with

the defaultMinlen of 150 kb, the Strict-T assembly will be

referred to as the T. castaneum consensus genome maps

in further analysis.

The T. castaneum consensus genome maps have an

N50 of 1.35 Mb, a cumulative length of 200.47 Mb, and

216 genome maps (Table 2 and Fig. 5). T. castaneum

consensus genome maps aligned to 124.04 Mb of the

in silico maps created from the Tcas5.0 assembly val-

idating 81 % of the draft sequence assembly (Table 3

and Fig. 5). Assembly metrics were calculated using the

BNGCompare script (version 1.0). More detailed assem-

bly metrics for all five assembled consensus genome maps

are available in Additional file 4. Assembled T. castaneum

genome maps have been deposited to labarchives

(doi: 10.6070/h42f7kf2).

Stitch: automated andmanually edited assemblies

Tcas5.1 is the output of Stitch (version 1.4.4) run for five

iterations with two sets of alignment filters. To select qual-

ity alignments from regions of high and low label density,

the first minimum confidence was 13 and the PAT was 30

and the second minimum confidence was 8 and the PAT

was 90. The resulting super scaffolds showed a greater

than three-fold increase in N50 from 1.16 to 3.85 Mb

(Table 2).

The Tcas5.1 super scaffolds captured an additional 92

gaps between Tcas5.0 sequence scaffolds. Sixty-six gaps

were estimated to have positive gap lengths and were

represented in the sequence assembly with their esti-

mated size (Fig. 6). Twenty-six gaps were estimated to

have negative lengths and were represented with spacers

of 100 N’s (Fig. 6). Extremely small negative gap lengths

(< −20 kb) were flagged for further evaluation at a

sequence level. In some cases, extremely small negative

gaps lengths suggest that a chimeric sequence scaffold

may need to be broken at the sequence level and its frag-

ments incorporated into different chromosome linkage

groups (ChLGs). For example, half of scaffold 81 from

Tcas5.0 aligns between scaffolds 80 and 82 on ChLG5

(Fig. 7a) while the other half aligns between scaffolds

102 and 103 from ChLG7 (Fig. 7b). Scaffold 81 from

Tcas5.0 was placed in ChLG5 in the T. castaneum genetic
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Fig. 5 Comparison of assemblies from the T. castaneum single molecule maps using five sets of parameters. Relaxed, default and strict “-T”

parameters were set to 5e-08, 5e-09 and 5e-10. Relaxed, default and strict minimummolecule length were set to 100, 150 and 180 kb

map. The arrangement supported by the genetic map

was selected for cases like this where manual editing was

required. The manually curated assembly is referred to as

Tcas5.2. In Tcas5.2, joins were also manually accepted if

they agreed with the genetic map but the alignment qual-

ity was low. Ultimately, Tcas5.2 had a higher N50 than the

automated Stitch output, 4.46 Mb (Table 2), with 66 gaps

with positive estimated lengths and 24 negative length

gaps.

Nearly every ChLG was less fragmented in the Tcas5.2

assembly than in the Tcas5.0 assembly. The number of

scaffolds was reduced for each ChLG (Table 4) except for

the 26 relatively short (N50 = 0.05 Mb) and unlocalized

scaffolds from ChLGY. For example, ChLGX was reduced

from 13 scaffolds (Fig. 8b) to 2 in the final super scaffold or

chromosome build (Fig. 8a). Five scaffolds were reoriented

in ChLGX based on alignment to the consensus genome

maps (Fig. 8a–b). Scaffolds were also reordered based

on alignment to consensus genome maps. For exam-

ple, scaffold 2 from ChLGX aligned between scaffold 36

and 37 of ChLG 3 and was therefore moved in Tcas5.2

(Additional file 5). Also, 19 previously unplaced scaffolds

were anchored within a ChLG (Table 4). Improvements

in Tcas5.2 over Tcas5.0 are shown in alignments of the

respective in silicomaps to consensus genomemaps for all

ChLGs in Additional file 5.

Table 3 Alignment of T. castaneum consensus genome maps to the in silicomaps of Tcas5.0. Breadth of alignment coverage (non-

redundant alignment), length of total alignment (including redundant alignments) and percent of CMAP covered (non-redundantly)

were calculated for the in silicomaps and the consensus genome maps of the T. castaneum genome the using xmap_stats.pl

Breadth of alignment coverage (Mb) Length of total alignment (Mb) Percent of CMAP aligned

Tcas5.0 in silicomaps 124.04 132.40 81

Consensus genome maps 131.64 132.34 67
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Fig. 6 Histogram of gap lengths in Tcas5.1. Positive and negative gaps lengths for Tcas5.1 added to the automated output of stitch.pl based on

filtered scaffolding alignments. The majority of gap lengths added by stitch.pl, 66, were positive (red). The remaining 26 gaps had negative lengths

(purple)

The Tcas5.2 Whole Genome Shotgun project has been

deposited at DDBJ/EMBL/GenBank under the accession

AAJJ00000000. The version described in this paper

is version [DDBJ:AAJJ02000000,EMBL:AAJJ02000000,

GenBank:AAJJ02000000]. Two scaffolds were removed

from the genome assembly because they were identified

as contaminants after they blasted to the Bos frontalis

genome.

