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ABSTRACT
Motivation: A ubiquitous and fundamental step in high-throughput
sequencing analysis is the alignment (mapping) of the generated
reads to a reference sequence. To accomplish this task numerous
software tools have been proposed. Determining the mappers that
are most suitable for a specific application is not trivial.
Results: This survey focuses on classifying mappers through a wide
number of characteristics. The goal is to allow practitioners to com-
pare the mappers more easily and find those that are most suitable
for their specific problem.
Availability: A regularly updated compendium of mappers can be
found at http://wwwdev.ebi.ac.uk/fg/hts_mappers/.
Contact: nf@ebi.ac.uk
Supplementary information: Supplementary information on this
manuscript is available online.

1 INTRODUCTION
In the last decade high throughput sequencing (HTS) has chan-
ged the way life sciences research is done. The decreasing costs
have made HTS technology more mainstream and it is now exploi-
ted in a growing number of biological applications, the so cal-
led -seq experiments: DNA-seq (Mardis, 2008); ChIP-seq (Park,
2009); RNA-seq (Wang et al., 2009; Ozsolak and Milos, 2010;
Marioni et al., 2008); BS-seq (Meissner et al., 2008; Cokus et al.,
2008); as well as numerous other applications, such as inve-
stigating the spatial organization of the genome inside the cell
nucleus (Lieberman-Aiden et al., 2009). We refer to Metzker (2009)
for an overview of sequencing technologies and related applications.

A common feature of all HTS technologies and applications is the
generation of relatively short reads (fragments of DNA sequences),
which have to be aligned (mapped) to a reference sequence. The
primary challenge is to efficiently find the true location of each read
from a potentially large quantity of reference data while distinguis-
hing between technical sequencing errors and true genetic variation
within the sample.

Presently, more than 60 mappers are available (see Table 1 for
a list of mappers and Figure 1 for a time line), most of them
proposed after 2008, concurrent with developments in sequencing
technologies. Mappers have had to adapt to: i) handle growing
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Fig. 1. Mappers time line (since 2001). DNA mappers are plotted in blue,
RNA mappers in red, miRNA mappers in green, and bisulfite mappers in
purple. Gray dotted lines connect related mappers (extensions or new versi-
ons). The time line only includes mappers with peer-reviewed publications
and the date corresponds to the earliest date of publication (e.g., advanced
publication date as opposed to the date of publication).

quantities of data generated by HTS; ii) exploit technological
developments (Li and Durbin, 2010; Langmead and Salzberg, 2012;
Weese et al., 2009); and, iii) tackle protocol developments. For
instance, paired-end library protocols motivated the development
of mappers that exploit read pairing information (Ning et al., 2001;
Langmead et al., 2009; Li et al., 2008a). Furthermore, the appea-
rance of novel protocols may result in specific biases (Ondov et al.,
2008; Li et al., 2008a; Malhis and Jones, 2010). One consequence
of the increasing number of mappers is that making a suitable choice
for a specific application is not easy. Resources such as the SeqAns-
wers forum Wiki pages (Li et al., 2012) have collated information
about different mappers, such as the operating system supported
and different technologies that the mappers have been designed
to handle. However, information about other equally important
features/characteristics of the mappers is difficult to find, being
still scattered through publications, source code (when available),
manuals and other documentation.
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This survey aims to help overcome these challenges by allo-
wing practitioners to compare mappers more easily and, thus, find
those that are most suitable for their specific problem. It does
not evaluate mappers in terms of their accuracy, but instead it
presents an overview of their characteristics. It complements pre-
vious studies that focused mainly on a reduced subset of mappers
and/or empirically compared the performance of a small num-
ber of mappers (Li and Homer, 2010; Flicek and Birney, 2009;
Trapnell and Salzberg, 2009).

2 OVERVIEW
The HTS data mapping problem can be generally stated as follows:
given a set of sequences Q (produced by a HTS technology), a set of
reference sequences R, a possible set of constraints, and a distance
threshold k, find all substrings m of R that respect the constraints
and that are within a distance k to a sequence q inQ, i.e., d(q,m) ≤
k, where d() is some distance function. The occurrences m inR are
called matches. The constraints imposed can vary depending upon
the HTS application and data type (e.g., whether the data generated
are single- or paired-end reads).

The main goal of a mapper is to find the true location of each
sequence q from a potentially large quantity of reference data while
allowing for errors and structural variation. To allow for these
errors/variants the matching has to be approximate. The distance
measures typically used account for the number of mismatches and
indels to allow for errors and structural variation, but they may also
incorporate gap sizes or probabilities associated with the reads.

Table 1 provides a brief overview of the mappers considered her-
ein. The information presented in the tables of this manuscript was
collected mainly from the publications, manuals and other docu-
mentation, by direct inspection of the source code, and in some
cases by contacting the developers. When we could not collect infor-
mation the cells in the table were left blank. We collected, and
included in the table, the number of citations of the bibliographic
reference (when available) associated with each mapper, and the
number of citations normalized by the lifetime (in years) of the
publication in an attempt to provide an idea of the popularity of the
mappers. However, we emphasize that one cannot infer that mapper
A is better than mapper B simply because it is cited more often.

