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Abstract. Attack graphs depict ways in which an adversary exploits system vul-

nerabilities to achieve a desired state. System administrators use attack graphs

to determine how vulnerable their systems are and to determine what security

measures to deploy to defend their systems. In this paper, we present details of

an example to illustrate how we specify and analyze network attack models. We

take these models as input to our attack graph tools to generate attack graphs au-

tomatically and to analyze system vulnerabilities. While we have published our

generation and analysis algorithms in earlier work, the presentation of our example

and toolkit is novel to this paper.

1 Introduction

As networks of hosts continue to grow, it becomes increasingly more important to auto-

mate the process of evaluating their vulnerability to attack. When evaluating the security

of a network, it is rarely enough to consider the presence or absence of isolated vulnera-

bilities. Large networks typically contain multiple platforms and software packages and

employ several modes of connectivity. Inevitably, such networks have security holes that

escape notice of even the most diligent system administrator.

1.1 Vulnerability Analysis and Attack Graphs

To evaluate the security of a network of hosts, a security analyst must take into account the

effects of interactions of local vulnerabilities and find global security holes introduced

by interconnection. A typical process for vulnerability analysis of a network is shown in

Figure 1. First, scanning tools determine vulnerabilities of individual hosts. Using this

local vulnerability information along with other information about the network, such as

connectivity between hosts, the analyst produces an attack graph. Each path in an attack

graph is a series of exploits, which we call actions, that leads to an undesirable state. An

example of an undesirable state is a state where the intruder has obtained administrative

access to a critical host.

A typical result of such efforts is a floor-to-ceiling, wall-to-wall “white board” attack

graph, such as the one produced by a Red Team at Sandia National Labs for DARPA’s

CC20008 Information battle space preparation experiment and shown in Figure 2. Each
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Fig. 1. Vulnerability Analysis of a Network

box in the graph designates a single intruder action. A path from one of the boxes at the

top of the graph to one of the boxes at the bottom is a sequence of actions corresponding

to an attack scenario.At the end of any such scenario, the intruder has broken the network

security in some way. The graph is included here for illustrative purposes only, so we

omit the description of specific details.

Attack graphs can serve as a useful tool in several areas of network security, including

intrusion detection, defense, and forensic analysis. System administrators use attack

graphs for the following reasons:

– To gather information: Attack graphs can answer questions like “What attacks is

my system vulnerable to?” and “From an initial configuration, how many different

ways can an attacker reach a final state to achieve his goal?”

– To make decisions: Attack graphs can answer questions like “Which set of actions

should I prevent to ensure the attacker cannot achieve his goal?” or “Which set of

security measures should I deploy to ensure the attacker cannot achieve his goal?”

1.2 Prior Work and Contributions of this Paper

In practice, attack graphs, such as the one shown in Figure 2, are drawn by hand. In

earlier work, we show how we can use model checking techniques to generate attack

graphs automatically [11, 17]. Our techniques guarantee that attack graphs are sound

(each scenario depicted is a true attack), exhaustive (no attack is missed), and succinct

(only states and state transitions that participate in an attack are depicted) [16].

In earlier work, we also have presented algorithms for analyzing attack graphs that

answer questions such as those posed above [17, 9, 10]. For example, to help system

administrators determine how best to defend their system, we cast the decision-making

questions in terms of finding a minimum set of actions to remove (or minimum set of

measures to deploy) to ensure the attacker cannot achieve his goal. We reduce this NP-

complete problem to the Minimum Hitting Set problem [16], which can be reduced to

the Minimum Set Cover problem [2], and we then use standard textbook algorithms to

yield approximate solutions [3].
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Fig. 2. Sandia Red Team Attack Graph
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In this paper, we present the complete details of an example. We use this example to

illustrate:

– How we specify network attack models;

– The results of our automatic attack graph generation algorithms;

– The results of our minimization analyses;

– How to use our attack graph toolkit, including how we integrated tools from external

sources with ours.

The presentation of this example and our toolkit is novel to this paper.

In Sect. 2 we give general definitions for attack models and attack graphs. Section 3

narrows the definitions specifically to the domain of network security. Section 4 illus-

trates the definitions with a small example network. Section 5 focuses on the practical

aspects of building a usable attack graph tool. We discuss several approaches to collect-

ing the data necessary to build the network model. Finally, we review related work in

Sect. 6.

2 Attack Models and Graphs

Although our primary interest is in multi-stage cyber-attacks against computer networks,

we define attack graphs abstractly with respect to models where agents attack and defend

a complex system.

Definition 1. An attack model is a finite automaton M = (S, τ, s0), where S is a set of

states, τ ⊆ S × S is a transition relation, and s0 ∈ S is an initial state. The state space

S represents a set of three agents I = {E, D, T}. Agent E is the attacker, agent D is

the defender, and agent N is the system under attack. Each agent i ∈ I has its own set

of possible states Si, so that S = ×i∈ISi.

Definition 2. A finite execution of an attack model M = (S, τ, s0) is a finite sequence of

states α = s0s1 . . . sn ,such that for all 0 ≤ i ≤ n, (si, si+1) ∈ τ . An infinite execution

of an attack model M = (S, τ, s0) is an infinite sequence of states β = s0s1 . . . sn . . .,
such that for all i ≥ 0, (si, si+1) ∈ τ .

With each agent i ∈ I we associate a set of actions Ai, so that the total set of actions

in the model is A =
⋃

i∈I Ai. The single root state s0 represents the initial state of

each agent before any action has taken place. In general, the attacker’s actions move

the system “toward” some undesirable (from the system’s point of view) state, and the

defender’s actions attempt to counteract that effect. For instance, in a computer network

the attacker’s actions would be the steps taken by the intruder to compomise the network,

and the defender’s actions would be the steps taken by the system administrator to disrupt

the attack.

The specifics of how each agent is represented in an attack model depend on the type

of the system that is under attack. In Sect. 3 we specify the agents more precisely for

network attack models. Sheyner presents a more formal definition of attack models in

his Ph.D. thesis [16].
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An attack model is a general formalism suitable for modeling a variety of situations.