Assembly: putative Haplotypes

Evidence of putative haplotypes was found during visual

inspection of alignments. Although overall alignment

redundancy was rare for the Strict-T assembly; when

observed, it usually consisted of only two consensus

genome maps aligning to the same in silico map (Fig. 9).

This redundancy might indicate collapsed repeats in the

sequence-based assembly. On the other hand it could also

indicate segmental duplications, assembly of alternative

haplotypes, or mis-assembly producing redundant con-

sensus genome maps. In Fig. 9a, two consensus genome

maps aligned to the same in silico map. One consensus

genome map aligned across most of the in silico map

while only a small region of the other consensus genome

maps aligned to the the in silico map (Fig. 9a). Molecule

map coverage decreased for each consensus genome map

in the region where only one of them aligned to the

in silico map (Fig. 9a–c). Taken together, the region of

lower coverage and the number of consensus genome

Fig. 7 Extremely small negative gap length for in silicomap of scaffold 81. Two XMAP alignments for in silicomap of sequence scaffold 81 are shown.

Consensus genome maps (blue with molecule map coverage shown in dark blue) align to the in silicomaps of scaffolds (green with contigs overlaid

as translucent colored squares). Sequence scaffolds 79–83 were placed within ChLG 5 and sequence scaffolds 99–103 were placed with ChLG 7 by

the T. castaneum genetic map. a Half of the in silicomap of sequence scaffold 81 aligns with its assigned ChLG (black arrow). b The other half aligns

with ChLG 7 (red arrow) producing a negative gap length smaller than -20 kb. The alignment that places sequence scaffold 81 with ChLG 7

disagrees with the genetic map and was manually rejected for Tcas5.2
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Table 4 Each T. castaneum chromosome linkage group (ChLG)

before and after super scaffolding. The number of sequence

scaffolds in the ordered Tcas5.0 ChLG bins and the number of

sequence super scaffolds and scaffolds in the Tcas5.2 ChLG bins.

The number of sequence scaffolds that were unplaced in Tcas5.0

and placed with a ChLG in Tcas5.2 is also listed

ChLG Tcas5.0 scaffolds Unplaced scaffolds Tcas5.2 super
added in Tcas5.2 scaffolds

X 13 +2 2

2 18 +1 10

3 29 +4 20

4 6 +2 2

5 17 +1 4

6 12 +6 6

7 15 – 6

8 14 +1 8

9 21 – 9

10 12 +2 10

Total 157 19 77

maps aligning (two) may indicate the assembly of two

haplotypes.

Stitch: comparison to other software

We also ran Hybrid Scaffold (BioNano version 3076) to

improve the T. castaneum sequence assembly using the

T. castaneum consensus genome maps and the in silico

maps from Tcas5.0. Although Hybrid Scaffold improved

the scaffold N50 of the sequence-based assembly from

1.16 to 1.83Mb, the increase in N50 was not as great as the

increase after running Stitch (N50 = 3.85 Mb) (Table 2).

The total number of scaffolds in the sequence assembly

decreased by 30 after running Hybrid Scaffold; in com-

parison, Stitch reduced the number of scaffolds by 92.

Stitch increased the length of the assembly by 4.98 Mb

while Hybrid Scaffold increased assembly length by

14.80 Mb. The additional increase in length from Hybrid

Scaffold is likely due to extension of sequence-based scaf-

folds with end gaps introduced from genome map con-

tigs that overlap the start or end of a sequence-based

scaffold.

