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Abstract 
 

Secure enterprise programming is a difficult and 
tedious task. Programmers need tools that support 
different levels of abstraction and that track all the 
components that participate in distributed enterprises. 
Those components must cooperate in a distributed 
environment to achieve higher-level goals. A special 
case of secure enterprise computing is multilevel 
secure (MLS) computing. Components that may reside 
in different security domains have to cooperate to 
achieve higher-level missions. 
 
To ease the programmer’s burden, we are developing 
an MLS workflow management system (WFMS), called 
MLS METEOR. A programmer can specify a 
distributed programming logic through a GUI-based 
workflow design tool. Based on the programming 
logic, MLS METEOR will generate a distributed 
runtime system that handles communication among 
different hosts, even those that reside in different 
classification domains. The multilevel security 
enforcement of MLS METEOR does not depend on the 
WFMS itself but rather on the underlying MLS 
infrastructure and a few security critical components. 
This paper concentrates on the system organization of 
MLS METEOR and the rationale for this structure. We 
explain which portions of the system can be used in 
generic enterprise computing and which portions are 
specific to MLS computing. 

1. Introduction 

Globalization has replaced the separation that 
characterized the Cold War era.  Unconventional 
coalitions among businesses and nations and among 
former adversaries are formed to advance common 
goals, then quickly dissolve as individual objectives 
change. Threats now lie in these essential connections 
among participating enterprises, which also enable 
profitable cooperation. To facilitate these alliances, 
businesses and the military rely on distributed 
information technology (IT) for most operations and 
must be able to respond quickly to new situations and 

threats in completely different environments. Hence, 
supporting IT resources must be flexible to allow for 
rapid reconfiguration.  
The military has additional requirements that stem from 
the need to pull together coalitions in a short timeframe 
to achieve a common goal and to protect sensitive 
national security information.  Each mission has 
different mission logic and deals with different 
computing resources that can belong to different 
classification domains. Therefore, distributed programs 
that support such missions have to deal with multilevel 
security (MLS) issues.  
 
Another complication of distributed computing arises 
because the programs are very large. In general, 
distributed programs are much larger than conventional 
programs and often involve the integration of existing 
applications to achieve higher-level goals. Even though 
distributed object computing standards like CORBA 
and DCOM, have made a basic level of interoperability 
among distributed applications possible and have made 
distributed programming tenable, distributed 
programming is still a difficult and tedious task. 
Usually a team of programmers has to work on 
different parts of a program, which have to be 
assembled to provide the IT support for the mission. It 
is often difficult to have a global picture of the whole 
program and to monitor the progress of the work due to 
the magnitude of these programs and the wide 
distribution of resources. 
 
The operational environment and dependence on 
cooperation among distributed IT resources mean that 
we need development and runtime tools that  
− ease the programming burden of constructing 

large-scale, distributed systems and promotes reuse 
of existing components, 

− provide a GUI-based distributed programming 
environment that offers different levels of 
abstraction so that not only the global picture of the 
program, but also more detailed views of a 
component, can be displayed for different users, 
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− allow easy (re)configuration of design to 
accommodate and promote integration with 
coalition partners, 

− generate runtime code to handle the complexities 
of distributed communication (e.g., CORBA, 
DCOM, HTTP), 

− can specify recovery strategies, 
− reduce the design time and cost of MLS 

applications, 
− generate secure runtime code to ensure the 

success of the mission since these systems operate 
in many different classification domains, and 

− provide monitoring capabilities so that users at 
different classification domain can determine the 
status of work in progress at their level and the 
levels that they are allowed to monitor. 

 
Even though there may be many ways to achieve these 
goals, we have started with the workflow paradigm, to 
which we can add new capabilities such as multilevel 
security, distributed scheduling, recovery, etc. In this 
paper, we view multilevel secure computing as a 
special case of secure enterprise computing. We may 
have to guard the connections among different security 
domains more strongly than the connections among 
business partners. However, the MLS programming 
principles is not much different from any other secure 
enterprise computing. In fact, we have designed the 
WFMS so that different security infrastructures can be 
used to facilitate cooperation among several 
enterprises. 
 
This paper is organized as follows. In section 2, we 
briefly review our strategy to achieve the above goal 
for secure enterprise computing. We present the 
software structure for implementing such a system in 
section 3. We carefully organize the software so that 
only a small portion is specific to MLS computing. 
Section 4 concludes this paper and presents the status 
of the project and future work. 

