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Abstract

Cortical rhythms have been thought to play crucial roles in our cognitive abilities. Rhythmic activity in the beta frequency
band, around 20 Hz, has been reported in recent studies that focused on neural correlates of attention, indicating that top-
down beta rhythms, generated in higher cognitive areas and delivered to earlier sensory areas, can support attentional gain
modulation. To elucidate functional roles of beta rhythms and underlying mechanisms, we built a computational model of
sensory cortical areas. Our simulation results show that top-down beta rhythms can activate ascending synaptic projections
from L5 to L4 and L2/3, responsible for biased competition in superficial layers. In the simulation, slow-inhibitory
interneurons are shown to resonate to the 20 Hz input and modulate the activity in superficial layers in an attention-related
manner. The predicted critical roles of these cells in attentional gain provide a potential mechanism by which cholinergic
drive can support selective attention.
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Introduction

It is widely understood that sensory processing is modulated by

attention, which impacts neural responses in the sensory cortex:

Elevated spiking activity [1–4] and enhanced synchrony in neural

responses [5–9] were found to be associated with attended, rather

than unattended stimuli. These findings suggested that endoge-

nous signals, presumably generated at least in part in higher

cognitive areas, are delivered to lower areas when attentional gain

control is required. Although neural correlates of attentional gain

control are not well understood, biased competition has been

thought to be an underlying mechanism [10–17].

Recent studies indicate that beta rhythms can be associated with

top-down attention [18–23]. In this study we used a computational

model to address whether top-down beta rhythms can bias

competition, and if so how they achieve this. We leave for a

following paper the potential roles of top-down signals in the

gamma frequency band, which have also been seen [24,25],

considering here only the induction of gamma rhythms by bottom

up signals and how they interact with the top-down beta. Beta

rhythms have been reported to be generated by local circuits in

deep layers, particularly layer 5 (L5) [24,26–28]. A recent in vitro

study found that three types of deep layer cells (intrinsically

bursting (IB), regular spiking (RS) pyramidal cells and a particular

class of slow-inhibitory interneuron (LTS cells)) are involved in

generating deep layer beta rhythms locally in the primary auditory

cortex [24], and that beta rhythms generated in higher order

(parietal) cortices influence rhythm generation in auditory cortex

in a highly direction-specific manner.

Cortical slow-inhibitory (SI) interneurons are a diverse subclass

of inhibitory cells. Their firing patterns can be regular, accom-

modating or low-threshold spiking, and their axonal and dendritic

morphology also varies greatly from cell to cell. However, the

majority of this broad class of interneuron is involved in providing

inhibition between cortical layers that has slow postsynaptic

kinetics relative to fast spiking interneurons. For example deep

layer Martinotti cells have axons that are almost exclusively

oriented radially in cortex, passing across multiple local laminae

[29,30]. In addition, Dantzker & Callaway found a class of

adapting interneurons in superficial layers that received dominant

inputs from deep layers [31]. These factors make SI interneurons

ideal candidates for mediating interlaminar interactions, as has

been shown for concatenation of deep and superficial beta and

gamma rhythms [32]. Additionally, the excitability and spike

output patterns in SI interneurons can be potently affected by

cholinergic neuromodulation, a cortical process of fundamental

importance to attention (see Reference [33] for review). Specifi-

cally, Xiang et al. [29] found that acetylcholine depolarized deep

layer LTS interneurons, which can enhance interlaminar interac-

tion. Thus, we hypothesized that primary sensory L5 cells,

resonating to top-down beta frequency inputs can modulate

responses of superficial neurons in sensory cortices predominantly

through SI interneurons. The model given below supports this

hypothesis.

Results

Fries et al. [5,6] proposed an experimental scheme capable of

observing modulation of neural activity induced by top-down

attention. They trained monkeys to pay attention to one of two

stimuli presented simultaneously, while monkeys maintained

fixation. By comparing neural activity when monkeys paid
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attention to a stimulus inside the receptive field to when monkeys

paid attention to a stimulus outside the receptive field, they found

that top-down attention enhanced firing rate and modulated local

field potentials (LFPs). More specifically, attention enhanced spike-

field coherence in the gamma frequency band (30–70 Hz) but

reduced it in frequencies lower than 17 Hz [5,6]. To simulate two

different attentional conditions-‘‘attention-inside the receptive field

(RF)’’ and ‘‘attention-outside the RF’’- we built two cortical

columns, each corresponding to one of these two attentional

conditions. One column receives both top-down and bottom-up

signals, and another receives bottom-up inputs only; thus the two

columns are associated with the attended stimulus and unattended

one, respectively. For brevity, we shall refer to these as the

‘‘attended column and the unattended column’’. In addition, L2/3

RS cells of both columns receive background inputs. In this study,

top-down signals are synchronous synaptic inputs, whereas

bottom-up and background inputs are asynchronous synaptic

inputs (see Methods).

In the hierarchical structure proposed by Felleman & Van Essen

[34,35], top-down signals target superficial and deep layers while

they avoid granular layers. Other studies suggested that top-down

signals mainly project to superficial layers [23,36]. In either

circumstance deep layer pyramidal cells can access top-down

signals: Even if top-down signals project to superficial layers only,

they can innervate L5 pyramidal cells via vertical apical dendrites

[37]. Thus, we introduced top-down signals in the beta frequency

band into L5 pyramidal cells. Importantly, Roopun et al. [24]

suggested that superficial and deep layers may receive distinctive

top-down signals: superficial layers receive top-down gamma

rhythms, whereas deep layers receive top-down beta rhythms,

consistent with other studies [28,35]. In this study, we focused on

the effect of top-down beta rhythms on neural responses by

introducing top-down beta rhythms into L5 pyramidal cells of the

attended column; we leave to a forthcoming paper, describing

effects of top-down gamma rhythms, a description of the effects of

top-down signals to the superficial layers (see Discussion).

We modeled cortical columns with superficial (layer 2/3),

granular (layer 4) and deep (layer 5) layers (see Figure 1), providing

a reduced model of a biophysically detailed model proposed in

earlier computational works [24,38]. For brevity, we will refer to

layer A as ‘‘LA’’ where A is the label. Figure 1 shows the

connectivity among 9 cell populations of each type. We minimized

bias from random connectivity and random noisy inputs by using

10 simulations, each of which used a different realization of our

model and noisy inputs. The superficial layer, representing L2 and

L3, consists of regular spiking pyramidal cells (RS), fast spiking

interneurons (FS) and slow inhibitory interneurons (SI). L4

contains E (excitatory) cells, which models both stellate and

pyramidal cells in this layer, and FS interneurons. For L5, we

implemented two types of pyramidal cells, intrinsic bursting (IB)

and regular spiking (RS), and SI interneurons, cell types that were

active in cholinergically induced in vitro beta rhythms in the

primary auditory cortex [24]. In addition, the deep layer also

contains FS interneurons. Each cell of our model receives both

excitatory and inhibitory synaptic inputs from various cell types via

both intralaminar and interlaminar connections (see Methods and

Figure 1). We connected the two columns with excitatory synapses

from L5 pyramids to L2/3 interneurons. These intercolumnar

connections are identical to intracolumnar connections from L5

pyramids to L2/3 interneurons except that intercolumnar

connections to L2/3 SI cells are stronger than intracolumnar

connections by 50%. Details about the connectivity are in

Methods. In our model, L5 pyramidal cells excite L2/3

interneurons, and L5 SI cells inhibit L4 FS cells (see Figure 1).