One obvious issue when considering the choice of a mapper is
the type of data that it was designed for or is suitable to align (DNA,
RNA, miRNA or bisulfite). Another dimension to consider is the
sequencing platform that generated the HTS data. General mappers
such as BLAT, SSAHA, Exonerate, and Mummer were designed for
aligning any sequences (DNA, RNA, or Protein) and the source of
data is irrelevant. However, as can be observed in Table 1, a con-
siderable number of mappers support HTS data generated from a
subset of technologies. For instance, Slider was designed specifi-
cally for Illumina data and exploits the base call probabilities in
Illumina’s probability output files. By contrast SOCS, RNA-Mate
and MapReads are tailored for aligning SOLiD reads, which are
encoded in colour space. Some mappers also try to exploit specific
biases associated with a sequencing platform. For instance, for the
Illumina platform, sequencing accuracy decreases with increasing
number of read cycles and therefore less reliable base calls are pro-
duced towards the 3’-end of each read. Some mappers like SOAP,

Bowtie, or Novoalign can therefore trim several bases off the 3’-end
of reads in an attempt to overcome this problem.

Most eukaryotic genes are composed of multiple exons, which
can be spliced together in distinct combinations to generate different
transcripts. Thus, when RNA-seq reads are mapped to a reference
genome, reads that span multiple exons will have potentially large
gaps in the alignment corresponding to intronic sequence. The Spli-
cing column, in Table 2, indicates, for the RNA mappers, if the
detection of splice junctions is made de novo or via user provided
libraries of junction locations. De novo detection of splice junc-
tions means that the mappers are able to detect splice junctions
without relying on existing annotation. An alternative is to build
exon junction libraries that include sequences around known or pre-
dicted splicing junctions. Some mappers construct these libraries
during execution using splice junction information provided by the
user while others require that the user provides the library. Finally,
hybrid approaches that couple de novo with prior information are
also possible. For example, QPALMA starts by aligning the reads
to the genome to identify putative exons from clusters of map-
ped reads. Next potential junctions are enumerated within a certain
distance around putative exons. Finally, the unmapped reads are ali-
gned against the sequences flanking possible junctions, thus making
it possible to find novel junctions. QPALMA, although similar to
TopHat, differs by training a support vector machine-like algorithm
using known splice junctions from the genome of interest (thus also
requiring a set of known junctions from the reference).

3 FEATURE-LEVEL COMPARISON
Table 2 enables a comparison of mappers based on data centric fea-
tures (e.g., read length limits, utilization of read pairing information,
parallel processing), and alignment sensitivity and reporting (e.g.,
errors allowed, support for gaps, alignments reported, type of ali-
gnment performed, and the role of read quality information during
alignment).

3.1 Input Data Features
The read length supported by a mapper is a particularly important
characteristic. For instance, aligning miRNA data, which typically
comprises short reads ranging between 16-30 bases in length after
trimming the adapters, requires mappers that support rather short
reads. Naturally, the miRNA specific mappers support reads of the
mentioned length but some more general purpose mappers, such as
Bowtie, BWA, GNUMAP, MapReads, Maq, Novoalign, SHRiMP,
Stampy, and SOAP, may also be used for this purpose. By contrast,
advances in sequencing technologies have enabled reads longer than
1000 bases to be generated (up to 10000 bases have been repor-
ted using PacBio sequencing). The trend of increasing read length
has motivated the development of novel mappers (e.g., RazerS,
BWA-SW, SOAP2, RUM, RMAP, SOAPSplice, and Bowtie2) that
efficiently handle the longer reads.

Sequencing platforms can produce reads in pairs, which can help
to detect alignment errors and to improve sensitivity and specifi-
city compared to using single-end reads (Li and Homer, 2010). The
majority of the mappers exploit read pairing information (see PE
column in Table 2). To align paired reads, a strategy often followed
is to independently align the two reads belonging to a pair before
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searching for the pair of hits with the correct orientation relationship
and proper distance.

HTS data can consist of hundreds of millions of reads. Therefore
it is useful when the mappers can (natively) be executed in paral-
lel in distributed-memory (DM) computers (i.e., a cluster composed
of multiple computers) or/and using shared-memory (SM) compu-
ters (available in computers with modern shared-memory multi-core
processors). Given the large number of reads that need to be map-
ped, it is not surprising that the majority of the methods have been
developed to exploit multiple processors/computers to speed up the
mapping. A different approach is followed by CloudBurst (Schatz,
2009), a cloud aware mapper designed to run in computer clouds and
in local computer clusters. Implementation details for each mapper
are provided in the supplementary file.

The quality aware column in Table 2 indicates whether a map-
per exploits the base quality scores (generated by the sequencer)
during the alignment. It has been shown (Li and Homer, 2010)
that using accurate quality scores can reduce alignment errors by
giving a lower penalty for a mismatch in a position with a low
quality score. Several mappers, such as Bowtie, BWA, GEM-
Mapper, PASS, SHRiMP2, ZOOM, SOCS, RMAP, and GNUMAP
exploit quality scores during the alignment but differ in the way
that they do it. For instance, RMAP does not penalize mismatches
for bases with a quality score below a predetermined cut-off value,
while Novoalign uses base qualities to calculate base penalties for
the Needleman-Wunsch algorithm. GNUMAP goes a step further
and uses the Solexa/Illumina probability output files to construct
a position weight matrix (PWM) for each read, before a modified
Needleman-Wunsch alignment algorithm exploits these matrices to
score and align a read against the reference sequence.

