
Tools for Worm Experimentation

on the DETER Testbed

Songjie Wei

University of Delaware

103 Smith Hall

Newark, DE 19711

Email: weis@cis.udel.edu

Calvin Ko

Sparta, Inc.

710 Lakeway Dr. Ste. 195

Sunnyvale, CA 94085

Email: Calvin.Ko@sparta.com

Jelena Mirkovic

USC/ISI

4676 Admiralty Way Ste 1001

Marina Del Rey, CA 90292

Email: sunshine@isi.edu

Alefiya Hussain

Sparta, Inc.

2401 E. El Segundo Blvd. Ste. 100

El Segundo, CA 90245

Email: Alefiya.Hussain@sparta.com

Abstract—Worm experimentation is challenging for re-
searchers today because of the lack of standardized tools to
simulate and emulate worm spreads in a realistic setting. We
have developed two tools for the DETER testbed to aid in worm
experimentation: the PAWS simulator for Internet-wide worm
propagation studies and the WE emulator for analysis of worm
spread and defense strategies in local area networks. We evaluate
performance and fidelity of our tools by replicating results from
recently published research. Both tools can be easily configured as
per user specifications, facilitate comparison with past research
and reduce the barrier to entry for worm research.

I. INTRODUCTION AND MOTIVATION

DETER [1] is an open testbed for security experimenta-

tion, hosted at USC Information Sciences Institute and UC

Berkeley. It runs Emulab software [2] for shared testbeds,

and consists of more than 400 machines. Users receive ex-

clusive access to a number of machines they need, and set

up topologies, OS and applications of their choice. DETER

and EMIST project participants — USC/ISI, UC Berkeley,

SPARTA, Pennsylvania State University, Purdue University

and UC Davis — have developed many tools to provide

realistic, easy and fast experimentation for DETER users. Most

of these tools focus on supporting performance tests, denial-of-

service and routing experiments, which jointly comprise 49%

of projects on DETER. In this paper we describe the work we

performed to support the remaining large group of our projects

— 16% that focus on Internet worms.

A worm is a program that self-propagates across the

network using a variety of algorithms for target discovery

and then exploits a software or security flaw to copy itself

onto the target and activate the next cycle of propagation.

Additionally, worms also have various malicious tasks to

accomplish once they infect the target, such as file modifi-

cation, password-sniffing, denial-of-service, etc. Our goal was

to develop tools that help users set up and automate worm

experiments, while providing conditions for realistic testing.

Our first step was to understand needs of the community

by surveying worm research literature from top security and

networking conferences: ACM Computer and Communica-

tions Security Conference (CCS), ACM Workshop on Rapid

Malcode (WORM), USENIX Networking System Design and

Implementation Symposium (NSDI), USENIX Symposium on

OS Design and Implementation (OSDI), USENIX Security

Symposium and IEEE Symposium on Security and Privacy.

We surveyed total of 33 papers on worms or worm defenses,

published in 2006 and 2007, looking for information about

evaluation approaches. About half of the papers used a custom

simulator, written by authors. One third used trace-based

measurement where full packet traces (header and contents)

containing legitimate and attack traffic are replayed against the

proposed research product. One fifth deployed their research

product in a real, well-used network. The remaining papers

described research that could be validated: (1) via theory, (2)

via tests that involved a single machine and a repository of

malicious code and (3) via tests that involved a small network

of machines and a live worm spreading in this setting.

From this survey we converged to the following conclusion.

There are two types of worm research. The first, which we

will call Internet-wide, consists of examination of worm prop-

agations, or a wide-area network worm defense, and usually

requires that an entire worm spread and realistic environment

conditions be replicated at a large scale. For example, paper [3]

studies how quickly one must impose an Internet quarantine

on infected hosts to stop wide-spread infections. To validate

this research authors needed to replicate worm spread in the

Internet, which included replicating a realistic Internet envi-

ronment in terms of number of hosts, topology and routing.

Replication of scale and environment in which the worm is

spreading mandates simulation, since existing testbeds cannot

meet these goals due to limited resources and limited diversity.

But the current practice of each author writing their own

custom simulator reduces evaluation validity because the sim-

ulator’s fidelity is not proven. It also disables comparison

between related research since authors must rewrite others’

simulators to compare own work with the existing approaches.

Thus researchers would benefit from a single, customizable,

realistic and versatile worm simulator. We have developed such

a simulator, called PAWS, and verified that it exceeds current

simulators in fidelity and scalability, via extensive tests [4].

PAWS is now a part of DETER, and we describe it in section

II. Due to its modular design, PAWS can be easily customized.

In Section III we demonstrate this by replicating results from

selected, highly cited worm papers, using PAWS and achieving

matching graphs.

The second type of worm research, which we will call



localized, consists of proposing a worm detection or defense

to be deployed on a single machine, or in a single network.

Such a product must be tested by sending realistic traffic to

it to examine if it correctly detects or defends from worms,

and if it correctly recognizes legitimate traffic. Unfortunately,

two approaches that were widely used in worm papers we

surveyed — replay of a full-packet trace or deployment in

a real network — are not accessible to a vast majority of

researchers. Collecting a full-packet trace poses a lot of privacy

concerns because all packets’ contents must be preserved

in original. Many organizations will not let their employees

collect such traces to avoid violation of user privacy rights

and liability. Needless to say, full-packet traces are never

shared if they contain any legitimate traffic. Even full-packet

traces with malicious traffic only are rarely shared and we

are aware of only two such traces: CAIDA’s trace of Witty

worm spread and CAIDA’s trace of DDoS backscatter, both

available via http://www.datcat.org. Deployment of

products in real networks is only possible if a researcher is

employed by an organization which hosts a sufficiently large

network, and is willing to deploy research-grade products in

it. This is a condition many researchers do not meet.