The former and latter will be referred to as ‘‘ascending excitation’’

and ‘‘ascending inhibition’’.

Our simulation paradigm follows Fries et al. [5,6], who

presented a cue followed by the delay and stimulus periods, and

found that top-down attention modulated neural responses in both

periods. Thus, we simulated the delay and stimulus periods,

respectively. The data of Fries et al. [6] was presumed by the

authors to come mainly from superficial layers, as was the in vivo

data from Wang [39]. Thus, we evaluated the effect of top-down

beta rhythms on L2/3 activity from 10 independent simulations.

In particular, we calculated the spike-triggered average (STA) of

L2/3 local field potentials (LFPs simulated by summing up

synaptic inputs to pyramidal cells, see Methods) and RS cell

spiking activity, and compared these neural responses between the

attended and unattended columns. To do so, we used attentional

indices (see Methods), suggested in Fries et al. [5]: Two attentional

indices, AI(c) and AI(a=b), measure difference in spike-field

coherence (SFC) between attentional conditions, and the third

attentional index, AI(R), estimates difference in the firing rate (R)

(see Methods). As in Fries et al. [5], attentional indices are positive

(see Methods) when a stronger response is observed in the attended

column. Since SFC estimates the synchrony of neural responses

[5], AI(c) and AI(a=b) allow us to evaluate the effect of top-down

beta rhythms on the synchrony in neural responses. In this study,

AI(c) and AI(a=b) measures synchrony in the gamma (25–70 Hz)

and the alpha/beta (8–25 Hz) frequency bands. Additionally, we

ran simulations without specific components of our model so that

we can clarify functional roles of those components of our model.

Delay period: Activity with top-down, but without
bottom-up, input
During the delay period, Fries et al. [5,6] did not present a

stimulus, but they found disparate neural responses in the

attention-inside the RF condition and in the attention-outside

the RF condition: LFP power in frequencies lower than 17 Hz was

smaller in the attention-inside RF trials than in the attention-

outside RF trials. Such differences in neural activities were

attributed to top-down attention, which was induced by a cue

preceding the delay period. We therefore tested whether top-down

beta rhythms could reproduce these neurophysiological findings.

Author Summary

Top-down signals originate from higher cognitive areas
such as parietal and prefrontal cortex and propagate to
earlier stages of the brain. They have been thought to be
associated with selective attention, and recent physiolog-
ical studies suggest that top-down signals in the beta
frequency band can support selective attention. In this
study, we employ a computational model to investigate
potential mechanisms by which top-down beta rhythms
can influence neural responses induced by presentation of
stimuli. The model includes several cell types, reportedly
crucial for generating cortical rhythmic activity in the
gamma and beta frequency bands, and the simulation
results show that top-down beta rhythms are capable of
reproducing experimentally observed attentional effects
on neural responses to visual stimuli. These modulatory
effects of top-down beta rhythms are mainly induced via
activation of ascending inhibition originating from deep
layer slow inhibitory interneurons. Since the excitability of
slow interneurons can be increased by cholinergic neuro-
modulators, these interneurons may mediate the effects of
cholinergic tone on attention.

Top-Down Beta Rhythms Support Selective Attention
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Control experiment: Activity induced background inputs

only. As a control experiment, we first examined the neural

activity without introducing top-down or bottom-up inputs. Thus,

the two columns were both driven by background inputs. The first

column of Figure 2 shows neural responses of our model in this

control experiment, without top-down or bottom-up inputs.

Background inputs (see Methods) induce L2/3 RS cells to fire

sporadically, which in turn drives L5 IB cells to fire a few times via

descending excitation. L5 cells fire synchronously due to slowly

decaying inhibition of L5 SI cells and recurrent synaptic

connections among L5 IB cells. As can be seen in Figure 2G, IB

cells fire for a few cycles of 10 Hz alpha rhythms.

L5 cells of the attended column resonate to top-down beta

rhythms. Top-down signals, 20 Hz synchronous synaptic

inputs, are introduced to L5 pyramidal cells of the attended

column only, and the attended and unattended columns generate

disparate neural responses. The second and third columns of

Figure 2 show raster plots of the two columns, respectively, and

Figure 3 displays STA of LFPs and L2/3 RS cell spiking activity

from 10 simulations. In the attended column, L5 IB and RS cells,

which receive top-down signaling, oscillate at 20 Hz (Figure 2H)

and project beta rhythmic excitatory synaptic inputs divergently to

L2/3 FS and SI cells of both columns, whereas L5 SI cells of the

attended column project beta rhythmic inhibitory synaptic inputs

to L4 FS only within the column. Because of this top-down

signaling, L5 SI cell activity is much stronger in the attended

column than in the unattended column, producing disparity in

ascending inhibitory projections to L4 FS cells between the two

columns. Since, in our model, intercolumnar projections to L2/3

SI cells are stronger than those within the column (see Methods),

L2/3 SI cells show stronger spiking activity in the unattended

column than in the attended column, and thus stronger inhibition

is induced in the unattended column, generating disparity in STA

of LFPs (Figure 3A) and spiking activity of L2/3 RS cells

(Figure 3B); we note that superficial cells fire mostly at the cycles of

beta rhythms, and therefore the second peak in Figure 3A should

be considered as a harmonic of 20 Hz rhythm. These results

indicate that top-down beta rhythms can suppress L2/3 RS cell

activity induced by background inputs.

Spike field coherence (SFC) in the alpha/beta frequency band is

also modulated by top-down beta rhythms. As can be seen in

Figure 3C, attentional index AI(a/b), which measures difference in

synchrony in frequencies from 8 to 25 Hz between the two

columns (see Methods), is significantly smaller than 0 (t-test,

pv0:001), indicating that top-down beta rhythms reduce the

synchrony in these low frequencies. These effects of top-down beta

rhythms, consistent with attentional effects reported in Fries et al.

[5], are mainly attributed to the fact that L2/3 SI cell activity is

enhanced more strongly in the unattended column, due to

intercolumnar projection from L5 pyramidal cells of the attended

column.

L2/3 SI cells help suppress non-stimulus evoked

activity. L2/3 SI cells of our model receive strong excitatory

projection from deep layer cells of both columns, suggesting that

L2/3 SI cells are critical for generating superficial beta rhythms.

To investigate the functional role of superficial beta rhythms, we

removed L2/3 SI cells from both columns. L2/3 RS cell activity is

enhanced in all conditions (control, attended and unattended), as

shown in Figure 4A. Importantly, the difference in firing rates of

L2/3 RS cells among attentional conditions becomes smaller,

suggesting the pivotal role of L2/3 SI cells in suppression of non-

stimulus evoked activity. The STA of LFPs is also changed.

Without L2/3 SI cells, L2/3 RS cells produce strong spiking

activity and induce gamma-frequency power in all conditions

(Figure 4B); without L2/3 SI cells, RS cells fire at a gamma

frequency frequently (data not shown), and thus the 40-Hz peak is

real rather than a harmonic of 20 Hz as shown in Figure 3A.

