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Abstract--The new LHC experiments at CERN will have very 

large numbers of channels to operate. In order to be able to 
configure and monitor such large systems, a high degree of 
parallelism is necessary. The control system is built as a 
hierarchy of sub-systems distributed over several computers. A 
toolkit – SMI++, combining two approaches: finite state 
machines and rule-based programming, allows for the 
description of the various sub-systems as decentralized deciding 
entities, reacting in real-time to changes in the system, thus 
providing for the automation of standard procedures and for 
the automatic recovery from error conditions in a hierarchical 
fashion. 

In this paper we will describe the principles and features of 
SMI++ as well as its integration with an industrial SCADA tool 
for use by the LHC experiments and we will try to show that 
such tools, can provide a very convenient mechanism for the 
automation of large scale, high complexity, applications. 

I. INTRODUCTION 
arge Control Systems, like the ones needed by the 
LHC experiments have some specific requirements: 

• Distribution and Parallelism - Due to the Large 
amount of devices and IO channels, the acquisition 
and monitoring of the data has to be done in parallel 
and distributed over several machines. 

• Hierarchical Control – The data gathered by the 
different machines has to be summarized in order to 
present a simplified but coherent view to the users 

• Decentralized Decision Making – Each sub-system 
should be capable of taking local decisions since a 
centralized decision engine would be a bottleneck. 

• Partitioning – Due to the large number of different 
teams involved and the various operation modes of 
the system the capability of operating parts of the 
system independently and concurrently is very 
important. 

• Full Automation – Standard operation modes and 
error recovery procedures should be, as much as 
possible, fully automated in order to prevent human 
mistakes and to speed up standard procedures. 

• Intuitive User Interfaces – Since the operators will 
not be control system experts it is important that the 
user interfaces provide a uniform and coherent view 
of the system and are easy to use. 

In order to solve these problems effectively the four LHC 
experiments at CERN have combined efforts by creating a

 
common control project – the Joint Controls Project (JCOP) 
[1], to define and implement common solutions for their 
control and monitoring systems. 
In the context of JCOP a common architecture has been 
devised and a common control Framework [2] has been 
developed. 

This framework is based on a SCADA (Supervisory 
Control And Data Acquisition) system called PVSSII [3]. 
PVSSII, although providing most of the needed features, 
does not provide for hierarchical control and abstract 
behavior modeling. So another tool: SMI++ [4] has been 
integrated with PVSSII and can thus be used as a component 
of the Framework.  

II. ARCHITECTURE 
From the software point of view, JCOP adopted a 

hierarchical, tree-like, structure to represent the structure of 
sub-detectors, sub-systems and hardware components. This 
hierarchy should allow a high degree of independence 
between components, for concurrent use during integration, 
test or calibration phases, but it should also allow integrated 
control, both automated and user-driven, during physics data-
taking. 

This tree is composed of two types of nodes: “Device 
Units” (Devs) which are capable of “driving” the equipment 
to which they correspond and "Control Units" (CUs) which 
correspond to sub-systems and can monitor and control the 
sub-tree below them, i.e., they model the behavior and the 
interactions between components. Fig. 1. shows the 
hierarchical architecture defined by JCOP. 

 
Fig. 1.  JCOP Software Architecture 

Tools for the Automation of Large Distributed 
Control Systems 

C. Gaspar 
CERN, CH 1211 Geneva 23, Switzerland 

B. Franek 
Rutherford Appleton Laboratory, Chilton, Didcot, UK 

L 



 

The architecture defined by JCOP is the basis for the 
development of the common framework. Each LHC 
experiment can than adopt this architecture and use the 
framework tools wherever they find it suitable. 

III. THE FRAMEWORK  
The JCOP Framework provides for the integration of the 

various components (devices) in a coherent and uniform 
manner. JCOP defines the framework as: 

“An integrated set of guidelines and software tools used by 
detector developers to realize their specific control system 
application. The framework will include, as far as possible 
all templates, standard elements and functions required to 
achieve a homogeneous control system and to reduce the 
development effort as much as possible for the developers”. 

The architectural design of the software framework is an 
important issue. The framework has to be flexible and allow 
for the simple integration of components developed 
separately by different teams and it has to be scalable to 
allow a very large numbers of channels. 