The system under attack can be virtually anything: a computer network under attack by

hackers, a city under siege during war, an electrical grid targeted by terrorists, etc. The

attacker is an abstract representation of a group of agents who seek to move the system to

a state that is inimical to the system’s interests. The defender is an agent whose explicit

purpose, in opposition to the attacker, is to prevent this occurrence. The system itself is

oblivious to the fact that it is under attack. It goes through its normal routine according

to its purpose and goals regardless of the actions of the active agents.

Abstractly, an attack graph is a collection of scenarios showing how a malicious agent

can compromise the integrity of a target system. With a suitable model of the system, we

can use model checking techniques to generate attack graphs automatically [11, 17, 16].

In this context, correctness properties specify the negation of the attacker’s goal: an

execution is correct with respect to the property if the attacker does not achieve his goal

for that execution. We call such properties security properties. An example of a security

property in a computer network would be a statement like “the intruder cannot get root

access on the web server.”

Definition 3. Given an attack model M , a security property P is a subset of the set

L(M) of executions of M .

Definition 4. An execution α ∈ L(M) is correct with respect to a security property P
iff α ∈ P . An execution α is failing with respect to P (violates P ) iff α /∈ P .

We say that an attack model M satisfies a security property P if it does not have

any failing executions (that is, if L(M) ⊂ P ). If, however, M does have some failing

executions, we say that the set of such executions makes up an attack graph.

Definition 5. Given an attack model M and a security property P , an attack graph of

M with respect to P is the set L(M)\P of failing executions of M with respect to P .

For the remainder of this paper, we restrict the discussion to attack graphs comprised

of finite executions only. For a more comprehensive treatment of finite and infinite failing

executions we refer the reader to Sheyner [16].

3 Network Attack Graphs

Network attack graphs represent a collection of possible penetration scenarios in a com-

puter network. Each penetration scenario is a sequence of actions taken by the intruder,

typically culminating in a particular goal—administrative access on a particular host, ac-

cess to a database, service disruption, etc. For appropriately constructed network models,

attack graphs give a bird’s-eye view of every scenario that can lead to a serious security

breach.

3.1 Network Attack Model

A network attack model is an attack model where the system N is a computer network,

the attacker E is a malicious agent trying to circumvent the network’s security, and the
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defender D represents both the system administrator(s) and security software installed on

the network. A state transition in a network attack model corresponds to a single action

by the intruder, a defensive action by the system administrator, or a routine network

action.

Real networks consist of a large variety of hardware and software pieces, most of

which are not involved in cyber attacks.We have chosen six network components relevant

to constructing network attack models. The components were chosen to include enough

information to represent a wide variety of networks and attack scenarios, yet keep the

model reasonably simple and small. The following is a list of the components:

1. H, a set of hosts connected to the network

2. C, a connectivity relation expressing the network topology and inter-host reachabil-

ity

3. T, a relation expressing trust between hosts

4. I, a model of the intruder

5. A, a set of individual actions (exploits) that the intruder can use to construct attack

scenarios

6. Ids, a model of the intrusion detection system

We construct an attack model M based on these components. Table 1 defines each

agent i’s state Si and action set Ai in terms of the network components. This construction

gives the security administrator an entirely passive “detection” role, embodied in the

alarm action of the intrusion detection system. For simplicity, regular network activity

is omitted entirely.

Table 1. Network attack model

Agent i ∈ I Si Ai

E I A

D Ids {alarm}

N H × C × T ⊘

It remains to make explicit the transition relation of the attack model M . Each

transition (s1, s2) ∈ τ is either an action by the intruder, or an alarm action by the

system administrator. An alarm action happens whenever the intrusion detection system

is able to flag an intruder action. An action a ∈ A requires that the preconditions of

a hold in state s1 and the effects of a hold in s2. Action preconditions and effects are

explained in Sect. 3.2.

3.2 Network Components

We now give details about each network component.

Hosts. Hosts are the main hubs of activity on a network. They run services, process

network requests, and maintain data. With rare exceptions, every action in an attack
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scenario will target a host in some way. Typically, an action takes advantage of vulnerable

or misconfigured software to gain information or access privileges for the attacker.

The main goal in modeling hosts is to capture as much information as possible about

components that may contribute to creating an exploitable vulnerability.

A host h ∈ H is a tuple (id, svcs, sw, vuls), where

– id is a unique host identifier (typically, name and network address)

– svcs is a list of service name/port number pairs describing each service that is active

on the host and the port on which the service is listening

– sw is a list of other software operating on the host, including the operating system

type and version

– vuls is a list of host-specific vulnerable components. This list may include installed

software with exploitable security flaws (example: a setuid program with a buffer

overflow problem), or mis-configured environment settings (example: existing user

shell for system-only users, such as ftp)

Network Connectivity. Following Ritchey and Ammann [15], connectivity is expres-

sed as a ternary relation C ⊆ H × H × P , where P is a set of integer port numbers.

C(h1, h2, p) means that host h2 is reachable from host h1 on port p. Note that the

connectivity relation incorporates firewalls and other elements that restrict the ability of

one host to connect to another. Slightly abusing notation, we say R(h1, h2) when there

is a network route from h1 to h2.

Trust. We model trust as a binary relation T ⊆ H × H , where T (h1, h2) indicates that

a user may log in from host h2 to host h1 without authentication (i.e., host h1 “trusts”

host h2).

Services. The set of services S is a list of unique service names, one for each service

that is present on any host on the network. We distinguish services from other software

because network services so often serve as a conduit for exploits. Furthermore, services

are tied to the connectivity relation via port numbers, and this information must be

included in the model of each host. Every service name in each host’s list of services

comes from the set S.

Intrusion Detection System. We associate a boolean variable with each action, ab-

stractly representing whether or not the IDS can detect that particular action. Actions are

classified as being either detectable or stealthy with respect to the IDS. If an action is de-

tectable, it will trigger an alarm when executed on a host or network segment monitored

by the IDS; if an action is stealthy, the IDS does not see it.