These results indicate that, in our model, FS cells alone are unable

to prevent RS cells from responding to background inputs and

thus generating gamma rhythmic activity. In contrast, SI cells,

which produce slowly decaying inhibition (see Methods), are

suitable for suppressing L2/3 RS cell spiking activity and resulting

gamma rhythms provoked by background inputs.

Stimulus period: Combination of top-down and bottom-
up inputs
Fries et al. [5,6] showed that stimulus presentation generated

gamma rhythms and elevated spiking activity, and attention

enhanced these induced neural responses. In our model bottom-up

inputs, simulated by 100 Hz asynchronous trains of EPSCs, are

introduced to L4 E and FS cells of both columns. Without top-

down signals, the two columns generate equivalent responses (first

column of Figure 5): Even though bottom-up inputs are

asynchronous, L4 E cells fire synchronously at a gamma frequency

for a few gamma cycles due to interactions between L4 E and FS

cells (see References [40,41] for details). L2/3 also oscillates at the

same frequency due to the ascending excitation from L4 E cells to

L2/3 RS and FS cells (Figure 5A).

Top-down beta rhythms induce disparate neural

responses between the two columns. To study the effect of

top-down beta rhythms on neural responses induced by bottom-up

inputs, we introduced beta rhythms into L5 pyramidal cells of the

attended column only while presenting bottom-up inputs to both

columns. Although both columns receive equivalent bottom-up

inputs, different neural responses are elicited between them in all

layers in a manner dependent upon the top-down beta rhythms.

The second and third columns of Figure 5 show neural responses

of the attended and unattended columns, respectively. As

simulations of the delay period show above, top-down beta

rhythms induce stronger L2/3 SI cell activity in the unattended

column. The mean value and the standard deviation of firing rate

of L2/3 SI cells of the unattended column are 57:67+2:19 Hz,

whereas the mean firing rate are significantly reduced (t-test,

pv0:05) to 50:18+3:73 Hz in the attended column. Thus,

stronger inhibition is generated in L2/3 of the unattended column

(Figure 5B and C). We also note that, in L4 and L2/3, excitatory

cells (RS and E) are capable of firing synchronously for a few of

cycles of gamma rhythms. Interestingly, they often skip several

cycles, generating much slower rhythms close to alpha frequency.

As can be seen in Figure 5, L2/3 RS and L4 E cells of the

unattended column produced these slower rhythms more strongly.

To estimate the effect of top-down beta rhythms without any

bias from connectivity and external noise, we ran 10 simulations

with different sets of synaptic connections and background inputs.

Figure 1. The structure of the model. (A). Structure of a single column. Each circle is a population of 20 cells. Open and solid arrows represent
NMDA and AMPA synapses respectively. Blue circles are GABA synapses. (B). Full model. Two columns interact with each other via ascending
excitatory synapses from L5 pyramidal cells to L2/3 FS and SI cells. Both columns receive 100 Hz Poisson EPSC trains. Synchronous top-down signals
are introduced into the attended column only. For clarity, we do not display recurrent connections inside the population of the same type: all cells
interact with others that belong to the same population (see Methods).
doi:10.1371/journal.pcbi.1003164.g001

Top-Down Beta Rhythms Support Selective Attention
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In all 10 simulations, top-down beta rhythms enhance L2/3 RS

cell spiking activity of the attended column relative to that of

control experiment (Figure 6A), and the t-test confirms that this

enhancement is significant (pv0:001). In contrast, the firing rate

of L2/3 RS cells is always lowest in the unattended column

(Figure 6A). A similar pattern emerges in STA of LFPs: Gamma-

frequency power is the highest in the attended column, but low-

frequency power is the highest in the unattended column, as

shown Figure 6B. We note that the power spectral density of STA

of LFPs of the control experiment is lower than others in all

frequency bands. These modulatory effects of top-down beta

rhythms are consistent with attentional modulation of neural

responses, reported in Fries et al. [5]. We further examined the

effect of top-down beta rhythms by calculating attentional indices

(see Methods) [5]. All three indices (AI(c), AI(a=b) and AI(R)), as

shown in Figure 6, are significantly modulated by top-down beta

rhythms (t-test, pv0:05), and those patterns of modulation are

also consistent with data reported in Fries et al. [5].

Ascending inhibition from L5 SI cells enhance gamma

rhythms, helping pyramidal cells in L4 and L2/3 to respond

reliably to bottom-up inputs. Top-down beta rhythms, which

entrain L5 cells of the attended column, can modulate upper

neural responses via ascending excitation and inhibition. Since

simulations of the delay period above suggested ascending

excitation can generate different amounts of inhibition of L2/3

SI cells in superficial layers of the two columns, we first examined

Figure 2. Cell activity in response to top-down beta rhythms. (A)–(I). Neural responses of the control (without bottom-up or top-down
inputs), attended and the unattended columns. Each dot represents an action potential. x-axis shows simulation time, and y-axis displays the cell
number.
doi:10.1371/journal.pcbi.1003164.g002
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Figure 3. The effect of top-down beta rhythms on neural responses. (A). The power spectra of STA of LFPs in all three conditions. (B). The
average firing rate of L2/3 RS cells from 10 simulations, and the error bar is the standard deviation of 10 simulations. (C). Scatter plots of attentional
indices; AI(R) on x-axis, AI(a/b) on y-axis.
doi:10.1371/journal.pcbi.1003164.g003

Top-Down Beta Rhythms Support Selective Attention
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functional roles of ascending inhibition by running simulations

without the latter. The removal of ascending inhibition reduces the

gamma power in STA of LFPs (Figure 7A), and attentional effects

on gamma-frequency SFC are reduced; they are not significantly

higher than 0 without ascending inhibition (t-test, pw0:05), as
shown in AI(c) (Figure 7B). These results suggest that ascending

inhibition may be critical for attentional effects on gamma

rhythms in L2/3.

Figure 4. The effect of top-down beta rhythms on neural responses without L2/3 SI cells. All parameters are the same as in Figure 3, but
with SI cells removed from the network. (A). The firing rate of L2/3 RS cell activity from 10 simulation. (B). The power spectra of STA of LFPs.
doi:10.1371/journal.pcbi.1003164.g004

Top-Down Beta Rhythms Support Selective Attention
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The importance of ascending inhibition can be understood as

follows: A previous computational model showed that asynchro-

nous spiking activity of interneurons can more effectively reduce

pyramidal cell activity than synchronous spiking activity [41],

suggesting that gamma rhythms can provide widows of oppor-

tunity for L4 E cells to fire. In our model, bottom-up inputs

generate gamma rhythms (Figure 5E and F) via interaction

between pyramidal cells and FS cells. In this mechanism, known

as the PING [40,41], interneuron activity is induced by excitation

from pyramidal cells to produce prominent gamma rhythms.