To support evaluation of localized worm research in DETER

testbed one would need realistic legitimate and worm traffic

generators, with realistic payloads. We have developed legit-

imate traffic generator for Web traffic and a worm emulator,

called WE, built upon the Metasploit tool [5]; we describe

them in Section IV. The advantage of using Metasploit is that

a user can combine various exploits and worm payloads, thus

customizing the tool to her needs. In Section V we demon-

strate the tool’s performance and scalability through DETER

experiments. We believe that these are the first necessary steps

to support localized research in testbeds.

A. Contributions

The main contribution of our work is development of

tools to aid worm experimentation in testbeds. Such tools

are necessary to standardize worm research testing and to

ensure realistic, comparable evaluation strategies. Our tools

are described in this paper, along with convincing arguments,

derived from tests, that they produce realistic, useful condi-

tions for worm research testing. Tools, including their source

code, are publicly available via DETER testbed. Researchers

will benefit from our work by reducing their test setup time

and by experimenting in a realistic setting, which will increase

validity of their research.

II. WORM SIMULATOR: PAWS

Popular network simulators, such as ns-2 [6], GTNetS [7]

and SSFNet [8], have been extended to support Internet worm

simulation. Worm researchers have also implemented their

own worm simulators to examine worm dynamics and to

validate various approaches for worm spread detection and

defense [9] [3] [10]. Our PArallel Worm Simulator or PAWS

[4] is an Internet-scale worm spread simulator, designed for

scalability and with a realistic model of Internet environment.

There are three significant advantages of PAWS over other

simulators. First, PAWS incorporates a detailed model of

the Internet at the Autonomous System (AS) level. Internet

topology and inter-AS routing are replicated according to the

realistic global routing information obtained from Route Views

[11]. Inter-AS links and their limited bandwidth are simulated

to capture the congestion impact that is normally observed

during the spreads of aggressive worms. Each vulnerable

host’s features are simulated separately, including physical

resources that affect its scan generation rate. Second, PAWS

is a distributed simulator that runs on multiple common PCs.

Each physical machine simulates a portion of the Internet. Ma-

chines synchronize with each other at discrete time intervals,

instead on per-packet basis, which improves scalability at a

minimal cost to simulation fidelity. Higher resource demands

such as those that arise in worm simulations with a large

vulnerable population (e.g., 10 million) or a more sophisticated

worm scanning mechanism (e.g. high scanning rate, non-

uniform scanning strategy, multi-stage infection procedure),

can be supported by engaging more simulation machines. We

have implemented PAWS on the Emulab [2] testbed and the

DETER [1] testbed. This choice of open, shared testbeds

as implementation platforms makes PAWS accessible to any

researcher. The third advantage lies in the fact that users can

easily configure and customize PAWS to meet various research

objectives of studying Internet worms. PAWS’s Internet model

can be customized with either the standard Route Views data

source or a specific user input of routing and topology data.

PAWS’s vulnerable host model can be extended by adding

user-implemented host behavior functions. And PAWS’s worm

spread model is configurable to mimic any past or predictable

future worms with complex features. In the rest of this section,

we briefly review PAWS’s design and discuss how it can be

customized.

A. Realistic Internet Model

PAWS models the Internet at the AS level. A realistic

Internet model is necessary for a high-fidelity simulation of

any interactions between a worm spread and the Internet

environment.

PAWS uses data from the Route Views project [11] to

reconstruct the Internet topology at the AS level. The Route

Views data provides periodic snapshots of the BGP routing

tables for the participating routers. Such routing information

could be used to infer the inter-AS connectivity and intra-AS

IP address allocation. The data is updated twice daily, which

enables PAWS to reconstruct the Internet topology as it was

at the specific time of an observed worm spread.

PAWS reconstructs inter-AS routing and forwarding in the

following manner. Each AS is represented by a single router.

Forwarding entries are first populated by inferring them from

the AS-path variable in the Route Views data. Remaining

vacant entries are then populated by calculating next hop ASes

using the shortest path approach on the AS topology.

Propagation of aggressive worms such as Slammer [12] and

Witty [13] produces huge scan volume that can quickly create



severe congestion due to limited link bandwidths, interfering

with legitimate traffic and with Internet routing. PAWS models

the limited bandwidth of each inter-AS link by preassigning

some bandwidth value to it. When the traffic demand (sum of

legitimate and attack traffic) on a link exceeds its bandwidth,

each packet will be dropped with a probability proportional to

the ratio of their difference and the traffic demand.

We infer link bandwidths using the Pathneck [14] data to

estimate a possible range of bandwidth values. More details

about this inference process can be found in [4].

B. Distributed and Discrete Simulation

PAWS simulation tasks are shared by multiple physical

machines, which exchange their local results over a network.

Each machine simulates a portion of the whole Internet along

with its vulnerable and infected population. Each machine

hosts roughly the same number of vulnerable hosts, which

equalizes the CPU cost among machines.

PAWS collects all the worm scans to the same destination

machine and uses stream sockets to exchange information

about this cross-machine traffic at the end of each simula-

tion interval (one second). This discrete simulation approach

improves scalability and does not compromise fidelity. Worm

scans sent to non-routable addresses or non-vulnerable hosts

are dropped or processed only on the sender-side machine and

thus do not increase inter-machine communication.

C. Configuration and Customization

In this section, we explain how to configure and customize

PAWS to simulate different worm spread events.

