
 1

Tools to Support Secure Enterprise Computing

Myong H. Kang, Brian J. Eppinger, and Judith N. Froscher
Information Technology Division

Naval Research Laboratory

Abstract

Secure enterprise programming is a difficult and
tedious task. Programmers need tools that support
different levels of abstraction and that track all the
components that participate in distributed enterprises.
Those components must cooperate in a distributed
environment to achieve higher-level goals. A special
case of secure enterprise computing is multilevel
secure (MLS) computing. Components that may reside
in different security domains have to cooperate to
achieve higher-level missions.

To ease the programmer’s burden, we are developing
an MLS workflow management system (WFMS), called
MLS METEOR. A programmer can specify a
distributed programming logic through a GUI-based
workflow design tool. Based on the programming
logic, MLS METEOR will generate a distributed
runtime system that handles communication among
different hosts, even those that reside in different
classification domains. The multilevel security
enforcement of MLS METEOR does not depend on the
WFMS itself but rather on the underlying MLS
infrastructure and a few security critical components.
This paper concentrates on the system organization of
MLS METEOR and the rationale for this structure. We
explain which portions of the system can be used in
generic enterprise computing and which portions are
specific to MLS computing.

1. Introduction

Globalization has replaced the separation that
characterized the Cold War era. Unconventional
coalitions among businesses and nations and among
former adversaries are formed to advance common
goals, then quickly dissolve as individual objectives
change. Threats now lie in these essential connections
among participating enterprises, which also enable
profitable cooperation. To facilitate these alliances,
businesses and the military rely on distributed
information technology (IT) for most operations and
must be able to respond quickly to new situations and

threats in completely different environments. Hence,
supporting IT resources must be flexible to allow for
rapid reconfiguration.
The military has additional requirements that stem from
the need to pull together coalitions in a short timeframe
to achieve a common goal and to protect sensitive
national security information. Each mission has
different mission logic and deals with different
computing resources that can belong to different
classification domains. Therefore, distributed programs
that support such missions have to deal with multilevel
security (MLS) issues.

Another complication of distributed computing arises
because the programs are very large. In general,
distributed programs are much larger than conventional
programs and often involve the integration of existing
applications to achieve higher-level goals. Even though
distributed object computing standards like CORBA
and DCOM, have made a basic level of interoperability
among distributed applications possible and have made
distributed programming tenable, distributed
programming is still a difficult and tedious task.
Usually a team of programmers has to work on
different parts of a program, which have to be
assembled to provide the IT support for the mission. It
is often difficult to have a global picture of the whole
program and to monitor the progress of the work due to
the magnitude of these programs and the wide
distribution of resources.

The operational environment and dependence on
cooperation among distributed IT resources mean that
we need development and runtime tools that
− ease the programming burden of constructing

large-scale, distributed systems and promotes reuse
of existing components,

− provide a GUI-based distributed programming
environment that offers different levels of
abstraction so that not only the global picture of the
program, but also more detailed views of a
component, can be displayed for different users,

 2

− allow easy (re)configuration of design to
accommodate and promote integration with
coalition partners,

− generate runtime code to handle the complexities
of distributed communication (e.g., CORBA,
DCOM, HTTP),

− can specify recovery strategies,
− reduce the design time and cost of MLS

applications,
− generate secure runtime code to ensure the

success of the mission since these systems operate
in many different classification domains, and

− provide monitoring capabilities so that users at
different classification domain can determine the
status of work in progress at their level and the
levels that they are allowed to monitor.

Even though there may be many ways to achieve these
goals, we have started with the workflow paradigm, to
which we can add new capabilities such as multilevel
security, distributed scheduling, recovery, etc. In this
paper, we view multilevel secure computing as a
special case of secure enterprise computing. We may
have to guard the connections among different security
domains more strongly than the connections among
business partners. However, the MLS programming
principles is not much different from any other secure
enterprise computing. In fact, we have designed the
WFMS so that different security infrastructures can be
used to facilitate cooperation among several
enterprises.

This paper is organized as follows. In section 2, we
briefly review our strategy to achieve the above goal
for secure enterprise computing. We present the
software structure for implementing such a system in
section 3. We carefully organize the software so that
only a small portion is specific to MLS computing.
Section 4 concludes this paper and presents the status
of the project and future work.

2. A Strategy for Secure Enterprise
Computing

We presented a strategy to pursue the above goals in a
separate paper [2]. In this section, we summarize the
strategy for the sake of completeness.