However, if FS cells fire independently of pyramidal cell activity,

gamma rhythmic activity is disrupted and thus pyramidal cell

activity is suppressed [41]. In our model the ascending inhibition

regulates the L4 FS cell activity and thus gamma rhythms in L4:

When we removed ascending inhibition, L4 FS cells were

released from inhibition from L5 SI cells, and thus fire between

cycles of gamma rhythms (Figure 7C). The positive peaks in

Figure 7C correspond to moments when most E cells fire but not

FS cells, and the negative peaks vice versa. When prominent

gamma rhythms exist, peaks of difference in membrane potentials

come immediately before troughs. With ascending inhibition,

prominent peaks come immediately before troughs at most cycles,

whereas without ascending inhibition troughs come earlier than

peaks much more often. As expected, L4 E cell activity is reduced

significantly when ascending inhibition is removed (Figure 7D, t-

test, pv0:001).

Figure 5. Neural activity during the stimulus period. (A)–(I). Neural responses of the control, attended and the attended columns, respectively.
doi:10.1371/journal.pcbi.1003164.g005

Top-Down Beta Rhythms Support Selective Attention
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Importantly, top-down beta rhythms can generate a prominent

ascending inhibition only within the attended column. As a result,

L4 FS cell activity in the attended column is activated differently

from that of the unattended column: L4 FS cell activity of the

attended column is induced mostly by L4 E cell activity (Figure 7E),

whereas L4 FS cells of the unattended column can spike often

without excitation from L4 E cells. Thus, L4 E cell activity is

stronger in the attended column than in the unattended column

(Figure 7F), allowing L2/3 cells of the attended column to receive

stronger (stimulus-dependent) bottom-up inputs from L4 and

generate stronger gamma rhythms. These simulation results

suggest that top-down beta rhythms can selectively increase L4

excitatory projection to L2/3 cells in response to bottom-up

inputs.

Connections across columns convey lateral inhibition

critical for reduction of synchrony in the low frequency

band. As discussed above, ascending excitation, from L5 to

L2/3 interneurons, generate stronger inhibition to L2/3 RS

cells of the unattended column. In other words, ascending

excitation provides lateral inhibition, which is believed to play a

critical role in biased competition, a leading candidate for

neural correlates of selective attention [3,10,13,42,43]. In this

study, we did not consider lateral inhibition conveyed via

superficial to superficial connections (see Reference [44]), since

this type of inhibition creates involuntary competition between

neural responses induced by bottom-up inputs, which is

different from attentional gain control discussed in this study.

By contrast, in our model, lateral inhibition is conveyed via

ascending intercolumnar excitatory projections controlled by

top-down beta rhythms.

To understand how lateral inhibition affects our results, we

gradually reduced the strength of intercolumnar projection and

measured attentional indices. Figure 8 displays three attentional

indices evaluated with reduced lateral connection. Attentional

modulation in the alpha/beta frequency band is most sensitive.

When we reduced the synaptic strength of lateral connections by

20%, reduction in AI(a/b) became insignificant (Figure 8A). By

contrast, AI(c) was significantly enhanced (t-test, pv0:05) until

Figure 6. The effect of top-down beta rhythms on neural responses during the stimulus period. (A). The firing rate of L2/3 RS cells. (B).
The power spectra of STA of LFPs. A logarithmic scale is used on y-axis. (C)–(D). Scatter plots of attentional indices.
doi:10.1371/journal.pcbi.1003164.g006

Top-Down Beta Rhythms Support Selective Attention
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Figure 7. Functional roles of ascending inhibition. (A). The power spectra of STA of LFPs in the attended and unattended columns, without
ascending inhibition from L5 SI cells to L4 FS cells. (B). Comparison of AI(c), with and without ascending inhibition. (C). Difference in average
membrane potentials between L4 E and L4 FS cells, D~E½VRS�{E½VFS�, where E½V � is the mean value of membrane potentials over 20 cells. Thus,
positive peaks represent moments when more L4 E cells spike than L4 FS cells, and negative peaks show moments when more L4 FS cells spike more
than L4 E cells. The membrane potential difference in the attended column is compared, with and without ascending inhibition. (D). Comparison of

Top-Down Beta Rhythms Support Selective Attention
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20% reduction was made (Figure 8B) and AI(R) was significantly

enhanced (t-test, pv0:05) till 40% reduction (Figure 8C).

L2/3 SI cells enhance the attentional gain effect and the

synchrony of L2/3 RS cell activity. To understand functional

roles of L2/3 SI cells during the stimulus period, we removed L2/

3 SI cells from our model. The removal of L2/3 SI cells produces

two noticeable differences: First, the spiking activity of L2/3 RS

cells is enhanced in both columns (Figure 9A, B and C), reducing

AI(R) and AI(a=b), attentional effects on both firing rate of L2/3

RS cells (Figure 9D) and synchrony in the low frequency band

(Figure 9E). Without L2/3 SI cells, AI(R) and AI(a=b) are not

significantly different from 0 (t-test, pw0:05). Second, the

synchrony in firing of L2/3 RS cells decreases; we calculated the

coherence to compare synchrony in firing of L2/3 RS cells of the

attended column with and without L2/3 SI cells (see Methods). As

can be seen in Figure 9F, the synchrony is significantly smaller (t-

test, pv0:05) when L2/3 SI cells are removed. L2/3 SI cells can

increase synchrony by preventing L2/3 RS cells from firing

between cycles of gamma rhythms. At each cycle, L2/3 RS cells

receive a strong excitation from L4 E and other L2/3 RS cells, and

thus inhibition of L2/3 FS cells cannot stop L2/3 RS cells from

responding to such an excitation. However, slow decaying

inhibition of L2/3 SI cells can provide sustained inhibition

capable of suppressing L2/3 RS cell activity induced by

background inputs between cycles of gamma rhythmic ascending

excitation from L4 E cells.

Simulation results without L2/3 SI cells suggest that L2/3 SI

cells, associated with low-frequency power in STA of LFPs, help

L2/3 RS cells to fire synchronously and suppress L2/3 RS cell

activity in the unattended column.

FS cells also participate in the attentional gain

modulation. Our model suggests the critical role of SI cells in

attentional modulation of neural responses to bottom-up inputs,

and one may ask whether FS cells are also involved in this process.

In our model, FS cells do contribute to attentional modulation in

laminar-specific ways. If L4 FS cells are hyperpolarized, activity of

FS cells not provoked by pyramidal cell firing is reduced, and

consequently, the effect of top-down attention on the gamma-

frequency power is also reduced. If L5 FS cells are highly

depolarized, L5 SI cell activity may be suppressed too strongly to

allow significant ascending inhibition. We tested these by

modulating tonic inputs (Iapp) to FS cells in all layers. Specifically,

we set Iapp to 2.0 mA, 1.0 mA and 22.5 mA for L2/3, L4 and L5

FS cells, respectively; in our terminology negative Iapp depolarized

membrane potentials of cells (see Methods).

As can be seen Figure 10, hyperpolarization of L2/3 and L4 FS

cells reduce attentional effects on synchrony in the gamma

frequency band (Figure 10A) and firing rate of L2/3 RS cells

(Figure 10B), and attentional effects are reduced when L5 cells are

too depolarized.