A worm spread event in PAWS is defined by specifying the

worm’s features and the network environment: (1) scanning

rate, in scans per second, (2) scanning strategy (e.g., uniform

or subnet), (3) worm’s transport protocol (TCP or UDP), (4)

vulnerable population size and distribution (uniform or log-

normal), (5) size of a worm scan, in bytes, (6) infection delay,

and (7) lifetime of an infectee.

Users can also configure the Internet environment model for

each PAWS simulation. This entails the procedure of obtaining

the Route Views data for a specific date of worm propagation,

and processing it into the format required by PAWS.

For some simulation tasks it may be necessary for users to

customize PAWS’s Internet model and/or packet handling to

simulate more sophisticated worm events or worm defenses.

There are two possible approaches to customization: overwrit-

ing input data files and overloading program functions.

PAWS reads in the configuration information for the Internet

model from several data files: (1) AS link file, which defines

all the inter-AS connections and the bandwidth of each link,

(2) IP ownership file, which lists all the IP ranges and an AS

that owns each one, and (3) AS routing file, which contains

the forwarding tables for all the inter-AS routes. Users can

replace or modify the existing files to achieve their specific

simulation goals.

Users can further overload the functions called in PAWS

every simulation second, to create specific worm propagation

events or to implement user-specific worm detection and

defense systems.

• worm infectee scan() simulates each infectee sending

out scans. It can be modified to support limited or rate-

variable scanning.

• generate ip target() is called by a worm infectee to select

the next target to scan. It can be modified to implement

novel worm scanning strategies.

• calculate routing path() is executed to calculate the rout-

ing path of each worm scan. It can be modified to

simulate novel detection or defense mechanisms between

ASes.

• process worm scan() is called to transfer a worm scan

from the source to the destination. It can be modified to

control the worm scan delay, drop and retransmission.

• infect vulnerable host() is called when a worm scan

reaches a vulnerable host. It can be modified to simulate

novel infection procedures.

• update infectee status() is called to update the status of

each infected host. It can be modified to simulate a worm

infectee’s behaviors other than sending out scans, and to

simulate human countermeasures.

The function determine vulnerable host() is executed once

during the initialization stage of each worm simulation. This

function creates vulnerable hosts in the simulated Internet

environment. Each vulnerable host can be configured sepa-

rately for its location, scanning rate, and scanning lifetime.

By overloading this function, users can define heterogeneous

vulnerable hosts with features and locations following user-

specified distributions.

III. WORM SIMULATOR EXPERIMENTS

We demonstrate the usability of our PAWS simulator for

different worm experiments, by replicating selected experi-

ments conducted by other researchers using custom simulators.

These experiments appear in highly visible publications: [9],

[3] and [10]. Our replication also illustrates how to configure

and customize PAWS for user-specific simulations.

Zou et al proposed a host-based dynamic quarantine system

to contain Internet worm propagation [9]. In their system, a

suspicious host is blocked from sending traffic from a specific

port for a short period of time. The authors simulated the

Slammer worm [12] propagation and enforced their quarantine

policy on the simulated worm infectees. Replication of their

experiment helps us illustrate how one can implement a host-

based worm defense in PAWS. Table I lists the original exper-

iment settings in [9] and our configuration and customization

of PAWS to match these settings. Figure 1 compares published

results (line without markers) with the our results (line with

markers). There is a close match between theirs and our

results.

Moore et al propose another worm quarantine system,

called Internet quarantine [3]. The paper examines the impact

an Internet-wide deployment would have on containing fast

worms using two containment approaches: address blacklisting

and content filtering. Address blacklisting drops scans from



TABLE I
SIMULATION OF SLAMMER WORM PROPAGATION UNDER DYNAMIC QUARANTINE DEFENSE

Original simulation PAWS simulation

IPv4 address space with 2
32 addresses Default Internet model includes entire IPv4 address space

Vulnerable population is N = 75, 000 Vulnerable population = 75, 000

Average scan rate is η = 4, 000 per second Scanning rate = 4, 000 per second

10 initial infectees at the beginning In function determine vulnerable host(), randomly mark 10 vulnerable hosts as infected

Simulation time unit is 0.05 second Set the simulation interval as 0.05 second

Dynamic quarantine, with quarantine rate
λ1 = 0.2 per second and quarantine time
T = 10 seconds

In function update infectee status(), if an infectee is currently active, mark it as quarantined
with a probability of 0.2 per second. In function update infectee status(), if an infectee has
been quarantined for 10 seconds, mark it as active. In function worm infectee scan(), if an
infectee is currently quarantined, skip its scanning activity for the current simulation interval.

TABLE II
SIMULATION OF CODE RED V2 WORM PROPAGATION UNDER INTERNET QUARANTINE DEFENSE

Original simulation PAWS simulation

IPv4 address space with 2
32 addresses Default Internet model includes entire IPv4 address space

Vulnerable population is 360, 000 Vulnerable population = 360, 000

Average scan rate is 10 per second Scanning rate = 10 per second

Address blacklisting, reaction time R In function check routing path(), if the sender of a worm scan has been known as infected
(thus its IP is on the blacklist) by any hop on the routing path, drop this scan. The IP of each
infectee is added to the blacklists R seconds after its infection.

Content filtering, reaction time R In function check routing path(), if any hop in the routing path participates in the containment
system and knows the worm signature (only after R seconds have elapsed from the infection),
drop this scan.