3.2 Variation and Errors
To cope with errors and variation, mappers must allow the mat-
ching of the reads to the reference sequences to be approximate.
For instance, in a project to detect genome variation, the mapper
should allow a small number of errors but enough to cope with the
expected variation. However, more errors should be allowed when
aligning reads against reference sequences from different species
or when longer reads are used, e.g., 5 mismatches in a read with
36 bases (14%) is quantitatively different from 5 mismatches in
a read with 150 bases (3%). The mismatches and indels columns
in Table 2 indicate whether a mapper aligns reads while allowing
for errors (mutations and short indels), while the Gaps column
indicates whether consecutive insertions or deletions are allowed
during alignment. The challenge is to distinguish between nucleo-
tide variation caused by true genetic variation and differences from
the reference due to inaccuracy in sequencing.

In an attempt to improve computational efficiency many map-
pers impose constraints on the number of mismatches/gaps allowed.
Some mappers allow a small number of mismatches (for instance,
ELAND supports up to 2 mismatches, VMATCH and WHAM
support up to 5 mismatches, and BSMAP supports up to 15 mismat-
ches), while others accept an arbitrary number of mismatches and no
indels (e.g., MapReads, MicroRazerS, and mrsFast). Some mappers
support indels but, again, often with some constraints: e.g., SOAP
and SOAP2 support up to 3 and 2 indels respectively, MrFast up to
6 indels, and BWA up to 8 indels. Finally, some mappers impose

no constraint on the number of mismatches and indels (e.g., Bow-
tie, Bowtie2, GNUMAP, Mosaik, RazerS, SSAHA2, VMATCH,
SHRiMP and SHRiMP2). In this final case, a threshold on the score
function value is often used to determine whether a read is mapped
to a particular location.

Support for gaps (long indels) comes at the cost of computatio-
nal efficiency but is a feature required in several contexts, namely
to map longer reads (since they have a greater probability of contai-
ning gaps) or to map RNA-seq data. Li and Homer (2010) showed
that gapped alignment increases the percentage of reads mapped but
that it did not reduce the percentage of reads incorrectly aligned. In
an attempt to minimize the computational cost incurred from allo-
wing gaps, many mappers impose constraints: e.g., GMAP, GSNAP,
SOAPSplice, SpliceMap, and WHAM allow for a single gap with
different gap size constraints; SOAP2 and QPALMA allow a single
gap with no constraint on size; and BLAT allows multiple gaps with
a maximum size of 23k bases.

The alignment phase in RNA-seq experiments presents many
challenges that arise, in general, from splicing events. These can
be handled easily if reads are mapped to a pre-defined transcrip-
tome at the cost of missing novel transcripts. Alternatively, the
reads can be mapped to the genome. However, reads that span
multiple exons will have potentially large gaps in the alignment
corresponding to intronic sequence. Hence, RNA-seq mappers
should be able to support large gaps, as is the case for MapSplice,
TopHat, Supersplat, SoapSplice, SpliceMap, RNA-mate, RUM,
PASS, QPALMA or MapSplice. These mappers are also termed as
spliced aligners (Garber et al., 2011) due to their ability to align a
read to multiple exons. Some of these mappers are, in fact, wrappers
to other mappers (e.g., TopHat uses Bowtie; RUM uses Bowtie or
Blat; RNA-Mate uses MapReads; and SpliceMap can use Bowtie,
Eland or SeqMap). Some wrappers (e.g., MapSplice or SpliceMap)
use an exon-first approach that involves two main steps: i) map
reads to the genome using unspliced read aligners; ii) unmapped
reads are then split into shorter segments and aligned independently.
The genomic regions surrounding the mapped read segments are
then searched for spliced connections. This approach is efficient
since a smaller proportion of the reads are used in the more com-
putationally demanding second step. Alternative approaches are
seed-and-extend variations, as exemplified by TopHat when used to
align RNA-seq reads to a genome. Briefly, TopHat starts by mapping
the reads using Bowtie against the whole genome, then aggregates
the reads into islands of candidate exons, before generating poten-
tial donor/acceptor splice sites using neighbouring exons. Finally,
unmapped reads are mapped (using Bowtie) to these splice junction
sequences.

3.3 Alignments
The task at hand will determine whether the exact alignments or
locations are of interest. Mappers can report (semi-) global or local
alignments with respect to the reads (see Alignment column in
Table 2). A mapper performs a (semi-) global (or end-to-end) ali-
gnment with respect to the reads when it produces an alignment that
involves all of the bases in the read. A local alignment considers
only bases in part of the read (bases at the ends of the read are
usually omitted in the alignment). Local alignment of the reads is
often faster than global (or end-to-end) alignment since the mappers
can stop the alignment process when a good quality unique match
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Mapper Data Seq.Plat. Input Output Avail. Version Cit. Citations
Y ears Reference