2. A Strategy for Secure Enterprise 
Computing  

We presented a strategy to pursue the above goals in a 
separate paper [2]. In this section, we summarize the 
strategy for the sake of completeness.  
 
The MLS workflow management system (WFMS) that 
we are building will provide equivalent functionality 
to a single-level WFMS and hooks into an MLS 
infrastructure for enforcing the MLS security policy. 
Tasks that may be single-level individually, but 
located in different classification domains, have to 
cooperate to achieve a higher-level MLS mission. 
Therefore, we need to provide an MLS distributed 
programming (design) tool that allows programmers to 

specify their distributed program logic (we sometimes 
call mission logic in this paper). This design tool allows 
MLS workflow designers to 
− divide a design area into multiple domains, 
− specify information flow, dependency, and the 

condition of the dependency among tasks that are 
in the same or different domains,  

− specify dominance relationships among domains 
(e.g., Top Secret > Secret > Unclassified), and 

− specify exception conditions and recovery 
strategies for exceptions. 

 
On the other hand, the runtime engine needs to provide 
MLS services in a distributed and heterogeneous 
computing environment. The MLS runtime system 
must enforce the following information flow 
requirements: 
 

− High users may have access to low data and low 
resources, 

− High processes may have access to low data, and 
− High data must not leak to low systems or users. 
 
An MLS WFMS should obey this MLS policy. Atluri 
et. al. have investigated MLS workflow in general [1]. 
The development of high-assurance software, necessary 
to provide separation between unclassified and TS/SCI 
information, such as MLS workflow systems, has 
proven to be both technically challenging and 
expensive. Today’s fast paced advances in technology 
and the need to use COTS products make the traditional 
MLS approach untenable. Therefore, we have chosen 
the approach for building MLS workflow by integrating 
multiple single-level workflows with an MLS 
distributed architecture. This is in line with modern 
distributed computing paradigms that support autonomy 
and heterogeneity.  
 
To implement an MLS WFMS using the architectural 
method, the following technical approach has been 
established:  

− Implement the necessary design tool for supporting 
MLS workflow. Even though this tool allows 
workflow designers to specify information and 
control flow among tasks in different domains, the 
operational environment of the tool will be system-
high (i.e., the workflow design tool neither 
accesses sensitive data in multiple domains nor 
passes it around). Hence, we can implement this 
tool without too much concern for multilevel 
security issues (e.g., information leakage across 
classification domain boundary).  This tool will be 
run on a single-level system. 

− Choose a strategy for dividing an MLS workflow 
that was designed using the design tool into 
multiple single-level workflows. 
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− Choose an MLS distributed architecture where 
multiple single-level workflows can be executed. 

− Choose a single-level WFMS to execute single-
level workflow in each classification domain. 

− Extend the workflow interoperability model to 
accommodate cooperation among workflows at 
different classification domains. 

− Extend the single-level workflow enactment 
service (i.e., runtime engine) to accommodate 
communication among tasks in different 
classification domains. 

 
In the following section, we describe the internal 
structure of the MLS WFMS that we are building 
using the above strategy. 

3. System Organization 

There are many ways to satisfy the requirements that 
were described in section 1. We believe that an MLS 
WFMS is a good way to meet those requirements. In 
general, a WFMS consists of two main components: a 
design tool and runtime tools. Our requirements 
contain an unusual requirement, which is MLS. 
However, the rest of requirements are generic enough 
for use by corporate environments. We believe the 
MLS requirement and the way we solve this MLS 
problem actually helps us to look into workflow 
interoperability from a fresh perspective [2].  
 
We have developed generic platform independent 
distributed programming tools based on an object-
oriented paradigm; hence, Java was chosen as our 
development language. We also want our design tool 
to be not only independent of the runtime engine, but 
also independent of the underling MLS infrastructure. 
Based on these requirements, we have developed the 
system organization as shown in figure 1. 
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Figure 1: Internal structure of MLS METEOR 
 

A workflow designer specifies mission logic through 
the workflow design tool (i.e., various workflow 
editors). The workflow design tool saves the design in 
XML (eXtensible Markup Language) [5]. When a 
workflow design is completed, the workflow compiler 
reads the XML representation of the design and 
performs the necessary design analysis and validation. 
Finally it generates runtime code for enactment 
services. Even though there are many workflow 
runtime engines, there are very few distributed runtime 
engines.  We believe that OrbWork, an 
implementation of METEOR WFMS from University 
of Georgia and a distributed workflow runtime engine, 

is a good starting point. To satisfy MLS and other 
requirements, OrbWork has been extended. In the 
following subsections, we will explain each component 
in detail. 

