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Abstract 

The purpose of this study is to contrast the forecasting performance of two non-linear 

models, a regime-switching vector autoregressive model (RS-VAR) and a recurrent neu-

ral network (RNN), to that of a linear benchmark VAR model. Our specific forecasting 

experiment is UK inflation and we utilize monthly data from 1969-2003. The RS-VAR 

and the RNN perform approximately on par over both monthly and annual forecast hori-

zons. Both non-linear models perform significantly better than the VAR model. 

Keywords: Inflation forecasting, regime-switching vector autoregressive model, recurrent 

neural network. 
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1. Introduction 

Non-linear models for economics and time series modeling have gained in popularity 

over recent years. The main reason for this is the failure of linear models to capture non-

linear dynamic relationships embedded in real-world data. Econometric developments in 

combination with increases in computing power have further spurred the use of non-

linear models. The purpose of this study is to contrast the forecasting performance of two 

non-linear models, a regime-switching (RS) vector autoregressive model (VAR) and a 

recurrent neural network (RNN), to that of a linear benchmark VAR model. These mod-

els belong to different classes of non-linear models that are both econometrically chal-

lenging and therefore rarely compared.  

Our specific forecasting experiment is UK inflation over 1969-2003. For this pur-

pose, we obtain monthly observations of the retail price index, M0 and industrial produc-

tion. The first part of the data set is used for estimation (training). The last five years of 

the data is used for out-of-sample forecasting and evaluation of the different models. 

There are three main motives for choosing to study UK inflation using this set of vari-

ables. Firstly, the amount of available data must be considered large. Our full sample 

contains over 400 observations. Macroeconomists are often fortunate if quarterly data for, 

say, 20-30 years is available. Secondly, visual inspection of the data indicates that the use 

of a linear model may be inappropriate. Over the full sample, we can identify long peri-

ods with high inflation and long periods with low inflation. The latter is particularly evi-

dent for the nineties, or, more specifically, the ‘post-ERM’ period. Finally, as evident in 

numerous papers and central bank reports, many people are interested in inflation fore-

casts. For them, this forecasting experiment may be interesting in its own right.  
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In the regime switching framework, the underlying idea is to allow for endogenous 

switches between different data generating processes at different points in time, where 

the switches are governed by an underlying discrete state Markov process. Markov-

switching regression models were introduced in economics by Goldfeld and Quandt 

(1973), but time-series applications were not considered until the seminal papers by 

Hamilton (1988, 1989). Regime-switching models are inherently non-linear because the 

mean, as well as higher moments, are non-linear functions of the current state of the 

Markov process. The different states of the underlying Markov process have in economic 

applications, for example, represented periods of low and high exchange rate volatility 

(Klaassen, 2002), different level and volatility of real interest rates (Garcia and Perron, 

1996), booms and slumps (Hamilton, 1989), and low and high volatility and correlation 

in stock markets (Ang and Bekaert, 2002). Particular applications to forecasting in the 

RS-VAR framework include Krolzig (2004), who models output and employment growth 

and Blix (1999), who studies inflation in a trivariate RS-VAR system.  

Artificial neural networks (ANNs) (Rumelhart et al., 1986; Cheng and Titterington, 

1994; Haykin, 1999), on the other hand, consist of simple interacting processing units 

that are arranged in arbitrary layers with variable patterns of interconnectedness. Knowl-

edge is represented as connection strengths (or weights) between connected units. Each 

processing unit spreads its activation to connected units after combining and processing 

its input using some linear or non-linear activation function. Learning occurs when gen-

eral recursive rules are applied to adapt these weights in order to produce desired output 

responses.  
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ANNs are becoming increasingly popular in economics and are used in a large vari-

ety of modeling and forecasting problems. The main reason for this increased popularity 

is that these models have been shown to be able to approximate any non-linear function 

arbitrarily close (Cybenko, 1989; Hornik, 1991). Hence when applied to a time series 

which is characterized by truly non-linear dynamic relationships, the ANN will provide a 

global approximation to this unknown non-linear relationship. Previous studies unveil the 

applicability of ANNs to modeling and forecasting in economics. Applications include 

returns forecasting (Genςay, 1996; Haefke and Helmenstein, 1996a, 1996b; Genςay and 