The MLS workflow management system (WFMS) that
we are building will provide equivalent functionality
to a single-level WFMS and hooks into an MLS
infrastructure for enforcing the MLS security policy.
Tasks that may be single-level individually, but
located in different classification domains, have to
cooperate to achieve a higher-level MLS mission.
Therefore, we need to provide an MLS distributed
programming (design) tool that allows programmers to

specify their distributed program logic (we sometimes
call mission logic in this paper). This design tool allows
MLS workflow designers to
− divide a design area into multiple domains,
− specify information flow, dependency, and the

condition of the dependency among tasks that are
in the same or different domains,

− specify dominance relationships among domains
(e.g., Top Secret > Secret > Unclassified), and

− specify exception conditions and recovery
strategies for exceptions.

On the other hand, the runtime engine needs to provide
MLS services in a distributed and heterogeneous
computing environment. The MLS runtime system
must enforce the following information flow
requirements:

− High users may have access to low data and low
resources,

− High processes may have access to low data, and
− High data must not leak to low systems or users.

An MLS WFMS should obey this MLS policy. Atluri
et. al. have investigated MLS workflow in general [1].
The development of high-assurance software, necessary
to provide separation between unclassified and TS/SCI
information, such as MLS workflow systems, has
proven to be both technically challenging and
expensive. Today’s fast paced advances in technology
and the need to use COTS products make the traditional
MLS approach untenable. Therefore, we have chosen
the approach for building MLS workflow by integrating
multiple single-level workflows with an MLS
distributed architecture. This is in line with modern
distributed computing paradigms that support autonomy
and heterogeneity.

To implement an MLS WFMS using the architectural
method, the following technical approach has been
established:

− Implement the necessary design tool for supporting
MLS workflow. Even though this tool allows
workflow designers to specify information and
control flow among tasks in different domains, the
operational environment of the tool will be system-
high (i.e., the workflow design tool neither
accesses sensitive data in multiple domains nor
passes it around). Hence, we can implement this
tool without too much concern for multilevel
security issues (e.g., information leakage across
classification domain boundary). This tool will be
run on a single-level system.

− Choose a strategy for dividing an MLS workflow
that was designed using the design tool into
multiple single-level workflows.

 3

− Choose an MLS distributed architecture where
multiple single-level workflows can be executed.

− Choose a single-level WFMS to execute single-
level workflow in each classification domain.

− Extend the workflow interoperability model to
accommodate cooperation among workflows at
different classification domains.

− Extend the single-level workflow enactment
service (i.e., runtime engine) to accommodate
communication among tasks in different
classification domains.

In the following section, we describe the internal
structure of the MLS WFMS that we are building
using the above strategy.

3. System Organization

There are many ways to satisfy the requirements that
were described in section 1. We believe that an MLS
WFMS is a good way to meet those requirements. In
general, a WFMS consists of two main components: a
design tool and runtime tools. Our requirements
contain an unusual requirement, which is MLS.
However, the rest of requirements are generic enough
for use by corporate environments. We believe the
MLS requirement and the way we solve this MLS
problem actually helps us to look into workflow
interoperability from a fresh perspective [2].

We have developed generic platform independent
distributed programming tools based on an object-
oriented paradigm; hence, Java was chosen as our
development language. We also want our design tool
to be not only independent of the runtime engine, but
also independent of the underling MLS infrastructure.
Based on these requirements, we have developed the
system organization as shown in figure 1.

W orkflow
designer

tool

E nactm ent
service &
M onitor

W orkflow
com piler

X M L
R untim e

 code

Figure 1: Internal structure of MLS METEOR

A workflow designer specifies mission logic through
the workflow design tool (i.e., various workflow
editors). The workflow design tool saves the design in
XML (eXtensible Markup Language) [5]. When a
workflow design is completed, the workflow compiler
reads the XML representation of the design and
performs the necessary design analysis and validation.
Finally it generates runtime code for enactment
services. Even though there are many workflow
runtime engines, there are very few distributed runtime
engines. We believe that OrbWork, an
implementation of METEOR WFMS from University
of Georgia and a distributed workflow runtime engine,

is a good starting point. To satisfy MLS and other
requirements, OrbWork has been extended. In the
following subsections, we will explain each component
in detail.