Some of the components of this framework include: 
• Guidelines imposing rules necessary to build 

components that can be easily integrated (naming 
conventions, user interface look and feel, etc.) 

• Drivers for different types of hardware, such as 
fieldbuses, and PLCs. 

• Ready-made components for commonly used devices 
configurable for particular applications, such as high 
voltage power supplies, temperature sensors, etc. 

• Tools to build control hierarchies of device and 
control units as described in the architecture chapter. 

While “Device Units” are typically implemented using 
PVSSII features directly, “Control Units” are abstract objects 
and are better implemented using a modeling tool. For this 
purpose  SMI++ was integrated into this framework. 

IV. SMI++  
SMI++ is a toolkit for designing and implementing 

distributed control systems.  SMI++’s methodology 
combines three concepts:  object orientation, Finite State 
Machines (FSM) and rule-based reasoning. 

Classes and objects allow the decomposition of a complex 
system into smaller manageable entities. Each entity, or 
object, is described as a finite state machine, allowing the 
modeling of its behavior in terms of simple states and 
actions. Each object is always in a well-determined state. For 
each state a list of rules can be declared which when fulfilled 
will trigger, asynchronously, a change of state or the 
execution of an action. 

SMI++ objects can be “concrete” or “abstract”. Concrete 
objects interface to real-world devices, like a power supply or 
a temperature sensor, through an associated process: a proxy. 

Logically related objects, abstract and concrete, can be 
grouped inside SMI++ “domains” representing a given sub-
system. Fig. 2 shows the interaction between the components 
of the SMI++ toolkit. 

 
Fig. 2.  SMI++ Run-time Environment 

  
SMI++ domains and their objects are described using a 
simple language: SML- the State Management Language. 

A. The SML Language 
Concrete objects are simply declared in SML, i.e. only 

their list of states and possible actions for each state are 
defined. The actual implementation is externally provided by 
a process written in “C”, or in “C++” or by a PVSS script, if 
the device is implemented within PVSS. Abstract objects are 
completely implemented in SML. Fig. 3 shows an example 
declaration of several devices. In this example three power 
supplies are declared as being of class “PowerSupply”. The 
three power supplies are then included in an “objectset” so 
that they can be manipulated as a group, when necessary. 
 In the class definition the qualifier “/associated” is used to 
mean that the actual implementation is done by an associated 
proxy. The “/dead_state” qualifier instructs any derived 
object to go to the specified state, in this case 
“UNKNOWN”, if for any reason the respective proxy is not 
running or not reachable. 
 Abstract object description will contain not only the 
possible states and actions, but also the code that implements 
each action and the rules for asynchronous transitions. The 
SML instruction set is reduced to a small number of simple 
and intuitive instructions.  

 
Fig. 3.  SML Device Declaration 



 

The most important instructions are: 
• “do” instruction: send a command to an object or to 

a set of objects. Several consecutive “do” 
instructions will be sent in parallel to the various 
objects 

• “if” instruction: test the state of an object or a group 
of objects. “If” instructions can block if one of the 
objects being tested is still transiting. 

•  “move_to” instruction: end the action by moving to 
a new state. 

For each state, before defining the possible list of actions, 
the user can define a list of rules, by means of “when” 
clauses. 

• “when” instruction: while the object is in a given 
state whenever the condition gets fulfilled, execute 
an action (“do” action) or change state (“move_to” 
state).  

“When” instructions are the means of SMI objects to react 
to changes of other objects, i.e. to changes in their 
environment. Several rules can be listed consecutively, they 
are examined in order, if one of them triggers it will be 
immediately executed possibly provoking a change of state 
and therefore stopping the execution of the list of rules. In the 
example of Fig. 4, a “HighVoltage” abstract object is 
modeled. It uses the PSS objectset declared in Fig. 3 above, 
in order to send commands and to react to state changes of all 
the power supplies using simple instructions. 

Objects can be dynamically included or excluded 
into/from a set by any object in the system by using two other 
instructions: “insert objet in set” and “remove object from 
set”. As a result the code example in Fig. 4 will act/react on 
all power supplies included in the set at the time of 
execution. 

In order to achieve complete automation an object can 
define rules based on the states of any object in the system. 
In the example of Fig. 5 an object of class DCS is made to 
get all sub-detector’s DCS systems ready whenever the 
object “STATE” in the “LHC” domain goes to state 
“PHYSICS”. This allows for the complete automation of the 
experiment based on the state of the LHC accelerator.  