Stengos, 1998), option pricing (Qi and Maddala, 1995), exchange rates (Kuan and Liu, 

1995; Tenti, 1996; Franses and van Griensven, 1998; Franses and van Homelen, 1998; 

Genςay, 1999; Giles et al., 2001), interest rates (Swanson and White, 1995) and inflation 

(Moshiri et al., 1999; Stock and Watson, 1999; Binner, Gazely and Chen, 2002).1 Due to 

the inherent ability of ANNs with recurrent connections (i.e. RNNs) to implicitly learn 

the non-linear temporal dynamics of sequential time series data without recourse to addi-

tional temporally-dependent external memory mechanisms, this work uses and evaluates 

RNN models. 

The paper is organized as follows. Section two introduces the VAR model, the RS-

VAR model and the RNN. Section three contains a brief description of the data together 

with a discussion of estimation (training) results. Section four presents the inflation fore-

cast evaluation results. Section five concludes the paper. 

2. Non-linear Models 

This section introduces the VAR model, the RS-VAR model and the RNN. The raison 

d’être for considering the latter models is an a priori belief that linear models will fair 
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badly in our forecasting experiment. It is therefore logical to include a linear model as a 

benchmark model in our analysis. A natural choice is the VAR model, which is com-

monly used in macroeconomic forecasting experiments. 

In the VAR model, the dynamics of , a k-dimensional vector of dependent vari-

ables at time t, is governed by the following p:th order autoregressive process:

tx

2 

 

(1) tptptt εxAxAαx ++++= −− ...110 , 

 

where  is a vector of intercepts, 0α p,...,1 , =llA are kk × coefficient matrices and εt is a 

white-noise distributed disturbance vector. Estimates of the coefficient matrices are ob-

tained using ordinary least squares. The model is said to be stable if its reverse character-

istic polynomial has no roots in and on the complex unit circle.  

For the VAR model, a conditional t+1 forecast of x is obtained from: 

 

(2) ( ) 1101 ... +−+ +++= ptptttE xAxAαx , 

 

for each t using the information set { }... ,, 1−= ttt xxX . The conditional t+1 forecast in (2) 

is a special case of the conditional dynamic τ+t  forecast where forecasted values of  

should be used for certain lags (depending on the forecast horizon and the number of in-

cluded lags). 

x

2.1 The Regime Switching VAR model 

We follow the common practice in the economic regime switching literature and assume 

that a discrete time-homogenous s-state first order Markov process governs the endoge-
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nous switches between the regimes. This assumption implies that the probability of a 

switch between different regimes is described by a constant transition matrix, that there is 

a different VAR model in each regime and that only the most recent state of the Markov-

process influences the transition probabilities. We also assume that  can be modeled as 

a discrete mixture of k-variate Gaussian distributions. This assumption implies that  is 

Normal distributed conditional on the prevailing regime and the information set  

Finally, we restrict the variance-covariance matrix in each regime to be constant. 

tx

tx

.1−tX

Taken together, if the prevailing regime at time t is { }sj  ..., ,1∈ , then the VAR proc-

ess is: 

 

(3) ( ) ( )
( )

( )
( )
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where  is the order of the VAR model, i.e. the number of included lags in regime j. 

Further, the matrix of transition probabilities, P = {pij}, where i, j = 1, …, s is determined 

by the equations: 

( )jp

 

(4) , [ ]iSjSp ttij === −1|Pr

 

where the state variable St denotes the regime prevailing at time t. 

This Markov switching model can be estimated via maximum likelihood as de-

scribed in Hamilton (1994). A well-known problem of regime switching models is that 

the likelihood surface is multimodal. For this reason, a strategy of how to be able to re-
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port the global maximum should be advised. Our solution to this problem is to use simu-

lated annealing to maximize the likelihood function. Simulated annealing is a derivative-

free stochastic search algorithm that, in contrast to conventional gradient based algo-

rithms, is able to escape from local maxima and hence is very well suited for estimation 

of regime switching models.3 

As the regimes are unobservable, St can be regarded as missing data. However, the 

probability that a given observation belongs to a particular regime can be computed. 