3.1. Workflow Design Tool

The workflow design tool is a generic distributed
programming tool that can express programming logic
through GUI-based editors. We have developed the
workflow design tool based on the MLS distributed
computing model.

3.1.1. MLS distributed computing model

MLS distributed programming adds another dimension
of complexity to single-level distributed programming,
which itself is not a trivial task. Therefore, we need a
new programming model for MLS distributed
computing that
− eases the burden of MLS distributed programming,

especially in the context of large system
integration,

− promotes the re-use of existing components,
− facilitates the specification of security requirements

(e.g., roles),
− enables secure cooperation among autonomous

systems at different classification levels, and
− provides a global picture of the whole mission and

a proper view of a mission to users at different
levels of abstraction,

In the MLS METEOR model, a task represents an
abstraction of an activity. A task can be regarded as a
unit of work that is performed by a variety of
processing entities, depending on the nature of the task.
A task can be performed by (realized by) a human, a
computerized activity that executes a computer
program, a database transaction, or possibly a network
of interconnected tasks. Hence, a task provides one
level of abstraction (view) and its realization provides a
lower level of abstraction (view). Since the realization
of a task may contain many tasks at different levels of
abstraction, a task is a recursive reference in the
METEOR model. In other words, one task from a
particular user’s point of view may be a network of
many tasks from another user’s perspective.

There are two types of tasks in the model:
− Foreign task: A task whose realization (i.e.,

strategy for implementation) is unknown to the
workflow designer. It represents a task that is a part
of cooperating independent system. It is required
for a designer to declare a foreign task explicitly to
provide a hint to the runtime code generator. A
foreign task should have a minimal information set

 4

(e.g., where to send the request, how to receive
output).

− Native task: A task for which the realization is
known or the realization will be provided before
runtime code generation (i.e., all other tasks
except the foreign tasks).

For example, foreign tasks can be used to define
communication and synchronization with a task in
other classification domains. If an MLS workflow is
created at the highest classification domain, then the
complete MLS workflow with realizations of all its
tasks can be specified. However, if the workflow
designer creates an MLS workflow that requires input
from (or output to) higher classification domains, then
he may know only the interfaces to the tasks at the
higher levels but not the detailed workflow process at
higher levels.

A native task can be either a simple task or a network
task. A simple task is a task that cannot be broken
down further from a workflow designer’s point of
view. A network task represents the core of the
workflow activity specification. Since a network task
is one of the realizations of a task, it is always
associated with a task called its parent task. A single
network of tasks defines a relationship among
workflow tasks, transferred data, exception handling,
and other relevant information. It is a collection of
either foreign or native tasks and transitions from one
task to another. Figure 2 shows a simplified version of
two levels of abstractions (views) where Task2 is the
parent task of the projected workflow WI, which
contains tasks 4, 5, 6, and 7, and transition tj represents
a transition from Task1 to Task2. In Figure 2, Task1,
Task2, and Task3 may belong to different
classification domains. Hence, the MLS METEOR
model can be thought of as follows: along the xy-
surface, there are tasks in different domains and along
the z-axis, there are different levels of abstraction.

Task6

Task2
Realized by

Task1 Task3

Transitiontj

Task7

Task4

Task5
WorkflowW

Abstraction level 1

Abstraction level 2
x

y

z

Figure 2: MLS METEOR Model

A task may play the role of a source task or a
destination task (e.g., Task1 is the source task and
Task2 is the destination task of the transition tj in

Figure 2) for a number of transitions. All of the
transitions for which a task is the destination task are
called the input transitions for that task (e.g., transition
tj is an input transition for Task2). Likewise, all the
transitions for which a task is the source task are called
its output transitions (e.g., transition tj is an output
transition of Task1). A transition may have an
associated Boolean condition called its guard. A
transition may be activated only if its guard is true.
When there is a transition from task Ti to task Tj where
Ti and Tj are in different classification domains, we call
this an MLS transition from Ti to Tj .

An external transition is a special type of a transition in
which the two participating tasks (source and
destination) are not in the same workflow (i.e.,
transition to and from a foreign task). An external
transition may lead to a start task of another workflow.
Similarly, an implied transition leads from the final task
and is used to notify the external entity that the network
has terminated. Note that an MLS transition is turned
into an external transition when an MLS design is
divided into multiple single-level workflows for
runtime.