Asynchronous top-down signals. We also tested whether

asynchronous top-down signals could also enhance the neural

response of the attended column. In this experiment, we replaced

top-down beta rhythms with asynchronous 20 Hz Poisson trains of

EPSCs. Results are strikingly different from those with synchro-

nous top-down signals. As can be seen in Figure 11, asynchronous

top-down signals reduce the synchrony in the gamma frequency

band (Figure 11A and B). The reason is that asynchronous top-

down signals provoke L5 pyramidal cells to fire independently

from inhibition projected to them. Once L5 pyramidal cell activity

the firing rate of L4 E cells of the attended column, with and without ascending inhibition. (E). Comparison of D between the attended and
unattended columns with ascending inhibition. (F). Comparison of the firing rate of L4 E cells between the attended and unattended columns.
doi:10.1371/journal.pcbi.1003164.g007

Figure 8. The impact of intercolumnar connections on atten-
tional modulation. Attentional indices with gradually reduced
intercolumbar projection. AI(a/b), AI(c), AI(R) are displayed in (A),(B)
and (C), respectively. * represents distributions significantly different
from 0.
doi:10.1371/journal.pcbi.1003164.g008
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Figure 9. Functional roles of L2/3 SI cells. (A)–(B). Superficial activity without L2/3 SI cells. (C). The firing rate of L2/3 RS cells, with and without
L2/3 SI cells. (D)–(E). Comparison of attentional indices, with and without L2/3 SI cells. For each index, bar graphs show mean values from 10
simulations, and errorbars are standard errors from 10 simulations. (F). Comparison of the synchrony in RS cell activity, with and without L2/3 SI cells.
doi:10.1371/journal.pcbi.1003164.g009
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becomes asynchronous, L5 SI cell activity is substantially reduced

(Figure 11G). By contrast, in the unattended column, L5 IB cells

fire sparsely but synchronously (Figure 11H). When IB cells fire,

they are capable of inducing L5 SI cells to project strong ascending

inhibition to L4 FS cells, generating stronger gamma rhythmic

activity in the unattended column (Figure 11C, D, E and F).

Hence, synchronous top-down signals are necessary to reproduce

the Fries et al. [5] results.

Figure 10. The effect of excitability of FS cells. Comparison of attentional indices. (A). The effect on the synchrony in the gamma frequency
band. (B). The effect on the firing rate of L2/3 RS cells. * represents distributions significantly different from 0.
doi:10.1371/journal.pcbi.1003164.g010
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Figure 11. The effect of asynchronous top-down signals. (A). The power spectra of STA of LFPs with asynchronous top-down signals. (B).
Attentional indices; all indices are not significantly different from 0. (C)–(H). Cell activity in both columns with asynchronous top-down signals.
doi:10.1371/journal.pcbi.1003164.g011
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Discussion

Top-down signals in the beta frequency bands have been

observed in various sensory systems (see Reference [23] and

references therein), and potential links between top-down beta

rhythmic activity and cognitive functions were reported in

audition [21] and vision [18,19], suggesting that the same

mechanism may be associated with both visual and auditory

signal processing. In addition, a similar interlaminar connectivity

was found in multiple cortical areas [45]. Since the neural

mechanism of the primary auditory cortex (A1) responsible for

deep layer beta rhythms was well studied [24], we adopted the

previously proposed deep layer model of A1 to study the potential

mechanism by which top-down beta rhythms can modulate visual

signal processing. In this section, we summarize our results and

present implications and limitations of our model.

Neural pathways responsible for attentional gain control
In this study, we introduced top-down signals to L5 pyramidal

cells (see Methods), as suggested in Wang [23], but we also note

that top-down signals can directly target L5 interneurons [35,46].

Even if top-down signals prominently project to L5 interneurons,

L5 SI cells are dominant over FS cells [29], and deep layer beta

rhythms still emerge, producing the equivalent interlaminar

interaction. Thus, we did not explore the effect of top-down beta

rhythms projected to L5 interneurons.

Our simulation results suggested potential mechanisms for

selective attention: L5 cells resonating to top-down beta rhythms

can modulate superficial layer activity by generating ascending

projection to upper layers. Specifically, we found exclusive roles

for excitatory and inhibitory synaptic projections from L5 cells to

upper layers. First, an inhibitory projection originating from L5 SI

cells to L4 FS cells enhanced excitatory outputs of L4 in response

to bottom-up inputs. Second, an excitatory projection from L5 IB

and RS cells of the attended column generated stronger inhibition

to L2/3 RS cells of the unattended column via intercolumnar

connections to L2/3 interneurons of the unattended column. In

our model these two types of ascending projections associated with

top-down beta rhythms generated activity in superficial layers in

accord with the pattern of neural response modulation induced by

attention reported in Fries et al.[5,6]: Compared with attention

outside the RF, top-down beta rhythms associated with attention

inside the RF can 1) enhance gamma rhythms in L2/3, 2) reduce

beta rhythms in L2/3 and 3) enhance spiking activity of L2/3 RS

cells. Since superficial layers project to higher cognitive areas,

these modulatory effects of top-down signaling may account for

the enhanced Granger causality influence from V1 to V4 reported

in a recent in vivo study [20].

Importantly, SI cells in both L2/3 and L5 play major roles in

our model of attentional gain control. First, L5 SI cells produced

ascending inhibition. Second, L2/3 SI cells enhanced synchrony

in L2/3 RS cells of the attended column and induced stronger

inhibition in L2/3 of the unattended column (see Figure 9 and

related text), indicating that L2/3 SI cells are critical for lateral

inhibition. This active role of L2/3 SI cells is consistent with

findings in Kapfer et al. [47] that adaptive interneurons, which

include our SI cells, are critical to lateral inhibition. During the

delay period, top-down beta rhythms suppressed RS cell activity

induced by background inputs only (Figure 3B). We are not aware

of any evidence for or against this prediction of our simulations.

In the model we have assumed that the top-down pathway have

the necessary specificity. Indeed, long-distance connections are

more target-specific than short-distance connections [48]. Though

we do not address how specific connections are established among

cortical areas (a huge question), our contribution is to show how

these top-down pathways can dynamically regulate the gain of

sensory signal processing.

Distinctive roles of interneurons for cortical rhythms and
signal processing
FS and SI cells of our model participate in generation of gamma

and beta rhythms. What roles do these two types of interneurons

play in signal processing? In a local circuit that generates gamma

rhythms, inhibition from FS cells prevents RS cells from

responding to synaptic inputs between cycles of gamma rhythms,

a feature useful for filtering out distracting inputs [49]. Since L4

cells produce rhythmic activity in response to bottom-up inputs in

our model and initiate gamma rhythms in L2/3, L2/3 FS cells can

ensure L2/3 RS cells selectively respond to bottom-up inputs; this

selectivity enhances signal to noise ratio of sensory signal

processing significantly if the frequency of gamma rhythms in

L2/3 match those from L4 [50]. This suggestion is consistent with

the role of FS cells in generating gamma rhythms associated with

sensory input [40,51] and with the reduction of noise with gamma

rhythms [52]. In contrast, our model suggests that SI cells, which

have been thought to be critical in regulation of pyramidal cell

activity [47,53], may also be involved in modulatory control of FS

cells and thus gamma rhythms. In particular, L2/3 SI cells provide

additional inhibition to suppress erroneous L2/3 RS cell activity

during the delay period, and L5 SI cells can enhance L4 outputs in

the attended column.