From this information, we can construct an optimal forecast probability that the next ob-

servation belongs to a particular regime. 

Let denote the updated (filtered) probability that , given the in-

formation set  The forecast probabilities for time t+1, given the information available 

at time t, are denoted  Following Hamilton (1994), let ξt|t denote the vector 

of updated probabilities and ξt+1|t the vector of forecast probabilities. The time t likelihood 

function value is obtained as a by-product from the following iterations to calculate the 

optimal forecast probabilities: 

)(Pr jStt = jSt =

.tX

).(Pr 1 jStt =+
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(5b) , tttt ||1 'ξPξ =+

 

where  is the vector of conditional densities, 1 is a unit column vector and º denotes 

(vector) element-by-element multiplication. This filter is proposed in Hamilton (1989) 

and can be thought of as a non-linear Kalman filter, where the probabilities are the state 

tφ
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variables. The filter outputs an optimal inference about the predicted and updated prob-

abilities through one set of prediction equations and another set of updating equations. 

The time t likelihood function is given by the denominator in (5a). In words, the likeli-

hood function is the weighted sum of the conditional densities, with weights given by the 

forecast probabilities. 

2.1.1 Forecasting Method 

For the RS-VAR model, the conditional t+1 forecast of x  is the weighted average of the 

s different forecasted within regime means, with weights given by the probability of each 

regime to prevail in the next period, i.e.: 
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for each t using the information set { }... ,, 1−= ttt xxX . In an s-regime model there are  

possible outcomes for each dependent variable 

τs

τ  periods ahead and  associated prob-

abilities. Hence, the 

τs

τ+t  forecast of  is calculated as the probability weighted average 

by traversing the non-recombining tree generated by the underlying Markov-chain along 

all possible paths. Note that the probability trees should be multiplied by the s updated 

probabilities according to (6). This reflects the uncertainty of the prevailing regime today, 

or, econometrically, the fact that the Markov chain is unobserved even ex post. 

x

4 

2.2 Recurrent Neural Networks 

Recurrent neural networks based on gradient descent learning5 are typically adaptations 

of the traditional feed-forward multi-layered perceptron (FF-MLP) trained with the back-
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propagation algorithm6 (Rumelhart et al., 1986). This particular class of RNN extends the 

FF-MLP architecture to include recurrent connections that allow network activations to 

feedback (as internal input at subsequent time steps) to units within the same or preceding 

layer(s). Units that receive such feedback values are referred to as context or state units. 

This internal memory enables the RNN to construct internal representations of tem-

poral order and dependencies since the temporal structure embedded within the data will 

be encoded within the spatial structure of the RNN. This is due to the sequence of 

weights to each unit connected to the input layer being convolved with different se-

quences of input examples (Haykin, 1999). Assuming non-linear activation functions are 

used, the universal function approximation properties of FF-MLPs naturally extends to 

RNNs. 

The pattern of recurrent connectivity strongly influences the computational power 

of RNNs where certain classes of RNNs have been shown to theoretically simulate Tur-

ing machines (Siegelmann and Sontag, 1991). More specifically, it has been shown that 

RNNs employing recurrent connections from the output layer back to the input layer (see 

Jordan, 1986) are analogous to infinite impulse response filters (IIRs) (Khan and Unal, 

1995). Likewise, those RNNs that contain recurrent connections from the hidden layer 

back to the input layer, such as Elman’s Simple Recurrent Networks (SRNs) (Elman, 

1990) are similar in computational power to Hidden Markov Models (HMMs) (Lee, 

1989). More generally, RNNs are considered dynamical systems that can represent at 

least auto-regressive with moving average (ARMA) estimators (Connor and Martin, 

1994). 

