
REVIEW Open Access

Tools and techniques for computational
reproducibility
Stephen R. Piccolo1* and Michael B. Frampton2

Abstract

When reporting research findings, scientists document the steps they followed so that others can verify and build
upon the research. When those steps have been described in sufficient detail that others can retrace the steps and

obtain similar results, the research is said to be reproducible. Computers play a vital role in many research

disciplines and present both opportunities and challenges for reproducibility. Computers can be programmed to
execute analysis tasks, and those programs can be repeated and shared with others. The deterministic nature of

most computer programs means that the same analysis tasks, applied to the same data, will often produce the

same outputs. However, in practice, computational findings often cannot be reproduced because of complexities in
how software is packaged, installed, and executed—and because of limitations associated with how scientists

document analysis steps. Many tools and techniques are available to help overcome these challenges; here we

describe seven such strategies. With a broad scientific audience in mind, we describe the strengths and limitations
of each approach, as well as the circumstances under which each might be applied. No single strategy is sufficient

for every scenario; thus we emphasize that it is often useful to combine approaches.

Keywords: Computational reproducibility, Practice of science, Literate programming, Virtualization, Software
containers, Software frameworks

Background
When reporting research, scientists document the steps

they followed to obtain their results. If the description is

comprehensive enough that they and others can repeat

the procedures and obtain semantically consistent

results, the findings are considered to be “reproducible”

[1–6]. Reproducible research forms the basic building

blocks of science, insofar as it allows researchers to

verify and build on each other’s work with confidence.

Computers play an increasingly important role in

many scientific disciplines [7–10]. For example, in the

United Kingdom, 92 % of academic scientists use some

type of software in their research, and 69 % of scientists

say their research is feasible only with software tools

[11]. Thus efforts to increase scientific reproducibility

should consider the ubiquity of computers in research.

Computers present both opportunities and challenges for

scientific reproducibility. On one hand, the deterministic

nature of most computer programs means that identical

results can be obtained from many computational analyses

applied to the same input data [12]. Accordingly, computa-

tional research can be held to a high reproducibility stand-

ard. On the other hand, even when no technical barrier

prevents reproducibility, scientists often cannot reproduce

computational findings because of complexities in how

software is packaged, installed, and executed—and because

of limitations associated with how scientists document

these steps [13]. This problem is acute in many disciplines,

including genomics, signal processing, and ecological

modeling [14–16], which have large data sets and rapidly

evolving computational tools. However, the same problem

can affect any scientific discipline requiring computers for

research. Seemingly minor differences in computational

approaches can have major influences on analytical outputs

[12, 17–22], and the effects of these differences may exceed

those resulting from experimental factors [23].

Journal editors, funding agencies, governmental insti-

tutions, and individual scientists have increasingly made

calls for the scientific community to embrace practices

to support computational reproducibility [24–31]. This

* Correspondence: stephen_piccolo@byu.edu

Twitter: @stevepiccolo
1Department of Biology, Brigham Young University, Provo, UT 84602, USA

Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Piccolo and Frampton GigaScience (2016) 5:30

DOI 10.1186/s13742-016-0135-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13742-016-0135-4&domain=pdf
mailto:stephen_piccolo@byu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

movement has been motivated, in part, by scientists’

failed efforts to reproduce previously published analyses.

For example, Ioannidis et al. evaluated 18 published

research studies that used computational methods to

evaluate gene expression data, but they were able to

reproduce only two of those studies [32]. In many cases,

the culprit was a failure to share the study’s data; how-

ever, incomplete descriptions of software-based analyses

were also common. Nekrutenko and Taylor examined 50

papers that analyzed next-generation sequencing data

and observed that fewer than half provided any details

about software versions or parameters [33]. Recreating

analyses that lack such details can require hundreds of

hours of effort [34] and may be impossible, even after

consulting the original authors. Failure to reproduce

research may also lead to careerist effects, including

retractions [35].

Noting such concerns, some journals have emphasized

the value of placing computer code in open access

repositories. It is most useful when scientists provide

direct access to an archived version of the code via a

uniform resource locator (URL). For example, Zenodo.org

and figshare.com provide permanent digital object identi-

fiers (DOI) that can link to software code (and other

digital objects) used in publications. In addition, some

journals have extended requirements for “Methods”

sections, now asking researchers to provide detailed

descriptions of 1) how to install software and its depend-

encies, and 2) what parameters and data preprocessing

steps are used in analyses [10, 24]. A 2012 Institute of

Medicine report emphasized that, in addition to computer

code and research data, “fully specified computational

procedures” should be made available to the scientific

community [25]. The report’s authors elaborated that such

procedures should include “all of the steps of computa-

tional analysis”, and that “all aspects of the analysis need

to be transparently reported” [25]. Such policies represent

important progress. However, it is ultimately the responsi-

bility of individual scientists to ensure that others can

verify and build upon their analyses.

Describing a computational analysis sufficiently—such

that others can re-execute, validate, and refine it—requires

more than simply stating what software was used, what

commands were executed, and where to find the source

code [13, 27, 36–38]. Software is executed within the

context of an operating system (for example, Windows,

Mac OS, or Linux), which enables the software to inter-

face with computer hardware. In addition, most software

relies on a hierarchy of software dependencies, which

perform complementary functions and must be installed

alongside the main software tool. One version of a given

software tool or dependency may behave differently or

have a different interface than another version of the same

software. In addition, most analytical software offers a

range of parameters (or settings) that the user can specify.

If any of these variables differs from those used by the

original experimenter, the software may not execute prop-

erly or analytical outputs may differ considerably from

those observed by the original experimenter.

Scientists can use various tools and techniques to

overcome these challenges and to increase the likelihood

that their computational analyses will be reproducible.

These techniques range in complexity from simple (e.g.,

providing written documentation) to advanced (e.g.,

providing a virtual environment that includes an operat-

ing system and all the software necessary to execute the

analysis). This review describes seven strategies across

this spectrum. We describe many of the strengths and

limitations of each approach, as well as the circum-

stances under which each might be applied. No single

strategy will be sufficient for every scenario; therefore, in

many cases, it will be most practical to combine multiple

approaches. This review focuses primarily on the com-

putational aspects of reproducibility. The related topics

of empirical reproducibility, statistical reproducibility,

data sharing, and education about reproducibility have

been described elsewhere [39–46]. We believe that

with greater awareness and understanding of compu-

tational reproducibility techniques, scientists—includ-

ing those with limited computational experience—will

be more apt to perform computational research in a

reproducible manner.

Narrative descriptions are a simple but valuable
way to support computational reproducibility
The most fundamental strategy for enabling others to

reproduce a computational analysis is to provide a

detailed, written description of the process. For example,

when reporting computational results in a research

article, authors customarily provide a narrative that

describes the software they used and the analytical steps

they followed. Such narratives can be invaluable in

enabling others to evaluate the scientific approach and

to reproduce the findings. In many situations—for ex-

ample, when software execution requires user interaction

or when proprietary software is used—narratives are the

only feasible option for documenting such steps. However,

even when a computational analysis uses open-source

software and can be fully automated, narratives help

others understand how to re-execute an analysis.