3.1. Workflow Design Tool 

The workflow design tool is a generic distributed 
programming tool that can express programming logic 
through GUI-based editors. We have developed the 
workflow design tool based on the MLS distributed 
computing model.  

3.1.1. MLS distributed computing model 

MLS distributed programming adds another dimension 
of complexity to single-level distributed programming, 
which itself is not a trivial task. Therefore, we need a 
new programming model for MLS distributed 
computing that  
− eases the burden of MLS distributed programming, 

especially in the context of large system 
integration, 

− promotes the re-use of existing components,  
− facilitates the specification of security requirements 

(e.g., roles), 
− enables secure cooperation among autonomous 

systems at different classification levels, and 
− provides a global picture of the whole mission and 

a proper view of a mission to users at different 
levels of abstraction, 

 
In the MLS METEOR model, a task represents an 
abstraction of an activity. A task can be regarded as a 
unit of work that is performed by a variety of 
processing entities, depending on the nature of the task. 
A task can be performed by (realized by) a human, a 
computerized activity that executes a computer 
program, a database transaction, or possibly a network 
of interconnected tasks. Hence, a task provides one 
level of abstraction (view) and its realization provides a 
lower level of abstraction (view). Since the realization 
of a task may contain many tasks at different levels of 
abstraction, a task is a recursive reference in the 
METEOR model. In other words, one task from a 
particular user’s point of view may be a network of 
many tasks from another user’s perspective. 
 
There are two types of tasks in the model: 
− Foreign task: A task whose realization (i.e., 

strategy for implementation) is unknown to the 
workflow designer. It represents a task that is a part 
of cooperating independent system. It is required 
for a designer to declare a foreign task explicitly to 
provide a hint to the runtime code generator. A 
foreign task should have a minimal information set 
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(e.g., where to send the request, how to receive 
output).  

− Native task: A task for which the realization is 
known or the realization will be provided before 
runtime code generation (i.e., all other tasks 
except the foreign tasks). 

 
For example, foreign tasks can be used to define 
communication and synchronization with a task in 
other classification domains.  If an MLS workflow is 
created at the highest classification domain, then the 
complete MLS workflow with realizations of all its 
tasks can be specified. However, if the workflow 
designer creates an MLS workflow that requires input 
from (or output to) higher classification domains, then 
he may know only the interfaces to the tasks at the 
higher levels but not the detailed workflow process at 
higher levels.  
 
A native task can be either a simple task or a network 
task. A simple task is a task that cannot be broken 
down further from a workflow designer’s point of 
view. A network task represents the core of the 
workflow activity specification. Since a network task 
is one of the realizations of a task, it is always 
associated with a task called its parent task. A single 
network of tasks defines a relationship among 
workflow tasks, transferred data, exception handling, 
and other relevant information. It is a collection of 
either foreign or native tasks and transitions from one 
task to another. Figure 2 shows a simplified version of 
two levels of abstractions (views) where Task2 is the 
parent task of the projected workflow WI, which 
contains tasks 4, 5, 6, and 7, and transition tj represents 
a transition from Task1 to Task2. In Figure 2, Task1, 
Task2, and Task3 may belong to different 
classification domains. Hence, the MLS METEOR 
model can be thought of as follows: along the xy-
surface, there are tasks in different domains and along 
the z-axis, there are different levels of abstraction. 
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Figure 2: MLS METEOR Model 
 
A task may play the role of a source task or a 
destination task (e.g., Task1 is the source task and 
Task2 is the destination task of the transition tj in 

Figure 2) for a number of transitions. All of the 
transitions for which a task is the destination task are 
called the input transitions for that task (e.g., transition 
tj is an input transition for Task2). Likewise, all the 
transitions for which a task is the source task are called 
its output transitions (e.g., transition tj is an output 
transition of Task1). A transition may have an 
associated Boolean condition called its guard. A 
transition may be activated only if its guard is true. 
When there is a transition from task Ti to task Tj where 
Ti and Tj are in different classification domains, we call 
this an MLS transition from Ti  to Tj . 
 
An external transition is a special type of a transition in 
which the two participating tasks (source and 
destination) are not in the same workflow (i.e., 
transition to and from a foreign task). An external 
transition may lead to a start task of another workflow. 
Similarly, an implied transition leads from the final task 
and is used to notify the external entity that the network 
has terminated. Note that an MLS transition is turned 
into an external transition when an MLS design is 
divided into multiple single-level workflows for 
runtime.  
 
