
LH
C

b-
PR

O
C

-2
00

5-
00

7
05

/0
4/

20
05

Abstract--The new LHC experiments at CERN will have very

large numbers of channels to operate. In order to be able to
configure and monitor such large systems, a high degree of
parallelism is necessary. The control system is built as a
hierarchy of sub-systems distributed over several computers. A
toolkit – SMI++, combining two approaches: finite state
machines and rule-based programming, allows for the
description of the various sub-systems as decentralized deciding
entities, reacting in real-time to changes in the system, thus
providing for the automation of standard procedures and for
the automatic recovery from error conditions in a hierarchical
fashion.

In this paper we will describe the principles and features of
SMI++ as well as its integration with an industrial SCADA tool
for use by the LHC experiments and we will try to show that
such tools, can provide a very convenient mechanism for the
automation of large scale, high complexity, applications.

I. INTRODUCTION
arge Control Systems, like the ones needed by the
LHC experiments have some specific requirements:

• Distribution and Parallelism - Due to the Large
amount of devices and IO channels, the acquisition
and monitoring of the data has to be done in parallel
and distributed over several machines.

• Hierarchical Control – The data gathered by the
different machines has to be summarized in order to
present a simplified but coherent view to the users

• Decentralized Decision Making – Each sub-system
should be capable of taking local decisions since a
centralized decision engine would be a bottleneck.

• Partitioning – Due to the large number of different
teams involved and the various operation modes of
the system the capability of operating parts of the
system independently and concurrently is very
important.

• Full Automation – Standard operation modes and
error recovery procedures should be, as much as
possible, fully automated in order to prevent human
mistakes and to speed up standard procedures.

• Intuitive User Interfaces – Since the operators will
not be control system experts it is important that the
user interfaces provide a uniform and coherent view
of the system and are easy to use.

In order to solve these problems effectively the four LHC
experiments at CERN have combined efforts by creating a

common control project – the Joint Controls Project (JCOP)
[1], to define and implement common solutions for their
control and monitoring systems.
In the context of JCOP a common architecture has been
devised and a common control Framework [2] has been
developed.

This framework is based on a SCADA (Supervisory
Control And Data Acquisition) system called PVSSII [3].
PVSSII, although providing most of the needed features,
does not provide for hierarchical control and abstract
behavior modeling. So another tool: SMI++ [4] has been
integrated with PVSSII and can thus be used as a component
of the Framework.

II. ARCHITECTURE
From the software point of view, JCOP adopted a

hierarchical, tree-like, structure to represent the structure of
sub-detectors, sub-systems and hardware components. This
hierarchy should allow a high degree of independence
between components, for concurrent use during integration,
test or calibration phases, but it should also allow integrated
control, both automated and user-driven, during physics data-
taking.

This tree is composed of two types of nodes: “Device
Units” (Devs) which are capable of “driving” the equipment
to which they correspond and "Control Units" (CUs) which
correspond to sub-systems and can monitor and control the
sub-tree below them, i.e., they model the behavior and the
interactions between components. Fig. 1. shows the
hierarchical architecture defined by JCOP.

Fig. 1. JCOP Software Architecture

Tools for the Automation of Large Distributed
Control Systems

C. Gaspar
CERN, CH 1211 Geneva 23, Switzerland

B. Franek
Rutherford Appleton Laboratory, Chilton, Didcot, UK

L

The architecture defined by JCOP is the basis for the
development of the common framework. Each LHC
experiment can than adopt this architecture and use the
framework tools wherever they find it suitable.

III. THE FRAMEWORK
The JCOP Framework provides for the integration of the

various components (devices) in a coherent and uniform
manner. JCOP defines the framework as:

“An integrated set of guidelines and software tools used by
detector developers to realize their specific control system
application. The framework will include, as far as possible
all templates, standard elements and functions required to
achieve a homogeneous control system and to reduce the
development effort as much as possible for the developers”.

The architectural design of the software framework is an
important issue. The framework has to be flexible and allow
for the simple integration of components developed
separately by different teams and it has to be scalable to
allow a very large numbers of channels.

Some of the components of this framework include:
• Guidelines imposing rules necessary to build

components that can be easily integrated (naming
conventions, user interface look and feel, etc.)

• Drivers for different types of hardware, such as
fieldbuses, and PLCs.