We specify the IDS as a function ids: H × H × A → {d, s, b}, where ids(h1,
h2, a) = d if action a is detectable when executed with source host h1 and target host

h2; ids(h1, h2, a) = s if action a is stealthy when executed with source host h1 and target

host h2; and ids(h1, h2, a) = b if action a has both detectable and stealthy strains, and

success in detecting the action depends on which strain is used. When h1 and h2 refer to

the same host, ids(h1, h2, a) specifies the intrusion detection system component (if any)

located on that host. When h1 and h2 refer to different hosts, ids(h1, h2, a) specifies the

intrusion detection system component (if any) monitoring the network path between h1

and h2.
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Actions. Each action is a triple (r, hs, ht), where hs ∈ H is the host from which the

action is launched, ht ∈ H is the host targeted by the action, and r is the rule that

describes how the intruder can change the network or add to his knowledge about it. A

specification of an action rule has four components: intruder preconditions, network pre-

conditions, intruder effects, and network effects. The intruder preconditions component

places conditions on the intruder’s store of knowledge and the privilege level required

to launch the action. The network preconditions specifies conditions on target host state,

network connectivity, trust, services, and vulnerabilities that must hold before launching

the action. Finally, the intruder and network effects components list the action’s effects

on the intruder and on the network, respectively.

Intruder. The intruder has a store of knowledge about the target network and its users.

The intruder’s store of knowledge includes host addresses, known vulnerabilities, user

passwords, information gathered with port scans, etc. Also associated with the intruder

is the function plvl: Hosts → {none, user, root}, which gives the level of privilege that

the intruder has on each host. For simplicity, we model only three privilege levels. There

is a strict total order on the privilege levels: none ≤ user ≤ root.

Omitted Complications. Although we do not model actions taken by user services for

the sake of simplicity, doing so in the future would let us ask questions about effects of

intrusions on service quality. A more complex model could include services provided

by the network to its regular users and other routine network traffic. These details would

reflect more realistically the interaction between intruder actions and regular network

activity at the expense of additional complexity.

Another activity worth modeling explicitly is administrative steps taken either to

hinder an attack in progress or to repair the damage after an attack has occurred. The

former corresponds to transitioning to states of the model that offer less opportunity for

further penetration; the latter means “undoing” some of the damage caused by successful

attacks.

4 Example Network

Figure 3 shows an example network. There are two target hosts, Windows and Linux,

on an internal company network, and a Web server on an isolated “demilitarized zone”

(DMZ) network. One firewall separates the internal network from the DMZ and another

Fig. 3. Example Network
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firewall separates the DMZ from the rest of the Internet. An intrusion detection system

(IDS) watches the network traffic between the internal network and the outside world.

The Linux host on the internal network is running several services—Linux “I Seek

You” (LICQ) chat software, Squid web proxy, and a Database. The LICQ client lets

Linux users exchange text messages over the Internet. The Squid web proxy is a caching

server. It stores requested Internet objects on a system closer to the requesting site than

to the source. Web browsers can then use the local Squid cache as a proxy, reducing

access time as well as bandwidth consumption. The host inside the DMZ is running

Microsoft’s Internet Information Services (IIS) on a Windows platform.

The intruder launches his attack starting from a single computer, which lies on the

outside network. To be concrete, let us assume that his eventual goal is to disrupt the

functioning of the database. To achieve this goal, the intruder needs root access on the

database host Linux. The five actions at his disposal are summarized in Table 2.

Each of the five actions corresponds to a real-world vulnerability and has an entry in

the Common Vulnerabilities and Exposures (CVE) database. CVE [22] is a standard list

of names for vulnerabilities and other information security exposures. A CVE identifier

is an eight-digit string prefixed with the letters “CVE” (for accepted vulnerabilities) or

“CAN” (for candidate vulnerabilities).

Table 2. Intruder actions

Action Effect Example CVE ID

IIS buffer overflow remotely get root CAN-2002-0364

Squid port scan port scan CVE-2001-1030

LICQ gain user gain user privileges remotely CVE-2001-0439

scripting exploit gain user privileges remotely CAN-2002-0193

local buffer overflow locally get root CVE-2002-0004

The IIS buffer overflow action exploits a buffer overflow vulnerability in the Mi-

crosoft IIS Web Server to gain administrative privileges remotely.

The Squid action lets the attacker scan network ports on machines that would other-

wise be inaccessible to him, taking advantage of a misconfigured access control list in

the Squid web proxy.

The LICQ action exploits a problem in the URL parsing function of the LICQ software

for Unix-flavor systems. An attacker can send a specially-crafted URL to the LICQ client

to execute arbitrary commands on the client’s computer, with the same access privileges

as the user of the LICQ client.

The scripting action lets the intruder gain user privileges on Windows machines.

Microsoft Internet Explorer 5.01 and 6.0 allow remote attackers to execute arbitrary

code via malformed Content-Disposition and Content-Type header fields that cause the

application for the spoofed file type to pass the file back to the operating system for

handling rather than raise an error message. This vulnerability may also be exploited

through HTML formatted email. The action requires some social engineering to entice

a user to visit a specially-formatted Web page. However, the action can work against
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firewalled networks, since it requires only that internal users be able to browse the Web

through the firewall.

Finally, the local buffer overflow action can exploit a multitude of existing vulner-

abilities to let a user without administrative privileges gain them illegitimately. For the

CVE number referenced in the table, the action exploits a buffer overflow flaw in the

at program. The at program is a Linux utility for queueing shell commands for later

execution.

Some of the actions that we model have multiple instantiations in the CVE database.

For example, the local buffer overflow action exploits a common coding error that occurs

in many Linux programs. Each program vulnerable to local buffer overflow has a separate

CVE entry, and all such entries correspond to the same action rule. The table lists only

one example CVE identifier for each rule.