Overall, we found Hybrid Scaffold to be more conser-

vative than Stitch. For example in Fig. 8b, the alignment

of 13 in silico maps to three consensus genome maps was

input into both Stitch and Hybrid Scaffold. In this align-

ment, the order of 11 of these in silico maps agreed with

the order suggested by the genetic map (after reorient-

ing three in silico maps). The in silico maps 12 and 13

aligned with a negative gap length between them, sug-

gesting they may be mis-assembled or that local assembly

may collapse the assembly in this region. There are several

possible approaches when considering this kind of con-

flicting evidence. The approach of Stitch was to record

that we have confirmed the relative position of these

scaffolds in the larger context of the genome by creat-

ing a new super scaffold containing 100 bp spacer gaps

to indicate that exact overlap or gap length is unclear

(Fig. 8a). Stitch also reports the negative gap length to

indicate the need for further sequence level evaluation at

a later date. Alternatively, Hybrid Scaffold only automates
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scaffolds

BNG consensus 

maps

ChLG X super

scaffold
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Fig. 8 ChLGX before and after super scaffolding with Stitch and Hybrid Map creation by Hybrid Scaffold. a Alignment of Tcas5.2 in silicomaps to

consensus genome maps for ChLGX. b Alignment of Tcas5.0 in silicomaps to consensus genome maps for ChLGX. c Alignment of Hybrid genome

maps to consensus genome maps for ChLGX. Consensus genome maps are blue with molecule map coverage shown in dark blue). The in silico

maps are green with contigs overlaid as translucent colored squares. Only in silicomaps that align are displayed in IrysView. The single hybrid scaffold

created for ChLGX is shown (yellow). Only new “hybridized” maps are shown in IrysView. Labels and alignments of labels are indicated with grey lines
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Fig. 9 Putative haplotypes assembled as consensus genome maps. a Two consensus genome maps (blue with molecule map coverage shown in

dark blue) align to the in silicomap of scaffold 131 (green with contigs overlaid as translucent colored squares). b and c Both consensus genome

maps are shown (blue) with single molecule pileups (yellow). Both consensus genome maps have similar label patterns except within the lower

coverage region indicated with a black square

genome improvements that are unambiguously supported

by all lines of evidence (sequence-based and genomemap-

based) and leaves any ambiguous decisions to a human

curator. Therefore, Hybrid Scaffold would only report the

conflicting alignment. This is why scaffold 13, for exam-

ple, is not included in the hybrid map produced by Hybrid

Scaffold (Fig. 8c).

For highly refined genome assemblies, this lack of

tolerance for noisy alignments has not hindered improve-

ment of genome projects. However, for less refined

genome assemblies this may be too stringent. The

Hybrid Scaffold software, for example, was developed

to scaffold the human genome and has been found

to work well for this application. Genome projects

at earlier stages would benefit from staged release of

updates (e.g., immediate release of general improvement

in scaffold order and orientation followed by further

refinement at the sequence level). For projects such as T.

castaneum, a more aggressive algorithm such as Stitch

may be preferred in order to release the bulk of the new

information about the higher order arrangement of the

genome to the community of T. castaneum researchers

quickly. Further refinement at a sequence level can be

released in subsequent genome updates as they are

completed.

Stitch: assembly and super scaffoldingwithmultiple genera

We examined experiments from 16 different genera to

determine if the results seen for the Tribolium castaneum

genome are typical for other genomes as well. The

T. castaneum genome map N50 was found to be in

the high end of the probability density distribution

(Additional file 6; Section 1). The same is true for the

Tcas5.0 draft sequence assembly N50 and percent of N50

improvement after super scaffolding compared to the

other 17 of 19 total projects that had draft sequence

genomes (Additional file 6: Section 1). However, in no case

was the T. castaneum value the highest value recorded,

suggesting that a wide range of output quality is possi-

ble including values better and worse than the output for

T. castaneum.

We checked for evidence of correlations between a

range of genomic metrics and map assembly, alignment

or FASTA super scaffolding results. Because many of the

genomic metrics had very broad ranges with variance that

increased often for higher values the genomic metrics
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were log transformed to compress the upper tails and

stretch the lower tails of the distributions.

Overall we found little correlation between either

sequence FASTA N50, molecule map coverage or

molecule map label density and final genome map N50.

We did, however, find correlations between finished

map and sequence assembly metrics and alignment and

super scaffolding quality. There is a positive correlation

between high value sequence assembly metrics and in

silicomap-to-genome map alignment metrics (Additional

file 6: Sections 3–5) as well as post super scaffold-

ing N50 improvement (Additional file 6: Sections 3,5).

There is also a positive correlation between high value

genome map assembly metrics and post super scaffolding

N50 improvement (Additional file 6: Sections 3,5). How-

ever, no direct correlation was found between sequence

assembly N50 and genome map N50 (Additional file 6:

Sections 4–5). Taken together the analysis suggests dif-

ferent factors may determine sequence assembly and

genome map assembly quality. Although sequence assem-

bly N50 may not be useful to predict genome map N50, if

both independent assemblies have high N50’s than more

of the map lengths may align and super scaffolding may be

more productive.