External transitions are also used to specify
synchronization points with some external events.
Typically, external transitions may be used to specify
communication and synchronization between two
independent workflows. Here, an external transition
leading into a task in the workflow is assumed to have
an implied source task (outside the workflow).
Similarly, an external transition leading out of a task in
the workflow is considered to have an implied
destination task (outside the workflow). External
transition is a cornerstone of our strategy to support
MLS workflow.

The classes (i.e., types of objects) that are associated
with an input transition to a task are called the task’s
input classes, and those appearing on an output
transition are called output classes of that task. If an
output class is also not an input class then the class is
created by the task. Specifically, an object instance of
the specified class is created by the workflow runtime.
An input class that is not an output class is dropped
(consumed). When input classes are unused by the task,
they are transferred to the task’s successor(s).

A group of input transitions is called an AND-join if all
of the participating transitions must be activated for the
task to be enabled for execution. An AND-join is called
enabled if all of its transitions have been activated. All
the input transitions of a task may be partitioned into a
number of AND-joins. A group of input transitions is
called an OR-join if the activation of one of the
participating transitions enables the task.

 5

A group of transitions is said to have a common source
if they have the same source task and all lead either
from:
− Its success state or
− Its fail state.

A group of common source transitions may form one
of the following:
− AND-split: Each of the transitions in the group has

the condition set to true. This means that all of
the transitions in the group are activated once the
task is completed.

− OR-split (selection): An ordered list of transitions
where all but the last transition may have arbitrary
conditions (i.e., the last transition on the list has
the condition set to true). The first transition
whose condition is satisfied will be activated.

− Loop: A special case of an OR-split, where the list
is composed of exactly two transitions: continue
and break. Continue implies branch taken and
break implies branch not taken (i.e., fall through).

All tasks that we define in this paper are single-level
tasks. What we mean by single-level is that the task
receives input from one classification domain and
produces output at the same classification domain.
There are four special tasks: begin, success, failure,
and synchronization. The synchronization tasks
represent external transitions to and from other
workflows. In general, workflow designers do not
manipulate synchronization nodes directly. They are
automatically generated by the system based on the
specification of foreign tasks and input and output
transitions to and from the foreign tasks.

An MLS workflow is a network of interconnected
single-level (foreign or native) tasks from more than
one classification domain. Note that we call a task
single-level from one particular level of abstraction
(view). Since a single-level task may be realized by an
MLS workflow at a lower level of abstraction, it may
have side-effects on different classification domains at
lower abstraction levels. Hence, our distinction
between single-level and multilevel is purely from the
perspective of a specific abstraction level.

Let CL(Ti) represent the classification domain of task
Ti. The relationships between the classification
domains form a lattice. An MLS workflow that is the
realization of task Ti where CL(Ti) = Sa must obey the
following constraints:
− The begin, success, and fail nodes of the MLS

workflow must be CL(begin) = CL(success) =
CL(failure) = Sa.

− It may have tasks in other classification domains;
however, if the CL(Tj) = Sb where Sa does not

dominate Sb, then Tj must be a foreign task. In
other words, only tasks in Sc where Sa ≥ Sc may
have realizations.

3.1.2. Design Editors

The workflow design tool should provide an easy way
to capture the control and data flow among
components. It should also provide an easy way to
import existing designs or components to the current
design environment. We provide various platform
independent GUI-based editors to support the MLS
distributed computing model. There are two starting
points into a specific design process (see figure 3).
They are the task and network editors, both of which
will create an initial top level component (task). The arc
and operator editors are mainly used in conjunction
with the network and task editors to specify data and
control flow. There are three additional editors that aid
MLS workflow design: data, domain, and role editors.
These three editors can be used independent of the
specific workflow. For example, domain structure,
especially in MLS, may be predefined based on
physical separation. Also role hierarchy [6] may be
predefined by organizations. This semi-independence
enables a workflow designer either
− to use predefined data, and domain and role

structures from a previous design or
− to define necessary data, domain and role

structures during a workflow design.

Task

Network

Arc

Operator

Data RoleDomain

S
T
A
R
T

Figure 3: A typical design process and relationship

among editors

The description of each editor follows.

Network Editor

A network editor, alternatively called a map editor, is a
graphical programming tool that allows users to lay out
the control flow of the intended mission logic. Hence,
at the highest abstraction level, it provides a global
picture of a mission. In this editor, the designer can
− divide the drawing area into many classification

domains,
− drop tasks in the different domains, and

 6

− draw arcs that represent control flow between
tasks.