BFAST DNA I,So,4, Hel (C)FAST(A/Q) SAM TSV OS 0.7.0 94 37.11 Homer et al. (2009)
Bismark Bisulfite I FASTA/Q SAM OS 0.7.3 7 6.21 Krueger and Andrews (2011)
Blat DNA N FASTA TSV BLAST OS 34 2844 275.67 Kent (2002)
Bowtie DNA I,So,4,Sa,P (C)FAST(A/Q) SAM TSV OS 0.12.7 1168 363.42 Langmead et al. (2009)
Bowtie2 DNA I,4,Ion FASTA/Q SAM TSV OS 2.0beta5 0.00 Langmead and Salzberg (2012)
BS Seeker Bisulfite I FASTA/Q SAM OS 19 9.26 Chen et al. (2010)
BSMAP Bisulfite I FASTA/Q SAM TSV OS 2.43 31 11.06 Xi and Li (2009)
BWA DNA I,So,4,Sa,P FASTA/Q SAM OS 0.6.2 738 224.20 Li and Durbin (2009)
BWA-SW DNA I,So,4,Sa,P FASTA/Q SAM OS 0.6.2 160 67.69 Li and Durbin (2010)
BWT-SW DNA N FASTA TSV OS 20070916 45 10.42 Lam et al. (2008)
CloudBurst DNA N FASTA TSV OS 1.1 146 46.97 Schatz (2009)
DynMap DNA N FASTA TSV OS 0.0.20 0.00 Flouri et al. (2011)
ELAND DNA I FASTA TSV Com 2 7 1.09 Unpublished1

Exonerate DNA N FASTA TSV OS 2.2 255 34.69 Slater and Birney (2005)
GEM DNA I, So FASTA/Q SAM, Counts Bin 1.x 4 1.35 Unpublished2

GenomeMapper DNA I FASTA/Q BED TSV OS 0.4.3 31 11.66 Schneeberger et al. (2009)
GMAP DNA I,4,Sa,Hel,Ion,P FASTA/Q SAM, GFF OS 2012-04-27 217 29.52 Wu and Watanabe (2005)
GNUMAP DNA I FASTA/Q Illumina SAM TSV OS 3.0.2 15 5.73 Clement et al. (2010)
GSNAP DNA I,4,Sa,Hel,Ion,P FASTA/Q SAM OS 2012-04-27 72 31.61 Wu and Nacu (2010)
MapReads DNA So FASTA/Q TSV OS 2.4.1 0.00 Unpublished3

MapSplice RNA I FASTA/Q SAM BED OS 1.15.2 50 28.17 Wang et al. (2010)
MAQ DNA I,So (C)FAST(A/Q) TSV OS 0.7.1 957 251.66 Li et al. (2008a)
MicroRazerS miRNA N FASTA SAM TSV OS 0.1 7 2.75 Emde et al. (2010)
MOM DNA I,4 FASTA TSV Bin 0.6 18 5.55 Eaves and Gao (2009)
MOSAIK DNA I,So,4,Sa,Hel,Ion,P (C)FAST(A/Q) BAM OS 2.1 4 1.18 Unpublished4

mrFAST miRNA I FASTA/Q SAM OS 2.1.0.4 158 58.34 Alkan et al. (2009)
mrsFAST miRNA I,So FASTA/Q SAM OS 2.3.0 32 18.03 Hach et al. (2010)
Mummer 3 DNA N FASTA TSV OS 3.23 683 81.58 Kurtz et al. (2004)
Novoalign DNA I,So,4,Ion,P (C)FAST(A/Q) Illumina SAM TSV Bin V2.08.01 137 34.49 Unpublished5

PASS DNA I,So,4 (C)FAST(A/Q) SAM GFF3 BLAST Bin 1.62 45 13.67 Campagna et al. (2009)
Passion RNA I,4,Sa,P FASTA/Q BED OS 1.2.0 0.00 Zhang et al. (2012)
PatMaN miRNA N FASTA TSV OS 1.2.2 38 9.36 Prüfer et al. (2008)
PerM DNA I,So (C)FAST(A/Q) SAM TSV OS 0.4.0 30 10.88 Chen et al. (2009)
ProbeMatch DNA I,4,Sa FASTA ELAND OS 6 1.92 Kim et al. (2009)
QPALMA RNA I,4 Specific TSV OS 0.9.2 75 21.11 De Bona et al. (2008)
RazerS DNA I,4 FASTQ TSV ELAND OS 1.1 58 20.17 Weese et al. (2009)
REAL DNA I FASTA/Q TSV OS 0.0.28 0.00 Frousios et al. (2010)
RMAP DNA I,So,4 (C)FAST(A/Q) BED OS 2.05 162 38.27 Smith et al. (2008)
RNA-Mate RNA So CFASTA BED Counts OS 1.1 28 10.04 Cloonan et al. (2009)
RUM RNA I,4 FASTA/Q SAM TSV BED OS 1.11 2 2.36 Grant et al. (2011)
SeqMap DNA I FASTA ELAND OS 1.013 142 37.34 Jiang and Wong (2008)
SHRiMP DNA I,So,4,Hel (C)FAST(A/Q) TSV OS 1.3.2 155 50.91 Rumble et al. (2009)
SHRiMP 2 DNA I,So,4 FASTA/Q SAM OS 2.2.2 15 11.76 David et al. (2011)
Slider DNA I Illumina TSV OS 0.6 39 10.98 Malhis et al. (2009)
Slider II DNA I Illumina TSV OS 1.1 16 7.25 Malhis and Jones (2010)
Smalt DNA I,4,Sa,Ion,P FASTA/Q SAM OS 0.6.1 0.00 Unpublished6