The low degree of correlation found between genome

map N50 and sequence N50 may stem from steps

unique to the molecule map imaging process. It might

be expected that a genome with sequence that assembles

well may have qualities that would also favor molecule

map assembly (e.g. low repeat content, low ploidy, inbreed

lines, etc.). However molecule map assembly is also influ-

enced by unique factors like frequency of fragile sites

(two labels occurring on opposite strands in close prox-

imity), labeling efficiency and ability to extract high

molecular weight DNA all of which vary for different

organisms.

Principal component analysis (PCA) suggests a

negative correlation between labels per 100 kb and

molecule coverage (Additional file 6: Sections 2–3).

The correlation between labels per 100 kb and molecule

coverage was weakly significant in individual regression

(Additional file 6: Sections 4–5). Labels per 100 kb are

monitored as molecules are being imaged. Lower than

expected label density can occasionally lead to further

labeling reactions or other adjustments to data collection

and therefore greater depth of coverage.

Overall, comparison of the results for the T. castaneum

genome and 19 additional genome projects suggest that

results may vary widely from project to project. Many fac-

tors may contribute to this effect including the quality of

the sequence assembly, degree of divergence between the

organism or organisms used to extract DNA, success of

extraction and labeling of high molecular weight DNA,

genome size and genome complexity. In fact, the tendency

for assemblies from the same genera or species to cluster

together on the PCA plots suggests that organism-specific

qualities may influence assembly, alignment or super scaf-

folding results (Additional file 6: Sections 2–3). Although

analysis of more projects is needed to determine if these

similarities are meaningful predictors of output quality.

Conclusions
We introduced new tools to facilitate single molecule map

assembly optimization and genome finishing steps using

the resultant consensus genome maps. These tools were

validated using the medium-sized (200 Mb) T. castaneum

beetle genome. The Tcas3.0 genome was assembled using

the gold-standard Sanger assembly strategy [15]. The

Tcas5.0 assembly benefitted from the use of LongDistance

Illumina Jump libraries to anchor additional scaffolds

and fill gaps. Despite this, we were able to more than

triple the scaffold N50 by leveraging the optimal consen-

sus genome maps and Stitch. We demonstrated that the

AssembleIrysCluster method of optimization and Stitch

can be used together to improve the contiguity of a draft

genome.

As the variety of genome assembly projects increases,

we are discovering that tools appropriate for all projects

(e.g. genomes of varying size and complexity, assemblies

of varying quality, various taxonomic groups, etc.) do not

exist. Indeed, the results of Assemblation2 indicate that

no one suite of datatypes or assembly workflow may be

sufficient to best assemble even the subcategory of verte-

brate genomes [3]. Here we described two software tools

and many shorter scripts to summarize and work with

these new data formats. However, we anticipate the devel-

opment of a variety of bioinformatics tools for extremely

long, single molecule map data as more applications for

these maps are explored.

Some draft assemblies may currently be too fragmented

to align to genome maps assembled from single molecule

maps. However as NGS genome assemblies improve from

longer read advancements existing genome maps may

become useful for scaffolding new or updated sequence

assemblies.

Regions where consensus genome maps disagree with

sequence assemblies (e.g. negative gap lengths or partial

alignments) are flagged by Stitch for investigation at a

sequence level. Bioinformatics tools that could automate

assembly editing based on such discrepancies are needed

to fully support genome improvement with consensus

genome maps.

Availability and requirements
Pipelines and tutorials

Project name: Sewing machine pipeline

Project home page: The Sewing machine script and

tutorial are available at https://github.com/i5K-KINBRE-

https://github.com/i5K-KINBRE-script-share/Irys-scaffolding/blob/master/KSU_bioinfo_lab/stitch/sewing_machine_LAB.md
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script-share/Irys-scaffolding/blob/master/KSU_bioinfo_

lab/stitch/sewing_machine_LAB.md.

Operating system(s): Linux (tested on CentOS 7, Gentoo

and Ubuntu).

Programming language: Perl, Rscript, Bash

License: Pipeline script and tutorial are available free of

charge to academic and non-profit institutions.

Any restrictions to use by non-academics: Please con-

tact authors for commercial use.

Dependencies: Sewing machine requires BioPerl and

BNGCompare. RefAligner is also required between

iterations and can be provided by request by Bionano

Genomics http://www.bionanogenomics.com/.

Project name: “Raw data-to-finished assembly and

assembly analysis” pipeline

Project home page: The pipeline script and tutorial

are available at https://github.com/i5K-KINBRE-script-

share/Irys-scaffolding/blob/master/KSU_bioinfo_lab/

assemble_XeonPhi/assemble_XeonPhi_LAB.md.