A designer can traverse the different abstraction levels
to observe or specify different workflow logic with
this editor. It also provides links to all other editors to
refine a design. For example, if a designer wishes to
specify operators (e.g., AND-split, loop) for a specific
task, then he can do so by accessing the operator
editor.

An ability to prescribe recovery routes and alternative
tasks in case of failure is an important feature for an
MLS WFMS. Our designer provides this capability
through various editors. First, the network editor
supports two types of arcs that represent transitions:
one is success arc and the other is fail arc. Second,
METEOR also supports system and user-defined
exceptions that can be specified through the task
editor. Using exceptions and fail arc, a workflow
designer can specify a recovery strategy for
predictable failures. Figure 4 shows a snapshot of the
network editor.

Figure 4: A snapshot of the network editor

Task Editor

The task editor provides the designer with a tool for
describing the interface, operating environment, and
implementation of the task. Since tasks can be
connected together in the implementation of another
task (i.e., network task), the task editor also provides
information about connections to other tasks and their
corresponding editors. In other words, the task editor
provides a task-centric view of the workflow.

To describe the task interface, the designer provides a
unique name for identifying the task, along with a
textual description. The task’s type specifies how the
task is implemented. The two primary task types are

network and simple, where simple tasks include:
human, transactional and non-transactional. To
complete the interface to a task the designer must
specify the input data objects necessary to invoke the
task along with the task’s output data objects. The
designer can specify multiple invocations, but during
runtime all the data objects for one of the invocations
must be available for a task to start. If the designer
wishes to specify failure states for a task then special
data objects, called exceptions, are used.

The designer must also describe the environment within
which the task has been designed to operate. Of critical
importance to an MLS design is what classification
domain the task will be operating in. The designer can
use compartments (e.g. data restrictions) to further
restrict access to the task and its data. In addition the
designer can specify what organization owns the task
and what roles (which will map to a list of users at
runtime) are allowed to perform the task. The designer
can also specify the host where a task should be located
and specify any system and operational constraints
(e.g., allocated time to completion) for the task. During
workflow design it is important that the designer
considers constraints which have been specified in
parent tasks.

The designer must also specify the task implementation
(realization). The task’s realization is highly dependant
upon the type of the task. For a network task, the
designer can use the network editor to describe the
underlying workflow. For a simple human task, the
workflow design tools will generate a generic html page
based upon the inputs and outputs of the task. The
designer can then specify an html editor and viewer that
he can use to customize the HTML page for the desired
result. When implementing a simple transactional task,
the designer will be able to enter the database query
commands that are necessary to carry out the
commands. For a simple non-transactional task, the
designer can enter the code necessary for invoking the
task (e.g., executable code, CORBA invocation) or can
enter a description of what needs to be done, and the
runtime designer can actually implement the
functionality. Both transactional and non-transactional
tasks can be connected to existing legacy applications.

There are two other special tasks, which the task editor
can edit. They are the abstract and the foreign tasks. A
designer uses an abstract task to describe the interface
and security of a task that some other designer will
complete before runtime code generation. But a foreign
task is used to describe the interface to a task that will
be implemented by another designer and will be
available only at runtime.

 7

To achieve a task-centric view of the workflow, the
task editor provides the necessary connectivity to look
at the entire design. If the task is used within a
workflow, the task editor provides the designer with a
view of all the task’s connections (arcs) whether input,
output, or failure arcs. For each connection, the editor
provides the designer with quick access to the
associated arc, operator, and task editors. And the task
editor provides the ability to view down to the
implementation details.

Arc Editor

An arc in the network editor represents a transition
from a source task to a destination task. In our
implementation, arcs specify the data transferring from
the source task to the destination task (i.e., input and
output classes). The arc editor provides an easy way to
map outputs from one task to inputs of another task in
a given workflow. For example, one task has three
outputs, type1, type1, and type2. Another task has
three inputs type1, type1, and type2. Since there is
an ambiguity of matching two type1 outputs to two
type1 inputs, an arc editor provides a handy way for
the designer to specify which output of a task
corresponds to the input of another task.

Operator Editor

The new model uses operators to specify the input and
output transitions for a task. Hence, a designer needs a
capability to edit the structure of these operators. Due
to the complexity of workflow design for most
applications, it does not seem practical to attach
complex operator structures to each task (i.e., three
operator structures per task; input, success output, and
failure output) in the network editor. So we provide a
separate editor to organize the input transition operator
and two output transition operators. The input
operators are organized using a structure of AND-joins
and OR-joins to combine transitions from other tasks.
The two output transitions (one for success and one for
fail) are organized using a structure of AND-splits,
OR-splits, and a LOOP to distribute transitions to
other tasks.