4.1 Example Network Components

Services, Vulnerabilities, and Connectivity. We specify the state of the network to

include services running on each host, existing vulnerabilities, and connectivity between

hosts. There are five boolean variables for each host, specifying whether any of the three

services are running and whether either of two other vulnerabilities are present on that

host:

Table 3. Variables specifying a host

variable meaning

w3svch IIS web service running on host h

squidh Squid proxy running on host h

licqh LICQ running on host h

scriptingh HTML scripting is enabled on host h

vul-ath at executable vulnerable to overflow on host h

The model of the target network includes connectivity information among the four

hosts. The initial value of the connectivity relation R is shown the following table. An

entry in the table corresponds to a pair of hosts (h1, h2). IIS and Squid listen on port 80

and the LICQ client listens on port 5190, and the connectivity relation specifies which

of these services can be reached remotely from other hosts. Each entry consists of three

boolean values. The first value is ‘y’ if h1 and h2 are connected by a physical link, the

second value is ‘y’ if h1 can connect to h2 on port 80, and the third value is ‘y’ if h1 can

connect to h2 on port 5190.

We use the connectivity relation to reflect the settings of the firewall as well as the

existence of physical links. In the example, the intruder machine initially can reach only

the Web server on port 80 due to a strict security policy on the external firewall. The

internal firewall is initially used to restrict internal user activity by disallowing most

outgoing connections. An important exception is that internal users are permitted to

contact the Web server on port 80.

In this example the connectivity relation stays unchanged throughout an attack. In

general, the connectivity relation can change as a result of intruder actions. For example,
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Table 4. Connectivity relation

Host Intruder IIS Web Server Windows Linux

Intruder y,y,y y,y,n n,n,n n,n,n

IIS Web Server y,n,n y,y,y y,y,y y,y,y

Windows n,n,n y,y,n y,y,y y,y,y

Linux n,n,n y,y,n y,y,y y,y,y

an action may enable the intruder to compromise a firewall host and relax the firewall

rules.

Intrusion Detection System. A single network-based intrusion detection system pro-

tects the internal network. The paths between hosts Intruder and Web and between

Windows and Linux are not monitored; the IDS can see the traffic between any other

pair of hosts. There are no host-based intrusion detection components. The IDS always

detects the LICQ action, but cannot see any of the other actions. The IDS is represented

with a two-dimensional array of bits, shown in the following table. An entry in the table

corresponds to a pair of hosts (h1, h2). The value is ‘y’ if the path between h1 and h2 is

monitored by the IDS, and ’n’ otherwise.

Intruder. The intruder’s store of knowledge consists of a single boolean variable ’scan’.

The variable indicates whether the intruder has successfully performed a port scan on

the target network. For simplicity, we do not keep track of specific information gathered

by the scan. It would not be difficult to do so, at the cost of increasing the size of the

state space.

Initially, the intruder has root access on his own machine Intruder, but no access

to the other hosts. The ’scan’ variable is set to false.

Actions. There are five action rules corresponding to the five actions in the intruder’s

arsenal.Throughout the description,S is used to designate the source host andT the target

host. R(S, T, p) says that host T is reachable from host S on port p. The abbreviation

plvl(X) refers to the intruder’s current privilege level on host X .

Recall that a specification of an action rule has four components: intruder precondi-

tions, network preconditions, intruder effects, and network effects. The intruder precon-

ditions component places conditions on the intruder’s store of knowledge and the privi-

lege level required to launch the action. The network preconditions component specifies

Table 5. IDS locations

Host Intruder IIS Web Server Windows Linux

Intruder n n y y

IIS Web Server n n y y

Windows y y n n

Linux y y n n
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conditions on target host state, network connectivity, trust, services, and vulnerabilities

that must hold before launching the action. Finally, the intruder and network effects

components list the effects of the action on the intruder’s state and on the network,

respectively.

Sometimes the intruder has no logical reason to execute a specific action, even if all

technical preconditions for the action have been met. For instance, if the intruder’s current

privileges include root access on the Web Server, the intruder would not need to execute

the IIS buffer overflow action against the Web Server host. We have chosen to augment

each action’s preconditions with a clause that disables the action in instances when

the primary purpose of the action has been achieved by other means. This change is not

strictly conservative, as it prevents the intruder from using an action for its secondary side

effects. However, we feel that this is a reasonable price to pay for removing unnecessary

transitions from the attack graphs.

IIS Buffer Overflow. This remote-to-root action immediately gives a remote user a root

shell on the target machine.

action IIS-buffer-overflow is

intruder preconditions

plvl(S) ≥ user User-level privileges on host S
plvl(T ) < root No root-level privileges on host T

network preconditions

w3svcT Host T is running vulnerable IIS server

R(S, T, 80) Host T is reachable from S on port 80

intruder effects

plvl(T ) := root Root-level privileges on host T
network effects

¬w3svcT Host T is not running IIS

end

Squid Port Scan. The Squid port scan action uses a misconfigured Squid web proxy to

conduct a port scan of neighboring machines and report the results to the intruder.

action squid-port-scan is

intruder preconditions

plvl(S) = user User-level privileges on host S
¬scan We have not yet performed a port scan

network preconditions

squidT Host T is running vulnerable Squid proxy

R(S, T, 80) Host T is reachable from S on port 80

intruder effects

scan We have performed a port scan on the network

network effects

⊘ No changes to the network component

end
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LICQ Remote to User. This remote-to-user action immediately gives a remote user a

user shell on the target machine. The action rule assumes that a port scan has been

performed previously, modeling the fact that such actions typically become apparent to

the intruder only after a scan reveals the possibility of exploiting software listening on

lesser-known ports.

action LICQ-remote-to-user is

intruder preconditions

plvl(S) ≥ user User-level privileges on host S
plvl(T ) = none No user-level privileges on host T
scan We have performed a port scan on the network

network preconditions

licqT Host T is running vulnerable LICQ software

R(S, T, 5190) Host T is reachable from S on port 5190

intruder effects

plvl(T ) := user User-level privileges on host T
network effects

⊘ No changes to the network component

end

Scripting Action. This remote-to-user action immediately gives a remote user a user shell

on the target machine. The action rule does not model the social engineering required to

get a user to download a specially-created Web page.

action client-scripting is

intruder preconditions

plvl(S) ≥ user User-level privileges on host S
plvl(T ) = none No user-level privileges on host T

network preconditions

scriptingT HTML scripting is enabled on host T
R(T, S, 80) Host S is reachable from T on port 80

intruder effects

plvl(T ) := user User-level privileges on host T
network effects

⊘ No changes to the network component

end

Local Buffer Overflow. If the intruder has acquired a user shell on the target machine,

this action exploits a buffer overflow vulnerability on a setuid root file (in this case, the

at executable) to gain root access.