TABLE III
SIMULATION OF SLAMMER WORM PROPAGATION WITH A HETEROGENEOUS CLUSTER MODEL

Original simulation PAWS simulation

Vulnerable population is 75, 000 Vulnerable population = 75, 000

Use BGP information from Route Views to
map each Slammer infectee into the most
precise prefix

Since we did not have the original IP addresses of Slammer infectees, we used the Slammer’s
geographical distribution presented in [12]. We obtain the AS information from the Route
Views data, and retrieve the IP prefixes inside each AS. We then look up the geographical
location of each AS and thus determine the number of infectees inside this AS, proportionally
to the AS size and the percentage shown in [12]. Infectees inside each AS follow uniform
distribution among multiple IP prefixes.

Each routed prefix has an access link, with
bandwidth of 4, 300 scans per link per sec-
ond

Add a worm-scan counter for each IP prefix in an AS. In function check routing path(), when
checking the first AS hop for a worm scan, increase the counter for the scan sender’s IP
prefix. Drop the scan if the counter exceeds 4, 300. In function worm infectee scan, reset all
the counters at the beginning of each simulated second.

Scale down the experiment to 1/64, by ran-
domly selecting access links

Randomly select ASes until the number of infectees in the selected ASes reaches 1/64 of the
total vulnerable population.

(a) Infected hosts I(t) (b) Infected I(t) and quarantined R(t) hosts

Fig. 1. Worm spread under dynamic quarantine [9]



(a) Address blacklisting (b) Content filtering

Fig. 2. Worm spread under Internet quarantine [3]

(a) Total worm scans (b) Scans per worm

Fig. 3. 1/64 scale simulation of Slammer worm [10] [12]

any blacklisted senders before they reach their targets. Content

filtering drops all the scans that match a specific worm signa-

ture. Due to the limited space, we only present a replication

of authors’ 24-hour simulation of Code Red v2 worm [15]

with an idealized deployment. We list the original experiment

settings and describe our PAWS simulation parameters in

Table II. We show our results (line with markers) in Figure

2, comparing them with the original results (line without

markers) from [3]. Again, there is the close match between

our and published results.

We illustrate how users can customize PAWS for any chosen

address space size, network topology and worm distribution by

replicating results from [10], where Weaver et al. investigated

the scale-down techniques to simulate worm dynamics in

a smaller address space without losing fidelity. A scaled-

down worm simulation has both the vulnerable population

and the address space reduced by the same factor. Among

other approaches, the authors used a 1/64 scale to faithfully

simulate the Slammer worm [12] within a heterogeneous

network model, which is the case we replicated with PAWS.

They used the Route Views data to find all the routable IP

prefixes and assumed each prefix had an access link with the

same limited bandwidth. They mapped each Slammer infectee

into its prefix and thus achieved an empirical distribution of

the vulnerable hosts. We customize PAWS to replicate their

1/64 scale experiment on the heterogeneous cluster model, and

details are given in Table III. Figure 3 shows that our results

(line with markers) lie between published results (straight lines

without markers) showing multiple runs of Weaver et al’s

simulator with different random seeds. The dashed line shows

the observed Slammer’s dynamics in the Internet that [10] tried

to match with a scaled-down model, sometimes imperfectly.

IV. WORM EMULATOR: WE

Worm emulation refers to the ability to introduce a worm

into a network to test propagation and defense strategies in a

more realistic environment than possible with a simulator. Dur-

ing emulation worm traffic can interact with live, legitimate

traffic, and experience congestion and outages as in the real

network. If a researcher is testing a defense, emulation enables

her to evaluate defense’s overhead, efficiency in detecting

worms and collateral damage to legitimate traffic. It provides

insight into the system dynamics in a controllable, predictable,

and repeatable environment.

The goal for supporting worm emulation on DETER was to

facilitate worm experiments that evaluate defense systems, and

discover behavior that emerges from the inherent complexity

of such systems when they are deployed on larger networks.

We have developed Worm Emulator or WE, for DETER,

based upon the Metasploit [5] framework, which allows an

experimenter to combine various exploit, propagation and

payload modules into a single worm. We have also developed

a virtualization approach for WE — the ability to emulate



multiple vulnerable and infected hosts on a single physical

machine.

In addition to worm generation, researchers must generate

realistic legitimate cross traffic for emulation experiments.

There are two techniques that can be used for this: (i) traffic

replay along with content, and (ii) traffic modeling. The

DETER SEER tool [16] allows the experimenter to replay full–

or header–only tcpdump traces in a congestion-responsive

manner, analogous to the Swing tool [17]. Unfortunately, we

lacked realistic full-packet traces to input to this tool for

experiments presented in this paper. SEER also has support

for replaying Web request traffic from publicly available Web

server logs, and can reproduce original request’s contents

along with the client IP address diversity. We use this replay

tool in our experiments.

Traffic replay permits evaluation with realistic and diverse

packets so that the experimenter can test her systems with

content and address mixes typically seen on the Internet. If

content realism is not critical for evaluation, SEER provides

the ability to create, plan, and iterate through a large range of

legitimate traffic scenarios that are realistic at the application,

network and transport layers. Realism is achieved by using real

client and server applications as traffic generators and driving

them with request and reply features (e.g., size, interarrival

times) drawn from public traffic traces. A combination of these

traffic generators can be used to model an application mix on

the network.

Jointly, the advantages of our worm emulation approach

are: (i) validation of simulated worm propagation models with

real traffic, (ii) exposing congestion-reactive cross traffic and

worm defenses to realistic worm traffic, and (iii) scaling to

larger topologies by multiplexing virtual hosts onto the same

physical host, thus exposing worm dynamics that may not be

visible in small-scale topologies.

A. Propagation Routine

Scanning refers to probing a set of IP addresses to identify

vulnerable targets. There is a range of algorithms by which

a worm can discover a new target to exploit, e.g., random

or localized scanning, pre-generated target lists, and passive

monitoring. The worm could use a combination of these

algorithms for increased virulence.