Domain Editor

The domain editor allows a designer to specify
attributes of each domain (e.g., name, description). As
mentioned in section 3.1.1, the dominance relationship
among classification domains form a lattice. The
domain editor allows the designer to specify the
dominance relationship among classification domains.
It also lets users change the GUI properties of
classification domains (e.g., color). This editor
provides a convenient place to specify receive and
release policies between pairs of domains. This policy
information can be used as a view into a complete list

of policies that are described in a more comprehensive
policy definition and enforcement tool.

Data Editor

Data for the workflow design tool is specified as an
object interface. The data editor provides a graphical
interface for a designer to specify new data and access
already defined data. All data objects must extend an
existing workflow data object, since the root workflow
data object implements functionality required by the
runtime of data object management. This is similar to
the Java concept where the “Object” class is the root of
the entire Java class hierarchy. The data editor allows
the designer to specify the package, class name, what
class the current class extends (single inheritance only),
fields, and methods.

Workflow data is used for task invocations, outputs,
and exceptions. In the case of exceptions, the data must
extend an existing user exception or the root
“UserException”. Data is also used for the guards
(conditional statements in operators). In a conditional
statement, the designer will have access to all the fields
and methods defined in the interface of the data object.
The relationship among workflow data is shown in
figure 5.

Workflow Data

General user data Exception

User Exception System Exception

General user
Exceptions

Predefined
system Exceptions

Figure 5: Data inheritance tree

Role editor

The role editor is similar to the classification domain
editor in the sense that it allows a designer to define
roles and the relationships among them (i.e., role
hierarchies). In defining a role the designer can specify
the name of the role, its description, and the privileges
associated with the role. In general, role hierarchies
reflect an organization’s line of authority and
responsibility. For example, if role A is higher than role
B, then role A may have all the permissions that role B
has and more. A designer can specify which role is
more privileged than another in a given organization
through this editor. The role editor will generate XML
files on a per organization basis. These XML files can
be used by an external application to assign users to
roles and enforce permissions in the runtime system.

 8

3.1.3. Coordination among Editors

Editors share common workflow related information
and several of them might be displayed at the same
time. If an object is modified after an editor displays
information, then the editor needs to know about the
changes so that it can refresh its display. We use a
very simple scheme to ensure consistent display. There
is an editor registry that maintains a list of active
editors. When a user opens an editor, it registers itself
to the registry. When a user closes an editor, it drops
itself from the registry. When an editor modifies an
internal workflow object, it notifies other active
editors. It is each editor’s responsibility either to
update display if the editor uses the modified object or
ignores the notification if the editor does not use the
object.

The workflow design tool is not only a generic GUI-
based, distributed programming tool, but also a good
documentation tool that can capture the architecture of
a complex distributed system design. Since the tool
has to handle various inputs and outputs (e.g., mouse
movement, context sensitive menu display), it
becomes a fairly complex system. Since we do not
want to make the design tool any more complex than
is necessary, we created another module, the workflow
compiler, to handle some functions that do not require
much user interaction. In the next section we present
the modules that bridge the gap between the workflow
design tool and enactment services.

3.2. Workflow Compiler

There are two main reasons that we decided to
separate the workflow compiler from the workflow
design tool. First, even though the workflow design
tool performs limited local design validation (e.g., task
name conflict), it is logical to move global design
analysis and code generation out of the workflow
design tool for maintainability and extendibility
reasons. Second, the workflow design tool is a generic
distributed programming and documentation tool that
can be used for many different purposes. Therefore, a
different user community may have different analysis
and validation requirements (e.g., vulnerability
analysis). Also a different user community may prefer
different enactment services. Hence we need to create
a simplified (i.e., no GUI components) data structure
that can be used by other people to write a new
analyzer or runtime code generator.

Based on the above requirements, we structured the
workflow compiler to perform three important tasks.
They are:
− Analysis and validation of the design,

− Splitting an MLS workflow into multiple single-
level workflows, and

− Generation of runtime code for enactment services.
The workflow compiler is organized in such a way that
new analyzers or runtime code generators can be easily
integrated. The internal structure of the workflow
compiler is as shown in figure 6.