Although most articles about research that uses

computational methods provide some type of narrative,

these descriptions often lack sufficient detail to enable

others to retrace those steps [32, 33]. Narrative descrip-

tions should indicate the operating system(s), software

dependencies, and analytical software that were used,

and how to obtain them. In addition, narratives should

indicate the exact software versions used, the order in

Piccolo and Frampton GigaScience (2016) 5:30 Page 2 of 13

which they were executed, and all non-default para-

meters that were specified. Such descriptions should

account for the fact that computer configurations can

differ vastly, even for computers with the same operating

system. Because it can be difficult for scientists to

remember such details after the fact, it is best to record

this information throughout the research process, rather

than at the time of manuscript preparation [8].

The following sections describe techniques for auto-

mating computational analyses. These techniques can

diminish the need for scientists to write narratives.

However, because it is often impractical to automate all

computational steps, we expect that, for the foreseeable

future, narratives will play a vital role in enabling

computational reproducibility.

Custom scripts and code can automate research
analysis
Scientific software can often be executed in an auto-

mated manner via text-based commands. Using such

commands—via a command-line interface—scientists

can indicate the software program(s) to be executed and

which parameter(s) should be used. When multiple

commands must be executed, they can be compiled into

scripts specifying the order in which the commands

should be executed (Fig. 1; Additional file 1). In many

cases, scripts also include commands for installing and

configuring software. Such scripts serve as valuable

documentation not only for individuals who wish to re-

execute the analysis, but also for the researcher who

performed the original analysis [47]. In these cases, no

amount of narrative is an adequate substitute for provid-

ing the actual commands that were used.

When writing command-line scripts, it is essential to

explicitly document any software dependencies and input

data that are required for each step in the analysis. The

Make utility [48, 49] provides one way to specify such

requirements [36]. Before any command is executed,

Make verifies that each documented dependency is avail-

able. Accordingly, researchers can use Make files (scripts)

to specify a full hierarchy of operating system components

and dependent software that must be present to perform

the analysis (Fig. 2; Additional file 2). In addition, Make

can automatically identify any commands that can be

executed in parallel, potentially reducing the amount of

time required for the analysis. Although Make was

originally designed for UNIX-based operating systems

(such as Mac OS or Linux), similar utilities have since

been developed for Windows operating systems [50].

Table 1 lists various utilities that can be used to auto-

mate software execution.

As well as creating scripts to execute existing software,

many researchers also create new software by writing

computer code in a programming language such as

Python, C++, Java, or R. Such code may perform relatively

simple tasks, such as reformatting data files or invoking

third-party software. In other cases, computer code may

constitute a manuscript’s key intellectual contribution.

Whether analysis steps are encoded in scripts or as

computer code, scientists can support reproducibility by

publishing these artifacts alongside research papers. By

doing so, authors enable readers to evaluate the analyt-

ical approach in full detail and to extend the analysis

more readily [51]. Although scripts and code may be

included alongside a manuscript as supplementary

material, a better alternative is to store them in a public

repository with a permanent URL. It is often also use-

ful to store code in a version control system (VCS)

[8, 9, 47], and to share it via Web-based services like

GitHub.com or Bitbucket.org [52]. With such a VCS

Fig. 1 Example of a command line script. This script can be used to align DNA sequence data to a reference genome. First, it downloads the

software and data files necessary for the analysis. Then, it extracts (“unzips”) these files, and aligns the data to a reference genome for Ebola virus.

Finally, it converts, sorts, and indexes the aligned data. See Additional file 1 for an executable version of this script

Piccolo and Frampton GigaScience (2016) 5:30 Page 3 of 13

repository, scientists can track the different versions of

scripts and code that have been developed throughout the

evolution of the research project. In addition, outside

observers can see the full version history, contribute

revisions to the code, and reuse the code for their own

purposes [53]. When submitting a manuscript, the authors

may “tag” a specific version of the repository that was used

for the final analysis described in the manuscript.

Software frameworks enable easier handling of
software dependencies
Virtually all computer scripts and code relies on external

software dependencies and operating system compo-

nents. For example, suppose a research study required a

scientist to apply Student’s t-test. Rather than write code

to implement this statistical test, the scientist would

likely find an existing software library that implements

the test and then invoke that library from their code.

Much time can be saved with this approach, and a wide

range of software libraries are freely available. However,

software libraries change frequently; invoking the wrong

version of a library may result in an error or an unex-

pected output. Thus, to enable others to reproduce an

analysis, it is critical to indicate which dependencies

(and versions thereof) must be installed.

One way to address this challenge is to build on a pre-

existing software framework, which makes it easier to

access software libraries that are commonly used to

perform specific types of analysis task. Typically, such

frameworks also make it easier to download and install

software dependencies, and to ensure that the versions

of software libraries and their dependencies are compat-

ible with each other. For example, Bioconductor [54],

created for the R statistical programming language [55],

is a popular framework that contains hundreds of

software packages for analyzing biological data. The

Fig. 2 Example of a Make file. This file performs the same function as the command line script shown in Fig. 1, except that it is formatted for the

Make utility. Accordingly, it is structured so that specific tasks must be executed before other tasks, in a hierarchical manner. See Additional file 2

for an executable version of this file

Table 1 Utilities that can be used to automate software

execution

• GNU Make and Make for Windows: tools for building software from
source files and for ensuring that the software’s dependencies are met.

• Snakemake [109]: an extension of Make that provides a more flexible
syntax and makes it easier to execute tasks in parallel.

• BPipe [110]: a tool that provides a flexible syntax for users to specify
commands to be executed; it maintains an audit trail of all commands
that have been executed.

• GNU Parallel [111]: a tool for executing commands in parallel across
one or more computers.

• Makeflow [112]: a tool that can execute commands simultaneously on
various types of computer architectures, including computer clusters
and cloud environments.

• SCONS [113]: an alternative to GNU Make that enables users to
customize the process of building and executing software using
scripts written in the Python programming language.

• CMAKE.org: a tool that enables users to execute Make scripts more
easily on multiple operating systems.

Piccolo and Frampton GigaScience (2016) 5:30 Page 4 of 13

Bioconductor framework facilitates versioning, docu-

menting, and distributing code. Once a software library

has been incorporated into Bioconductor, other re-

searchers can find, download, install, and configure it on

most operating systems with relative ease. In addition,

Bioconductor installs software dependencies automatic-

ally. These features ease the process of performing an

analysis, and can help with reproducibility. Various soft-

ware frameworks exist for other scientific disciplines

[56–61]. General purpose tools for managing software

dependencies also exist, for example, Apache Ivy [62]

and Puppet [50].

To best support reproducibility, software frameworks

should make it easy for scientists to download and install

previous versions of a software tool, as well as previous

versions of dependencies. Such a design enables other

scientists to reproduce analyses that were conducted with

previous versions of a software framework. In the case of

Bioconductor, considerable extra work may be required to

install specific versions of Bioconductor software and their

dependencies. To overcome these limitations, scientists

may use a software container or virtual machine to pack-

age together the specific versions they used in an analysis.

Alternatively, they might use third-party solutions such as

the aRchive project [63].

Literate programming combines narratives with
code
Although narratives, scripts, and computer code indi-

vidually support reproducibility, there is additional value

in combining these entities. Even though a researcher

may provide computer code alongside a research paper,

other scientists may have difficulty interpreting how the

code accomplishes specific tasks. A longstanding way to

address this problem is via code comments: human-

readable annotations interspersed throughout computer

code. However, code comments and other types of

documentation often become outdated as code evolves

throughout the analysis process [64]. One way to over-

come this problem is to use a technique called literate

programming [65]. In this approach, the scientist writes

a narrative of the scientific analysis and intermingles

code directly within the narrative. As the code is

executed, a document is generated that includes the

code, narratives, and any outputs (e.g., figures, tables) of

the code. Accordingly, literate programming helps en-

sure that readers understand exactly how a particular re-

search result was obtained. In addition, this approach

motivates the scientist to keep the target audience in

mind when performing a computational analysis, rather

than simply to write code that a computer can parse

[65]. Consequently, by reducing barriers of understand-

ing among scientists, literate programming can help to

engender greater trust in computational findings.