External transitions are also used to specify 
synchronization points with some external events. 
Typically, external transitions may be used to specify 
communication and synchronization between two 
independent workflows. Here, an external transition 
leading into a task in the workflow is assumed to have 
an implied source task (outside the workflow). 
Similarly, an external transition leading out of a task in 
the workflow is considered to have an implied 
destination task (outside the workflow). External 
transition is a cornerstone of our strategy to support 
MLS workflow.  
 
The classes (i.e., types of objects) that are associated 
with an input transition to a task are called the task’s 
input classes, and those appearing on an output 
transition are called output classes of that task. If an 
output class is also not an input class then the class is 
created by the task. Specifically, an object instance of 
the specified class is created by the workflow runtime. 
An input class that is not an output class is dropped 
(consumed). When input classes are unused by the task, 
they are transferred to the task’s successor(s). 
 
A group of input transitions is called an AND-join if all 
of the participating transitions must be activated for the 
task to be enabled for execution. An AND-join is called 
enabled if all of its transitions have been activated. All 
the input transitions of a task may be partitioned into a 
number of AND-joins. A group of input transitions is 
called an OR-join if the activation of one of the 
participating transitions enables the task. 
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A group of transitions is said to have a common source 
if they have the same source task and all lead either 
from: 
− Its success state or 
− Its fail state. 
 
A group of common source transitions may form one 
of the following: 
− AND-split: Each of the transitions in the group has 

the condition set to true.  This means that all of 
the transitions in the group are activated once the 
task is completed. 

− OR-split (selection): An ordered list of transitions 
where all but the last transition may have arbitrary 
conditions (i.e., the last transition on the list has 
the condition set to true).  The first transition 
whose condition is satisfied will be activated. 

− Loop: A special case of an OR-split, where the list 
is composed of exactly two transitions: continue 
and break. Continue implies branch taken and 
break implies branch not taken (i.e., fall through). 

 
All tasks that we define in this paper are single-level 
tasks. What we mean by single-level is that the task 
receives input from one classification domain and 
produces output at the same classification domain. 
There are four special tasks: begin, success, failure, 
and synchronization. The synchronization tasks 
represent external transitions to and from other 
workflows. In general, workflow designers do not 
manipulate synchronization nodes directly. They are 
automatically generated by the system based on the 
specification of foreign tasks and input and output 
transitions to and from the foreign tasks.  
 
An MLS workflow is a network of interconnected 
single-level (foreign or native) tasks from more than 
one classification domain. Note that we call a task 
single-level from one particular level of abstraction 
(view). Since a single-level task may be realized by an 
MLS workflow at a lower level of abstraction, it may 
have side-effects on different classification domains at 
lower abstraction levels. Hence, our distinction 
between single-level and multilevel is purely from the 
perspective of a specific abstraction level. 
 
Let CL(Ti) represent the classification domain of task 
Ti.  The relationships between the classification 
domains form a lattice. An MLS workflow that is the 
realization of task Ti where CL(Ti) = Sa must obey the 
following constraints: 
− The begin, success, and fail nodes of the MLS 

workflow must be CL(begin) = CL(success) = 
CL(failure) = Sa. 

− It may have tasks in other classification domains; 
however, if the CL(Tj) = Sb where Sa does not 

dominate Sb, then Tj must be a foreign task. In 
other words, only tasks in Sc where Sa ≥ Sc  may 
have realizations. 

3.1.2. Design Editors 

The workflow design tool should provide an easy way 
to capture the control and data flow among 
components. It should also provide an easy way to 
import existing designs or components to the current 
design environment. We provide various platform 
independent GUI-based editors to support the MLS 
distributed computing model. There are two starting 
points into a specific design process (see figure 3). 
They are the task and network editors, both of which 
will create an initial top level component (task). The arc 
and operator editors are mainly used in conjunction 
with the network and task editors to specify data and 
control flow. There are three additional editors that aid 
MLS workflow design: data, domain, and role editors. 
These three editors can be used independent of the 
specific workflow. For example, domain structure, 
especially in MLS, may be predefined based on 
physical separation. Also role hierarchy [6] may be 
predefined by organizations. This semi-independence 
enables a workflow designer either  
− to use predefined data, and domain and role 

structures from a previous design or 
− to define necessary data, domain and role 

structures during a workflow design.  
 

Task

Network
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Operator

Data RoleDomain

S
T
A
R
T

 
Figure 3: A typical design process and relationship 

among editors 
 
The description of each editor follows. 
 