action local-setuid-buffer-overflow is

intruder preconditions

plvl(T ) = user User-level privileges on host T
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network preconditions

vul-atT There is a vulnerable at executable

intruder effects

plvl(T ) := root Root-level privileges on host T
network effects

⊘ No changes to the network component

end

4.2 Sample Attack Graphs

Figure 4 shows a screenshot of the attack graph generated with our attack graph toolkit

for the security property

G (intruder.privilege[lin] < root)

which states that the intruder will never attain root privileges on the Linux host. In

Figure 4, a sample attack scenario is highlighted with solid square nodes, with each

attack step identified by name and CVE number. Since the external firewall restricts

most network connections from the outside, the intruder has no choice with respect to

the initial step—it must be a buffer overflow action on the IIS Web server. Once the

intruder has access to the Web server machine, his options expand. The highlighted

scenario is the shortest route to success. The intruder uses the Web server machine to

launch a port scan via the vulnerable Squid proxy running on the Linux host. The scan

discovers that it is possible to obtain user privileges on the Linux host with the LICQ

exploit.After that, a simple local buffer overflow gives the intruder administrative control

over the Linux machine. The last transition in the action path is a bookkeeping step,

signifying the intruder’s success.

Any information explicitly represented in the model is available for inspection and

analysis in the attack graph. For instance, with a few clicks we are able to highlight

Begin

IIS buffer

overflow

CAN-2002-0364

Squid portscan

CVE-2001-1030LICQ remote-

to-user

CVE-2001-0439
Local buffer

overflow

CVE-2002-0004

Done!

Highlighted scenario

Fig. 4. Example Attack Graph
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portions of the graph “covered” by the intrusion detection system. Figure 5 shades the

nodes where the IDS alarm has been sounded. These nodes lie on paths that use the

LICQ action along a network path monitored by the IDS. It is clear that while a sub-

stantial portion of the graph is covered by the IDS, the intruder can escape detection and

still succeed by taking one of the paths on the right side of the graph. One such attack

scenario is highlighted with square nodes in Figure 5. It is very similar to the attack

scenario discussed in the previous paragraph, except that the LICQ action is launched

from the internal Windows machine, where the intrusion detection system does not

see it. To prepare for launching the LICQ action from the Windows machine, an addi-

tional step is needed to obtain user privileges in the machine. For that, the intruder uses

the client scripting exploit on the Windows host immediately after taking over the Web

machine.

Begin

Squid portscan

CVE-2001-1030

LICQ remote-

to-user

CVE-2001-0439

Local buffer

overflow

CVE-2002-0004
Done!

Scripting remote-

to-user

CAN-2002-0193

IIS buffer

overflow

CAN-2002-0364

Highlighted scenario

Alarm has sounded

Fig. 5. Alternative Attack Scenario Avoiding the IDS

4.3 Sample Attack Graph Analysis

After generating an attack graph, we can use it to analyze potential effectiveness of

various security improvements [16]. To demonstrate the analysis techniques, we expand

the example from Sect. 4.1 with an extra host User on the external network and several

new actions. An authorized user W of the internal network owns the new host and uses

it as a terminal to work remotely on the internal Windows host. The new actions permit

the intruder to take over the host User, sniff user W ’s login credentials, and log in

to the internal Windows host using the stolen credentials. We omit the details of the

new actions, as they are not essential to understanding the examples. Figure 6(a) shows

the full graph for the modified example. The graph is significantly larger, reflecting the

expanded number of choices available to the intruder.

Single Action Removal. A simple kind of analysis determines the impact of removing

one action from the intruder’s arsenal. Recall from Sect. 3 that each action is a triple

(r, hs, ht), where hs ∈ H is the host from which the attack is launched, ht ∈ H is
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the host targeted by the attack, and r is an action rule. The user specifies a set Arem of

action triples to be removed from the attack graph. The toolkit deletes the transitions

corresponding to each triple in the set Arem from the graph and then removes the nodes

that have become unreachable from the initial state.

As demonstrated in Figure 6, this procedure can be repeated several times, reducing

the size of the attack graph at each step. The full graph in Figure 6(a) has 362 states.

Removing one of two ways the intruder can sniff user W ’s login credentials produces

the graph in Figure 6(b), with 213 states. Removing one of the local buffer overflow

actions produces the graph in Figure 6(c), with 66 states. At each step, the user is able

to judge visually the impact of removing a single action from the intruder’s arsenal.

Critical Action Sets. Once an attack graph is generated, an approximation algorithm

can find an approximately-optimal critical set of actions that will completely disconnect

the initial state from states where the intruder has achieved his goals [16]. A related

algorithm can find an approximately-optimal set of security measures that accomplish the

same goal. With a single click, the user can invoke both of these exposure minimization

algorithms.

The effect of the critical action set algorithm on the modified example attack graph is

shown in Figure 7(a). The algorithm finds a critical action set of size 1, containing the port

scan action exploiting the Squid web proxy. The graph nodes and edges corresponding

to actions in the critical set computed by the algorithm are highlighted in the toolkit

by shading the relevant nodes. The shaded nodes are seen clearly when we zoom in to

inspect a part of the graph on a larger scale (Figure 7(b)).

Since the computed action set is always critical, removing every action triple in the

set from the intruder’s arsenal is guaranteed to result in an empty attack graph. In the

example, we might patch the Linux machine with a new version of the Squid proxy,

thereby removing every action triple that uses the Squid port scan rule on the Linux
machine from the intruder’s arsenal.

5 Attack Graph Toolkit

We have implemented a toolkit for generating and exploring attack graphs, using network

attack models defined in Sect. 3. In this section we describe the toolkit and show several

ways to integrate it with external data sources that supply information necessary to build

a network attack model. Specifically, it is necessary to know the topology of the target

network, configuration of the network hosts, and vulnerabilities present on the network.