One popular literate programming tool is Jupyter [66].

Using Jupyter.org’s Web-based interface, scientists can

create interactive “notebooks” that combine code, data,

mathematical equations, plots, and rich media [67].

Originally known as IPython, and previously designed

exclusively for the Python programming language, Jupyter

now makes it possible to execute code in many different

programming languages. Such functionality may be im-

portant to scientists who prefer to combine the strengths

of different programming languages.

knitr [68] has also gained considerable popularity as a

literate programming tool. It is written in the R pro-

gramming language, and thus can be integrated seam-

lessly with the array of statistical and plotting tools

available in that environment. However, like Jupyter,

knitr can execute code written in multiple programming

languages. Commonly, knitr is applied to documents

that have been authored using RStudio [69], an open-

source tool with advanced editing and package manage-

ment features.

Jupyter notebooks and knitr reports can be saved in

various output formats, including hypertext markup

language (HTML) and portable document format (PDF;

see examples in Figs. 3 and 4; Additional files 3 and 4).

Increasingly, scientists include such documents as

supplementary materials to journal manuscripts, en-

abling others to repeat analysis steps and recreate

manuscript figures [70–73].

Scientists typically use literate programming tools for

data analysis tasks that can be executed interactively, in

a modest amount of time (e.g., minutes or hours).

However, it is possible to execute Jupyter or knitr at the

command line; thus longer running tasks can be exe-

cuted on high-performance computers.

Literate programming notebooks are suitable for re-

search analyses that require a modest amount of computer

code. For analyses needing larger amounts of code, more

advanced programming environments may be more suit-

able, perhaps in combination with a “literate documenta-

tion” tool such as Dexy.it.

Workflow management systems enable software
to be executed via a graphical user interface
Writing computer scripts and code seems daunting to

many researchers. Although various courses and tutorials

are helping to make this task less formidable [46, 74–76],

many scientists use “workflow management systems” to

facilitate the execution of scientific software [77]. Typically

managed via a graphical user interface, workflow man-

agement systems enable scientists to upload data and

process them using existing tools. For multistep ana-

lyses, the output from one tool can be used as input to

additional tools, resulting in a series of commands

known as a workflow.

Piccolo and Frampton GigaScience (2016) 5:30 Page 5 of 13

Galaxy [78, 79] has gained considerable popularity

within the bioinformatics community, especially for per-

forming next-generation sequencing analysis. As users

construct workflows, Galaxy provides descriptions of

how software parameters should be used, examples of

how input files should be formatted, and links to rele-

vant discussion forums. To help with processing large

data sets and computationally complex algorithms,

Galaxy also provides an option to execute workflows on

cloud-computing services [80]. In addition, researchers

can share workflows with each other at UseGalaxy.org;

this feature has enabled the Galaxy team to build a

community that encourages reproducibility, helps define

best practices, and reduce the time required for novices

to get started.

Various other workflow systems are freely available to

the research community (see Table 2). For example,

VisTrails.org is used by researchers from many disci-

plines, including climate science, microbial ecology, and

quantum mechanics [81]. It enables scientists to design

visual workflows, and connect data inputs with analytical

modules and the resulting outputs. In addition, VisTrails

tracks a full history of how each workflow was created.

This capability, referred to as “retrospective provenance”,

makes it possible for others to not only reproduce the

final version of an analysis, but also to examine previous

incarnations of the workflow and how each change

influenced the analytical outputs [82].

Although workflow management systems offer many

advantages, users must accept tradeoffs. For example,

although the teams that develop these tools often pro-

vide public servers where users can execute workflows,

many scientists share these resources, limiting the com-

putational power or storage space available to execute

large-scale analyses in a timely manner. As an alterna-

tive, many scientists install these systems on their own

computers; however, configuring and supporting them

requires time and expertise. In addition, if a workflow

tool does not yet provide a module to support a given

analysis, the scientist must create one. This task con-

stitutes additional overheads; however, utilities such

as the Galaxy Tool Shed [83] are helping to facilitate

this process.

Virtual machines encapsulate an entire operating
system and software dependencies
Whether within a literate programming notebook, or via

a workflow management system, an operating system

and relevant software dependencies must be installed

before an analysis is executed. The process of identi-

fying, installing, and configuring such dependencies

consumes a considerable amount of scientists’ time. Dif-

ferent operating systems (and versions thereof) may

require different installation and configuration steps.

Furthermore, earlier versions of software dependencies,

which may currently be installed on a given computer,

Fig. 3 Example of a Jupyter notebook. This example contains code (in the Python programming language) for generating random numbers and

plotting them in a graph within a Jupyter notebook. Importantly, the code and output object (graph) are contained within the same document.

See Additional file 3 for an executable version of the notebook

Piccolo and Frampton GigaScience (2016) 5:30 Page 6 of 13

may be incompatible with—or produce different outputs

than—newer versions.

One solution is to use virtual machines, which can encap-

sulate an entire operating system and all software, scripts,

code, and data necessary to execute a computational ana-

lysis [84, 85] (Fig. 5). Using virtualization software such as

VirtualBox or VMWare (see Table 3), a virtual machine can

be executed on practically any desktop, laptop, or server,

irrespective of the main (“host”) operating system on the

computer. For example, even though a scientist’s computer

may be running a Windows operating system, they may

perform an analysis on a Linux operating system that is

running concurrently—within a virtual machine—on the

Table 2 Workflow management tools freely available to the

research community

• Galaxy [78, 79]

• VisTrails [81]

• Kepler-project.org [114]

• CyVerse.org (formerly known as The iPlant Collaborative) [115]

• GenePattern [116–118]

• Taverna.org.uk [119]

• LONI Pipeline [120, 121]

Fig. 5 Architecture of virtual machines. Virtual machines encapsulate

analytical software and dependencies within a “guest” operating

system, which may be different to the main (“host”) operating

system. A virtual machine executes in the context of virtualization

software, which runs alongside other software installed on

the computer

Fig. 4 Example of a document created using knitr. This example contains code (in the R language) for generating random numbers and plotting

them on a graph. The knitr tool was used to generate the document, which combines the code and the output object (figure). See Additional

file 4 for an executable version of this document

Piccolo and Frampton GigaScience (2016) 5:30 Page 7 of 13

same computer. The scientist has full control over the

virtual (“guest”) operating system, and thus can install soft-

ware and modify configuration settings as necessary. In

addition, a virtual machine can be constrained to use

specific amounts of computational resources (e.g., com-

puter memory, processing power), thus enabling system

administrators to ensure that multiple virtual machines can

be executed simultaneously on the same computer without

impacting each other’s performance. After executing an

analysis, the scientist can export the entire virtual machine

to a single, binary file. Other scientists can then use this file

to reconstitute the same computational environment that

was used for the original analysis. With a few exceptions

(see Discussion), these scientists will obtain exactly the

same results as the original scientist. This process provides

the added benefits that 1) the scientist must only document

the installation and configuration steps for a single ope-

rating system, 2) other scientists need only install the

virtualization software and not individual software compo-

nents, and 3) analyses can be re-executed indefinitely, so

long as the virtualization software remains compatible with

current computer systems [86]. The fact that a team of

scientists can employ virtual machines to ensure that each

team member has the same computational environment is

also useful because team members may have different

configurations on their host operating systems.