SOAP DNA I FASTA/Q TSV OS 1.11 451 104.41 Li et al. (2008b)
SOAP2 DNA I FASTA/Q SAM TSV OS 2.21 294 99.38 Li et al. (2009b)
SOAPSplice RNA I,4 FASTA/Q TSV Bin 1.8 3 3.54 Huang et al. (2011a)
SOCS DNA So (C)FAST(A/Q) TSV OS 2.1.1 49 14.15 Ondov et al. (2008)
SpliceMap RNA I FASTA/Q SAM BED OS 3.3.5.2 63 29.80 Au et al. (2010)
SSAHA DNA N FASTA/Q TSV OS 3.1 483 42.29 Ning et al. (2001)
SSAHA2 DNA I,4,Sa FASTA/Q SAM Bin 2.5.5 483 44.99 Ning et al. (2001)
Stampy DNA I FASTA/Q SAM TSV Bin 1.0.16 26 16.19 Lunter and Goodson (2011)
Supersplat RNA N FASTA TSV OS 1.0 21 9.93 Bryant Jr et al. (2010)
TopHat RNA I FASTA/Q, GFF BAM OS 1.4.1 389 121.04 Trapnell et al. (2009)
VMATCH DNA N FASTA TSV Bin 26 2.75 Unpublished7

WHAM DNA N FASTQ SAM OS 0.1.4 3 3.33 Li et al. (2011)
X-Mate DNA I,So,4 (C)FAST(A/Q) SAM BED Counts OS 1 1 0.74 Wood et al. (2011)
ZOOM DNA I,So,4 (C)FAST(A/Q) SAM BED GFF Com 1.5 109 28.66 Lin et al. (2008)

Table 1. List of mappers. The Data column indicates if the mapper is tailored for DNA, RNA, miRNA, or bisulfite sequences. The Seq.Plat. column indicates
if the mapper natively supports reads from a specific sequencing platform (Illumina, ABI Solid, Roche 454, ABI Sanger, Helicos, Ion torrent, and Pacbio) or
not (N). The mappers are available as open-source (OS), in binary form (BIN) or commercially (Com). The input and output columns indicate, respectively,
the file formats accepted and produced by the mappers. Input formats: FASTA, FASTQ, CFASTA, CFASTQ, and Illumina Sequence and Probability files
format. Output formats: SAM (Li et al., 2009a), Tab-Separated-Values (TSV), BED file format, different versions of General Feature Format (GFF), number
of reads mapped to genes/exons (Counts). The version column indicates the version of the mapper considered in this study. The table also includes the number
of citations per year of the associated publication. The number of citations (Cit. was obtained from Google Scholar on 14 Apr 2012.
Unpublished1 ELAND: Efficient local alignment of nucleotide data. Unpublished2 MapReads: SOLiD System Color Space Mapping Tool.

Unpublished3 The Vmatch large scale sequence analysis software. Unpublished4 Mosaik 1.0 documentation.