In addition, we require access to a database of attack rules to build the transition relation

of the attack model. We could expect the user to specify all of the necessary information

manually, but such a task is tedious, error-prone, and unrealistic for networks of more

than a few nodes.

We recommend deploying the attack graph toolkit in conjunction with information-

gathering systems that supply some of the data automatically. We integrated the at-

tack graph generator with two such systems, MITRE Corp’s Outpost and Lockheed

Martin’s ANGI. We report on our experience with Outpost and ANGI in Sections 5.4

and 5.5.
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Fig. 6. Reducing Action Arsenal
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Fig. 7. Finding Critical Action Sets
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5.1 Toolkit Architecture

Figure 8 shows the architecture of the attack graph toolkit. There are three main pieces:

a network model builder, a scenario graph generator, and a graphical user interface

(GUI). The network model builder takes as input information about network topology,

configuration data for each networked host, and a library of attack rules. It constructs

a finite model of the network suitable for automated analysis. The model is augmented

with a security specification, which spells out the security requirements against which

the attack graph is to be built. The model and the security specification then go to the

second piece, the scenario graph generator.

Scenario Graph

Generator

Host and

Network

Configuration

Network

Model

Builder

Attack Graph

GUI

Network

Specification

Library of

Actions

Attack Graph Toolkit

Security

Specification

Fig. 8. Toolkit Architecture

The scenario graph generator takes any finite model and correctness specification

and produces a graph composed of possible executions of the model that violate the

correctness specification. The model builder constructs the input to the graph generator

so that the output will be the desired attack graph. The graphical user interface lets the

user display and examine the graph.

The model builder’s running time is linear in the size of the input specification,

typically written in the XML format specified in Sect. 5.2. The algorithm in the scenario

graph generator is linear in the size of the output scenario graph [16]. The slowest part

of the toolkit is the algorithm that lays out the attack graph on screen. The algorithm

uses the network simplex method to find optimal x-coordinates. The simplex method

has exponential worst-case performance. The rest of the layout algorithm has cubic

complexity. Thus, for large graphs it is sometimes necessary to run analysis algorithms

without displaying the full graph on screen.

5.2 The Model Builder

Recall from Sect. 3 that a network attack model consists of six primary components:

1. H, a set of hosts connected to the network

2. C, a connectivity relation expressing the network topology and inter-host reachabil-

ity

3. T, a relation expressing trust between hosts
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4. I, a model of the intruder

5. A, a set of individual attack actions

6. Ids, a model of the intrusion detection system

To construct each of the six components, the model builder needs to collect the

following pieces of information. For the entire network, we need:

1. The set of hosts H
2. The network topology and firewall rules, which together induce the connectivity

relation C
3. The initial state of the trust relation T : which hosts are trusted by other hosts prior

to any intruder action

Several pieces of data are required for each host h in the set H:

4. A unique host identifier (usually name and network address)

5. Operating system vendor and version

6. Active network services with port numbers

7. Common Vulnerabilities and Exposures IDs of all vulnerabilities present on h
8. User-specific configuration parameters

Finally, for each CVE vulnerability present on at least one host in the set H , we need:

9. An attack rule with preconditions and effects

We designed an XML-based format covering all of the information that the model builder

requires. The XML format lets the user specify each piece of information manually or

indicate that the data can be gathered automatically from an external source. A typical

description of a host in XML is as follows:

1 <host id="typical-machine" ip="192.168.0.1">
2
3 <services>
4 <ftp port="21"/>
5 <W3SVC port="80"/>
6 </services>
7
8 <connectivity>
9 <remote id="machine1" <ftp/> <W3SVC/> </remote>
10 <remote id="machine2"> <sshd/> <W3SVC/> </remote>
11 <remote id="machine3"> <sshd/> </remote>
12 </connectivity>
13
14 <cve>
15 <CAN-2002-0364/>
16 <CAN-2002-0147/>
17 </cve>
18
19 </host>
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The example description provides the host name and network identification (line

1), a list of active services with port numbers (lines 3-6), the part of the connectivity

relation that involves the host (lines 8-12), and names of CVE and CVE-candidate (CAN)

vulnerabilities known to be present on the host (lines 14-17). Connectivity is specified

as a list of services that the host can reach on each remote machine. Lines 9-11 each

specify one remote machine; e.g., typical-machine can reach machine1 on ports

assigned to the ftp and W3SVC (IIS Web Server) services.

It is unrealistic to expect the user to collect and specify all of the data by hand. In

Sections 5.3-5.5 we discuss three external data sources that supply some of the infor-

mation automatically: the Nessus vulnerability scanner, MITRE Corp.’s Outpost, and

Lockheed Martin’s ANGI. Whenever the model builder can get a specific piece of in-

formation from one of these sources, a special tag is placed in the XML file. If Nessus,

Outpost and ANGI are all available at the same time as sources of information, the above

host description may look as follows:

<host id="typical-machine" ip="|Outpost|">

<services source="|Outpost|"/>
<connectivity source="|ANGI|"/>
<cve source="|Nessus|"/>

</host>

The model builder gets the host network address and the list of running services from

Outpost, connectivity information from ANGI, and a list of existing vulnerabilities from

Nessus. Once all of the relevant information is gathered, the model builder creates a

finite model and encodes it in the input language of the scenario graph generator. The

scenario graph generator then builds the attack graph.

5.3 Attack Graphs with Nessus

A savvy attacker might use one of the many widely available vulnerability scanners [4] to

discover facts about the network and construct an attack scenario manually. Similarly, an

attack graph generator can use a scanner to construct such scenarios automatically. Our

attack graph toolkit works with the freeware vulnerability scanner Nessus [8] to gather

information about reachable hosts, services running on those hosts, and any known

exploitable vulnerabilities that can be detected remotely.

The scanner has no internal knowledge of the target hosts, and will usually discover

only part of the information necessary to construct a graph that includes every possible

attack scenario. Using only an external vulnerability scanner to gather information can

lead the system administrator to miss important attack scenarios.