One criticism of using virtual machines to support

computational reproducibility is that virtual machine

files are large (typically multiple gigabytes), especially if

they include raw data files. This imposes a barrier for

researchers to share virtual machines with the research

community. One option is to use cloud-computing

services (see Table 4). Scientists can execute an analysis

in the cloud, take a “snapshot” of their virtual machine,

and share it with others in that environment [84, 87].

Cloud-based services typically provide repositories where

virtual machine files can easily be stored and shared

among users. Despite these advantages, some researchers

may prefer their data to reside on local computers, rather

than in the cloud—at least while the research is being

performed. In addition, cloud-based services may use

proprietary software, so virtual machines may only be

executable within each provider’s infrastructure. Further-

more, to use a cloud service provider, scientists may need

to activate a fee-based account.

When using virtual machines to support reproducibil-

ity, it is important that other scientists can not only re-

execute the analysis, but also examine the scripts and

code used within the virtual machine [88]. Although it is

possible for others to examine the contents of a virtual

machine directly, it is preferable to store the scripts and

code in public repositories—separately from the virtual

machine—so others can examine and extend the analysis

more easily [89]. In addition, scientists can use a virtual

machine that has been prepackaged for a particular

research discipline. For example, CloudBioLinux con-

tains a variety of bioinformatics tools commonly used by

genomics researchers [90]. The scripts for building this

virtual machine are stored in a public repository [91].

Scientists can automate the process of building and

configuring virtual machines using tools such as Vagrant

or Vortex (see Table 3). For either tool, users can write

text-based configuration files that provide instructions

for building virtual machines and allocating computa-

tional resources to them. In addition, these configuration

files can be used to specify analysis steps [89]. Because

these files are text based and relatively small (usually a

few kilobytes), scientists can share them easily and track

different versions of the files via source control reposi-

tories. This approach also mitigates problems that might

arise during the analysis stage. For example, even when

a computer’s host operating system must be reinstalled

because of a computer hardware failure, the virtual

machine can be recreated with relative ease.

Software containers ease the process of installing
and configuring dependencies
Software containers are a lighter weight alternative to

virtual machines. Like virtual machines, containers en-

capsulate operating system components, scripts, code,

and data into a single package that can be shared with

others. Thus, as with virtual machines, analyses executed

within a software container should produce identical

outputs, irrespective of the underlying operating system

or the software that may be installed outside the con-

tainer (see Discussion for caveats). As is true for virtual

machines, multiple containers can be executed simultan-

eously on a single computer, and each container may

contain different software versions and configurations.

However, whereas virtual machines include an entire

Table 3 Virtual machine software

Virtualization hypervisors:

• VirtualBox.org (open source)

• XenProject.org (open source)

• VMWare.com (partially open source)

Virtual machine management tools:

• VagrantUP.com (open source)

• Vortex (open source) [122]

Table 4 Commercial cloud-service providers

• Amazon Web Services [123]

• Rackspace.com/Cloud

• Google Cloud Platform [124]

• Windows Azure [125]

Piccolo and Frampton GigaScience (2016) 5:30 Page 8 of 13

operating system, software containers interface directly

with the computer’s main operating system and extend

it as needed (Fig. 6). This design provides less flexibility

than virtual machines because containers are specific to

a given type of operating system; however, containers

require considerably less computational overhead than

virtual machines, and can be initialized much more

quickly [92].

The open source Docker.com utility, which has gained

popularity among informaticians since its release in

2013, provides the ability to build, execute, and share

software containers for Linux-based operating systems.

Users specify a Docker container’s contents using text-

based commands. These instructions can be placed in

a “Dockerfile”, which other scientists can use to re-

build the container. As with virtual machine configur-

ation files, Dockerfiles are text based, so they can be

shared easily, and can be tracked and versioned in

source control repositories. Once a Docker container

has been built, its contents can be exported to a binary

file; these files are generally smaller than virtual ma-

chine files, so they can be shared more easily—for

example, via hub.Docker.com.

A key feature of Docker containers is that their

contents can be stacked in distinct layers (or “images”).

Each image includes software components to address a

particular need. Within a given research lab, scientists

might create general purpose images to support func-

tionality for multiple projects, and specialized images to

address the needs of specific projects. An advantage of

Docker’s modular design is that when images within a

container are updated, Docker only needs to track the

specific components that have changed; users who wish

to update to a newer version must download a relatively

small update. In contrast, even a minor change to a virtual

machine would require users to export and reshare the

entire virtual machine.

Scientists have begun to share Docker images that

enable others to execute analyses described in research

papers [93–95], and to facilitate benchmarking efforts

among researchers in a given subdiscipline. For example,

nucleotid.es is a catalog of genome-assembly tools that

have been encapsulated in Docker images [96, 97]. Gen-

ome assembly tools differ considerably in the dependen-

cies they require, and in the parameters they support.

This project provides a means to standardize these as-

semblers, circumvent the need to install dependencies

for each tool, and perform benchmarks across the tools.

Such projects may help to reduce the reproducibility

burden on individual scientists.

The use of Docker containers for reproducible re-

search comes with caveats. Individual containers are

stored and executed in isolation from other containers

on the same computer; however, because all containers

on a given machine share the same operating system,

this isolation is not as complete as it is with virtual

machines. This means, for example, that a given con-

tainer is not guaranteed to have access to a specific amount

of computer memory or processing power—multiple con-

tainers may have to compete for these resources [92]. In

addition, containers may be more vulnerable to security

breaches [92]. Because Docker containers can only be

executed on Linux-based operating systems, they must be

executed within a virtual machine on Windows and Mac

operating systems. Docker provides installation packages to

facilitate this integration; however, the overhead of using a

virtual machine offsets some of the performance benefits of

using containers.

Efforts are ongoing to develop and refine software

container technologies. Table 5 lists various tools that

are currently available. In the coming years, these tech-

nologies promise to play an influential role within the

scientific community.

Conclusions
Scientific advancement requires researchers to explicitly

document the research steps they performed and to trans-

parently share those steps with other researchers. This

review provides a comprehensive, though not exhaustive,

list of techniques that can help meet these requirements

for computational analyses. Science philosopher Karl

Fig. 6 Architecture of software containers. Software containers

encapsulate analytical software and dependencies. In contrast to

virtual machines, containers execute within the context of the

computer’s main operating system

Table 5 Open-source containerization software

• Docker.com

• LinuxContainers.org

• lmctfy [126]

• OpenVZ.org

• Warden [127]

Piccolo and Frampton GigaScience (2016) 5:30 Page 9 of 13

Popper contended that, “[w]e do not take even our own

observations quite seriously, or accept them as scientific

observations, until we have repeated and tested them” [2].

Indeed, in many cases, the individuals who benefit most

from computational reproducibility are those who per-

formed the original analysis, but reproducible and trans-

parent practices can also increase the level at which a

scientist’s work is accepted by other scientists [47, 98].

When other scientists can reproduce an analysis and

determine exactly how its conclusions were drawn, they

may be more apt to cite and build upon the work. In

contrast, when others fail to reproduce research findings,

it can derail scientific progress and may lead to embarrass-

ment, accusations, and retractions.