Unpublished5 www.novocraft.com. Unpublished6 SMALT Manual

Unpublished7 GEM-GEnomic Multi-tool.
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http://bfast.sourceforge.net/
http://www.bioinformatics.babraham.ac.uk/projects/bismark/
http://users.soe.ucsc.edu/~kent/src/
http://bowtie-bio.sourceforge.net
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://pellegrini.mcdb.ucla.edu/BS_Seeker/BS_Seeker.html
http://code.google.com/p/bsmap/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://i.cs.hku.hk/~ckwong3/bwtsw/
http://cloudburst-bio.sourceforge.net/
http://www.inf.kcl.ac.uk/pg/dynmap/
http://www.ebi.ac.uk/~guy/exonerate/
http://gemlibrary.sourceforge.net
http://www.1001genomes.org/software/genomemapper.html
http://research-pub.gene.com/gmap
http://dna.cs.byu.edu/gnumap/
http://research-pub.gene.com/gmap
http://solidsoftwaretools.com/gf/project/mapreads/
http://www.netlab.uky.edu/p/bioinfo/MapSplice
http://maq.sourceforge.net/
http://www.seqan.de/projects/microrazers.html
http://mom.csbc.vcu.edu/
https://github.com/wanpinglee/MOSAIK
http://mrfast.sourceforge.net/
http://mrsfast.sourceforge.net/
http://mummer.sourceforge.net/
http://www.novocraft.com/
http://pass.cribi.unipd.it
https://trac.nbic.nl/passion
http://bioinf.eva.mpg.de/patman
http://code.google.com/p/perm/
http://pages.cs.wisc.edu/~jignesh/probematch/
http://www.fml.tuebingen.mpg.de/raetsch/suppl/qpalma
http://www.seqan.de/projects/razers.html
http://www.inf.kcl.ac.uk/pg/real/
http://rulai.cshl.edu/rmap/
http://grimmond.imb.uq.edu.au/RNA-MATE/
http://www.cbil.upenn.edu/RUM/
http://www-personal.umich.edu/~jianghui/seqmap/index.html
http://compbio.cs.toronto.edu/shrimp/
http://compbio.cs.toronto.edu/shrimp
http://www.bcgsc.ca/platform/bioinfo/software/slider
http://www.bcgsc.ca/platform/bioinfo/software/SliderII
http://www.sanger.ac.uk/resources/software/smalt/
http://soap.genomics.org.cn/soap1/
http://soap.genomics.org.cn/
http://soap.genomics.org.cn/soapsplice.html
http://solidsoftwaretools.com/gf/project/socs/
http://www.stanford.edu/group/wonglab/SpliceMap/
http://www.sanger.ac.uk/resources/software/ssaha/
http://www.sanger.ac.uk/resources/software/ssaha2/
http://www.well.ox.ac.uk/project-stampy
http://supersplat.cgrb.oregonstate.edu/
http://tophat.cbcb.umd.edu/
http://www.vmatch.de/
http://research.cs.wisc.edu/wham/
http://grimmond.imb.uq.edu.au/X-MATE/
http://www.bioinfor.com/all-products/zoom
www.novocraft.com
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Mapper Min. RL Max. RL Mismatches Indels Gaps Align. Reported Alignment Parallel QA PE Splicing Data
BFAST * Y Y Y B,R,U G SM N Y N DNA
Bismark 16 10K Score Score N U - SM Y Y N Bisulfite
Blat 11 5000K Score Score Y B L N N N De novo DNA
Bowtie 4 1K Score Score N A,B,R,S G L SM Y Y N DNA
Bowtie2 4 5000K Score Score Y A,B,R,S G L SM Y Y N DNA
BS Seeker - - 3 0 N U - SM Y N N Bisulfite
BSMAP 8 144 15 0 N B,S,U SM N Y N Bisulfite
BWA 4 200 Y 8 Y R,S G SM Y Y N DNA
BWA-SW 4 1000K 0.1 0.1 Y R,S L SM Y N N DNA
BWT-SW 1K Score Score Y A N N N N DNA
CloudBurst 1K Y Y Y A,B G Cloud N N N DNA
DynMap 18 8K 5 0 N B L N N N N DNA
ELAND 32 2 0 N B N N N N DNA
Exonerate 20 * Score Score Y B,S G L N N N De novo DNA
GEM 0 4294M 1.0 1.0 Y A, S G SM Y Y Lib and de novo DNA
GenomeMapper 12 2K 10 10 Y A,B,R G SM N N N DNA
GMAP 8 * Y Y Y B G L SM N N De novo DNA
GNUMAP 16 1K Score Score Y B G SM/DM Y N N DNA
GSNAP 8 250 Y Y Y A,B,U,S G L SM N Y Lib and de novo DNA
MapReads 10 120 Score 0 N S N Y N N DNA
MapSplice - - 3 Y B - SM N Y De novo RNA
MAQ 8 63 Y Y N N Y Y N DNA
MicroRazerS 10 * Score 0 N S G N N N N miRNA
MOM Y 0 N A L SM N Y N DNA
MOSAIK 15 1000 Y Y Y A,B G SM Y Y N DNA
mrFAST 25 300 Score 6 N A,B G N N Y N miRNA
mrsFAST 25 200 Y 0 N A G N N Y N miRNA
Mummer 3 10 * Y Y Y A,B G N N N N DNA
Novoalign 30 300 8 2 N A, B, R, U, S G SM/DM/Cloud Y Y Lib DNA
PASS 23 1K Y Y Y A,B G SM Y Y De novo DNA
Passion - - Y Y Y U - SM Y Y De novo RNA
PatMaN 1 * Y Y N A G N N N N miRNA
PerM 20 128 9 0 Y A,U G DM Y Y N DNA
ProbeMatch 36 50 3 Y N A,B N N N N DNA
QPALMA - - Y Y Y B L N Y N Lib and de novo RNA
RazerS 11 * Score Score Y A,B,S G N N Y N DNA
REAL 4 * Score N N B, U G SM Y N N DNA
RMAP 11 10K Y 0 N B,S N Y Y N DNA
RNA-Mate - - Y 0 N S - DM Y N Lib RNA
RUM - - Y Y Y B - SM N Y De novo RNA
SeqMap 15 500 5 3 N A SM N N N DNA
SHRiMP 14 1K Score Score Y B,S G SM N Y N DNA
SHRiMP 2 30 1K Y Score N B,U,S G SM Y Y N DNA
Slider 62 3 0 N B,S N Y Y N DNA
Slider II 93 Y N B,S N N Y N DNA
Smalt 4 2048M Score Score N A,B,R,U,S L SM Y Y N DNA
SOAP 7 60 5 3 N B,R S SM N Y N DNA
SOAP2 27 1K 2 0 Y A,B,R L SM N Y N DNA
SOAPSplice 13 3K 5 2 Y U - SM Y Y De novo RNA
SOCS 64 Y 0 N A,B SM Y N N DNA
SpliceMap - - 0.1 Y A - SM N Y Lib and/or de novo RNA
SSAHA 15 * Y Y Y B,S G L N N N N DNA
SSAHA2 15 48K Score Score N B,S L N N Y N DNA
Stampy 4 4K 0.15 30 N B,R,S G N Y Y N DNA
Supersplat 0 0 Y A,U G N N N De novo RNA
TopHat - - 2 0 N B,S - SM Y Y De novo RNA
VMATCH Score Score Y A,B,S G L N N N N DNA
WHAM 5 128 5 3 N A,B,R,U,S G N Y Y De novo DNA
X-Mate - - Y 0 N S - DM Y N Lib DNA
ZOOM 12 240 Y Y N B,S,U G SM/DM Y Y N DNA