Two popular forms of scanning are (a) sequential, where

a worm targets addresses in a block in some predetermined

order, and (b) random, where a worm targets addresses in

an address block in a pseudo-random fashion. WE employs

both scanning techniques. It can randomly scan the full IPv4

address range, or a specified CIDR-based address block. It can

also sequentially scan addresses on the same local subnet or

within a specified address range. It also supports definition of

a hit-list at the start of the emulation. Worm instances first

probe the addresses from this hit-list sequentially. Once they

are completely infected, the worm converts to sequential or

random scanning on the specified address block.

In addition to the scanning algorithm, the experimenter can

select the scanning rate (the number of scans per second),

which allows her to control the stealth of the emulated worm.

While some worms, such as Slammer [12], scan at maximum

possible rate, more sophisticated ones may employ a low

scanning rate to avoid detection.

B. Exploit and Activation Routine

Once a worm finds a vulnerable target, it needs to exploits

a vulnerability to penetrate onto the target and activate the

next cycle of propagation. The WE emulator leverages the

Metasploit framework for these mechanisms [5]. Metasploit

is a platform developed for testing and launching various ex-

ploits. It allows administrators to rapidly perform penetration

testing and vulnerability research by providing a collection

of reusable tools, libraries, and user interfaces to configure an

exploit and launch it at a target system. If the exploit succeeds,

a chosen payload can be executed on the target and the user

is provided with a shell to interact with the payload. The

framework contains exploits for various Windows and Unix

vulnerabilities, and payloads for a variety of malicious actions.

The Metasploit framework provides several user interfaces.

The one we use — msfcli — is a command-line interface.

We have programmed it to emulate a self-propagating worm

which targets a given vulnerability. Our current implemen-

tation triggers the xmlrpc exploit, which allows injection

of arbitrary PHP code into XML documents, or the distcc

exploit, which allows execution of an arbitrary command on

the target system to gain access. Our payload is the code

that fetches a copy of the worm using wget from the host

that infected this target and then activates the worm on the

target. The WE emulator is implemented in Perl and the

propagation and exploit activation are performed from two

different threads. Thus the worm can parallelize scanning and

propagation phases to maximize its efficiency.

C. Requirements for Realism

We now briefly discuss the aspects of worm emulation

that have to retain high fidelity to correctly engage research

defense systems. Many defenses analyze worm content and/or

spread dynamics and develop techniques to separate worms

from legitimate traffic. Emulated worm behavior should at

the minimum reproduce realistically two worm features: (a)

Rapid spread on the network from a variety of sources to

a variety of destinations, with numbers of infected hosts

and scans growing exponentially, [18], (b) High similarity

of worm packet contents (very high for isomorphic worms

and lower, but still significant for polymorphic worms) when

compared to legitimate traffic’s contents. We believe that our

emulation approach meets these goals and we validate this in

the following section.

V. WORM EMULATOR EXPERIMENTS

To demonstrate the WE’s capabilities, we first evaluate its

performance limits. We then reproduce selected results from

the EarlyBird worm detection system [19] to demonstrate

WE’s capabilities for defense testing.



WE supports physical and virtual experimentation modes.

In the physical mode, each end host represents only one IP

address and can harbor at most one instance of the worm.

The virtual mode allows end hosts to simulate networks by

hosting alias IP addresses, and multiple independent worm

copies. Each alias can be independently infected and can then

independently propagate the worm further.

A. Test Environment

We tested the WE emulator on a 26-node topology on

DETER, with 18 nodes clustered into six networks, and

connected to each other via 8 routers. The links in the network

are all 100 Mbps with no added delay. All the nodes and

routers in the network are dual 3.0 GHz Pentium 4 Xeon

processors with with 2 GB RAM running Fedora Core 4.

The operating system on 15 end hosts had vulnerable software

installed on it. The worm in the experiment used the xmlrpc

exploit that allows injection of arbitrary PHP code into XML

documents.

B. WE’s Performance

Fig. 4. CPU utilization vs worm instances for different scanning rates

The goal of worm emulation on DETER is to provide

support for replication of worm spread dynamics in moderate-

scale networks. Scalability is important for some worm behav-

iors that may not be observable at a small scale, such as the

exponential shape of the propagation curves. We achieve scal-

ability by running WE emulator in its virtual mode. Depending

on the specifics of the worm behavior, such as its computation

overhead and scanning rate, the physical hardware poses limits

on the number of concurrent worm instances that can run on

any end host, and thus the limit on our virtualization. Figure 4

shows average CPU utilization at an end host (y-axis) as the

function of the scanning rate (different lines), and the number

of worm instances virtualized on each host (x-axis). As the

CPU utilization approaches 100%, it indicates the end host

overload. In the physical mode (worm instances=1), WE can

support very high scan rates (close to 1,000 scans/sec), and

is bandwidth-limited at the end hosts while CPU utilization is

low (< 0.64%). In the virtual mode, at low scan rates of 100

scans/second we can support about 50 worm instances on each

end host before utilization goes above 60% (not shown on the

graph due to scale). As the scan rate increases, the number of

worm instances that can be supported reduces sharply. Thus

a worm with a scan rate of 300 scans/sec, creates 30% CPU

utilization when there are 15 virtualized instances on an end

host.

Fig. 5. Generated scans vs worm instances for different scanning rates

As additional worm instances are invoked on the end host,

the desired and the actual scan rate may not match due to mul-

tiple worm copies competing for limited network resources.