Network Editor 

A network editor, alternatively called a map editor, is a 
graphical programming tool that allows users to lay out 
the control flow of the intended mission logic.  Hence, 
at the highest abstraction level, it provides a global 
picture of a mission. In this editor, the designer can  
− divide the drawing area into many classification 

domains, 
− drop tasks in the different domains, and 
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− draw arcs that represent control flow between 
tasks. 

 
A designer can traverse the different abstraction levels 
to observe or specify different workflow logic with 
this editor. It also provides links to all other editors to 
refine a design. For example, if a designer wishes to 
specify operators (e.g., AND-split, loop) for a specific 
task, then he can do so by accessing the operator 
editor.  
 
An ability to prescribe recovery routes and alternative 
tasks in case of failure is an important feature for an 
MLS WFMS. Our designer provides this capability 
through various editors. First, the network editor 
supports two types of arcs that represent transitions: 
one is success arc and the other is fail arc. Second, 
METEOR also supports system and user-defined 
exceptions that can be specified through the task 
editor. Using exceptions and fail arc, a workflow 
designer can specify a recovery strategy for 
predictable failures. Figure 4 shows a snapshot of the 
network editor.  
 

 
Figure 4: A snapshot of the network editor 

 
Task Editor 

The task editor provides the designer with a tool for 
describing the interface, operating environment, and 
implementation of the task. Since tasks can be 
connected together in the implementation of another 
task (i.e., network task), the task editor also provides 
information about connections to other tasks and their 
corresponding editors. In other words, the task editor 
provides a task-centric view of the workflow. 
 
To describe the task interface, the designer provides a 
unique name for identifying the task, along with a 
textual description. The task’s type specifies how the 
task is implemented. The two primary task types are 

network and simple, where simple tasks include: 
human, transactional and non-transactional. To 
complete the interface to a task the designer must 
specify the input data objects necessary to invoke the 
task along with the task’s output data objects. The 
designer can specify multiple invocations, but during 
runtime all the data objects for one of the invocations 
must be available for a task to start. If the designer 
wishes to specify failure states for a task then special 
data objects, called exceptions, are used.  
 
The designer must also describe the environment within 
which the task has been designed to operate. Of critical 
importance to an MLS design is what classification 
domain the task will be operating in. The designer can 
use compartments (e.g. data restrictions) to further 
restrict access to the task and its data.  In addition the 
designer can specify what organization owns the task 
and what roles (which will map to a list of users at 
runtime) are allowed to perform the task. The designer 
can also specify the host where a task should be located 
and specify any system and operational constraints 
(e.g., allocated time to completion) for the task. During 
workflow design it is important that the designer 
considers constraints which have been specified in 
parent tasks. 
 
The designer must also specify the task implementation 
(realization). The task’s realization is highly dependant 
upon the type of the task.  For a network task, the 
designer can use the network editor to describe the 
underlying workflow. For a simple human task, the 
workflow design tools will generate a generic html page 
based upon the inputs and outputs of the task. The 
designer can then specify an html editor and viewer that 
he can use to customize the HTML page for the desired 
result. When implementing a simple transactional task, 
the designer will be able to enter the database query 
commands that are necessary to carry out the 
commands. For a simple non-transactional task, the 
designer can enter the code necessary for invoking the 
task (e.g., executable code, CORBA invocation) or can 
enter a description of what needs to be done, and the 
runtime designer can actually implement the 
functionality. Both transactional and non-transactional 
tasks can be connected to existing legacy applications. 
 
There are two other special tasks, which the task editor 
can edit. They are the abstract and the foreign tasks. A 
designer uses an abstract task to describe the interface 
and security of a task that some other designer will 
complete before runtime code generation. But a foreign 
task is used to describe the interface to a task that will 
be implemented by another designer and will be 
available only at runtime. 
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To achieve a task-centric view of the workflow, the 
task editor provides the necessary connectivity to look 
at the entire design. If the task is used within a 
workflow, the task editor provides the designer with a 
view of all the task’s connections (arcs) whether input, 
output, or failure arcs. For each connection, the editor 
provides the designer with quick access to the 
associated arc, operator, and task editors. And the task 
editor provides the ability to view down to the 
implementation details. 
 