RNNs can be expressed generally as (modified from Chappelier et al., 2000): 
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f
tttt tf Θ= − xrr

(7b) , ),,( g
ttt tg Θ= ry

 

where r represents the context vector (recurrent variables); y refers to the activation vec-

tor on the output layer (regressands); x is the input vector (input variables or regressors); t 

refers to the current time step;  refers to the set of weights connecting the input layer 

to the hidden layer at time t; and  refers to the set of weights connecting the hidden 

layer to the output layer at time t; finally, functions f and g represent the activation vec-

tors from the hidden and output layers respectively. 

f
tΘ

g
tΘ

For the purposes of this paper, we use an RNN architecture that combines the rela-

tive strengths of the Jordan network (Jordan, 1986) with Elman’s SRN (Elman, 1990) to 

form a hybrid RNN that feeds both the hidden unit activations and output unit activations 

back to the context units of the input layer. This is shown in Figure 1. To reduce com-

plexity and the number of parameters, our model does not utilize a recurrent input layer 

or self-loops.  

 

[FIGURE 1 ABOUT HERE] 

 

We also use a common extension of the backpropagation algorithm for training 

RNNs called backpropagation-through-time (BPTT) (Rumelhart et al., 1986; Werbos, 

1990; Williams and Peng, 1990), which has proven more powerful than standard back-

propagation for training RNNs such as Jordan and Elman networks. BPTT works under 
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the assumption that for every recurrent MLP network, a feedforward MLP with identical 

behavior can be obtained by ‘unfolding the network over time’, i.e. a recurrent network 

state at time t can be viewed as though it was obtained from the t:th layer output of a cor-

responding FF-MLP network with T layers (Rumelhart et al., 1986), where T is the length 

of the sequence. When at the end of a sequence or h patterns have been propagated 

through the network, the external error is calculated and the errors and local gradients are 

backpropagated through the network from n until the initial time step. During this back-

error propagation phase, an additional error term for recurrent connections can be intro-

duced to emphasize unit-error contributions from subsequent time steps. Each individual 

weight change is then calculated as in standard backpropagation but applied and summed 

across all time steps resulting in one large weight change calculation for each weight. The 

weights are then adjusted as normal. In the case of epoch-wise BPTT (Williams and 

Peng, 1990) the context units are reset to some initial value at the beginning of each se-

quence. Due to these reset operations, we implement a discrete dynamical RNN as op-

posed to a continually running one. 

The equation for the hybrid Jordan-Elman RNN used in this work can be expressed 

generally as (modified from equations (7a) and (7b) above): 

 

(8a) ,  ),,( f
tttt f Θ= xcr

(8b) , ),( g
ttt g Θ= ry

 

where rt now represents the hidden unit activation vector at time t; ct refers to the con-

catenation of the previous hidden state vector, , and the previous external output re-1−tr
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sponse vector, ; yt refers to the external output activation vector at time t; as illus-

trated in Figure 1, xt refers to the external vector of input variables at time t;  refers to 

the set of weights connecting the input layer to the hidden layer; and  refers to the set 

of weights connecting the hidden layer to the output layer; finally, functions, as before, f 

and g represent the activation vectors from the hidden and output layers, respectively. 

1−ty

f
tΘ

g
tΘ

2.2.1 Forecasting Method  

When applying the selected RNN method to our forecasting task we follow the common 

practice of: i) normalizing the input variables to accelerate the learning process by avoid-

ing time consuming trajectories across the error surface caused by groups of successive 

observations sharing the same sign and thus direction; ii) generating the training (or esti-

mation) data from some in-sample using a sliding window of a pre-determined time-lag; 

iii) using the volume of training data to set an upper-limit on the number of allowable 

free parameters (weights) and thus to constrain network size in a way that will reduce 

over-fitting and subsequently increase generalization ability; iv) implementing an appro-

priate training regime with a learning rate schedule that encourages fast, stable and con-

vergent learning; v) defining a suitable stopping criteria; and vi) using the sliding window 

technique to generate forecasts of the required forecast horizon. 