Figure 5 shows the ratio of the measured to the desired scan

rate (y-axis) as a function of the scanning rate (different

lines), and the number of worm instances multiplexed on

each host (x-axis). A ratio of 100% means that all the worm

instances were able to meet the desired scan rate, thus the

graph indicates how many worm instances can be supported

for a given scan rate. For example, a single worm instance

can generate up to 900 scans/sec, but two worm instances can

only send 800 scans/sec each.

C. Using WE for Defense Evaluation

This section describes experiments we performed with

WE to recreate selected results from the paper describing

the Earlybird worm fingerprinting algorithm [19]. The paper

proposes an automatic worm defense system, which derives

detection signatures for zero-day worms. The system has been

evaluated in the paper using replayed, full-packet traces, as

well as via deployment in a real environment. As we discussed

in the Introduction none of these approaches is susceptible

to reproduction by other researchers, which was our main

motivation for development of WE.

We have implemented the fingerprinting algorithm from

Earlybird for this experiment. The algorithm identifies packets

or substrings in the network trace: (1) that have occurred many

times in the payload, indicating high content prevalence, and

(2) that have been observed in packets with many different



source and destination IP addresses, indicating high address

dispersion property. The hashes of packets or substrings

that have high content prevalence and address dispersion

are considered content signatures of the worm. Our current

implementation omits some optimizations from [19] for speed

and memory footprint, while preserving all the characteristics

needed for detection.

Our defense experiments were performed on the same

network as the performance experiments. Each of the 15

vulnerable end nodes hosts multiple IP addresses. We collect

traffic traces for Earlybird’s analysis on the central router in

the topology. Since we did not have an access to realistic full-

packet traces we have decided to replay Web request traffic

as legitimate traffic. There are publicly available Web server

logs that can be used to reproduce original request contents

and client IP address diversity. Thus our experiments can be

observed as replaying a subset of a legitimate traffic that would

be present in a network hosting one Web server. We have

developed a Web traffic generator that runs on each leaf node,

reads the Web log data, and for each client IP that is hosted

on this machine issues a wget request for the given file to

the server. Our server hosts the entire file tree that appears

in the Web log, with actual file sizes from the log, but with

random file contents within each given file. Thus requests for

the same file will result in the identical replies but there will be

no content similarity across different files. In our experiment

we used a Web log for one recent month of traffic, from a

large academic Web server.

Fig. 6. CDF of content signatures

Figure 6 shows the cumulative distribution function (CDF)

of content signatures for three types of hash functions. An

Earlybird content signature is either a hash of the whole packet

or a hash of a substring of the whole packet. The CDF is com-

puted from the set of repetitions found in each measurement

interval over a period of 10 minutes. The hash functions being

investigated in [19] include the whole packet CRC hash over

a 60-second and over a 300-second measurement interval, and

the Rabin, 40-bytes long substring fingerprint function, over

a 60-second interval. For the substring Rabin hashes, each

packet of length k will produce k - 40 substring Rabin hashes.

Using a 60-second measurement interval and a whole packet

CRC, over 98% of all signatures repeat two or fewer times

and 95% are only observed once. The shapes of all the curves

are similar to those observed in the original paper, but the y-

axis scale differs. The original paper had values between 0.94

and 1, while our values are between 0.996 and 1. This is to

be expected since we used a different legitimate traffic trace:

ours was a Web log from a small academic server while theirs

was a full-packet trace from a large academic network. Our

result still supports the conclusion from the original paper that

a prevalence threshold of 3 is sufficient to filter over 90% of

unlikely signatures.

Fig. 7. Distinct signatures for different dispersion thresholds

Figure 7 shows the number of distinct signatures found

over time in the legitimate traffic, for different source (S)

and destination (D) dispersion thresholds. Again we observed

the similar trend as in the original paper, but there was a

significant scale difference resulting from the limit on our

virtualization approach given the number of physical machines

in the experiment. We also had 12 virtualized destinations —

we hosted the Web server’s files on three hosts with each

having 4 IP aliases. Thus we had no Earlybird detections for

S > 30 and D > 30, while [19] had a few.

Fig. 8. Infected hosts and detected signatures during worm propagation



We next tested the Earlybird in presence of worm traffic.

After running the background traffic for a while, we engaged

WE to release the worm on one emulated host, and let it spread

with random scanning. Figure 8 shows the number of infected

hosts and detected signatures on log/log scale. We tested two

scanning rates: 50 scans/s and 100 scans/s. The 15 victim

hosts on the network are configured to virtualize 50 active

worms each, thus the maximum number of infected hosts is

750. From the graph, one can observe the exponential grow

of the infection rate, and the number of detected signatures,

as expected. In this experiment, the Earlybird was configured

with the prevalence threshold PV=3, and dispersion setting S

> 15 and D > 15. Using the Rabin-40 substring fingerprint it

detects the first signature of the worm after 143 (or 92) seconds

when the worm scans 50 (or 100) addresses per second.

We acknowledge that our experiments with WE and Early-

bird were limited because of the lack of realistic full-packet

traces to replay and because of the topology size. Still, we

observed the same trends as in [19]. We believe this offers

a small but substantial proof that WE can be useful for

moderate-scale, realistic testing of worm defenses.