Surround inhibition and lateral inhibition
Surround suppression has been widely reported in visual

systems, and the traditional view considers lateral inhibition as a

key mechanism. However, this view has been recently challenged

by studies suggesting a reduction of inhibition that is contradictory

to the enhanced inhibition predicted with lateral inhibition in the

cortex: Ozeki et al. [54] revealed that both inhibitory and

excitatory inputs were reduced when surround suppression was in

effect, leading them to conclude that surround suppression

originated in the thalamus, rather than in the cortex. This issue

is still under debate [55,56]. Given the conflicting evidence, the

two different mechanisms relying on different origins may coexist

and cooperate with each other, as discussed in [57,58].

Although several studies support crosstalk among cortical

columns, this interaction may be distance-dependent: Adesnik &

Scanziani [56] found that the lateral suppression effect in vivo in

anesthetized animals faded in two columns. This could be a

potential concern for our model since the unattended column may

be located far away from the attended column in the brain. In such

a situation, lateral inhibition may be weak and attentional

modulation be significantly reduced, especially in the alpha/beta

frequency bands (see Figure 9 and related text). However, it should

be noted that monkeys in the Fries et al. studies [5,6] had extensive

training. During the training period, long-distance connections

among columns could develop to improve performance. Alterna-

tively, lateral inhibition, assumed in our model and other

computational studies, may be conveyed indirectly to distant

columns via the thalamus. L5 cells project strongly to the

thalamus, which projects back to superficial layers globally; they

also project to LGN, which has specific projections to the cortex

[59]. Indeed, a few studies suggested that interneurons could be a

main target of thalamocortical (TC) projections [60,61]; see also

Reference [62]. Thus, these two pathways may allow L5

pyramidal cells to create a global and local synaptic projection

from L5 pyramidal cells to L2/3 interneurons through the

thalamus.

Top-Down Beta Rhythms Support Selective Attention

PLOS Computational Biology | www.ploscompbiol.org 15 August 2013 | Volume 9 | Issue 8 | e1003164



Interestingly, many computational models have proposed active

roles of lateral inhibition for attentional gain control [10,16,17,63]

(see below), different from involuntary surround suppression; top-

down signals, selectively projected to a population of cells, can

assist the selected population to be a winner in the competition

with other populations via lateral inhibition. For instance, in the

model proposed by Ardid et al. [64], excitatory to interneuron

connections, uniformly implemented throughout the cortices, gave

rise to biased competition; such structure is consistent with lateral

connections in our model. Our model is in line with those models,

in that top-down signals can bias competition. However, we add

the novel proposal that interlaminar interaction, regulated by top-

down beta rhythms, support selective attention. Lateral connec-

tions from L5 pyramidal cells to L2/3 interneurons in our model

were adopted from the hierarchical architecture proposed by

Felleman & Van Essen [34]. Indeed, most L5 pyramidal cells were

also found to project into L2/3 [65,66]; L5B projects to L2 and

L3A with widely branched axons [37].

Top-down signals in the gamma frequency band
Although our study focused on functional roles of top-down beta

rhythms and their underlying mechanisms, top-down gamma

rhythms have also been reported in a few studies [24,25]. Since FS

cells are believed to play a critical role in gamma rhythms, top-

down gamma rhythms may be associated with modulation of FS

cell activity. This assumption is supported by two physiological

studies. First, Mitchell et al. [4] revealed that top-down attention

enhanced FS interneuron activity most strongly. Second, Roopun

et al. [24] found that superficial and deep layers received top-down

gamma and beta rhythms, respectively. Together, we hypothesize

that top-down gamma rhythms mainly target superficial FS cells.

What are the functional roles of top-down gamma rhythms?

Roopun et al. [24] noted that L2/3 gamma rhythms of S2

entrained L2/3 gamma rhythms of A1. This entrainment makes

A1 mirror superficial activity of S2 rather than auditory inputs

from L4 of A1, and thus A1 cannot project its own auditory signals

to S2 when prominent top-down gamma rhythms exist. This

means that cortico-cortical projections from A1 to S2 may be

disabled by top-down gamma rhythms. Thus, we further

hypothesize that top-down gamma rhythms may be responsible

for routing/gating feedforward processing related to bottom-up

inputs, depending on attentional state. This hypothesis is explored

in a forthcoming paper addressing interaction between top-down

gamma and beta rhythms.

Alpha rhythms
We note that alpha rhythms have also been reported to be

associated with suppression of neural responses induced by

irrelevant stimuli when attention was demanded [67–69]. Spaak

et al. [70] found a prominent alpha rhythmic activity in deep

layers, and Buffalo et al. [28] reported a reduction of SFC in the

alpha frequency band during the attention inside the RF trials. It is

widely accepted that alpha rhythms are generated at least partly in

the thalamus; Saalmann et al. [71] found that the pulvinar indeed

regulated the alpha rhythmic activity in V1 and V4 and the

coherence between them in the alpha frequency band, suggesting

that attention-associated alpha rhythms may be induced by the

thalamus.

Since our model does not include the thalamus, we cannot

explicitly test whether thalamic projections in the alpha frequency

band can account for findings of Buffalo et al. [28], but our model

provides a perspective on the possibility: In our model, SFC in the

alpha frequency band (8–15 Hz) was significantly (t-test, pv0:05)
smaller in deep layers of the attended column than in deep layers

of the unattended column, whereas SFC in the beta frequency

band (15–25 Hz) was significantly larger in the deep layer of the

attended column (Figure S1). In the attended column, top-down

beta rhythms entrained L5 cells, reducing the alpha rhythmic

activity, which appeared in the deep layers of the unattended

column as well as the control column. In other words, top-down

beta rhythms to L5 cells competed with alpha rhythms and

reduced the alpha rhythmic activity in deep layers, suggesting that

top-down beta rhythms can reduce the impact of thalamic alpha

rhythms via competition in the attended column.

This raises a critical question: Why are both alpha and beta

rhythms necessary for attentional modulation? We suggest that

these two rhythms may play complimentary roles: Olsen et al. [72]

suggested that L6, which receives thalamic inputs [73], suppresses

neural activity. If the thalamus broadly projects alpha rhythms into

L6 of the cortex, the cortical neural activity may be suppressed

globally. For example, the pulvinar projects to superficial layers of

V1 and granular layers of V2 [74], and L6 pyramidal cells can

receive focused inputs from superficial and granular layers [73],

suggesting that the pulvinar may be capable of inducing global

inhibition via L6 cells. By contrast, our model proposes that L5

cells can enhance neural response within a specific column via

ascending inhibition. Together, we propose a scenario that alpha

rhythms may suppress neural responses globally, whereas beta

rhythms can release a particular column/receptive field from

global suppression.

Implications for functional roles of ACh
Acetylcholine (ACh) is a neuromodulator associated with

attention (see Reference [26] for a review). Hasselmo [75] and

Kimura [76] found that ACh suppresses neural transmission

originating from the cortex, allowing cortical cells to be more

sensitive to transmission from thalamus. However, it is still unclear

how the highly diffuse projections of ACh-releasing terminals

throughout cortex can support selective attention. Our model

proposes a mechanism by which ACh may contribute to selective

attention: Xiang et al. [29] found that ACh can depolarize L5 LTS

cells via nicotinic receptors and hyperpolarize L5 FS cells via

muscarinic receptors. Since FS cells inhibit LTS cells, both of these

effects make the LTS cells with vertical axons, a subset of

interneurons known to provide slow inhibition [77], resonate more

easily to top-down beta rhythms, enhancing biased competition in

superficial layers. Thus, the diffusive projection of ACh changes

the network to facilitate top-down signaling in providing these

selective signals.