Operating system(s): Xeon Phi server with 1488 threads

(6× 60× 4 Xeon Phi co-processor threads +24× 2 Xeon

host threads) and 256 GB of host RAM +6 × 8 GB Xeon

Phi Ram, and Linux CentOS 7.

Programming language: Perl, Rscript, Bash

License: Pipeline script and tutorial are available free of

charge to academic and non-profit institutions.

Any restrictions to use by non-academics: Please con-

tact authors for commercial use.

Dependencies: AssembleIrysXeonPhi.pl and Assem-

bleIrysCluster.pl requires DRMAA job submission

libraries. RefAligner and Assembler are also required

and can be provided by request by Bionano Genomics

http://www.bionanogenomics.com/.

Project name: “Raw data-to-finished de novo assembly

and assembly analysis” pipeline

Project home page: The pipeline script and tutorial

are available at https://github.com/i5K-KINBRE-script-

share/Irys-scaffolding/blob/master/KSU_bioinfo_lab/

assemble_XeonPhi/assemble_XeonPhi_de_novo_LAB.

md.

Operating system(s): Xeon Phi server with 1488 threads

(6× 60× 4 Xeon Phi co-processor threads + 24× 2 Xeon

host threads) and 256 GB of host RAM +6 × 8 GB Xeon

Phi Ram, and Linux CentOS 7.

Programming language: Perl, Rscript, Bash

License: Pipeline script and tutorial are available free of

charge to academic and non-profit institutions.

Any restrictions to use by non-academics: Please con-

tact authors for commercial use.

Dependencies: AssembleIrysXeonPhi.pl and Assem-

bleIrysCluster.pl requires DRMAA job submission

libraries. RefAligner and Assembler are also required

and can be provided by request by Bionano Genomics

http://www.bionanogenomics.com/.

Assembly scripts

Project name: AssembleIrysXeonPhi.pl/AssembleIrysClus-

ter.pl

Project home page: AssembleIrysXeonPhi scripts are

available at https://github.com/i5K-KINBRE-script-

share/Irys-scaffolding/blob/master/KSU_bioinfo_lab/

assemble_XeonPhi/AssembleIrysXeonPhi.pl. The cur-

rently unsupported AssembleIrysCluster scripts are

available on Github at https://github.com/i5K-KINBRE-

script-share/Irys-scaffolding/tree/master/KSU_bioinfo_

lab/assemble_SGE_cluster

Operating system(s): Xeon Phi server with 1488 threads

(6× 60× 4 Xeon Phi co-processor threads +24× 2 Xeon

host threads) and 256 GB of host RAM +6 × 8 GB Xeon

Phi Ram, and Linux CentOS 7 and SGE Linux (tested on

a Gentoo) cluster respectively

Programming language: Perl, Rscript, Bash

License: AssembleIrysXeonPhi and AssembleIrysClus-

ter.pl is available free of charge to academic and

non-profit institutions.

Any restrictions to use by non-academics: Please con-

tact authors for commercial use.

Dependencies: AssembleIrysXeonPhi.pl and Assem-

bleIrysCluster.pl requires DRMAA job submission

libraries. RefAligner and Assembler are also required and

can be provided by request by Bionano Genomics http://

www.bionanogenomics.com/.

Super scaffolding scripts

Project name: stitch.pl

Project home page: Stitch scripts are available on

Github at https://github.com/i5K-KINBRE-script-share/

Irys-scaffolding/tree/master/KSU_bioinfo_lab/stitch

Operating system(s): MAC and LINUX (tested on Gen-

too and Ubuntu)

Programming language: Perl, Rscript, Bash

License: stitch.pl is available free of charge to academic

and non-profit institutions.

Any restrictions to use by non-academics: Please con-

tact authors for commercial use.

Dependencies: stitch.pl requires BioPerl. RefAligner and

Assembler are also required between iterations and can

be provided by request by Bionano Genomics http://www.

bionanogenomics.com/.

Map summary scripts

Project name: BNGCompare.pl, bnx_stats.pl, cmap_stats.pl

and xmap_stats.pl

Project home page: all scripts are available on Github at

https://github.com/i5K-KINBRE-script-share/Irys-scaffol

ding/tree/master/KSU_bioinfo_lab/map_tools and https:

//github.com/i5K-KINBRE-script-share/BNGCompare

Operating system(s): MAC and LINUX (tested on Gen-

too and Ubuntu)

https://github.com/i5K-KINBRE-script-share/Irys-scaffolding/blob/master/KSU_bioinfo_lab/stitch/sewing_machine_LAB.md
https://github.com/i5K-KINBRE-script-share/Irys-scaffolding/blob/master/KSU_bioinfo_lab/stitch/sewing_machine_LAB.md
http://www.bionanogenomics.com/
https://github.com/i5K-KINBRE-script-share/Irys-scaffolding/blob/master/KSU_bioinfo_lab/assemble_XeonPhi/assemble_XeonPhi_LAB.md
https://github.com/i5K-KINBRE-script-share/Irys-scaffolding/blob/master/KSU_bioinfo_lab/assemble_XeonPhi/assemble_XeonPhi_LAB.md
https://github.com/i5K-KINBRE-script-share/Irys-scaffolding/blob/master/KSU_bioinfo_lab/assemble_XeonPhi/assemble_XeonPhi_LAB.md
http://www.bionanogenomics.com/
https://github.com/i5K-KINBRE-script-share/Irys-scaffolding/blob/master/KSU_bioinfo_lab/assemble_XeonPhi/assemble_XeonPhi_de_novo_LAB.md
https://github.com/i5K-KINBRE-script-share/Irys-scaffolding/blob/master/KSU_bioinfo_lab/assemble_XeonPhi/assemble_XeonPhi_de_novo_LAB.md
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Programming language: Perl, Rscript, Bash

License: bnx_stats.pl, cmap_stats.pl and xmap_stats.pl

are available free of charge to academic and non-profit

institutions.

Any restrictions to use by non-academics: Please con-

tact authors for commercial use.

Dependencies: bnx_stats.pl, cmap_stats.pl and xmap_stats.pl

have no dependencies.

Additional files

Additional file 1: Single molecule map stretch per scan in recent

flowcells. Bases per pixel (bpp) is plotted for scans 1..n for each flowcell of

mouse lemur molecules (purple). The first scan of each flowcell is indicated

with a grey dashed line. The pre-adjusted molecule map stretch was

determined by aligning molecule maps to the in silicomaps. Data made

available by P.A. Larsen, J. Rogers, A.D. Yoder and the Duke Lemur Center.

(ZIP 55 kb)

Additional file 2: Cumulative length and number of single molecule

maps per BNX file for T. castaneum data generated over time. Detailed

metrics for molecule maps per BNX file (cumulative length and number of

maps). Columns include cumulative length of molecule maps > 150 kb,

number of molecule maps > 150 kb and date that BNX file was generated.

(CSV 4.11 kb)

Additional file 3: Single molecule mapmetrics and histograms from

T. castaneum DNA. Detailed metrics for molecule maps including map

N50, cumulative length and number of maps. Figures show histograms of

per molecule map quality metrics including length, molecule map SNR

and intensity, label count, label SNR and label intensity. Molecule maps are

filter for minimummolecule lengths of 100, 150 or 180 kb. (ZIP 39.8 kb)

Additional file 4: Assembly of T. castaneum consensus genomemaps

with range of parameters. Detailed assembly metrics for assembled

consensus genome maps using strict, default and relaxed “-T” parameter,

p-value threshold are named Relaxed-T, Default-T and Strict-T respectively.

The best “-T” parameter was used for two additional assemblies with either

relaxed minimummolecule map length (relaxed-minlen) of 100 kb, rather

than the 150 kb default, or a strict minimummolecule map length

(strict-minlen) of 180 kb. (CSV 389 kb)

Additional file 5: ChLGs before and after super scaffolding.

Alignments of Tcas5.0 and Tcas5.2 in silicomaps to consensus genome

maps for all ChLGs. Consensus genome maps (blue with molecule

coverage shown in dark blue) aligned to the in silicomaps (green with

contigs overlaid as translucent colored squares). Alignment to both Tcas5.2

super scaffolds (top alignment) and Tcas5.0 scaffolds (bottom alignment)

are shown. (PDF 408 kb)

Additional file 6: Assembly and super scaffolding with multiple

genera.We examined experiments from 16 different genera to determine

if the results seen for the Tribolium castaneum genome are typical for other

genomes as well. (PDF 876 kb)

Abbreviations

NGS: Next-generation sequencing; BAC: Bacterial artificial chromosome; QC:

Quality control; PAT: Percent aligned threshold; ChLG: Chromosome linkage

groups; PCA: principal component analysis.

Competing interests

The JMS, MCC, NH, NL, and SJB declare that they have no competing interests.

ETL, PS and TA are employees at BioNano Genomics and hold stock options.