We have described seven tools and techniques for

facilitating computational reproducibility. None of these

approaches is sufficient for every scenario in isolation;

rather, scientists will often find value in combining

approaches. For example, a researcher who uses a liter-

ate programming notebook (that combines narratives

with code) might incorporate the notebook into a soft-

ware container so that others can execute it without

needing to install specific software dependencies. The

container might also include a workflow management

system to ease the process of integrating multiple tools

and incorporating best practices for the analysis. This

container could be packaged within a virtual machine or

cloud-computing environment to ensure that it can be

executed consistently (see Fig. 7). Binder [99] and

Everware [100] are two services that allow researchers to

execute Jupyter notebooks within a Web browser, using

a Docker container to package the underlying software,

and a cloud-computing environment to execute it.

Although still under active development, such services

may be harbingers of the future for computationally

reproducible science.

The call for computational reproducibility relies on

the premise that reproducible science will bolster the

efficiency of the overall scientific enterprise [101].

Although reproducible practices may require additional

time and effort, these practices provide ancillary benefits

that help offset those expenditures [47]. Primarily,

scientists may experience increased efficiency in their

research [47]. For example, before and after a manu-

script is submitted for publication, it faces scrutiny from

co-authors and peer reviewers who may suggest alter-

ations to the analysis. Having a complete record of all

the analysis steps, and being able to retrace those steps

precisely, makes it faster and easier to implement the

requested alterations [47, 102]. Reproducible practices

can also improve the efficiency of team science because

colleagues can more easily communicate their research

protocols and inspect each other’s work; one type of re-

lationship where this is critical is that between academic

advisors and mentees [102]. Finally, when research proto-

cols are shared transparently with the broader community,

scientific advancement increases because scientists can

learn more easily from each other’s work and there is less

duplication of effort [102].

Reproducible practices do not necessarily ensure that

others can obtain identical results to those obtained by

the original scientists. Indeed, this objective may be

infeasible for some types of computational analysis,

including those that use randomization procedures,

floating-point operations, or specialized computer hard-

ware [85, 103]. In such cases, the goal may shift to ensur-

ing that others can obtain results that are semantically

consistent with the original findings [5, 6]. In addition, in

Fig. 7 Example of a Docker container for genomics research. This

container would enable researchers to preprocess various types of

molecular data, using tools from Bioconductor and Galaxy, and to

analyze the resulting data within a Jupyter notebook. Each box

within the container represents a distinct Docker image. These

images are layered such that some images depend on others (for

example, the Bioconductor image depends on R). At its base, the

container includes operating system libraries, which may not be

present (or may be configured differently) on the computer’s main

operating system

Piccolo and Frampton GigaScience (2016) 5:30 Page 10 of 13

studies where vast computational resources are needed to

perform an analysis, or where data sets are distributed

geographically [104–106], full reproducibility may be

infeasible. Alternatively, it may be infeasible to reallocate

computational resources for highly computationally inten-

sive analyses [8]. In these cases, researchers can provide

relatively simple examples to demonstrate the method-

ology [8]. When legal restrictions prevent researchers

from publicly sharing software or data, or when software

is available only via a Web interface, researchers should

document the analysis steps as well as possible and

describe why such components cannot be shared [25].

Computational reproducibility does not guarantee

against analytical biases, or ensure that software produces

scientifically valid results [107]. As with any research, a

poor study design, confounding effects, or improper use

of analytical software may plague even the most reprodu-

cible analyses [107, 108]. On one hand, increased trans-

parency puts scientists at a greater risk that such

problems will be exposed. On the other hand, scientists

who are fully transparent about their scientific approach

may be more likely to avoid such pitfalls, knowing that

they will be more vulnerable to such criticisms. Either

way, the scientific community benefits.

Lastly, we emphasize that some reproducibility is

better than none. Although some of the practices de-

scribed in this review require more technical expertise

than others, they are freely accessible to all scientists,

and provide long-term benefits to the researcher and to

the scientific community. Indeed, as scientists act in

good faith to perform these practices, where feasible, the

pace of scientific progress will surely increase.

Open Peer Review

The Open Peer Review files are available for this manu-

script as Additional files – See Additional file 5.

Additional files

Additional file 1: This script is supporting material for Fig. 1. It can be

used to align DNA sequence data to a reference genome. First, it
downloads the software and data files necessary for the analysis. Then, it

extracts (“unzips”) these files, and aligns the data to a reference genome

for Ebola virus. Finally, it converts, sorts, and indexes the aligned data.

(SH 865 bytes)

Additional file 2: This Make file is supporting material for Fig. 2. It

performs the same function as Additional file 1, except that it is

formatted for the Make utility. Accordingly, it is structured so that
specific tasks must be executed before other tasks, in a hierarchical

manner

Additional file 3: This Jupyter notebook is supporting material for

Fig. 3. It contains code (in the Python programming language) for
generating random numbers and plotting them in a graph. (IPYNB 53 kb)

Additional file 4: This document contains code (in the R language) for

generating random numbers and plotting them on a graph. This

document is in R Markdown format and can be compiled using knitr.
(RMD 382 bytes)

Additional file 5: Open Peer Review. (PDF 6134 kb)

Abbreviations

DOI: Digital object identifier; HTML: Hypertext markup language;

PDF: Portable document format; URL: Uniform resource locator;

VCS: Version control system

Acknowledgements

SRP acknowledges startup funds provided by Brigham Young University. We
thank research-community members and reviewers who provided valuable

feedback on this manuscript.

Authors’ contributions

SRP wrote the manuscript and created figures. MBF created figures and
helped to revise the manuscript. Both authors read and approved the

final manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details
1Department of Biology, Brigham Young University, Provo, UT 84602, USA.
2Department of Computer Science, Brigham Young University, Provo, UT,

USA.

References

1. Fisher RA. The Design of Experiments. New York: Hafner Press; 1935.
2. Popper KR. The logic of scientific discovery. London: Routledge; 1959.

3. Peng RD. Reproducible research in computational science. Science.

2011;334:1226–7.

4. Russell JF. If a job is worth doing, it is worth doing twice. Nature. 2013;496:7.
5. Feynman RP. Six Easy Pieces: Essentials of Physics Explained by Its Most

Brilliant Teacher. Boston, MA: Addison-Wesley; 1995. p. 34–5.

6. Murray-Rust P, Murray-Rust D. Reproducible Physical Science and the

Declaratron. In: Stodden VC, Leisch F, Peng RD, editors. Implementing
Reproducible Research. Boca Raton, FL: CRC Press; 2014. p. 113.

7. Hey AJG, Tansley S, Tolle KM, Others. The fourth paradigm: data-intensive

scientific discovery. Redmond, WA: Microsoft Research Redmond, WA; 2009.

8. Millman KJ, Pérez F. Developing Open-Source Scientific Practice.
Implementing Reproducible Research. Boca Raton, FL: CRC Press; 2014;149.

9. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best

practices for scientific computing. PLoS Biol. 2014;12:e1001745.

10. Software with impact. Nat Methods. 2014;11:211.
11. Hong NC. We are the 92% [Internet]. Figshare; 2014. Available from:

http://dx.doi.org/10.6084/M9.FIGSHARE.1243288. Accessed 1 March 2016.

12. Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer

experiments. Stat Sci. 1989;4:409–23.
13. Garijo D, Kinnings S, Xie L, Xie L, Zhang Y, Bourne PE, et al. Quantifying

reproducibility in computational biology: the case of the tuberculosis

drugome. PLoS One. 2013;8:e80278.

14. Error prone. Nature. 2012;487:406.
15. Vandewalle P, Barrenetxea G, Jovanovic I, Ridolfi A, Vetterli M. Experiences

with reproducible research in various facets of signal processing research.

IEEE International Conference on Acoustics, Speech and Signal

Processing - ICASSP’07. IEEE. 2007;2007:IV-1253–6.
16. Cassey P, Cassey P, Blackburn T, Blackburn T. Reproducibility and repeatability

in ecology. Bioscience. 2006;56:958–9.

17. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, et al.

Quantification of modelling uncertainties in a large ensemble of climate
change simulations. Nature. 2004;430:768–72.

18. McCarthy DJ, Humburg P, Kanapin A, Rivas MA, Gaulton K, Cazier J-B, et al.

Choice of transcripts and software has a large effect on variant annotation.

Genome Med. 2014;6:26.
19. Neuman JA, Isakov O, Shomron N. Analysis of insertion-deletion from

deep-sequencing data: Software evaluation for optimal detection. Brief

Bioinform. 2013;14:46–55.

Piccolo and Frampton GigaScience (2016) 5:30 Page 11 of 13

dx.doi.org/10.1186/s13742-016-0135-4
dx.doi.org/10.1186/s13742-016-0135-4
dx.doi.org/10.1186/s13742-016-0135-4
dx.doi.org/10.1186/s13742-016-0135-4
dx.doi.org/10.1186/s13742-016-0135-4
http://dx.doi.org/10.6084/M9.FIGSHARE.1243288

20. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, et al.
Assemblathon 2: evaluating de novo methods of genome assembly in

three vertebrate species. Gigascience. 2013;2:10.

21. Bilal E, Dutkowski J, Guinney J, Jang IS, Logsdon BA, Pandey G, et al.

Improving breast cancer survival analysis through competition-based

multidimensional modeling. PLoS Comput Biol. 2013;9:e1003047.

22. Gronenschild EHBM, Habets P, Jacobs HIL, Mengelers R, Rozendaal N, van Os J,

et al. The effects of FreeSurfer version, workstation type, and Macintosh

operating system version on anatomical volume and cortical thickness

measurements. PLoS One. 2012;7:e38234.

23. Moskvin OV, McIlwain S, Ong IM. CAMDA 2014: Making sense of RNA-Seq

data: From low-level processing to functional analysis. Systems Biomedicine.

2014;2:31–40.

24. Reducing our irreproducibility. Nature. 2013;496:398–398.

25. Michael CM, Nass SJ, Omenn GS, editors. Evolution of Translational Omics:

Lessons Learned and the Path Forward. Washington, D.C: The National

Academies Press; 2012.

26. Collins FS, Tabak L a. Policy: NIH plans to enhance reproducibility. Nature.

2014;505:612–3.

27. Chambers JM. S as a Programming Environment for Data Analysis and

Graphics. Problem Solving Environments for Scientific Computing, Proceedings

17th Symposium on the Interface of Statistics and Computing North Holland;

1985. p. 211–4.

28. LeVeque RJ, Mitchell IM, Stodden V. Reproducible research for scientific

computing: Tools and strategies for changing the culture. Comput Sci Eng.
2012;14:13.

29. Stodden V, Guo P, Ma Z. Toward reproducible computational research: an empirical

analysis of data and code policy adoption by journals. PLoS One. 2013;8:2–9.

30. Morin A, Urban J, Adams PD, Foster I, Sali A, Baker D, et al. Research priorities.

Shining light into black boxes. Science. 2012;336:159–60.

31. Rebooting review. Nat Biotechnol. 2015;33:319.

32. Ioannidis JP a, Allison DB, Ball C a, Coulibaly I, Cui X, Culhane AC, et al.
Repeatability of published microarray gene expression analyses. Nat Genet.

2009;41:149–55.

33. Nekrutenko A, Taylor J. Next-generation sequencing data interpretation:

enhancing reproducibility and accessibility. Nat Rev Genet. 2012;13:667–72.

34. Baggerly K a, Coombes KR. Deriving chemosensitivity from cell lines:
Forensic bioinformatics and reproducible research in high-throughput

biology. Ann Appl Stat. 2009;3:1309–34.

35. Decullier E, Huot L, Samson G, Maisonneuve H. Visibility of retractions: a

cross-sectional one-year study. BMC Res Notes. 2013;6:238.

36. Claerbout JF, Karrenbach M. Electronic Documents Give Reproducible Research
a New Meaning. Meeting of the Society of Exploration Geophysics. New

Orleans, LA; 1992.

37. Stodden V, Miguez S. Best practices for computational science: software
infrastructure and environments for reproducible and extensible research.

J Open Res Softw. 2014;2:21.

38. Ravel J, Wommack KE. All hail reproducibility in microbiome research.

Microbiome. 2014;2:8.

39. Stodden V. 2014: What scientific idea is ready for retirement? [Internet].
http://edge.org/response-detail/25340. 2014. Available from: http://edge.

org/response-detail/25340. Accessed 1 March 2016.

40. Birney E, Hudson TJ, Green ED, Gunter C, Eddy S, Rogers J, et al. Prepublication

data sharing. Nature. 2009;461:168–70.

41. Hothorn T, Leisch F. Case studies in reproducibility. Brief Bioinform. 2011;12:
288–300.

42. Schofield PN, Bubela T, Weaver T, Portilla L, Brown SD, Hancock JM, et al.

Post-publication sharing of data and tools. Nature. 2009;461:171–3.

43. Piwowar H a., Day RS, Fridsma DB. Sharing detailed research data is

associated with increased citation rate. PLoS One. 2007;2.

44. Johnson VE. Revised standards for statistical evidence. Proc Natl Acad Sci

U S A. 2013;110:19313–7.

45. Halsey LG, Curran-everett D, Vowler SL, Drummond GB. The

fickle P value generates irreproducible results. Nat Methods. 2015;12:179–85.

46. Wilson G. Software Carpentry: lessons learned. F1000Res. 2016;3:62.

47. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for
reproducible computational research. PLoS Comput Biol. 2013;9:1–4.

48. GNU Make [Internet]. 2016. Available from https://www.gnu.org/software/

make. Accessed 1 March 2016.

49. Make for Windows [Internet]. 2016. Available from http://gnuwin32.

sourceforge.net/packages/make.htm. Accessed 1 March 2016.

50. Puppet [Internet]. 2016. Available from https://puppetlabs.com. Accessed 1
March 2016.

51. Code share. Nature. 2014;514:536.

52. Blischak JD, Davenport ER, Wilson G. A quick introduction to version control

with Git and GitHub. PLoS Comput Biol. 2016;12:e1004668.

53. Loeliger J, McCullough M. Version Control with Git: Powerful Tools and
Techniques for Collaborative Software Development. Sebastopol, California:

“O’Reilly Media, Inc.”; 2012. p. 456.

54. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al.
Orchestrating high-throughput genomic analysis with Bioconductor. Nat

Methods. 2015;12:115–21.

55. R Core Team. R: A Language and Environment for Statistical Computing
[Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2014.

Available from: http://www.r-project.org. Accessed 1 March 2016.

56. Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, De Zeeuw DL, et al.
Space weather modeling framework: a new tool for the space science

community. J Geophys Res. 2005;110:A12226.