Arc Editor 

An arc in the network editor represents a transition 
from a source task to a destination task. In our 
implementation, arcs specify the data transferring from 
the source task to the destination task (i.e., input and 
output classes). The arc editor provides an easy way to 
map outputs from one task to inputs of another task in 
a given workflow. For example, one task has three 
outputs, type1, type1, and type2. Another task has 
three inputs type1, type1, and type2. Since there is 
an ambiguity of matching two type1 outputs to two 
type1 inputs, an arc editor provides a handy way for 
the designer to specify which output of a task 
corresponds to the input of another task. 
 

Operator Editor 

The new model uses operators to specify the input and 
output transitions for a task.  Hence, a designer needs a 
capability to edit the structure of these operators.  Due 
to the complexity of workflow design for most 
applications, it does not seem practical to attach 
complex operator structures to each task (i.e., three 
operator structures per task; input, success output, and 
failure output) in the network editor.  So we provide a 
separate editor to organize the input transition operator 
and two output transition operators.  The input 
operators are organized using a structure of AND-joins 
and OR-joins to combine transitions from other tasks.  
The two output transitions (one for success and one for 
fail) are organized using a structure of AND-splits, 
OR-splits, and a LOOP to distribute transitions to 
other tasks. 
 
Domain Editor 

The domain editor allows a designer to specify 
attributes of each domain (e.g., name, description). As 
mentioned in section 3.1.1, the dominance relationship 
among classification domains form a lattice. The 
domain editor allows the designer to specify the 
dominance relationship among classification domains. 
It also lets users change the GUI properties of 
classification domains (e.g., color). This editor 
provides a convenient place to specify receive and 
release policies between pairs of domains.  This policy 
information can be used as a view into a complete list 

of policies that are described in a more comprehensive 
policy definition and enforcement tool. 
 
Data Editor 

Data for the workflow design tool is specified as an 
object interface. The data editor provides a graphical 
interface for a designer to specify new data and access 
already defined data. All data objects must extend an 
existing workflow data object, since the root workflow 
data object implements functionality required by the 
runtime of data object management. This is similar to 
the Java concept where the “Object” class is the root of 
the entire Java class hierarchy. The data editor allows 
the designer to specify the package, class name, what 
class the current class extends (single inheritance only), 
fields, and methods. 
 
Workflow data is used for task invocations, outputs, 
and exceptions. In the case of exceptions, the data must 
extend an existing user exception or the root 
“UserException”. Data is also used for the guards 
(conditional statements in operators). In a conditional 
statement, the designer will have access to all the fields 
and methods defined in the interface of the data object. 
The relationship among workflow data is shown in 
figure 5. 

Workflow Data

General user data Exception

User Exception System Exception

General user 
Exceptions

Predefined 
system Exceptions

 
Figure 5: Data inheritance tree 

 
Role editor 

The role editor is similar to the classification domain 
editor in the sense that it allows a designer to define 
roles and the relationships among them (i.e., role 
hierarchies). In defining a role the designer can specify 
the name of the role, its description, and the privileges 
associated with the role. In general, role hierarchies 
reflect an organization’s line of authority and 
responsibility. For example, if role A is higher than role 
B, then role A may have all the permissions that role B 
has and more. A designer can specify which role is 
more privileged than another in a given organization 
through this editor. The role editor will generate XML 
files on a per organization basis. These XML files can 
be used by an external application to assign users to 
roles and enforce permissions in the runtime system. 
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3.1.3. Coordination among Editors 

Editors share common workflow related information 
and several of them might be displayed at the same 
time. If an object is modified after an editor displays 
information, then the editor needs to know about the 
changes so that it can refresh its display. We use a 
very simple scheme to ensure consistent display. There 
is an editor registry that maintains a list of active 
editors. When a user opens an editor, it registers itself 
to the registry. When a user closes an editor, it drops 
itself from the registry. When an editor modifies an 
internal workflow object, it notifies other active 
editors. It is each editor’s responsibility either to 
update display if the editor uses the modified object or 
ignores the notification if the editor does not use the 
object. 
 
The workflow design tool is not only a generic GUI-
based, distributed programming tool, but also a good 
documentation tool that can capture the architecture of 
a complex distributed system design.  Since the tool 
has to handle various inputs and outputs (e.g., mouse 
movement, context sensitive menu display), it 
becomes a fairly complex system. Since we do not 
want to make the design tool any more complex than 
is necessary, we created another module, the workflow 
compiler, to handle some functions that do not require 
much user interaction. In the next section we present 
the modules that bridge the gap between the workflow 
design tool and enactment services. 