When ascending inhibition of L5 SI cells and L2/3 SI cells were

removed from the model, attentional gain control disappeared;

this indicates a critical role of nicotinic receptor regulation in

selective attention because SI cells are depolarized by ACh via

nicotinic receptors [29,78–80]. Indeed, a link between nicotinic

receptors and attention was supported by a few studies [81–83];

see Reference [84] for a review. Changes in nicotinic receptor

regulation may thus be important for understanding cognitive

changes in some diseases associated with attention deficit [85–90].

Importantly, Levin [91] found that nicotine alleviates some

symptoms of Attention-Deficit/Hyperactivity Disorder (ADHD),

and the procognitive effects of cigarette smoking found in patients

with various psychiatric disorders are well documented (see

Reference [92] for a review). Although further studies should be

conducted to investigate how nicotinic receptor regulation is linked

to such psychiatric disorders, our model raises the possibility that

impaired nicotinic receptor function can cause imaginary sensa-

tion: the removal of L2/3 SI cells from our model produced

gamma rhythmic activity in L2/3, independent of bottom-up
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inputs. If these gamma rhythms are misinterpreted by higher

cognitive areas as resulting from stimulus presentation, they may

help to account for hallucination, a symptom of some psychiatric

disorders. Interestingly, Manganelli et al. [93] reported evidence

suggesting that visual hallucination is caused by impaired

cholinergic systems.

Herrero [94] found evidence that muscarinic receptor blockers

can reduce attentional focus. This phenomenon may be attribut-

able to cholinergic switching in L5 [29]: These authors found that

muscarinic receptor blockade depolarized L5 FS cells. When we

simulated this effect, LFP modulation induced by top-down signals

was reduced (see Results), consistent with Herrero et al. [94].

However, more complex, equivocal reports of muscarinic recep-

tor-mediated effects on fast-spiking interneurons need to be

considered as a caveat to this [80,95–97].

Limits of our model
Most spontaneous layer-specific data was collected from

anesthetized animals, and its link to in vivo activity from awake

animal engaging in cognitive tasks, is currently unclear. Since our

model aimed to understand mechanisms underlying top-down

attentional effects, we assumed our model was cholinergically

modulated; we depolarized L5 SI cells and hyperpolarized L5 FS

cells in deep layers [29] during all simulations including the

control experiments, suggesting that spontaneous activity collected

from anesthetized animals cannot be used to tune our model

network behaviors.

Instead of capturing spontaneous in vivo activity of L4 and L5

cells, we considered L4 and L5 as simple recipient layers for

bottom-up and top-down inputs, respectively, and did not

introduce any external Poisson spike trains of EPSCs (external

background inputs). Due to this simplification, during the delay

period, L4 E cells did not have sufficient drive to overcome

inhibition from L2/3 and L4 FS cells (see Figure 1) and were

quiescent. We evaluated the impact of the lack of drive to L4 cells

by introducing external background inputs to L4 E cells and found

no significant changes: L4 E cell activity was increased with

background inputs simulated by 10 Hz Poisson EPSCs with

various amplitudes (Figure S2A), but attentional indices still

showed significant attentional modulation during the stimulus

period (Figure S2B, C and D).

We also note that L5 pyramidal cells fired quite synchronously

in the alpha frequency band even with external background

inputs, during the control experiments, since they received

inhibition from L5 SI cells. It is important to note that a few

studies indeed found alpha rhythms in deep layers [28,70,98]

while animals were awake, consistent with synchronous activity in

L5 of our model. In addition, Berger et al. [99] suggested that

firing of a few L5 pyramidal cells can induce feedback inhibition,

and L5 Martinotti cells, a class of SI cells, were reported to provide

feedback inhibition between L5 pyramidal cells [53], suggesting

that synchronous activity of pyramidal cells can approximate in vivo

spontaneous activity in deep layers.

Our model ignored two components. First, we considered only

two columns, although a lot of ‘‘inactive’’ columns, driven weakly

by bottom-up inputs, interact with the attended and unattended

columns. Second, the thalamus was missing in our model, making

us unable to evaluate the effect of thalamocortical circuits on

attentional modulation. Since the thalamus is known to generate

alpha rhythms [71,100], the thalamocortical interaction should be

taken into the account to fully understand mechanisms underlying

the prominent alpha rhythms and reduction of alpha rhythms

reported in Buffalo et al. [28]. In spite of these simplifications, our

model was capable of reproducing attentional modulation

reported in Fries et al. [5], indicating the importance of beta-

rhythmic cortico-cortical communication on attentional gain

control.

Comparison with other computational models
The importance of selective attention in cognitive abilities has

attracted multiple computational model studies. Most of these

studies concern competition between multiple stimuli in the same

field. In particular, Reynolds et al. [10] presented both neuro-

physiological data supporting biased competition and a firing rate

model capable of reproducing their findings. Since then, more

biophysically detailed models have been proposed to study neural

mechanisms underlying biased competition. These include Deco &

Rolls [63], who built a model of V2 and V4; their simulation

results provided a potential mechanism underlying the competi-

tion between bottom-up and top-down regulations. Similarly,

resonance between MT and PFC were shown to be able to

generate multiplicative gain modulation [64]. Buia & Tiesinga

[16] proposed a theory that top-down signals are delivered to

interneurons, instead of excitatory pyramidal cells. The effects of

top-down attention on cortical columns with lamina structure were

investigated in Wagatsuma et al. [17]. Tiesinga & Sejnowski [101]

showed that synchrony in interneurons can regulate signal flow;

also, gamma rhythms can enhance the selection of relevant stimuli

[49].

By contrast, our model, which focuses on reproducing

neurophysiological data reported in Fries et al. [5], involves

comparing an ‘attention-inside’ condition to an ‘attention-outside’

condition. Our model is most closely related to the model

proposed by Buia & Tiesinga [16], in that interneurons, activated

by top-down signals, play crucial roles in attentional gain control.

However, in addition to discussing a different paradigm (compet-

ing inputs), their model has no laminar structure, which is critical

for the effects of our model. Our model suggests that the laminar

structure can ensure that L2/3 RS cells, which project to higher

cortical areas, respond to bottom-up inputs more strongly and

reliably when attention is directed to the column. Wagatsuma et

al. [17] used a model with laminar structure similar to ours, but

without biophysical details we believe are critical to the

phenomena we describe.

In summary, focusing on the detailed physiology of the network

receiving top-down input enabled us to suggest mechanisms for the

action of those inputs in facilitating attentional gain control. The

model further sheds light on how diffuse cholinergic modulation

can support selective attention.