57. Tan E, Choi E, Thoutireddy P, Gurnis M, Aivazis M. GeoFramework: Coupling
multiple models of mantle convection within a computational framework.

Geochem Geophys Geosyst. [Internet]. 2006;7. Available from: http://doi.

wiley.com/10.1029/2005GC001155

58. Heisen B, Boukhelef D, Esenov S, Hauf S, Kozlova I, Maia L, et al.
Karabo: An Integrated Software Framework Combining Control, Data

Management, and Scientific Computing Tasks. 14th International

Conference on Accelerator & Large Experimental Physics Control Systems,

ICALEPCS2013. San Francisco, CA; 2013.

59. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of

image analysis. Nat Methods. 2012;9:671–5.

60. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et

al. Fiji: an open-source platform for biological-image analysis. Nat Methods.

2012;9:676–82.

61. Biasini M, Schmidt T, Bienert S, Mariani V, Studer G, Haas J, et al.

OpenStructure: an integrated software framework for computational

structural biology. Acta Crystallogr D Biol Crystallogr. 2013;69:701–9.

62. Ivy, the agile dependency manager [Internet]. 2016. Available from http://

ant.apache.org/ivy. Accessed 1 March 2016.

63. aRchive: Enabling reproducibility of Bioconductor package versions (for
Galaxy) [Internet]. 2016. Available from http://bioarchive.github.io. Accessed

1 March 2016.

64. Martin RC. Clean code: a handbook of agile software craftsmanship. Pearson
Education. 2009.

65. Knuth DE. Literate programming. Comput J. 1984;27:97–111.

66. Pérez F, Granger BE. IPython: a system for interactive scientific computing.

Comput Sci Eng. 2007;9:21–9.

67. Shen H. Interactive notebooks: Sharing the code. Nature. 2014;515:151–2.

68. Xie Y. Dynamic Documents with R and knitr. Boca Raton, FL: CRC Press;

2013. p. 216.

69. RStudio Team. RStudio: Integrated Development for R [Internet]. [cited 2015
Nov 20]. Available from: http://www.rstudio.com. Accessed 1 March 2016.

70. Gross AM, Orosco RK, Shen JP, Egloff AM, Carter H, Hofree M, et al. Multi-

tiered genomic analysis of head and neck cancer ties TP53 mutation to 3p
loss. Nat Genet. 2014;46:1–7.

71. Ding T, Schloss PD. Dynamics and associations of microbial community

types across the human body. Nature. 2014;509:357–60.

72. Ram Y, Hadany L. The probability of improvement in Fisher’s geometric

model: A probabilistic approach. Theor Popul Biol. 2015;99:1–6.

73. Meadow JF, Altrichter AE, Kembel SW, Moriyama M, O’Connor TK, Womack

AM, et al. Bacterial communities on classroom surfaces vary with human

contact. Microbiome. 2014;2:7.

74. White E. Programming for Biologists [Internet]. Available from: http://www.

programmingforbiologists.org. Accessed 1 March 2016.

75. Peng RD, Leek J, Caffo B. Coursera course: Exploratory Data Analysis [Internet].
Available from: https://www.coursera.org/learn/exploratory-data-analysis.

76. Bioconductor - Courses and Conferences [Internet]. [cited 2015 Nov 20].

Available from: http://master.bioconductor.org/help/course-materials.
Accessed 1 March 2016.

77. Gil Y, Deelman E, Ellisman M, Fahringer T, Fox G, Gannon D, et al. Examining

the challenges of scientific workflows. Computer. 2007;40:24–32.

78. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, et al.

Galaxy: a platform for interactive large-scale genome analysis. Genome Res.

2005;15:1451–5.

Piccolo and Frampton GigaScience (2016) 5:30 Page 12 of 13

http://edge.org/response-detail/25340
http://edge.org/response-detail/25340
http://edge.org/response-detail/25340
https://www.gnu.org/software/make
https://www.gnu.org/software/make
http://gnuwin32.sourceforge.net/packages/make.htm
http://gnuwin32.sourceforge.net/packages/make.htm
https://puppetlabs.com
http://www.r-project.org
http://doi.wiley.com/10.1029/2005GC001155
http://doi.wiley.com/10.1029/2005GC001155
http://ant.apache.org/ivy
http://ant.apache.org/ivy
http://bioarchive.github.io
http://www.rstudio.com
http://www.programmingforbiologists.org
http://www.programmingforbiologists.org
https://www.coursera.org/learn/exploratory-data-analysis
http://master.bioconductor.org/help/course-materials

79. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational

research in the life sciences. Genome Biol. 2010;11:R86.

80. Afgan E, Baker D, Coraor N, Goto H, Paul IM, Makova KD, et al. Harnessing

cloud computing with Galaxy Cloud. Nat Biotechnol. 2011;29:972–4.

81. Callahan SP, Freire J, Santos E, Scheidegger CE, Silva CT, Vo HT. VisTrails:

Visualization Meets Data Management. Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data. New York, NY,

USA: ACM; 2006. p. 745–7.

82. Davidson SB, Freire J. Provenance and scientific workflows. Proceedings of

the 2008 ACM SIGMOD international conference on Management of

data - SIGMOD’08. 2008. p. 1345.

83. Lazarus R, Kaspi A, Ziemann M. Creating re-usable tools from scripts: The
Galaxy Tool Factory. Bioinformatics. 2012;28:3139–40.

84. Dudley JT, Butte AJ. In silico research in the era of cloud computing. Nat
Biotechnol. 2010;28:1181–5.

85. Hurley DG, Budden DM, Crampin EJ. Virtual Reference Environments: a

simple way to make research reproducible. Brief Bioinform. 2015;16(5)901–903.

86. Gent IP. The Recomputation Manifesto. arXiv [Internet]. 2013; Available from:

http://arxiv.org/abs/1304.3674. Accessed 1 March 2016.

87. Howe B. Virtual appliances, cloud computing, and reproducible research.

Comput Sci Eng. 2012;14:36–41.

88. Brown CT. Virtual machines considered harmful for reproducibility [Internet].
2012. Available from: http://ivory.idyll.org/blog/vms-considered-harmful.

html. Accessed 1 March 2016.

89. Piccolo SR. Building portable analytical environments to improve

sustainability of computational-analysis pipelines in the sciences [Internet].

2014. Available from: http://dx.doi.org/10.6084/m9.figshare.1112571.
Accessed 1 March 2016.

90. Krampis K, Booth T, Chapman B, Tiwari B, Bicak M, Field D, et al. Cloud
BioLinux: pre-configured and on-demand bioinformatics computing for the

genomics community. BMC Bioinformatics. 2012;13:42.

91. CloudBioLinux: configure virtual (or real) machines with tools for biological

analyses [Internet]. 2016. Available from https://github.com/chapmanb/

cloudbiolinux. Accessed 1 March 2016.

92. Felter W, Ferreira A, Rajamony R, Rubio J. An Updated Performance
Comparison of Virtual Machines and Linux Containers [Internet]. IBM

Research Division; 2014. Available from: http://domino.research.ibm.com/

library/CyberDig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/

rc25482.pdf. Accessed 1 March 2016.

93. Eglen SJ, Weeks M, Jessop M, Simonotto J, Jackson T, Sernagor E. A data
repository and analysis framework for spontaneous neural activity

recordings in developing retina. Gigascience. 2014;3:3.