• Ready-made components for commonly used devices
configurable for particular applications, such as high
voltage power supplies, temperature sensors, etc.

• Tools to build control hierarchies of device and
control units as described in the architecture chapter.

While “Device Units” are typically implemented using
PVSSII features directly, “Control Units” are abstract objects
and are better implemented using a modeling tool. For this
purpose SMI++ was integrated into this framework.

IV. SMI++
SMI++ is a toolkit for designing and implementing

distributed control systems. SMI++’s methodology
combines three concepts: object orientation, Finite State
Machines (FSM) and rule-based reasoning.

Classes and objects allow the decomposition of a complex
system into smaller manageable entities. Each entity, or
object, is described as a finite state machine, allowing the
modeling of its behavior in terms of simple states and
actions. Each object is always in a well-determined state. For
each state a list of rules can be declared which when fulfilled
will trigger, asynchronously, a change of state or the
execution of an action.

SMI++ objects can be “concrete” or “abstract”. Concrete
objects interface to real-world devices, like a power supply or
a temperature sensor, through an associated process: a proxy.

Logically related objects, abstract and concrete, can be
grouped inside SMI++ “domains” representing a given sub-
system. Fig. 2 shows the interaction between the components
of the SMI++ toolkit.

Fig. 2. SMI++ Run-time Environment

SMI++ domains and their objects are described using a
simple language: SML- the State Management Language.

A. The SML Language
Concrete objects are simply declared in SML, i.e. only

their list of states and possible actions for each state are
defined. The actual implementation is externally provided by
a process written in “C”, or in “C++” or by a PVSS script, if
the device is implemented within PVSS. Abstract objects are
completely implemented in SML. Fig. 3 shows an example
declaration of several devices. In this example three power
supplies are declared as being of class “PowerSupply”. The
three power supplies are then included in an “objectset” so
that they can be manipulated as a group, when necessary.
 In the class definition the qualifier “/associated” is used to
mean that the actual implementation is done by an associated
proxy. The “/dead_state” qualifier instructs any derived
object to go to the specified state, in this case
“UNKNOWN”, if for any reason the respective proxy is not
running or not reachable.
 Abstract object description will contain not only the
possible states and actions, but also the code that implements
each action and the rules for asynchronous transitions. The
SML instruction set is reduced to a small number of simple
and intuitive instructions.

Fig. 3. SML Device Declaration

The most important instructions are:
• “do” instruction: send a command to an object or to

a set of objects. Several consecutive “do”
instructions will be sent in parallel to the various
objects

• “if” instruction: test the state of an object or a group
of objects. “If” instructions can block if one of the
objects being tested is still transiting.

• “move_to” instruction: end the action by moving to
a new state.

For each state, before defining the possible list of actions,
the user can define a list of rules, by means of “when”
clauses.

• “when” instruction: while the object is in a given
state whenever the condition gets fulfilled, execute
an action (“do” action) or change state (“move_to”
state).

“When” instructions are the means of SMI objects to react
to changes of other objects, i.e. to changes in their
environment. Several rules can be listed consecutively, they
are examined in order, if one of them triggers it will be
immediately executed possibly provoking a change of state
and therefore stopping the execution of the list of rules. In the
example of Fig. 4, a “HighVoltage” abstract object is
modeled. It uses the PSS objectset declared in Fig. 3 above,
in order to send commands and to react to state changes of all
the power supplies using simple instructions.

Objects can be dynamically included or excluded
into/from a set by any object in the system by using two other
instructions: “insert objet in set” and “remove object from
set”. As a result the code example in Fig. 4 will act/react on
all power supplies included in the set at the time of
execution.

In order to achieve complete automation an object can
define rules based on the states of any object in the system.
In the example of Fig. 5 an object of class DCS is made to
get all sub-detector’s DCS systems ready whenever the
object “STATE” in the “LHC” domain goes to state
“PHYSICS”. This allows for the complete automation of the
experiment based on the state of the LHC accelerator.

Fig. 4. SML Object Implementation

Fig. 5. SML Asynchronous Object Automation

B. The Tools
SMI++ offers a set of run-time tools to implement and

deploy the control system. Some of the tools are:
• Smirtl – a run time library to be used by proxies in

order to communicate with their respective SMI
domain.