Authors’ contributions

MCC isolated the high molecular weight DNA and generated the image files

on the Irys. ETL and JMS developed the assembly workflow. JMS wrote most of

the code in the IrysScaffolding Github Repo (Stitch, AssembleIrysXeonPhi,

AssembleIrysCluster, etc.). NH assisted with initial code review of

analyze_irys_output (precursor to Stitch) and prepared Tcas5.0. JMS and NL

manually edited Tcas5.1. JMS performed the data analyses. TA contributed to

sections discussing BioNano RefAligner and Assembler. PS contributed to

interpretation of results. JMS and SJB didmost of the writing with contributions

from all authors. All authors read and approved the final manuscript.

Acknowledgements

This project was supported by an Institutional Development Award (IDeA)

from the National Institute of General Medical Sciences of the National

Institutes of Health under grant number P20 GM103418. The content is solely

the responsibility of the authors and does not necessarily represent the official

views of the National Institute of General Medical Sciences or the National

Institutes of Health.

Data for Additional file 1 and Additional file 6 was kindly made available by P.A.

Larsen, J. Rogers, A.D. Yoder and the Duke Lemur Center.

The Tribolium castaneum genome project is part of the i5k Genome

Sequencing Initiative for Insects and Other Arthropods.

Matthias Weissensteiner & Jochen Wolf, Uppsala University. Stephen Schaeffer

from The Pennsylvania State University and Stephen Richards from the Baylor

College of Medicine Human Genome Sequencing Center for the use of the D.

pseudoobscura data. Mike Kanost from Kansas State University. Jeff Maughan

from Brigham Young University for the use of the Amaranth data. The Udall Lab

from Brigham Young University and Cotton Inc. for the use of the cotton data.

Grant (NSF 1237993) for use of theMedicago data. Christopher Cunningham,

University of Georgia for the use of Nicrophorus data. Catherine Peichel from

the Fred Hutchinson Cancer Research Center and Michael White from the

University of Georgia for the Gasterosteus data. Mirkó Palla, Ph.D., Wyss Institute

Postdoctoral Fellow, Church; Laboratory - Department of Genetics, Harvard

Medical School and George Church, Ph.D., Wyss Institute Core Faculty Member,

Robert Winthrop Professor of Genetics at Harvard Medical School, Professor of

Health Sciences and Technology at Harvard and MIT, and Senior Associate

Member at the Broad Institute of Harvard and MIT for the Escherichia coli data.

Author details
1KSU/K-INBRE Bioinformatics Center, Division of Biology, Kansas State

University, Manhattan, KS, USA. 2BioNano Genomics, San Diego, CA, USA.

Received: 20 April 2015 Accepted: 9 September 2015

References

1. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, et al.

Gage: A critical evaluation of genome assemblies and assembly

algorithms. Genome Res. 2012;22(6):. doi:10.1101/gr.131383.111.

2. Vezzi F, Narzisi G, Mishra B. Feature-by-feature—evaluating de novo

sequence assembly. PLoS ONE. 2012;7(2):. doi:10.1371/journal.pone.

0031002.

3. Bradnam K, Faas J, Alexandrov A, Baranay P, Bechner M, Birol I, et al.

Assemblathon 2: evaluating de novo methods of genome assembly in

three vertebrate species. GigaScience. 2013;2(10):. doi:10.1186/2047-

217X-2-10.

4. Das SK, Austin MD, Akana MC, Deshpande P, Cao H, Xiao M. Single

molecule linear analysis of dna in nano-channel labeled with sequence

specific fluorescent probes. Nucleic Acids Res. 2010;38(e177):.

doi:10.1093/nar/gkq673.

5. PacBio P6-C4 Chemistry Specifications. http://investor.pacificbiosciences.

com/releasedetail.cfm?ReleaseID=876252.

6. Illumina Long Distance Jump Library Specifications. http://www.operon.

com/services/next-generation-sequencing/illumina/libraries.aspx.

7. Quick J, Quinlan AR, J L. N. A reference bacterial genome dataset

generated on the minion portable single-molecule nanopore sequencer.

GigaScience. 2014;3(22):. doi:10.1186/2047-217X-3-22.

8. McCoy RC, Taylor RW, Blauwkamp TA, Kelley JL, Kertesz M, Pushkarev D,

Petrov DA, A F.-L. Illumina truseq synthetic long-reads empower de novo

assembly and resolve complex, highly-repetitive transposable elements.

PLoS ONE. 2014;9(9):. doi:10.1371/journal.pone.0106689.

9. Teague B, Waterman MS, Goldstein S, Potamousis K, Zhou S, Reslewic S,

et al. High-resolution human genome structure by single-molecule

analysis. PNAS. 2012;107(24):. doi:10.1073/pnas.0914638107.