Table 2. Features comparison. Read length limits are shown in the first two data columns: minimum read length (Min. RL) and maximum read length (Max.
RL.). Unless otherwise stated the unit is base pairs, K denotes kilobases (1000 bases), M denotes megabases (1000K bases), and * denotes a (unknown) large
number. The support for mismatches and short indels is presented in the 4th and 5th columns respectively, including when possible the maximum number of
allowed mismatches and indels: by default the value is in bases; in some cases the value is presented as a proportion of the read size; or as score, meaning that
mapper uses a score function. The Gaps column indicates whether consecutive insertions or deletions are allowed during alignment. The alignments reported
column indicates the alignments reported when a read maps to multiple locations: A-all, B-best, R-random, U-unique alignments only (no multimaps), and S-
user defined number of matches. The alignment column indicates if the reads are aligned end-to-end (Globally) or not (Locally). The Parallel column indicates
if the mapper can be run in parallel and, if yes, how: using a shared-memory (SM) or/and a distributed memory (DM) computer. The QA (quality awareness)
column indicates if the mapper uses read quality information during the mapping. The support for paired reads is indicated in the PE column. The Splicing
column indicates, for the RNA mappers, if the detection of splice junctions is made de novo or through user provided libraries (Lib). Yes is abbreviated as Y
and No is abbreviated as N. A cell in the table is filled with ’-’ when a third-party mapper is used to perform the alignment.
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is found. This is useful for cases where the number of hits are of
interest, as opposed to the alignments per se.

Multimap reads (also known as multireads) are those that align to
multiple locations with very similar alignment scores, due to the
reads originating from repetitive regions and/or due to the short
length of the reads. Having identified a multimap read a mapper
has several reporting options. For instance, in RNA-seq data analy-
sis when the reference is a transcriptome, one may want to consider
reads with many possible alignments (and then perform some post-
processing). TopHat, on the other hand, uses Bowtie to map and
report reads with up to 10 possible locations and excludes the reads
that have more than this number of alignments: the aim is to include
multimap reads from paralogous genes but to exclude reads aligned
to low-complexity sequences. Although several mappers have an
option to report all possible mapping locations of a read, they are
less efficient than mappers specifically designed for this purpose,
such as mrFast, mrsFAST, and PatMaN.

4 EXECUTION TIME AND MEMORY
REQUIREMENTS

The computational time required by a mapper to align a given set
of sequences and the computer memory required are critical charac-
teristics. If a mapper is extremely fast but the computer hardware
available for performing a given analysis does not have enough
memory to run it, then the mapper is not very useful. A mapper
is also not useful if it has a very low memory requirement but is
very slow. Hence, ideally, a mapper should be able to balance speed
and memory usage whilst reporting the desired mappings.

We measured the computational speed and memory requirements
of the mappers empirically. The human genome (Homo sapiens,
Assembly GRCh37), obtained from Ensembl (build 66), was used
as a reference. Two further reference sets (subsets of chromo-
somes of the human genome, with a size of 130MB and 1GB)
were used to assess the impact of reference size on computatio-
nal speed and memory usage. Samples of one million high-quality
reads were mapped against each reference. Table 3 presents the
total time (in minutes), maximum memory usage, time spent in
pre-processing/preparing the data (which includes indexing), the
time spent on mapping, and the number of reads aligned. Due to
space constraints we only show, for each type of data, the five
mappers with lowest mapping time, total time, memory usage, or
highest number of reads mapped when aligning to the whole human
genome. It should be stressed that the focus of the evaluation is
on the speed and memory of the mappers - the accuracy of the
mappings produced was not evaluated. All the values presented are
averaged across multiple runs. The default parameter values of the
mappers were used whenever possible and no parameter optimiza-
tion was attempted. The mappers were configured to use a single
processor and up to a maximum of 32 GB of RAM. Further infor-
mation about the data, methods, and more results are presented in
Section 2 in the Supplementary file.

5 DISCUSSION
The development of numerous mappers for HTS data is motivated
not only by novel developments of HTS technology but also by the

Mapper Time Pre.Time Map.Time Mem R.Aligned
BS (30 bp)

Bismark 188 ±13 164 ±12 23 ±1 10.2 713,938
BS Seeker 1,151 ±110 1,137 ±110 14 ±1 26 71,050
BSMAP 9 ±1 0 ±0 9 ±1 8.2 855,086
GSNAP 477 ±83 26 ±1 451 ±82 15 998,005

Novoalign 45 ±8 17 ±2 28 ±7 7.8 531,944
RMAP 158 ±14 0 ±0 158 ±14 3.3 691,414

DNA (100 bp)
BFAST 39 ±0 20 ±0 20 ±0 21.4 561,348

Blat 93 ±7 2 ±0 90 ±7 3.8 950,220
Bowtie 169 ±39 166 ±38 3 ±1 5 798,566

Bowtie2 176 ±40 168 ±39 8 ±1 5.1 991,880
BSMAP 25 ±5 0 ±0 25 ±5 8.3 802,430

BWA 97 ±6 83 ±5 13 ±1 7.6 928,093
GEM 380 ±65 373 ±64 6 ±1 5.5 855,313

GMAP 2,887 ±95 17 ±2 2,870 ±94 7.6 998,454
GSNAP 40 ±6 22 ±6 18 ±1 7.6 926,371

MicroRazerS 453 ±22 0 ±0 453 ±22 1.8 989,089
MOSAIK 22 ±2 4 ±1 18 ±1 15.6 267,173
Novoalign 48 ±4 12 ±1 36 ±3 7.8 940,428

Soap2 82 ±7 78 ±7 4 ±0 5.3 798,565
SSAHA2 207 ±27 13 ±2 194 ±25 9.5 1e+06
Stampy 189 ±19 33 ±6 156 ±14 4 986,593

miRNA (20 bp)
Bowtie 119 ±2 118 ±2 1 ±0 5 983,951

Bowtie2 124 ±1 123 ±1 1 ±0 5.1 983,951
BWA 91 ±4 87 ±4 4 ±1 7.4 996,470
GEM 228 ±4 226 ±4 3 ±0 5.6 980,071