: Global analysis and validation component

: Runtime code generators

Compiler
XML

Runtime
code

......

Figure 6: the structure of MLS METEOR compiler

The workflow compiler reads an XML representation
of a design and converts it to an internal tree data
structure. The analyzer and runtime code generator
receive the internal data structure and perform their
tasks. Runtime code generation largely depends on
− the specific runtime engine that will be used and
− the MLS infrastructure (see section 3.3.1) where

the runtime engine is executed.

The process of splitting an MLS workflow design into
multiple single-level workflows that we described in
section 2 and also in [2] precedes runtime code
generation. Initially, the extended version of OrbWork
that is an implementation of METEOR is used as our
target runtime engine. However, the structure of the
MLS Meteor allows other runtime engines to be easily
incorporated.

3.3. Runtime-system

An MLS workflow runtime management system
accesses information in many classification domains.
Therefore, the MLS requirement needs to be addressed
by the runtime system. Our strategy for providing an
MLS workflow management capability that can reduce
MLS trust requirements is through composing multiple
single-level WFMSs on a particular MLS infrastructure.

3.3.1. MLS Infrastructure

Composing an MLS workflow from multiple single-
level workflows is the only practical way to construct a
high-assurance MLS WFMS today. In this approach,
the multilevel security of our MLS workflow does not
depend on a single-level WFMS, but rather on the
underlying MLS distributed architecture. The MLS
distributed architecture will:
− Host multiple single-level workflows to be

executed and

 9

− Provide conduits for passing information among
tasks in different classification domains.

A generic MLS distributed architecture is shown in
Figure 7.

Pump

Switched
workstation

High Network
(High WFMS)

Low Network
(Low WFMS)

Downgrader

Figure 7: An MLS Distributed Architecture

In this architecture, switched workstations (e.g.,
“Starlight”) enable a user to access resources in
multiple classification domains and create information
in domains that the user is authorized to access. One-
way devices (e.g., a flow controller such as “A
Network Pump”) together with information release
and receive policy servers provide a secure way to
pass information from one classification domain to
another. An information release policy server resides
in a classification domain where the information is
released, and an information receive policy server
resides in a classification domain where the
information is received as shown in Figure 8.

Release
policy
server

Sanitize
information

Flow
controller

Receive
policy
server

Information
receiver makes

decision

Enforcing
flow direction

Enforcing
authentication,

integrity, labeling,
…, policy

Enforcing
Non-bypassability

Information
custodian

(organization)
makes decision

Enforces organization
or application specific
release policy

Optional process
(remove source,

fuzz image)

Domain A Domain B
Figure 8: Information Release and Receive Policies in

Conjunction with a Flow Controller

3.3.2. Single-level Enactment Services and
Monitor

There can be many enactment services for a given
workflow design. Currently we are using modified
OrbWork [4] for our runtime engine. OrbWork is a
single-level distributed workflow engine implemented
in Java. It does not have a central scheduler for the
whole workflow, rather there is a distributed scheduler
per task that the workflow designer defined in the
network editor. Each scheduler only knows its
predecessors and successors.

Briefly, OrbWork works as follows. OrbWork
schedulers are CORBA servers. Hence, they
communicate with each other through CORBA’s IIOP.
OrbWork schedulers are also HTTP servers. When a
human operator has to interact with a scheduler (e.g.,
human task), he can do so through the HTTP protocol.
Also when a human workflow manager needs to
intervene for some reasons, he can do so through the
HTTP protocol.

OrbWork has two other CORBA servers: data servers
and workflow monitor servers. Data servers act as a
repository for data that needs to be passed among
schedulers. The workflow monitor server receives
progress reports from schedulers. Simplified
communication paths among different components in
OrbWork are shown in figure 9.

S

S

S

S

D

Data Servers

M

Human
Manager

Human
Operator

Scheduler

: Corba’s IIOP

: HTTP

Monitor server

Figure 9: Communication among OrbWork components

3.3.3. MLS Enactment Services and MLS
Monitor

As we presented in section 2 and in [2], our strategy for
achieving MLS workflow is through the interoperability
of single-level workflows that were generated from an
MLS workflow design. For interoperability, the
workflow runtime engine should be able to pass and
receive the necessary information across domain
boundaries. We extend OrbWork with the
synchronization node. We can categorize
synchronization nodes into release and receive
synchronization nodes following our MLS
infrastructure shown in figure 8. The responsibilities of
synchronization nodes are as follows:
− To act as proxies for a task in another domain,
− To serve as exit and entry points to pass necessary

information from one domain to another domain,
and

− To ensure only proper information is passed to
another domain (i.e., make sure release and receive
policies are enforced).