10. Opgen Argus MapCard Specifications. http://www.tgac.ac.uk/

sequencing-platforms/.

http://dx.doi.org/10.1186/s12864-015-1911-8
http://dx.doi.org/10.1186/s12864-015-1911-8
http://dx.doi.org/10.1186/s12864-015-1911-8
http://dx.doi.org/10.1186/s12864-015-1911-8
http://dx.doi.org/10.1186/s12864-015-1911-8
http://dx.doi.org/10.1186/s12864-015-1911-8
http://dx.doi.org/10.1101/gr.131383.111
http://dx.doi.org/10.1371/journal.pone.0031002
http://dx.doi.org/10.1371/journal.pone.0031002
http://dx.doi.org/10.1186/2047-217X-2-10
http://dx.doi.org/10.1186/2047-217X-2-10
http://dx.doi.org/10.1093/nar/gkq673
http://investor.pacificbiosciences.com/releasedetail.cfm?ReleaseID=876252
http://investor.pacificbiosciences.com/releasedetail.cfm?ReleaseID=876252
http://www.operon.com/services/next-generation-sequencing/illumina/libraries.aspx
http://www.operon.com/services/next-generation-sequencing/illumina/libraries.aspx
http://dx.doi.org/10.1186/2047-217X-3-22
http://dx.doi.org/10.1371/journal.pone.0106689
http://dx.doi.org/10.1073/pnas.0914638107
http://www.tgac.ac.uk/sequencing-platforms/
http://www.tgac.ac.uk/sequencing-platforms/


Shelton et al. BMC Genomics  (2015) 16:734 Page 16 of 16

11. BioNano IrysChips Specifications. http://www.bionanogenomics.com/

wp-content/uploads/2015/01/datasheet-web.pdf.

12. Cao H, Hastie AR, Cao D, Lam ET, Sun Y, Huang H, et al. Rapid detection

of structural variation in a human genome using nanochannel-based

genome mapping technology. GigaScience. 2014;3(34):.

doi:10.1186/2047-217X-3-34.

13. Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, et al.

Characterizing and measuring bias in sequence data. Genome Biol.

2013;14(R51):. doi:10.1186/gb-2013-14-5-r51.

14. Mendelowitz L, Pop M. Computational methods for optical mapping.

GigaScience. 2014;3(33):. doi:10.1186/2047-217X-3-33.

15. Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW,

et al. The genome of the model beetle and pest tribolium castaneum.

Nature. 2008;452:949–55. http://dx.doi.org/10.1038/nature06784.

16. Lorenzen MD, Doyungan Z, Savard J, Snow K, Crumly LR, Shippy TD,

et al. Genetic linkage maps of the red flour beetle, tribolium castaneum,

based on bacterial artificial chromosomes and expressed sequence tags.

Genetics. 2005;170(2)::741–7. doi:10.1534/genetics.104.032227.

17. Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, et al. Genome

mapping on nanochannel arrays for structural variation analysis

andsequence assembly. Nat Biotechnol. 2012;30(8):. doi:10.1038/nbt.2303.

18. Anantharaman T, Mishra B. A probabilistic analysis of false positives in

optical map alignment and validation; 2001. https://cs.nyu.edu/mishra/

PUBLICATIONS/01.falsepos.ps.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.bionanogenomics.com/wp-content/uploads/2015/01/datasheet-web.pdf
http://www.bionanogenomics.com/wp-content/uploads/2015/01/datasheet-web.pdf
http://dx.doi.org/10.1186/2047-217X-3-34
http://dx.doi.org/10.1186/gb-2013-14-5-r51
http://dx.doi.org/10.1186/2047-217X-3-33
http://dx.doi.org/10.1038/nature06784
http://dx.doi.org/10.1534/genetics.104.032227
http://dx.doi.org/10.1038/nbt.2303
https://cs.nyu.edu/mishra/PUBLICATIONS/01.falsepos.ps
https://cs.nyu.edu/mishra/PUBLICATIONS/01.falsepos.ps

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Data formats
	Other software tools for scaffolding with BioNano data
	Motivation

	Implementation
	Overview
	AssembleIrysCluster: molecule stretch
	AssembleIrysCluster: customization of BioNano assembly scripts
	BioNano assembly optimization
	Stitch: alignment filters
	Stitch: super scaffolding
	Stitch: flagging potential Mis-assemblies
	Post analysis: software updates
	Post analysis: tutorials and complete pipelines


	Results and discussion
	Dataset generation
	Assembly: selecting the optimal BioNano assembly
	Stitch: automated and manually edited assemblies
	Assembly: putative Haplotypes
	Stitch: comparison to other software
	Stitch: assembly and super scaffolding with multiple genera


	Conclusions
	Availability and requirements
	Pipelines and tutorials
	Assembly scripts
	Super scaffolding scripts
	Map summary scripts

	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