• smiSM – A logic engine which at startup reads the
translated SML code and instantiates the objects of
a given domain. There will be one smiSM process
per SMI domain.

• Smiuirtl – A run-time library that can be used by
client programs, in particular user-interfaces, in
order to view the state of any object in the system
and to send commands to them.

All three tools handle the necessary communications in a
transparent way. Any of the components, SMI domains,
proxies and user interfaces, can dynamically move from one
machine to another, all communications are automatically
reestablished due to the use of an underlying communication
package, called DIM [4]. All tools are available on several
platforms, various UNIX flavors (including Linux) and on
Windows. The complete control system can be deployed
across several (hundreds) heterogeneous machines.

V. FRAMEWORK INTEGRATION & FEATURES
SMI++ has been interfaced to the PVSS SCADA system,

in order to provide a JCOP framework component for
Hierarchical Control.

A. Hierarchical Control
The framework offers tools to implement a hierarchical

control system. As described in the Architecture chapter
above, JCOP defined a hierarchical control tree composed of
two types of nodes: “Device Units” and “Control Units”.
These components match perfectly the SMI++ concepts.
Device Units correspond to concrete objects implemented as
proxies within PVSS and Control Units correspond to SMI
domains.

The integration of SMI++ with PVSS provided for several
new features:

A graphical user interface was created which allows the
configuration of object types, declaration of states and
actions, etc. and for the generation of SML code, actions and
rules through the use of wizards. The hierarchical tree of
components can also be configured graphically as shown if
Fig. 6.

The PVSS archiving mechanism can in addition be used to
store state transitions and so be able to retrieve the time
evolution and long-term statistics of object state changes.

Fig. 6. Framework panel for creating hierarchies

The integration of SMI++ with the JCOP framework also

provided for a clear definition of interfaces and task
separation: the PVSS implementation of device units in terms
of scripts contains only basic actions, no intelligence. The
logic behavior is described in SML and implemented by the
SMI objects. The advantage is that if it is necessary to
replace some hardware only the PVSS part is affected. On
the other hand if the logic behavior should change than only
the SMI rules change.

B. Partitioning
As mentioned before, partitioning is the capability of

monitoring and/or controlling a part of the system, a sub-
system, independently and concurrently with the others in
order to allow for tests, calibration, etc.

Each Control Unit knows how to partition "out " or "in" its
children. Excluding a child from the hierarchy implies that its
state is not taken into account any more by the parent in its
decision process, that the parent will not send commands to it
and that the owner operator releases ownership so that
another operator can work with it.

It was felt that excluding completely a part of the tree was
not flexible enough, so the following partitioning modes
were defined and implemented in the Framework:

• Included - A component is included in the control
hierarchy; it receives commands from and sends its
state to its parent.

• Excluded - A component is excluded from the
hierarchy, it does not receive commands and its state
is not taken into account by its parent. This mode can
be used when the component is either faulty or ready
to work in stand-alone mode.

• Manual - A component is partially excluded from the
hierarchy in that it does not receive commands but its
state is still taken into account by its parent. This

mode can be used to make sure the system will not
send commands to a component while an expert is
working on it. Since the component’s state is still
being taken into account, as soon as the component is
fixed the operations will proceed.

• Ignored - A component can be ignored, meaning that
its state is not taken into account by the parent but it
still receives commands. This mode can be useful if a
component is reporting the wrong state or if it is only
partially faulty and the operator wants to proceed
nevertheless.

The partitioning mechanism again fits perfectly with the
SMI++ concept of object sets and was implemented this way.
Each Control Unit automatically inherits an SMI++
Partitioning object.

C. Distribution
Both PVSSII and SMI++ allow for the implementation of

large distributed and decentralized systems. There is no rule
for the mapping of Control Units and Device Units into
machines, i.e. there can be one or more of these units per
machine depending on their complexity, or other factors such
as development teams they “belong” to. The framework
allows users to describe their system and run it transparently
across several computers. Since both tools can run on mixed
environments comprising Linux and Windows machines, the
user can also choose the best platform for each specific task.

D. Error handling
Error handling is the capability of the control system to

detect errors and to attempt recovery from them. It should
also inform and guide the operators and to record/archive the
information about problems for maintaining statistics and for
further analysis offline.