The fundamental purpose of the training phase is for the RNN to learn to forecast 

(on its output vector y) each value of the dependent variables in x at time t+1 given a se-

quence of input vectors . { }... ,, 1−= ttt xxX

We use the hyperbolic tangent function for calculating the activation level for all 

processing units (hidden and output units) of the network. The hyperbolic tangent func-

tion is simply the logistic function rescaled and biased with user defined constants.  For 
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training the RNNs, we employ a ‘search and converge’ learning rate regime as defined 

by Darken and Moody (1991): 

(9) 

))
)1(

))(,0max((,1max(2/
2

21
1

1

0

Nc
Ncncc

c
N

n

−
−

−
+

=
η

η , 

where  η  is the learning rate, 0η  is the initial learning rate which we set to 0.01, N is the 

total number of training epochs, n refers to the current training epoch, and are user 

defined constants. This provides an effective time varying learning rate constant that 

guarantees convergence of stochastic approximation algorithms and has proven effective 

for temporal domains (for example, see Lawrence et al., 2000). The momentum term 

constant is fixed at 0.9 due to the low learning rates. Note that since our model is a dis-

crete-time RNN, the context units ( ) must be reset to some initial value after each  

forecast during training (estimation) and testing (forecast evaluation).  

1c 2c

tc 1+tx

For generating dynamic forecasts of each dependent variable τ  periods ahead, we 

maintain two input streams: stream A containing all real observations found in the fore-

cast evaluation (test) set and stream B consisting of the first τ−t real observations found 

in the training set, where t initially refers to the first observation to be forecast in the 

evaluation (test) sample. Stream B will grow dynamically over time as it accommodates 

the RNNs t+1 forecasts. We first initialize the RNNs context units and then using the 

standard sliding window technique we pass the first τ  observations in stream B through 

the network, generating dynamic observations at each step and appending them to stream 

B. Clearly, the first τ+t dynamic forecast cannot be generated until the last real observa-

tion in stream B is in the first position of the sliding window (i.e. becomes ). From tx
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thereon both streams are synchronously indexed. Dynamic τ+t forecasts are generated 

when the window of input observations becomes { }211 ..., ,,ˆ
−+−++ === ττ tttttt yxyxxX , 

where  is always a real observation extracted from stream A. Note that each element of 

 is presented sequentially to the RNN.  We continue processing in this way until all 

observations in stream A have been represented in . 

tx

tX̂

tx

3. Data and Estimation Results 

We obtain a monthly data set that covers June 1969 to October 2003 from EcoWin, yield-

ing a total of 413 observations. The three time-series we obtain are i) the Retail Price In-

dex (P); ii) M0 (M); and iii) Industrial Production (Y).7 Each of these series is logarithmi-

cally transformed and differenced, so that ( )tttt dYdMdP ,,=′x . For the RNN, all observa-

tions for each of the dependent input variables are independently normalized such that 

each variable in x has a zero mean and a unit standard deviation. The data is shown in 

Figure 2.  

 

[FIGURE 2 ABOUT HERE} 

 

The data up to October 1998 is used for estimation (training). The last five years of 

the data (November 1998 – October 2003; 60 observations) is used for forecast evalua-

tion. 

To limit the scope of our study somewhat and to facilitate comparison of forecasts 

from the different models, we use a fixed lag-length of 12 for our two vector autoregres-

sive models and for the RNNs, a temporal window containing 12 observations such that 
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each observation within the window is presented sequentially (rather than simultane-

ously) to the RNNs input layer. 

Before turning to a formal comparison of the forecasting performance, we briefly 

present the estimation results for the different models. The estimated dynamic structure 

of the price equation in the VAR(12) model is visualized in Figure 3. The parameters are 

depicted jointly with their two standard error bands. 

 

[FIGURE 3 ABOUT HERE] 

 

As can be seen, the estimated coefficient for the constant term is insignificant. The 

first lag of inflation is (relative to remaining coefficients) large and highly significant. We 

also find various higher lags of inflation as well as changes in M0 and industrial produc-

tion to be significant. Finally, it can be verified that the estimated model satisfies the 

theoretical stability restrictions. 

3.1 RS-VAR 

In the RS-VAR framework, we find that allowing for a different intercept in each regime, 

while leaving the dynamic structure unchanged across regimes, provides the best models 

for inflation forecasting purposes. When allowing for a different dynamic structure in dif-

ferent regimes, the forecasting performance deteriorates significantly, which may be in-

terpreted as a classical case of in-sample over-fitting. This result is in accordance with 

Krolzig (2004), who argues that forecast errors of economic time series from linear mod-

els are mainly due to shifts in the level or drift. Hence, we only report estimation (and 
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forecasting) results for a two-regime RS-VAR(12), with a different intercept and the 

same dynamic structure in each regime. 