Nevertheless, the administrator can run vulnerability scanners against his own net-

work to find out what a real attacker would discover. In the future, sophisticated intruders

are likely to use attack graph generators to help them devise attack scenarios. As a part of

network security strategy, we recommend running a vulnerability scanner in conjunction

with an attack graph generator periodically to discover avenues of attack that are most

likely to be exploited in practice.



Tools for Generating and Analyzing Attack Graphs 365

SQL

database

Outpost

Server

Network

of

Outpost

Clients

Host

Configuration

Data
Attack Graph

Toolkit

Fig. 9. Outpost Architecture

5.4 Attack Graphs with MITRE Outpost

MITRE Corporation’s Outpost is a system for collecting, organizing, and maintaining

security-related information on computer networks. It is a suite of inter-related security

applications that share a common data model and a common data collection infrastruc-

ture. The goal of Outpost is to provide a flexible and open environment for network and

system administrators to monitor, control, and protect computer systems.

At the center of the Outpost System is a data collection/probe execution engine that

gathers specific configuration information from all of the systems within a network. The

collected data is stored in a central database for analysis by the Outpost applications.

Outpost collects data about individual hosts only, so it cannot provide information about

network topology or attack rules. Since Outpost stores all of the data in a network-

accessible SQL database, we retrieve the data directly from the database, without talking

to the Outpost server, as shown in Figure 9.

Currently Outpost works with SQL databases supported by Microsoft and Oracle.

Both of these packages use a proprietary Application Programming Interface. The model

builder includes an interface to each database, as well as a generic module that uses

the Open DataBase Connectivity interface (ODBC) and works with any database that

supports ODBC. Furthermore, it is easy to add a capability to interface with other types

of databases.

An Outpost-populated database contains a list of client hosts monitored by the Out-

post server. For the model builder, the Outpost server can provide most of the required

information about each individual host h, including:

1. A unique host identifier (usually name and network address)

2. Operating system vendor and version

3. Active network services with port numbers

4. Common Vulnerabilities and Exposures IDs of all vulnerabilities present on h
5. User-specific configuration parameters (e.g., is Javascript enabled for the user’s

email client?)

Outpost’s lists of CVE vulnerabilities are usually incomplete, and it does not keep

track of some of the user-specific configuration parameters required by the attack graph
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toolkit. Until these deficiencies are fixed, the user must provide the missing information

manually.

In the future, the Outpost server will inform the attack graph toolkit whenever changes

are made to the database. The tighter integration with Outpost will enable attack graph

toolkit to re-generate attack graphs automatically every time something changes in the

network configuration.

5.5 Attack Graphs with Lockheed’s ANGI

Lockheed Martin Advanced Technology Laboratory’s (ATL) Next Generation Infras-

tructure (ANGI) IR&D project is building systems that can be deployed in dynamic,

distributed, and open network environments. ANGI collects local sensor information

continuously on each network host. The sensor data is shared among the hosts, pro-

viding dynamic awareness of the network status to each host. ANGI sensors gather

information about host addresses, host programs and services, and network topology. In

addition, ANGI supports vulnerability assessment sensors for threat analysis.

shamong

cherryhill

mtlaurel

rancoras

lindenwold

mtholly trenton

Fig. 10. ANGI Network

Two distinguishing features of ANGI are the ability to discover network topology

changes dynamically and focus on technologies for pro-active, automated repair of net-

work problems. ANGI is capable of providing the attack graph model builder with

network topology information, which is not available in Outpost and is not gathered by

Nessus.

We tested our attack graph toolkit integrated with ANGI on a testbed of five hosts

with combinations of the five CVE vulnerabilities specified for the example model in

Chapter 4 (p. 352), and one adversary host. Figure 10 is a screenshot of the testbed

network schematic. The intruder resides on the host lindenwold. Hosts trenton
and mtholly run firewalls, which are initially disabled. We assume that the target of

the intruder is the host shamong, which contains some critical resource.

ANGI combines information about each host with data from firewall configuration

files into a single XML document. To convert firewall rules into a reachability relation C
accepted by the attack graph toolkit, ANGI uses a package developed at MITRE Corp.

that computes network reachability from packet filter data [14]. The XML file specifies

explicitly five attack rules corresponding to the CVE vulnerabilities present on the hosts.

ANGI then calls the model builder with the XML document and a security property as

inputs. The security property specifies a guarantee of protection for the critical resource

host shamong:

G(intruder.privilege[shamong] < root)



Tools for Generating and Analyzing Attack Graphs 367

The attack graph generator finds several potential attack scenarios. Figure 11 shows

the attack graph as it is displayed by the graphical user interface. The graph consists of

19 nodes with 28 edges.

Fig. 11. ANGI Attack Graph - No Firewalls

Exploring the attack graph reveals that several successful attack scenarios exploit the

LICQ vulnerability on the host shamong. One such attack scenario is highlighted in

Figure 11. As indicated in the “Path Info” pane on the left of Figure 11, the second step

of the highlighted scenario exploits the LICQ vulnerability on shamong. This suggests

a possible strategy for reducing the size of the graph. Using the ANGI interface, we

enable the firewall on the host trenton, and add a rule that blocks all external traffic at

trenton from reaching shamong on the LICQ port.ANGI then generates a new XML

model file reflecting this change. The new graph demonstrates a significant reduction

in network exposure from this relatively small change in network configuration. The

modification reduces graph size to 7 nodes and 6 edges with only two possible paths.

(Contrast this new graph with the attack graph shown in Figure 11, which has 19 nodes,

28 edges, and 20 paths.)
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Looking at the scenarios in this new graph, we discover that the attacker can still

reach shamong by first compromising the web server on cherryhill. Since we

do not want to disable the web server, we enable the firewall on mtholly and add

a rule specifically blocking cherryhill’s access to the LICQ client on shamong.

Yet another invocation of the attack graph generator on the modified model produces

an empty attack graph and confirms that we have successfully safeguarded shamong
while retaining the full functionality of the network.

6 Related Work

Many of the ideas that we propose to investigate have been suggested or considered in

existing work in the intrusion detection field. This section surveys recent related work.

Phillips and Swiler [13] propose the concept of attack graphs that is similar to the

one described here. However, they take an “attack-centric” view of the system. Since we

work with a general modeling language, we can express in our model both seemingly

benign system events (such as failure of a link) and malicious events (such as attacks).