3.2. Workflow Compiler 

There are two main reasons that we decided to 
separate the workflow compiler from the workflow 
design tool. First, even though the workflow design 
tool performs limited local design validation (e.g., task 
name conflict), it is logical to move global design 
analysis and code generation out of the workflow 
design tool for maintainability and extendibility 
reasons. Second, the workflow design tool is a generic 
distributed programming and documentation tool that 
can be used for many different purposes. Therefore, a 
different user community may have different analysis 
and validation requirements (e.g., vulnerability 
analysis). Also a different user community may prefer 
different enactment services. Hence we need to create 
a simplified (i.e., no GUI components) data structure 
that can be used by other people to write a new 
analyzer or runtime code generator.  
 
Based on the above requirements, we structured the 
workflow compiler to perform three important tasks. 
They are: 
− Analysis and validation of the design, 

− Splitting an MLS workflow into multiple single-
level workflows, and 

− Generation of runtime code for enactment services. 
The workflow compiler is organized in such a way that 
new analyzers or runtime code generators can be easily 
integrated. The internal structure of the workflow 
compiler is as shown in figure 6.  
 

: Global analysis and validation component

: Runtime code generators

Compiler
XML

Runtime
code

......

 
Figure 6: the structure of MLS METEOR compiler 

 
The workflow compiler reads an XML representation 
of a design and converts it to an internal tree data 
structure. The analyzer and runtime code generator 
receive the internal data structure and perform their 
tasks. Runtime code generation largely depends on  
− the specific runtime engine that will be used and 
− the MLS infrastructure (see section 3.3.1) where 

the runtime engine is executed. 
 
The process of splitting an MLS workflow design into 
multiple single-level workflows that we described in 
section 2 and also in [2] precedes runtime code 
generation. Initially, the extended version of OrbWork 
that is an implementation of METEOR is used as our 
target runtime engine. However, the structure of the 
MLS Meteor allows other runtime engines to be easily 
incorporated.  

3.3. Runtime-system 

An MLS workflow runtime management system 
accesses information in many classification domains. 
Therefore, the MLS requirement needs to be addressed 
by the runtime system. Our strategy for providing an 
MLS workflow management capability that can reduce 
MLS trust requirements is through composing multiple 
single-level WFMSs on a particular MLS infrastructure.  

3.3.1. MLS Infrastructure 

Composing an MLS workflow from multiple single-
level workflows is the only practical way to construct a 
high-assurance MLS WFMS today. In this approach, 
the multilevel security of our MLS workflow does not 
depend on a single-level WFMS, but rather on the 
underlying MLS distributed architecture. The MLS 
distributed architecture will:  
− Host multiple single-level workflows to be 

executed and  
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− Provide conduits for passing information among 
tasks in different classification domains.  

 
A generic MLS distributed architecture is shown in 
Figure 7. 

Pump

Switched
workstation

High Network
(High WFMS)

Low Network
(Low WFMS)

Downgrader

 
Figure  7: An MLS Distributed Architecture 

 
In this architecture, switched workstations (e.g., 
“Starlight”) enable a user to access resources in 
multiple classification domains and create information 
in domains that the user is authorized to access. One-
way devices (e.g., a flow controller such as “A 
Network Pump”) together with information release 
and receive policy servers provide a secure way to 
pass information from one classification domain to 
another. An information release policy server resides 
in a classification domain where the information is 
released, and an information receive policy server 
resides in a classification domain where the 
information is received as shown in Figure 8. 
 

Release
policy
server

Sanitize
information

Flow
controller

Receive
policy
server

Information
receiver makes

decision

Enforcing
flow direction

Enforcing
authentication,

integrity, labeling,
…, policy

Enforcing
Non-bypassability

Information
custodian

(organization)
makes decision

Enforces organization
or application specific
release policy

Optional process
(remove source,

fuzz image)

Domain A Domain B 
Figure 8: Information Release and Receive Policies in 

Conjunction with a Flow Controller 

3.3.2. Single-level Enactment Services and 
Monitor 

There can be many enactment services for a given 
workflow design. Currently we are using modified 
OrbWork [4] for our runtime engine. OrbWork is a 
single-level distributed workflow engine implemented 
in Java. It does not have a central scheduler for the 
whole workflow, rather there is a distributed scheduler 
per task that the workflow designer defined in the 
network editor. Each scheduler only knows its 
predecessors and successors.  
 