GSNAP 19 ±1 17 ±1 3 ±0 7.6 966,802
MicroRazerS 49 ±1 0 ±0 49 ±1 1.6 979,464

mrFAST 48 ±3 33 ±2 15 ±1 0.8 982,049
mrsFAST 42 ±1 33 ±1 9 ±0 0.5 979,389

PASS 28 ±2 0 ±0 28 ±2 15.8 999,989
PERM 57 ±1 0 ±0 57 ±1 13.4 982,545

SHRiMP 137 ±22 7 ±1 130 ±22 2.2 962,980
RNA (75 bp)

BFAST 35 ±2 17 ±1 17 ±1 21.4 726,601
Blat 1,741 ±131 3 ±1 1,738 ±131 3.8 974,710

GMAP 931 ±43 18 ±1 913 ±43 7.6 992,079
GSNAP 68 ±5 20 ±1 48 ±4 7.6 924,216

Novoalign 90 ±3 13 ±1 77 ±3 7.8 795,480
Smalt 48 ±2 5 ±0 43 ±2 5.2 996,443

SoapSplice 104 ±7 76 ±5 29 ±3 5.4 877,911
SSAHA2 91 ±5 16 ±1 76 ±4 9.5 999,945
TopHat 99 ±13 71 ±13 28 ±0 5.1 807,811

Table 3. The five mappers with lowest average mapping time (Map.Time),
total time (Time), memory usage (Mem) or higher number of reads ali-
gned when mapping 1 million (BS/DNA,miRNA,RNA)-seq single-end reads
against the whole human genome. Time unit is minutes and memory unit
is GB. The Pre.Time column presents the pre-processing time (includes
indexing) and R.Aligned column presents the number of reported aligned
reads.

growing number of biological applications. The variety of applicati-
ons has led to the appearance of specific types of data (e.g., miRNA,
RNA, ChIP, and bisulfite). Previously existing mappers have been
adapted while others were developed from scratch to deal with
these developments. The increasing number of resequencing pro-
jects has also motivated the development of mappers optimized to
align reads to multiple reference genomes (e.g., DynMap and Geno-
meMapper). It is expected that further improvements in efficiency,
multi-reference alignment, and support for longer read lengths will
be topics of future research.
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One commonly asked question is what is the best mapper for
a given application. Although the “best mapper” criteria involves
application specific requirements such as how well it works in con-
junction with downstream analysis tools (e.g., variant callers), it
often also includes speed and, in particular, accuracy. Despite some
recent evaluation studies (Bock et al., 2010; Li and Homer, 2010;
Chatterjee et al., 2012) determining the most accurate and fastest
mappers for a particular application is still difficult. The primary
challenge in assessing mappers is the lack of gold standard data sets
for different applications and sequencing technologies. These data
sets would not only include the reads but also their true locations
and could be based on true data or data generated in silico, using
novel or existing simulators such as ART (Huang et al., 2011b),
BEERS (Grant et al., 2011), or FluxSimulator (Griebel et al., 2012).
The research community has started to address these issues in the
context of different projects, such as the RGASP1 and the Ali-
gnathon2 projects, which aim, respectively, to assess the status of
computational methods to map human RNAseq data and DNAseq
data to whole genomes. However, no results are publicly available
at this time. More generally, a common approach for comparing
mappers has been to count the number of reads aligned. However,
increasing the number of reads is not useful if the probability of
the reads being correctly mapped decreases, i.e., if the increase in
mapped reads is done at the expense of increasing the proportion of
incorrectly mapped reads. One way to address this problem would
be to compute the likelihood of a read being correctly mapped (e.g.,
as available in RMap or ZOOM) and allow the users to choose only
the alignments above some threshold.

Users may want to consider several mappers in their HTS analysis
and to incorporate them in pipelines, such as in ArrayExpres-
sHTS (Goncalves et al., 2011). This raises the issue of mapper
interoperability. To achieve interoperability, input and output for-
mats need to be standardized. Currently, the majority of the mappers
accept input files in FASTQ or CFASTQ format and generate
SAM/BAM files as output. Hence, the level of interoperability
is high. However, there is still room to improve since FASTQ
files include quality values encoded in different formats and BAM
files can also come in different “flavours” (their standardization
should be encouraged). Moreover, in the future, mappers may also
include the option to output files in the CRAM format (Fritz et al.,
2011), which may prove useful for efficiently compressing DNA
sequences. The input parameters of the mappers are far from being
normalized, which makes it more difficult for a practitioner to
switch between mappers. Hence, it would be useful if there was
an effort to standardize the most commonly used parameters (e.g.,
for defining seed lengths, input/output files and formats).

Finally, the great flexibility and configurability of most mappers
comes with a price: a considerable number of parameters that have
to be set. Determining the best parameter values to achieve some
predefined level of mapping specificity/sensitivity is far from being
trivial. Mappers with the ability to automatically tune their para-
meters to achieve some user defined specificity/sensitivity may be a
solution to this problem.

1 RGASP: http://www.gencodegenes.org/rgasp/
2 Alignathon: http://compbio.soe.ucsc.edu/alignathon/
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