VI. RELATED WORK

A. Worm simulation

Savage et al. [20] model Internet topology at the AS level,

along with the epidemiological worm spread model. Wagner

et al. [21] model delay and bandwidth differences between

vulnerable hosts by grouping Internet hosts into four cate-

gories and modeling the interactions both between and within

categories. Liljenstam et al. [22], [23] design a worm model

integrated with the SSFNet [8] simulator. This model adds

simulation of countermeasures at a router level to the simple

epidemiological model, and simulates those actions assuming

a single router per AS. A realistic AS topology from the Route

Views project [11] is used in a scaled-down form, due to

single-machine memory constraints. Riley et al. [24] develop

a packet-level worm simulator on GTNetS [7] to observe

connection-level behaviors of TCP worm propagation. They

approximate the Internet topology as a set of limited access

links that connect vulnerable hosts to the “core” with unlimited

bandwidth. Perumalla et al. [25] propose a large-scale packet-

level simulation of worm propagation on PDNS [26]. All

the above approaches deploy an overly simplified model of

the Internet topology and do not simulate the interaction of

the worm traffic with the background traffic, both of which

lower simulation fidelity. In addition to this, all but [25]

are single-node simulators, which limits their scalability to

several thousand vulnerable hosts. In [25] authors simulate

worm propagation among 1.28 million vulnerable nodes at

a dedicated 128-CPU cluster, using PDNS and GTNetS. In

another paper on distributed simulation of Internet events

[27] the authors note that PDNS and GTNetS can simulate

about 95K packet transmissions per wall-clock second (PTS)

at a single machine and 5.5M packet transmissions on a

dedicated 136-CPU cluster. This is an excellent result, given

that both PDNS and GTNetS simulate traffic at a flow and

packet level, and must maintain connection state for each

packet transmission. We note two main problems with this

approach for large-scale simulation: (1) To achieve reasonable

simulation speed (5.5M PTS) one needs a powerful 100+ node

cluster. Not every researcher has access to such a cluster,

yet many researchers need a high-fidelity Internet simulator

that can run in reasonable time on multiple common PCs,

to validate their ideas. PAWS almost doubles this speed (10

PTS) with 8 PCs [4]. (2) Packet-level simulation in PDNS and

GTNetS generates a network message for each packet sent to

a different simulation node which incurs huge overhead when

simulating high-rate worm scans. Instead, these transmissions

can be aggregated and sent in a single network message at the

end of a simulated time unit, like it is done in PAWS.

B. Legitimate traffic generation

Legitimate traffic generation for simulation and experiments

is a well studied problem. Due to space constraints, we refer

the interested reader to our previous publication [16] for a

detailed discussion on the subject.

The simplest form of background traffic generation is using

packet trace replay along with packet payload, e.g., tcpreplay

[28]. The main drawback of a simple replay is that it is not

congestion reactive and could result in different dynamics

than those seen in a real network. Swing tool [17] performs

congestion-responsive generation of TCP traffic according to

models derived from traces. This results in realistic traffic

at network and transport level, and in realistic application

behavior (but not application headers). It does not result in a

realistic content mix, which is often needed for testing worm

defenses.

C. Malware Emulation

Sommers et al propose MACE toolkit [29] for malicious

workload generation. MACE is more of an extensible frame-

work than a fully functional tool. It provides a high-level

language and a modular attack composition framework where

different exploit, obfuscation, propagation and background

traffic models can be specified. It remains for the user to

populate these models and provide their implementation. Our

WE emulator focuses only on reproducing worm traffic but

the user needs to simply select propagation models, exploits

and payloads from an existing implementation.

Vigna et al propose a generator of exploit mutations, which

imposes network, application and content-level changes on

exploit code to evade detection [30]. Our WE emulator uses

existing exploits, but replicates worm payload and propagation

strategy.

The Metasploit framework is the leading freeware for pene-

tration testing on networks. The other available frameworks in-

clude Inguma [31], SecurityForest [32] and ATK [33]. Inguma

and SecurityForest have an extensive exploit database, But

Inguma does not have support for a graphical user interface or

reporting while Metasploit does. SecurityForest tools are not

as easy to use as the Metasploit framework. ATK toolkit is a

small and handy tool for Windows to realize fast checks for



specific vulnerabilities without extensive user interaction. Ad-

ditionally, several commercial penetration testing frameworks

are available but since our goal was to produce an open-source

tool we could not use them within WE.

VII. CONCLUSIONS AND FUTURE WORK

A worm researcher today must test her hypotheses either

by writing a complex simulator from scratch, deploying a

proposed system in a real network or replaying a full-packet

trace captured from a real network. Writing simulators from

scratch is a thankless task. It either takes a very long time to

be done right or it results in naive approximations that do not

match real worm spread conditions and potentially produce

invalid results. On the other hand, few researchers can initiate

deployment of research-grade systems in real networks, or

obtain full-packet traces with privacy sensitive data.

In this paper we described our work on building worm

experimentation support in the DETER testbed. We con-

cluded from surveying current worm research that Internet-

wide solutions must be evaluated with a large-scale, realistic

simulation of a worm spread in the Internet environment,

while localized solutions require realistic worm and legitimate

traffic conditions in a local network. To support Internet-wide

experiments we have developed a scalable, high-fidelity worm

spread simulator, called PAWS and demonstrated through

experiments that it can be easily customized to meet current

and future worm researchers’ needs. To support localized

experimentation we have developed the WE emulator and

demonstrated through experiments that this tool, together with

other DETER tools for legitimate traffic generation, can repro-

duce realistic worm spread conditions in a local network. We

believe that our support for worm experimentation in DETER

may lead to faster prototyping of worm solutions, and easier,

more standardized testing. The biggest advantage we hope to

see is an improved realism of worm tests and leveling of worm

research field. The test realism should increase through use of

PAWS because of its high fidelity in reproducing worm spread

events. The leveling of the playing field should occur because

WE enables tests that previously could only be done by a

handful of researchers who either had access to full-packet

traces or could deploy their solutions in real networks.