 

[FIGURE 4 ABOUT HERE] 

 

The estimated dynamic structure of the price equation in the RS-VAR model can be 

found in Figure 4. The point estimate of the intercept in the second regime is obviously 

much higher than in the first regime, although both are statistically insignificant. Turning 

to the lag structure, we find that the first, sixth and twelfth lag of inflation is significant as 

well as the fourth, fifth and ninth lag of changes in M0 and the fifth lag of industrial pro-

duction. This pattern is very similar to the one found for the linear VAR model (Figure 

3). 

 

[TABLE 1 ABOUT HERE] 

 

The estimated probabilities for remaining in each regime are presented in Table 1. 

The expected duration for each regime is determined by  where  is the 

probability of remaining in regime j once there. For the preferred two-regime model, both 

regimes are relatively persistent, with expected durations of about 47 and 23 months, for 

regime one and regime two, respectively. 

1)1( −− jjp jjp

 

[FIGURE 5 ABOUT HERE] 
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Time-series plots of the updated probabilities can be found in Figure 5. The 

probabilities attached to regime one and two vary (in principle) between zero and one. As 

is evident from Table 1, volatility is higher in the second regime for both inflation, 

money growth and growth in industrial production. This is consistent with the time-series 

plots of the updated probabilities, in which it can be seen that the second regime is 

dominating up until the beginning of the eighties, while the first regime has dominated 

since then. In other words, the second regime seems to capture the period of high 

inflation and high inflation volatility during the first, say, 12 years of the sample, while 

the first regime captures the period of lower inflation and lower inflation volatility during 

the next 20 years. However, one must remember that we simultaneously model inflation, 

money growth and growth in industrial production, which means that the regimes must be 

interpreted as different regimes of the economy, rather than different regimes of inflation 

(only). 

3.2 RNN 

All RNN models contain three input units (to present  to the processing units) and 

three output units (to forecast ). The number of hidden units is empirically estab-

lished.  

tx

1+tx

Using the sliding window technique to generate training sequences from the in-

sample observations we obtain a training set consisting of the following total number of 

patterns:   

(10) 
m

mqz −
= , 
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where z refers to the total number of input pairs (a pair refers to an input vector x and an 

output vector encoding the desired response, i.e. values of x  at the next time period), q is 

the total number of observations in the time series and m is the window size. The result-

ing number of training sequences (collections of training pairs) is simply: 

(11) 
m
zv = . 

For our purposes, q=352 and m=12, thus z=4080 and v=340.  

The number of patterns generated (z) form a basis for our upper limit constraint on 

the number of allowable parameters (weights) and thus on the number of hidden units 

allowed. The architecture is therefore fixed in accordance with the data and with the com-

plexity of the underlying problem. We expect over-fitting to occur as the number of free 

parameters approaches z, i.e. 4,080 (e.g. 60 hidden units or above).   

For all training (or estimation) experiments weight initializations were in the range 

of [-0.1, 0.1]. Our stopping condition is a function of the root mean squared error (RMSE) 

and number of training cycles performed. A training cycle is where the network has proc-

essed all training patterns and sequences once (a single pass of the whole data through the 

network) and is referred to as an epoch. An RNN is stopped training when either the 

number of epochs reaches 2,000 or the rate of change of the RMSE is sufficiently small, 

whichever comes first. During each epoch, successive sequences are randomly selected to 

encourage a wider search of the weight space. The standard summed squared error (quad-

ratic cost) function was used for all error calculations. 

After performing a number of training experiments with various hidden unit con-

figurations (below 60) we found that an RNN configuration with 50 hidden units, 

RNN(50), and 3,003 free parameters (26% fewer than available training cases) provides 
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an optimum fit for the in-sample data with respect to subsequent dPt+1 performance on 

the evaluation forecast data (generalization). After 2,000 epochs, the RNN(50) obtained 

an RMSE of 5.0093 for the whole in-sample data set and an RMSE of 0.2826 for the dP 

observations. 