 
Fig. 4.  SML Object Implementation 

 
Fig. 5.  SML Asynchronous Object Automation 

B. The Tools 
SMI++ offers a set of run-time tools to implement and 

deploy the control system. Some of the tools are: 
• Smirtl – a run time library to be used by proxies in 

order to communicate with their respective SMI 
domain. 

• smiSM – A logic engine which at startup reads the 
translated SML code and  instantiates the objects of 
a given domain. There will be one smiSM process 
per SMI domain. 

• Smiuirtl – A run-time library that can be used by 
client programs, in particular user-interfaces, in 
order to view the state of any object in the system 
and to send commands to them. 

All three tools handle the necessary communications in a 
transparent way. Any of the components, SMI domains, 
proxies and user interfaces, can dynamically move from one 
machine to another, all communications are automatically 
reestablished due to the use of an underlying communication 
package, called DIM [4]. All tools are available on several 
platforms, various UNIX flavors (including Linux) and on 
Windows.  The complete control system can be deployed 
across several (hundreds) heterogeneous machines. 

V. FRAMEWORK  INTEGRATION & FEATURES 
SMI++ has been interfaced to the PVSS SCADA system, 

in order to provide a JCOP framework component for 
Hierarchical Control. 

A. Hierarchical Control 
The framework offers tools to implement a hierarchical 

control system. As described in the Architecture chapter 
above, JCOP defined a hierarchical control tree composed of 
two types of nodes: “Device Units” and “Control Units”. 
These components match perfectly the SMI++ concepts. 
Device Units correspond to concrete objects implemented as 
proxies within PVSS and Control Units correspond to SMI 
domains.  

The integration of SMI++ with PVSS provided for several 
new features:  

A graphical user interface was created which allows the 
configuration of object types, declaration of states and 
actions, etc. and for the generation of SML code, actions and 
rules through the use of wizards. The hierarchical tree of 
components can also be configured graphically as shown if 
Fig. 6.  

The PVSS archiving mechanism can in addition be used to 
store state transitions and so be able to retrieve the time 
evolution and long-term statistics of object state changes.   



 

 
Fig. 6.  Framework panel for creating hierarchies 

 
The integration of SMI++ with the JCOP framework also 

provided for a clear definition of interfaces and task 
separation: the PVSS implementation of device units in terms 
of scripts contains only basic actions, no intelligence. The 
logic behavior is described in SML and implemented by the 
SMI objects. The advantage is that if it is necessary to 
replace some hardware only the PVSS part is affected. On 
the other hand if the logic behavior should change than only 
the SMI rules change.    

B. Partitioning 
As mentioned before, partitioning is the capability of 

monitoring and/or controlling a part of the system, a sub-
system, independently and concurrently with the others in 
order to allow for tests, calibration, etc. 

Each Control Unit knows how to partition "out " or "in" its 
children. Excluding a child from the hierarchy implies that its 
state is not taken into account any more by the parent in its 
decision process, that the parent will not send commands to it 
and that the owner operator releases ownership so that 
another operator can work with it. 

It was felt that excluding completely a part of the tree was 
not flexible enough, so the following partitioning modes 
were defined and implemented in the Framework: 

• Included - A component is included in the control 
hierarchy; it receives commands from and sends its 
state to its parent. 

• Excluded - A component is excluded from the 
hierarchy, it does not receive commands and its state 
is not taken into account by its parent. This mode can 
be used when the component is either faulty or ready 
to work in stand-alone mode. 

• Manual - A component is partially excluded from the 
hierarchy in that it does not receive commands but its 
state is still taken into account by its parent. This 

mode can be used to make sure the system will not 
send commands to a component while an expert is 
working on it. Since the component’s state is still 
being taken into account, as soon as the component is 
fixed the operations will proceed. 

• Ignored - A component can be ignored, meaning that 
its state is not taken into account by the parent but it 
still receives commands. This mode can be useful if a 
component is reporting the wrong state or if it is only 
partially faulty and the operator wants to proceed 
nevertheless. 

The partitioning mechanism again fits perfectly with the 
SMI++ concept of object sets and was implemented this way. 
Each Control Unit automatically inherits an SMI++ 
Partitioning object. 