Since SMI++ is also a rule-based system, errors can be
handled and recovered using the same mechanism used for
“standard” system behavior. There is no basic difference
between implementing rules like “when system configured
start run” and “when system in error reset it”. The recovery
from known error conditions can be automated using the
hierarchical control tools based on sub-system’s states. In
conjunction with the error recovery provided by SMI++ full
use is made of the powerful alarm handling tools provided by
PVSS II for allowing equipment to generate alarms (possibly
using the same conditions that generate states), for archiving,
filtering, summarizing and displaying alarms to users and to
allow users to mask and/or acknowledge alarms.

E. Automation
By integrating SMI++, the Framework tools can provide

for complete automation of a large control system. SMI++’s
mechanism for automation of procedures and for automated
error-recovery is quite suited for large systems: The recovery
mechanism is:

• Bottom up – each object reacts in an event-driven,
asynchrounous, fashion to changes of its children

• Distributed – each sub-system recovers its own
errors and automates procedures for its sub-tree. For
large physics experiments this is an advantage, since

each team knows best how to handle their
equipment.

This decentralized approach is inherently scalable, since
there is no centralized expert system examining all faults in
the system, which could provoke a bottleneck. Furthermore it
allows for parallel recovery, for example, if there is general
power cut, each sub-system can start recovering in parallel
when the power comes back.

The framework tools allow building a completely
automated hierarchy based on the states of the devices
composing the experiment and on the states of external
elements like the LHC accelerator. In the example of Fig. 7,
the top part of the figure represents a typical hierarchy for a
physics experiment. But it is also possible to build parallel
hierarchies, the bottom part of Fig. 7, shows an example of a
“safety” hierarchy that would contain code like: “When any
gas system in error cut all high voltages in the experiment”.

Fig. 7. Parallel control hierarchies

F. System operation & Run Control
The framework provides configurable operation panels.

These panels are automatically generated and will have
predefined areas showing the states of the hierarchical
components, their partitioning modes, their alarm states, etc.
and user defined areas that are specific to the task of that
particular component. The user can navigate through the
hierarchy by clicking on the different components.

The panel showing the component at the top of the
hierarchy provides a high-level, summarized, view of the
complete underlying system.

The main interface to a physics experiment is normally
called the “Run Control”. A simple Run-control panel is
shown as an example in Fig. 8.

The operation of the different sub-systems, or complete
sub-detectors when working in stand-alone mode, is based on
the same tools and will provide similar interfaces.

Fig. 8. Prototype Run Control interface.

VI. CONCLUSIONS
The SMI++ framework is a powerful tool which, while

merging the concepts of object modeling, finite state
machines and rule-based reasoning, allows the
implementation of homogeneous, integrated and fully
automated control systems. Its inherent capabilities of
distribution and scalability over large sets of heterogeneous
platforms makes it extremely well-suited to control very
large applications. The SMI++ framework has become a time
tested, robust tool through its use by major particle physics
experiments: the DELPHI experiment at CERN in the recent
past and the BaBar experiment at SLAC, which is currently
using it in production.

SMI++ has been integrated with the SCADA tool PVSS II
in order to provide extra functionality, like graphical tools
and standardized partitioning modes, and is now being used
by the four LHC experiments at CERN for the design of
either full or partial experiment control.

REFERENCES
[1] A. Daneels and W. Salter, “The LHC experiments Joint COntrols

Project, JCOP”, presented at the International Conference on
Accelerator and Large Experimental Physics Control Systems. Trieste,
Italy, 1999.

[2] S. Schmeling at al, “Controls Framework for LHC experiments”,
presented at the 13th IEEE-NPSS Real Time Conference, Montreal,
Canada, May 18-23, 2003.

[3] PVSS-II, [Online]. Available: http://www.pvss.com
[4] B. Franek and C. Gaspar, “SMI++ - an object oriented Framework for

designing distributed control systems”, IEEE Trans. Nucl. Sci., Vol 45,
Num 4, August 1998, pp.1946-1950.

[5] C. Gaspar, M. Dönszelmann, Ph. Charpentier, “DIM, a portable, light
weight package for information publishing, data transfer and inter-
process communication”, Computer Physics Communications, October
2001, Vol 140, Num 1+2, pp. 102-109.