Therefore, our attack graphs are more general than the one proposed by Phillips and

Swiler. Swiler et al. describe a tool [19] for generating attack graphs based on their

previous work. Their tool constructs the attack graph by forward exploration starting

from the initial state.

The advantage of using model checking instead of forward search is that the technique

can be expanded to include liveness properties, which can model service guarantees in

the face of malicious activity. For example, a model of a banking network could have a

liveness security property such as

G (CheckDeposited → (F CheckCleared))

which specifies that every check deposited at a bank branch must eventually clear.

Templeton and Levitt [20] propose a requires/provides model for attacks. The model

links atomic attacks into scenarios, with earlier atomic attacks supplying the prerequisites

for the later ones. Templeton and Levitt point out that relating seemingly innocuous sys-

tem behavior to known attack scenarios can help discover new atomic attacks. However,

they do not consider combining their attack scenarios into attack graphs.

Cuppens and Ortalo [6] propose a declarative language (LAMBDA) for specifying at-

tacks in terms of pre- and post-conditions. LAMBDA is a superset of the simple language

we used to model attacks in our work. The language is modular and hierarchical; higher-

level attacks can be described using lower-level attacks as components. LAMBDA also

includes intrusion detection elements. Attack specifications includes information about

the steps needed to detect the attack and the steps needed to verify that the attack has

already been carried out. Using a database of attacks specified in LAMBDA, Cuppens

and Miege [5] propose a method for alert correlation based on matching post-conditions

of some attacks with pre-conditions of other attacks that may follow. In effect, they

exploit the fact that alerts about attacks are more likely to be related if the corresponding

attacks can be a part of the same attack scenario.

Dacier [7] proposes the concept of privilege graphs. Each node in the privilege graph

represents a set of privileges owned by the user; edges represent vulnerabilities. Privi-
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lege graphs are then explored to construct attack state graphs, which represents different

ways in which an intruder can reach a certain goal, such as root access on a host. He

also defines a metric, called the mean effort to failure or METF, based on the attack

state graphs. Orlato et al. describe an experimental evaluation of a framework based on

these ideas [12]. At the surface, our notion of attack graphs seems similar to the one

proposed by Dacier. However, as is the case with Phillips and Swiler, Dacier takes an

“attack-centric” view of the world. As pointed out above, our attack graphs are more

general. From the experiments conducted by Orlato et al. it appears that even for small

examples the space required to construct attack state graphs becomes prohibitive. By

basing our algorithm on model checking we take advantage of advances in representing

large state spaces and can thus hope to represent large attack graphs.

Ritchey and Ammann [15] also use model checking for vulnerability analysis of

networks. They use the (unmodified) model checker SMV [18]. They can obtain only one

counter-example, i.e., only one attack corresponding to an unsafe state. In contrast, we

modified the model checker NuSMV to produce attack graphs, representing all possible

attacks. We also described post-facto analyzes that can be performed on these attack

graphs. These analysis techniques cannot be meaningfully performed on single attacks.

Graph-based data structures have also been used in network intrusion detection sys-

tems, such as NetSTAT [21]. There are two major components in NetSTAT, a set of

probes placed at different points in the network and an analyzer. The analyzer processes

events generated by the probes and generates alarms by consulting a network fact base

and a scenario database. The network fact base contains information (such as connec-

tivity) about the network being monitored. The scenario database has a directed graph

representation of various atomic attacks. For example, the graph corresponding to an IP

spoofing attack shows various steps that an intruder takes to mount that specific attack.

The authors state that “in the analysis process the most critical operation is the generation

of all possible instances of an attack scenario with respect to a given target network.”

Ammann et. al. present a scalable attack graph representation [1]. They encode attack

graphs as dependencies among exploits and security conditions, under the assumption

of monotonicity. Informally, monotonicity means that no action an intruder can take

interferes with the intruder’s ability to take any other actions. The authors treat vulnera-

bilities, intruder access privileges, and network connectivity as atomic boolean attributes.

Actions are treated as atomic transformations that, given a set of preconditions on the

attributes, establish a set of postconditions. In this model, monotonicity means that (1)

once a postcondition is satisfied, it can never become ’unsatisfied’, and (2) the negation

operator cannot be used in expressing action preconditions.

The authors show that under the monotonicity assumption it is possible to construct

an efficient (low-order polynomial) attack graph representation that scales well. They

present an efficient algorithm for extracting minimal attack scenarios from the represen-

tation, and suggest that a standard graph algorithm can produce a critical set of actions

that disconnects the goal state of the intruder from the initial state.

This approach is less general than our treatment of attack graphs. In addition to

the monotonicity requirement, it can handle only simple safety properties. Further, the

compact attack graph representation is less explicit, and therefore harder for a human to
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read. The advantage of the approach is that it has a worst-case bound on the size of the

graph that is polynomial in the number of atomic attributes in the model, and therefore

can scale better than full-fledged model checking to large networks.

7 Summary and Current Status

We have designed, implemented, and tested algorithms for automatically generating

attack graphs and for performing different kinds of vulnerability analyses on them. We

have built an attack graph toolkit to support our generation and analysis algorithms.

The toolkit has an easy-to-use graphical user interface. We integrated our tools with

external sources to populate our network attack model with host and vulnerability data

automatically.

We are in the process of specifying a library of actions based on a vulnerability

database provided to us by SEI/CERT. This database has over 150 actions representing

many published CVEs. We have preliminary results in using a subset of 30 of these

actions as input to our model builder, allowing us to produce attack graphs with over

300 nodes and 3000 edges in just a few minutes. Most telling, is that once graphs are

that large, automated analysis, such as the kind we provide, is essential.

With our current toolkit and our growing library of actions, we are now perform-

ing systematic experiments: on different network configurations, with different subsets

of actions, and for different attacker goals. The ultimate goal is to help the system

administrator—by giving him a fast and completely automatic way to test out different

system configurations (e.g., network connectivity, firewall rules, services running on

hosts), and by finding new attacks to which his system is vulnerable.
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