Our future work lies in two directions. First, we hope to

enlarge our database of exploits, worm payloads and legiti-

mate traffic traces thus increasing diversity of possible tests

researchers can perform in emulation framework. Second, we

aim to improve the user interface for both of our tools, to ease

their adoption by other researchers. These tools should help

researchers understand the worm phenomenon and realistically

test any defenses they build.

REFERENCES

[1] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower,
R. Ostrenga, and S. Schwab, “Experience with DETER: A Testbed for
Security Research,” in Proceedings of Tridentcom, March 2006.

[2] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proc. of the OSDI.
Boston, MA: USENIX Association, Dec. 2002, pp. 255–270.

[3] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Internet Quarantine:
Requirement for Containing Self-Propagating Code,” in Proceedings of

the IEEE INFOCOM, April 2003.
[4] S. Wei and J. Mirkovic, “A Realistic Simulation of Internet-Scale

Events,” in Proceedings of the VALUETOOLS, October 2006.
[5] “The Metasploit Project,” http://www.metasploit.com/.
[6] “The Network Simulator - ns-2,” http://www.isi.edu/nsnam/ns/.
[7] G. I. of Technology, “The Georgia Tech Network Simulator,” http://

www.ece.gatech.edu/research/labs/MANIACS/GTNetS/.
[8] “Scalable Simulation Framework,” http://www.ssfnet.org/homePage.

html.
[9] C. C. Zou, W. Gong, and D. Towsley, “Worm Propagation Modeling

and Analysis under Dynamic Quarantine Defense,” in Proceedings of

ACM CCS Workshop on Rapid Malcode (WORM’03), October 2003.
[10] N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson, “Preliminary Results

Using ScaleDown to Explore Worm Dynamics,” in Proceedings of ACM

CCS Workshop on Rapid Malcode (WORM’04), October 2004.
[11] U. of Oregon, “Route Views Project,” http://www.routeviews.org/.
[12] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and

N. Weaver, “Inside the Slammer Worm,” IEEE Security and Privacy,
vol. 1(4), pp. 33–39, July/August 2003.

[13] C. Shannon and D. Moore, “The Spread of the Witty Worm,” IEEE

Security and Privacy, vol. 2(4), pp. 46–50, July 2004.
[14] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating

Internet Bottlenecks: Algorithms, Measurements, and Implications,” in
Proceedings of ACM SIGCOMM, September 2004.

[15] D. Moore and C. Shannon, “The Spread of the Code-Red Worm
(CRv2),” CAIDA, http://www.caida.org/research/security/code-red/
coderedv2 analysis.xml.

[16] S. Schwab, B. Wilson, C. Ko, and A. Hussain, “SEER: A Security
Experimentation EnviRonment for DETER,” in Proceedings of the

DETER Community Workshop on Cyber Security Experimentation and

Test, 2007.
[17] K. Vishwanath and A. Vahdat, “Realistic and Responsive Network

Traffic Generation,” IEEE/ACM Transactions on Networking, 2009.
[18] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the Internet

in Your Spare Time ,” in Proceedings of the 11th USENIX Security

Symposium, 2002.
[19] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated Worm

Fingerprinting,” in Proceedings of the OSDI, 2004.
[20] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Internet

Quarantine: Requirements for Containing Self-Propagating Code,” in
Proceedings of IEEE INFOCOM, vol. 3, March 2003, pp. 1901–1910.

[21] A. Wagner, T. Dubendorfer, B. Plattner, and R. Hiestand, “Experiences
with worm propagation simulations,” in Proceedings of the 2003 ACM

workshop on Rapid Malcode (WORM), 2003, pp. 34–41.
[22] M. Liljenstam, Y. Yuan, B. Premore, and D. Nicol, “A Mixed Abstrac-

tion Level Simulation Model of Large-Scale Internet Worm Infestations,”
in Proceedings of the 10th IEEE MASCOTS, 2002, p. 109.

[23] M. Liljenstam, D. M. Nicol, V. H. Berk, and R. S. Gray, “Simulating
Realistic Network Worm Traffic for Worm Warning System Design and
Testing,” in Proceedings of the 2003 ACM workshop on Rapid malcode

(WORM), 2003, pp. 24–33.
[24] G. F. Riley, M. I. Sharif, and W. Lee, “Simulating Internet Worms,” in

Proceedings of the IEEE MASCOTS, 2004, pp. 268–274.
[25] K. S. Perumalla and S. Sundaragopalan, “High-Fidelity Modeling of

Computer Network Worms,” in Proceedings of the 20th ACSAC, 2004,
pp. 126–135.

[26] “Parallel/Distributed NS,” http://www.cc.gatech.edu/computing/
compass/pdns/index.html.

[27] R. Fujimoto, K. Perumalla, A. Park, H. Wu, M. Ammar, and G. Riley,
“Large-Scale Network Simulation — How Big? How Fast?” in Proceed-

ings of the IEEE/ACM MASCOTS, 2003.
[28] A. Turner, “Tcpreplay tool,” http://tcpreplay.synfin.net/trac/.
[29] J. Sommers, V. Yegneswaran, and P. Barford, “A Framework for

Malicious Workload Generation,” in Proceedings of the ACM SIG-

COMM/USENIX Internet Measurement Conference, 2004.
[30] G. Vigna, W. Robertson, and D. Balzarotti, “Testing Network-based

Intrusion Detection Signatures Using Mutant Exploits,” in Proceedings

of the ACM CCS, 2004.
[31] “Inguma Testing and Penetration Framework,” http://inguma.sorceforge.

net.
[32] “SecurityForest: ExploitTree,” http://www.securityforest.com.
[33] “The Attack ToolKit,” http://www.computec.ch/projekte/atk.