C. Distribution 
Both PVSSII and SMI++ allow for the implementation of 

large distributed and decentralized systems. There is no rule 
for the mapping of Control Units and Device Units into 
machines, i.e. there can be one or more of these units per 
machine depending on their complexity, or other factors such 
as development teams they “belong” to. The framework 
allows users to describe their system and run it transparently 
across several computers. Since both tools can run on mixed 
environments comprising Linux and Windows machines, the 
user can also choose the best platform for each specific task. 

D. Error handling 
Error handling is the capability of the control system to 

detect errors and to attempt recovery from them. It should 
also inform and guide the operators and to record/archive the 
information about problems for maintaining statistics and for 
further analysis offline. 

Since SMI++ is also a rule-based system, errors can be 
handled and recovered using the same mechanism used for 
“standard” system behavior. There is no basic difference 
between implementing rules like “when system configured 
start run” and “when system in error reset it”. The recovery 
from known error conditions can be automated using the 
hierarchical control tools based on sub-system’s states. In 
conjunction with the error recovery provided by SMI++ full 
use is made of the powerful alarm handling tools provided by 
PVSS II for allowing equipment to generate alarms (possibly 
using the same conditions that generate states), for archiving, 
filtering, summarizing and displaying alarms to users and to 
allow users to mask and/or acknowledge alarms. 

E. Automation 
By integrating SMI++, the Framework tools can provide 

for complete automation of a large control system. SMI++’s 
mechanism for automation of procedures and for automated 
error-recovery is quite suited for large systems: The recovery 
mechanism is: 

• Bottom up – each object reacts in an event-driven, 
asynchrounous, fashion to changes of its children 

• Distributed – each sub-system recovers its own 
errors and automates procedures for its sub-tree. For 
large physics experiments this is an advantage, since 



 

each team knows best how to handle their 
equipment. 

This decentralized approach is inherently scalable, since 
there is no centralized expert system examining all faults in 
the system, which could provoke a bottleneck. Furthermore it 
allows for parallel recovery, for example, if there is general 
power cut, each sub-system can start recovering in parallel 
when the power comes back. 

The framework tools allow building a completely 
automated hierarchy based on the states of the devices 
composing the experiment and on the states of external 
elements like the LHC accelerator. In the example of Fig. 7, 
the top part of the figure represents a typical hierarchy for a 
physics experiment. But it is also possible to build parallel 
hierarchies, the bottom part of Fig. 7, shows an example of a 
“safety” hierarchy that would contain code like: “When any 
gas system in error cut all high voltages in the experiment”. 

 
Fig. 7. Parallel control hierarchies 

F. System operation & Run Control 
The framework provides configurable operation panels. 

These panels are automatically generated and will have 
predefined areas showing the states of the hierarchical 
components, their partitioning modes, their alarm states, etc. 
and user defined areas that are specific to the task of that 
particular component. The user can navigate through the 
hierarchy by clicking on the different components. 

The panel showing the component at the top of the 
hierarchy provides a high-level, summarized, view of the 
complete underlying system. 

The main interface to a physics experiment is normally 
called the “Run Control”. A simple Run-control panel is 
shown as an example in Fig. 8. 

The operation of the different sub-systems, or complete 
sub-detectors when working in stand-alone mode, is based on 
the same tools and will provide similar interfaces. 

 
 
 
 

 
Fig. 8.  Prototype Run Control interface. 

VI. CONCLUSIONS 
The SMI++ framework is a powerful tool which, while 

merging the concepts of object modeling, finite state 
machines and rule-based reasoning, allows the 
implementation of homogeneous, integrated and fully 
automated control systems. Its inherent capabilities of 
distribution and scalability over large sets of heterogeneous 
platforms makes it extremely well-suited to control very 
large applications. The SMI++ framework has become a time 
tested, robust tool through its use by major particle physics 
experiments: the DELPHI experiment at CERN in the recent 
past and the BaBar experiment at SLAC, which is currently 
using it in production. 

SMI++ has been integrated with the SCADA tool PVSS II 
in order to provide extra functionality, like graphical tools 
and standardized partitioning modes, and is now being used 
by the four LHC experiments at CERN for the design of 
either full or partial experiment control. 
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