We also assessed an RNN with more free parameters than there were training cases 

to confirm our intuitions that classic over-fitting would naturally occur. After 2,000 ep-

ochs, an RNN with 100 hidden units, RNN(100), and 11,003 free parameters (170% more 

than available training cases) obtained a tighter fit of the whole in-sample data set with an 

RMSE of 4.2246. As expected, it obtained a tighter fit (approximately 26% closer) for the 

in-sample dP observations with an RMSE of 0.2102 at the expense of yielding poorer 

generalization performance for dPt+1 forecasts. 

4. Forecast Evaluation  

Turning to a formal comparison of the forecasts, we use three common forecast evalua-

tion criteria; mean errors (ME), root mean squared errors (RMSE), and mean absolute er-

rors (MAE). ME can give an indication as to whether the forecast is biased. RMSE is the 

most frequently used measure, while MAE is known to be less sensitive to outliers. Let: 
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where K is the total number of out-of-sample forecasts and τ is the forecast horizon. In 

our specific study K=60 or 49, depending on whether τ equals one or twelve. We com-

plement the raw measures in (12b-c) by presenting ratios of the MAE and RMSE for each 

model to that of the best performing model.  

4.1 One-month ahead forecasts 

We present the t+1 forecasts as a 2×2-panel in Figure 6. Forecasts (black line) are com-

pared to actual inflation (gray line) in each panel. 

 

[FIGURE 6 ABOUT HERE] 

 

We immediately note that the VAR-model performs reasonably well in comparison 

with the non-linear models. It tends, however to overshoot large increases in monthly in-

flation on occasions. The forecasts from the RS-VAR model are quite similar to those 

obtained from the VAR-model. We note, however, that there are fewer tendencies to 

overshoot large changes in inflation compared to the standard VAR. Although the pattern 

of the forecasts obtained from the RNN(50) and RNN(100) models differs from the fore-

casts obtained by the two VAR-models, these models appear to give good forecasts of 

inflation as well. An interesting observation is that all models poorly capture the fall in 

the price level in January and July up to 2001.  

 

[TABLE 2 ABOUT HERE] 
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As is evident from the calculated ME in Table 2, all models but RNN(50) are 

slightly biased upwards. For the two VAR-models and the RNN(100) model, the bias is 

approximately 0.1 percent, but substantially lower for the RNN(50) model. Turning next 

to RMSE and MAE, both criteria rank the different models under evaluation similarly. 

The RNN(50) model and the RS-VAR model are the best models. They perform ap-

proximately as well, with the RS-VAR model yielding slightly lower values for both 

MAE as well as RMSE. The RNN(100) model is the worst performing model, yielding 

higher values of both MAE and RMSE than are obtained from the linear VAR model. In 

fact, looking at ratios of the forecast-evaluation criterion, it performs up to 33% worse 

than the best performing RS-VAR model. 

4.2 One-year ahead forecasts 

We present the t+12 forecasts as a 2×2-panel in Figure 7. As before, forecasts (black line) 

are compared to actual inflation (gray line) in each panel. 

 

 [FIGURE 7 ABOUT HERE] 

 

A noticeable difference between the two VAR models and the two RNNs is that forecasts 

from the VAR models appear to be biased upwards. This tendency seems to be more pro-

nounced compared with the one-month ahead forecasts.  

 

[TABLE 3 ABOUT HERE] 
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The fact that the VAR-models overshoot actual inflation for the one-year ahead forecasts 

is confirmed by the ME criterion presented in Table 3. The RNN(50) undershoots actual 

inflation. The RNN(100) still overshoots inflation, although slightly less than was the 

case on a one-month ahead basis. The RNN(100) model is now, judging from MAE and 

RMSE the best forecaster. The second best is the RS-VAR model followed by the 

RNN(50) model. The VAR model performs significantly worse than the other models. 