94. Eglen SJ. Bivariate spatial point patterns in the retina: a reproducible review.

Journal de la Société Française de Statistique. 2016;157:33–48.

95. Bremges A, Maus I, Belmann P, Eikmeyer F, Winkler A, Albersmeier A, et al.

Deeply sequenced metagenome and metatranscriptome of a biogas-
producing microbial community from an agricultural production-scale

biogas plant. Gigascience. 2015;4:33.

96. Belmann P, Dröge J, Bremges A, McHardy AC, Sczyrba A, Barton MD.

Bioboxes: standardised containers for interchangeable bioinformatics

software. Gigascience. 2015;4:47.

97. Barton M. nucleotides · genome assembler benchmarking [Internet]. [cited

2015 Nov 20]. Available from: http://nucleotid.es. Accessed 1 March 2016.

98. Hones MJ. Reproducibility as a Methodological Imperative in
Experimental Research. PSA: Proceedings of the Biennial Meeting of the

Philosophy of Science Association. Philosophy of Science Association.

1990. p. 585–99.

99. Rosenberg DM, Horn CC. Neurophysiological analytics for all! Free open-

source software tools for documenting, analyzing, visualizing, and sharing
using electronic notebooks. J Neurophysiol American Physiological Society;

Apr2016;jn.00137.2016.

100. everware [Internet]. 2016. Available from https://github.com/everware/

everware. Accessed 1 March 2016.

101. Crick T. “Share and Enjoy”: Publishing Useful and Usable Scientific Models.

Available from: http://arxiv.org/abs/1409.0367v2. Accessed 1 March 2016.

102. Donoho DL. An invitation to reproducible computational research.
Biostatistics. 2010;11:385–8.

103. Goldberg D. What every computer scientist should know about
floating-point arithmetic. ACM Comput Surv. 1991;23:5–48.

104. Shirts M, Pande VS. COMPUTING: screen savers of the world unite! Science.
2000;290:1903–4.

105. Bird I. Computing for the large hadron Collider. Annu Rev Nucl Part Sci.

2011;61:99–118.

106. Anderson DP. BOINC: A System for Public Resource Computing and
Storage. Proceedings of the Fifth IEEE/ACM International Workshop on Grid

Computing (GRID’04). 2004.

107. Ransohoff DF. Bias as a threat to the validity of cancer molecular-marker

research. Nat Rev Cancer. 2005;5:142–9.
108. Bild AH, Chang JT, Johnson WE, Piccolo SR. A field guide to genomics

research. PLoS Biol. 2014;12:e1001744.

109. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow

engine. Bioinformatics. 2012;28:2520–2.
110. Sadedin SP, Pope B, Oshlack A. Bpipe : a tool for running and managing

bioinformatics pipelines. Bioinformatics. 2012;28:1525–6.

111. Tange O. GNU Parallel - The Command-Line Power Tool.;login: The USENIX

Magazine. Frederiksberg, Denmark; 2011;36:42–7
112. Albrecht M, Donnelly P, Bui P, Thain D. Makeflow: A portable abstraction for

data intensive computing on clusters, clouds, and grids. Proceedings of the

1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and

Technologies. 2012.
113. Knight S, Austin C, Crain C, Leblanc S, Roach A. Scons software construction

tool [Internet]. 2011. Available from: http://www.scons.org. Accessed 1

March 2016.

114. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S. Kepler: an
extensible system for design and execution of scientific workflows.

Proceedings. 16th International Conference on Scientific and Statistical

Database Management, 2004. IEEE; 2004. p. 423–4.

115. Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, et al. The
iPlant collaborative: cyberinfrastructure for plant biology. Front Plant Sci

Frontiers. 2011;2:34.

116. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0.

Nat Genet. 2006;38:500–1.
117. Reich M, Liefeld J, Thorvaldsdottir H, Ocana M, Polk E, Jang D, et al.

GenomeSpace: An environment for frictionless bioinformatics. Cancer Res.

2012;72:3966–3966.

118. GenePattern: A platform for reproducible bioinformatics [Internet]. 2016.
Available from http://www.broadinstitute.org/cancer/software/genepattern].

Accessed 1 March 2016.

119. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al. The

Taverna workflow suite: designing and executing workflows of Web Services
on the desktop, web or in the cloud. Nucleic Acids Res. 2013;41:557–61.

120. Rex DE, Ma JQ, Toga AW. The LONI pipeline processing environment.

Neuroimage. 2003;19:1033–48.

121. LONI Pipeline Processing Environment [Internet]. 2016. Available from
http://www.loni.usc.edu/Software/Pipeline. Accessed 1 March 2016.

122. Vortex [Internet]. 2016. Available from https://github.com/websecurify/

node-vortex. Accessed 1 March 2016.

123. Amazon Web Services [Internet]. 2016. Available from http://aws.amazon.com.
Accessed 1 March 2016.

124. Google Cloud Platform [Internet]. 2016. Available from https://cloud.google.

com/compute. Accessed 1 March 2016.

125. Microsoft Azure [Internet]. 2016. Available from https://azure.microsoft.com.
Accessed 1 March 2016.

126. lmctfy - Let Me Contain That For You [Internet]. 2016. Available from

https://github.com/google/lmctfy. Accessed 1 March 2016.

127. Warden [Internet]. 2016. Available from http://docs.cloudfoundry.org/
concepts/architecture/warden.html. Accessed 1 March 2016.

Piccolo and Frampton GigaScience (2016) 5:30 Page 13 of 13

http://arxiv.org/abs/1304.3674
http://ivory.idyll.org/blog/vms-considered-harmful.html
http://ivory.idyll.org/blog/vms-considered-harmful.html
http://dx.doi.org/10.6084/m9.figshare.1112571
https://github.com/chapmanb/cloudbiolinux
https://github.com/chapmanb/cloudbiolinux
http://domino.research.ibm.com/library/CyberDig.nsf/papers/0929052195DD819C85257D2300681E7B/File/rc25482.pdf
http://domino.research.ibm.com/library/CyberDig.nsf/papers/0929052195DD819C85257D2300681E7B/File/rc25482.pdf
http://domino.research.ibm.com/library/CyberDig.nsf/papers/0929052195DD819C85257D2300681E7B/File/rc25482.pdf
http://nucleotid.es
https://github.com/everware/everware
https://github.com/everware/everware
http://arxiv.org/abs/1409.0367v2
http://www.scons.org
http://www.broadinstitute.org/cancer/software/genepattern
http://www.loni.usc.edu/Software/Pipeline
https://github.com/websecurify/node-vortex
https://github.com/websecurify/node-vortex
http://aws.amazon.com
https://cloud.google.com/compute
https://cloud.google.com/compute
https://azure.microsoft.com
https://github.com/google/lmctfy
http://docs.cloudfoundry.org/concepts/architecture/warden.html
http://docs.cloudfoundry.org/concepts/architecture/warden.html

	Abstract
	Background
	Narrative descriptions are a simple but valuable way to support computational reproducibility
	Custom scripts and code can automate research analysis
	Software frameworks enable easier handling of software dependencies
	Literate programming combines narratives with code
	Workflow management systems enable software to be executed via a graphical user interface
	Virtual machines encapsulate an entire operating system and software dependencies
	Software containers ease the process of installing and configuring dependencies
	Conclusions
	Open Peer Review

	Additional files
	show [a]
	Acknowledgements
	Authors’ contributions
	Competing interests
	Author details
	References