Briefly, OrbWork works as follows. OrbWork 
schedulers are CORBA servers. Hence, they 
communicate with each other through CORBA’s IIOP. 
OrbWork schedulers are also HTTP servers. When a 
human operator has to interact with a scheduler (e.g., 
human task), he can do so through the HTTP protocol. 
Also when a human workflow manager needs to 
intervene for some reasons, he can do so through the 
HTTP protocol.  
 
OrbWork has two other CORBA servers: data servers 
and workflow monitor servers. Data servers act as a 
repository for data that needs to be passed among 
schedulers. The workflow monitor server receives 
progress reports from schedulers. Simplified 
communication paths among different components in 
OrbWork are shown in figure 9. 

S

S

S

S

D

Data Servers

M

Human
Manager

Human
Operator

Scheduler

: Corba’s IIOP

: HTTP

Monitor server

 
 

Figure 9: Communication among OrbWork components 

3.3.3. MLS Enactment Services and MLS 
Monitor 

As we presented in section 2 and in [2], our strategy for 
achieving MLS workflow is through the interoperability 
of single-level workflows that were generated from an 
MLS workflow design.   For interoperability, the 
workflow runtime engine should be able to pass and 
receive the necessary information across domain 
boundaries. We extend OrbWork with the 
synchronization node. We can categorize 
synchronization nodes into release and receive 
synchronization nodes following our MLS 
infrastructure shown in figure 8. The responsibilities of 
synchronization nodes are as follows:  
− To act as proxies for a task in another domain, 
− To serve as exit and entry points to pass necessary 

information from one domain to another domain, 
and 

− To ensure only proper information is passed to 
another domain (i.e., make sure release and receive 
policies are enforced). 
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For example, if there is an MLS transition from task 
A to task B as in figure 10, the release 
synchronization node acts as a proxy for task B and 
the receive synchronization node acts as a proxy for 
task A.  Also release synchronization nodes serve as 
an exit point of the release domain and the receive 
synchronization node serves as an entry point for the 
receive domain. Therefore, release and receive policies 
can be enforced there. 

Receive
synchronization

node

Release domain

Receive domain
Flow

controller

Task B

Task A

Release
synchronization

node

MLS
Transition

 
Figure 10:  Break down of an MLS transition into 

multiple transitions 
 

In our MLS workflow system, information exists as 
objects. Hence, there is the potentially that objects that 
contain variables and methods have to be passed 
across domain boundaries. Passing an object across 
classification domains can cause integrity and security 
violations. To mitigate risks associated with passing 
entire objects (i.e., state and definition of objects) 
across domain boundaries, currently, we only pass the 
necessary state information so that the objects can be 
reconstructed on the receiving domains. When a 
release synchronization node receives an object, it 
extracts the necessary information from the object and 
sends it through a flow controller. When a receive 
synchronization node receives, it instantiates the 
object in the receiving domain. 
 
An MLS WFMS requires an MLS monitor. Workflow 
managers in a classification domain may need to know 
the progress of work in their classification domain and 
other domains that they are authorized to access. In 
other words, users of MLS workflow in different 
classification domains may have different views of the 
workflow they are running. Hence, an MLS WFMS 
should provide the capability to monitor activities in 
all domains the workflow manager is authorized to 
access. We are providing MLS monitoring capabilities 
that use similar techniques to those for data transfer 
from one domain to another. In other words, we place 
a monitoring proxy that receives monitoring 
information in a lower domain. This monitoring proxy 
corresponds to a release synchronization node and 
transfers the monitored information to a higher 
domain. In the higher domain, there is another 
monitoring proxy which corresponds to a receive 

synchronization node. This monitoring proxy relays the 
lower-level monitoring message to a higher-level 
monitor server. As in the case of data transfer, 
information must satisfy release and receive policy and 
must go though a boundary controller. 

4. Conclusion 

In this paper, we presented the system organization of 
MLS METEOR and the rationale behind the 
organization. MLS METEOR is an example of an MLS 
application that can run on the MLS infrastructure that 
was presented at this conference last year [3]. In this 
approach, multilevel security enforcement of MLS 
METEOR does not depend on the single-level WFMS 
but rather on the underlying MLS infrastructure and a 
few security critical components (i.e., synchronization 
nodes that enforce release and receive policy, and 
boundary controllers). Therefore, MLS METEOR 
allows a workflow designer to concentrate on the 
functionality of the system he is building.  
 
Prototypes of all components (i.e., workflow design 
tool, workflow compiler, and extended OrbWork as an 
enactment service) have been implemented. We are in 
the process of integrating those components. Future 
work includes adding more advanced features and 
addressing other aspects of workflow (e.g., 
survivability). 
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