 10

For example, if there is an MLS transition from task
A to task B as in figure 10, the release
synchronization node acts as a proxy for task B and
the receive synchronization node acts as a proxy for
task A. Also release synchronization nodes serve as
an exit point of the release domain and the receive
synchronization node serves as an entry point for the
receive domain. Therefore, release and receive policies
can be enforced there.

Receive
synchronization

node

Release domain

Receive domain
Flow

controller

Task B

Task A

Release
synchronization

node

MLS
Transition

Figure 10: Break down of an MLS transition into

multiple transitions

In our MLS workflow system, information exists as
objects. Hence, there is the potentially that objects that
contain variables and methods have to be passed
across domain boundaries. Passing an object across
classification domains can cause integrity and security
violations. To mitigate risks associated with passing
entire objects (i.e., state and definition of objects)
across domain boundaries, currently, we only pass the
necessary state information so that the objects can be
reconstructed on the receiving domains. When a
release synchronization node receives an object, it
extracts the necessary information from the object and
sends it through a flow controller. When a receive
synchronization node receives, it instantiates the
object in the receiving domain.

An MLS WFMS requires an MLS monitor. Workflow
managers in a classification domain may need to know
the progress of work in their classification domain and
other domains that they are authorized to access. In
other words, users of MLS workflow in different
classification domains may have different views of the
workflow they are running. Hence, an MLS WFMS
should provide the capability to monitor activities in
all domains the workflow manager is authorized to
access. We are providing MLS monitoring capabilities
that use similar techniques to those for data transfer
from one domain to another. In other words, we place
a monitoring proxy that receives monitoring
information in a lower domain. This monitoring proxy
corresponds to a release synchronization node and
transfers the monitored information to a higher
domain. In the higher domain, there is another
monitoring proxy which corresponds to a receive

synchronization node. This monitoring proxy relays the
lower-level monitoring message to a higher-level
monitor server. As in the case of data transfer,
information must satisfy release and receive policy and
must go though a boundary controller.

4. Conclusion

In this paper, we presented the system organization of
MLS METEOR and the rationale behind the
organization. MLS METEOR is an example of an MLS
application that can run on the MLS infrastructure that
was presented at this conference last year [3]. In this
approach, multilevel security enforcement of MLS
METEOR does not depend on the single-level WFMS
but rather on the underlying MLS infrastructure and a
few security critical components (i.e., synchronization
nodes that enforce release and receive policy, and
boundary controllers). Therefore, MLS METEOR
allows a workflow designer to concentrate on the
functionality of the system he is building.

Prototypes of all components (i.e., workflow design
tool, workflow compiler, and extended OrbWork as an
enactment service) have been implemented. We are in
the process of integrating those components. Future
work includes adding more advanced features and
addressing other aspects of workflow (e.g.,
survivability).

References

1. V. Atluri, W-K. Huang and E. Bertino, “A Semantic
Based Execution Model for Multilevel Secure
Workflows,” Journal of Computer Security, To appear.

2. M. H. Kang, J. N. Froscher, B. J. Eppinger, and I. S.

Moskowitz, “A Strategy for an MLS Workflow
Management System” To appear in 13th IFIP Conference
on Database Security, Seattle, WA, 1999.

3. M. H. Kang, J. Froscher, and B. Eppinger, “Toward an

Infrastructure for MLS Distributed Computing,” 14th
Annual Computer Security Applications Conference,
Scottsdale, AZ, 1998.

4. K. Kochut, A. Sheth, and J. Miller, “ORBWork: A

CORBA-Based Fully Distributed, Scalable and Dynamic
Workflow Enactment Service for METEOR,” UGA-CS-
TR-98-006, Technical Report, Department of Computer
Science, University of Georgia, 1998.

5. Extensible Markup Language (XML) 1.0,” World-wide-

Web Consortium, http://www.w3.org/TR/1998/REC-
xml-19980210.html

6. R. Sandhu, E. Coyne, H. Feinstein and C. Youman,

“Role-Based Access Control Models,” IEEE Computer,
Vol. 29, No. 2, 1996.