Finally, we observed an interesting behavior when comparing RNN(50) and 

RNN(100) dPt+12 dynamic forecasts. Contrary to our intuitions, we found that the 

RNN(100) yielded superior performance with an RMSE of 0.3018, 9% better than that 

generated by the RNN(50) (i.e. an RMSE of 0.3332). This is a good example of the un-

predictable nature of RNNs and further research is required to assess which factors within 

its complex internal dynamics is causing such perturbations in expected behavior. We are 

particularly interested in the approach taken by Lawrence et al. (2000) and Giles et al. 

(2001), for extracting discrete finite state automata from RNNs to help understand its be-

havioral patterns and intend to pursue this further. 

5. Conclusions  

In this study, we have compared the forecasting performance of two non-linear models, a 

RS-VAR model and a RNN model, with that of a benchmark linear VAR model. Our 

specific forecast experiment is UK inflation. We find that the RNN model and RS-VAR 

model outperform the VAR model for both monthly and annual forecast horizons. The 

RS-VAR and the RNN perform approximately on par over both forecast horizons. For the 

RS-VAR model, we find that imposing the restriction that only the intercept is allowed to 
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vary across regimes provides the best forecasts. For the RNN-model, the forecasting per-

formance depends on the number of hidden units and thus free parameters included. 
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Figure 1: The Jordan-Elman hybrid network architecture. 
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Figure 2: The log-differenced time series. 
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Figure 3: Estimated coefficients for price equation in VAR-model 

with two standard error bands. 
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Figure 4: Estimated coefficients for price equation in RS-VAR-model 

with two standard error bands. 
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Figure 5: Filtered probabilities of regimes in RS-VAR-model. 
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Figure 6: Forecasted (t+1) and actual values of inflation. 
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Figure 7: Forecasted (t+12) and actual values of inflation. 
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Table 1: Estimates of transition probabilities and volatilities. 

 
 pjj jdPσ  jdMσ  jdYσ  

Regime 1 0.9787 
(0.0130) 

0.2295 
(0.0138) 

0.6614 
(0.0457) 

2.2302 
(0.1551) 

Regime 2 0.9567 
(0.0296) 

0.6680 
(0.0443) 

1.3194 
(0.1114) 

3.7160 
(0.3669) 

Note: Standard errors in parentheses. 
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Table 2: Evaluation criteria for t+1 forecasts. 

 VAR RS-VAR RNN(50) RNN (100) 
ME 0.1285 0.1375  -0.0097 0.0616 
MAE 0.2712 0.2245 0.2267 0.2987 
RMSE 0.3186 0.2752 0.2889 0.3533 
MAE-ratio  120.80% 100.00% 100.98% 133.03% 
RMSE-ratio 115.77% 100.00% 104.97% 128.39% 
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Table 3: Evaluation criteria for t+12 forecasts. 

 VAR RS-VAR RNN(50) RNN (100) 
ME 0.1963 0.1739 -0.2160 0.0428 
MAE 0.2984 0.2579 0.2771 0.2498 
RMSE 0.3761 0.3177 0.3332 0.3018 
MAE-ratio  119.44% 103.25% 110.91% 100.00% 
RMSE-ratio 124.63% 105.28% 110.41% 100.00% 
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τ2⋅

1 For a detailed account of vector-based machine learning models applied to financial prediction, see Shad-

bolt and Taylor (2002) and for hybrid models, see Kovalerchuck and Vityaev (2000). 

2 For thorough textbook treatments of VAR-models, see for example Enders (1995), Hamilton (1994) and 

Lütkepohl (1991). 

3 Relevant references to simulated annealing include Corona et al. (1987), Goffe et al. (1994), Fishman 

(1996, pp. 384-406) and Robert and Casella (1999, pp. 194-202). The program used in this paper is a C++ 

implementation of the algorithm in Goffe et al. (1994). 

4 From a computational perspective, there are therefore s  different probabilities τ  periods ahead, each 

of which should be multiplied by the corresponding τ  periods ahead forecast of  .x

5 A detailed treatment of gradient descent learning for RNNs is provided in Pearlmutter (1995) and for 

brevity is not repeated here.  

6 From hereon simply referred to as FF-MLP. 

7 Our sample is restricted backward in time by the availability of data on M0 in EcoWin. 
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