Methods

Numerical simulations
As can be seen in Figure 1, our model consists of nine cell

populations with randomized connections among them. We ran

10 independent simulations for each condition to reduce bias from

random connections and noise. To do so, we reduced the

complexity of the model by limiting each population to have 20

cells, as in Kramer et al. [32]. All integrations were numerically

calculated by the fourth-order Runge-Kutta methods with

0.01 msec-time step. Noisy tonic input Iapp, injected to each

neuron, generated heterogeneity in cells of the same type. This

noisy current Iapp was produced using the Box-Muller algorithm

[102] (see Table 1). Simulation codes were written in C.

Neuron models
All L2/3 and L4 cells were modeled with single compartments.

Pyramidal and SI cells contained a transient sodium (NaF) current,
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a delayed rectifier current (KDR), a leak current and a muscarinic

current (M). The model FS cells did not contain a M-current,

which provides frequency-adaptation [97,103]: they contained

NaF, KDR, leak currents as in Wang & Buzsaki [104]. Deep layer

SI cells were modeled the same as L2/3 SI cells except the

maximal conductance of M-current, which was reduced by 50%.

However, L5 pyramidal cells (IB and RS) were modeled with three

compartments (axon, soma and apical dendrite) to reflect the fact

that L5 pyramidal cells with apical dendrites can receive top-down

signals [37]. These three compartments were connected via

electrical coupling as in Kramer et al. [32]. Each compartment

contained NaF, KDR, and leak currents. M-current was included

in both dendrite and axon, and high-threshold calcium (CaH)

current was added to the dendrite. IB cells contain higher maximal

conductance of CaH current than RS cells [38].

Dynamics of neurons in our model were calculated by voltage-

gated conductance equations;

C
dV

dt
~{gL(V{EL){gNaFm

3
0h(V{ENaF )

{gKDRm
4(V{EKDR){gCaHm

2
CaH (V{ECaH )

{gMmM (V{EM ){Isyn{Iapp

{gext
X

k

H(t{t0,k) exp½{(t{t0,k)=2�V ,

ð1Þ

where EL~{67mV , ENaF~50mV , EKDR~{95mV ,

ECaH~125mV and EM~{95mV ; where the last term repre-

sents Poisson trains of EPSCs: H(t) is the Heavyside step function

and t0,k are the arrival times of trains of EPSCs (see below).

Membrane potentials were regulated mainly by two different

sources; intrinsic ion currents and synaptic currents. Also we

introduced two types of external inputs Iapp and trains of EPSCs

with maximal conductance of gext. For all compartments (cells)

except L2/3 RS cells, we used gL~0:1, gNaF~100 and

gKDR~80mS=cm2; we lowered gKDR by 50% for L2/3 RS cells.

Table 1 shows the maximal conductances of other currents and

the mean value (standard deviations) of Iapp for each type of cell.

Intrinsic ion currents
The gating variables m and h regulating ion currents follow

Hodgkin-Huxley-type equations.

dx

dt
~a(1{x){bx, ð2Þ

where a and b are forward and backward rate functions. With the

relationships between forward and backward rate functions and

steady state variables;

x?~
a

azb
ð3Þ

t?~
1

azb
: ð4Þ

Equation 2 can be described with steady-state variable;

dx

dt
~

1

t
(x?{x): ð5Þ

We adopt steady-state variables for NaF, KDR and CaH currents

from Kramer et al. [50]. Excitatory and inhibitory cells are

different in dynamics of NaF and KDR currents. For excitatory

cells and compartments, we set steady-state variables as;

m0(V )~
1

(1zexp½{(Vz34:5)=10�)
ð6Þ

h?(V )~
1

(1zexp½(Vz59:4)=10:7�)
ð7Þ

th(V )~0:15z1:15
1

(1zexp½(Vz33:5)=15�)
ð8Þ

m?(V )~
1

(1zexp½{(Vz29:5)=10�)
ð9Þ

tm(V )~0:25z4:35 exp½{DDVz10DD=10�: ð10Þ

For inhibitory cells, we used slightly different steady-state

variables;

m0(V )~
1

(1zexp½{(Vz38)=10�)
ð11Þ

h?(V )~
1

(1zexp½(Vz58:3)=6:7�)
ð12Þ

Table 1. The maximal conductances intrinsic currents and
external inputs.

gM (mS=cm2) gCaH Iapp(mA) gExt

L2/3 RS 0.5 0 0(0.5) 0.2

L2/3 FS 0 0 0(0.5) 0.02

L2/3 SI 8 0 21(0.5)

L4 E 0.3 0 21(0) 1.0

L4 FS 0 0 2(0.5) 0.03

L5 IB (axon) 2 0 1(0.1)

L5 IB (soma) 0 0 1(0.1)

L5 IB (dendrite) 4 4 2(0.3) 3.0

L5 RS (axon) 2 0 1(0.1)

L5 RS (soma) 0 0 1(0.1)

L5 RS (dendrite) 4 1.6 2(0.3) 3.0

L5 FS 0 0 0(0.5)

L5 SI 4 0 21(0.8)

For each compartment, noisy tonic drive (Iapp) was introduced. We display
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th(V )~0:225z1:125
1

(1zexp½(Vz37)=15�)
ð13Þ

m?(V )~
1

(1zexp½{(Vz27)=11:5�)
ð14Þ

tm(V )~0:25z4:35 exp½{DDVz10DD=10�: ð15Þ

For M-current, we adopted the forward and backward rate

functions from McCarthy et al. [105];

am(V )~
0:0001Qs(Vz30)

(1{exp½{(Vz30)=9�)
ð16Þ

bm(V )~
{0:0001Qs(Vz30)

(1{exp½(Vz30)=9�)
, ð17Þ

where Qs~3:209. Similarly, for CaH current, we set the forward

and backward rate functions following Kramer [32];

aCaH (V )~
1:6

(1zexp½{0:072(V{5)�)
ð18Þ

bCaH (V )~
0:02(Vz8:9)

(exp½(Vz8:9)=5�{1)
: ð19Þ

Synaptic connections
In each layer, all pyramidal cells and inhibitory interneurons

were reciprocally connected, and recurrent excitatory and

inhibitory connections were also implemented; thus cells received

both excitation and inhibition from other cells belong to the same

layer. 25% L2/3 FS and SI cells had NMDA receptors and thus

they received excitatory inputs from L2/3 RS cells via both

NMDA synapses and AMPA synapses. We did not consider

NMDA-mediated excitatory connections among L4 E cells in this

study since most outputs of L4 neurons in visual cortex of guinea

pigs show fast kinetics, decaying within 2 msec [106]. The rise and

decay time of synapses are shown in Table 2.

For interlaminar connections, we used a subset reported in

neurophysiological studies [37,107]. Instead of implementing all

synaptic connections reported, we focused on identifying synaptic

pathways responsible for attentional gain control of sensory signal

processing. Figure 1A shows the structure of the cortical column.

We connected layers with excitatory and inhibitory synapses;

N Connections between L2/3 and L4: L2/3 RS cells received

excitatory and inhibitory inputs from L4 E and FS cells,

respectively, whereas L2/3 FS cells received excitatory inputs

only. Although a prominent excitatory projection from L2/3

to L4 was found in the primary auditory cortex, it was rarely

found in other sensory cortices [107]. Thus, we did not

implement excitatory projections back to L4 from L2/3. In

contrast, L4 E cells received inhibitory projections from L2/3

FS cells.

N Connections between L2/3 and L5: L2/3 RS cells sent

descending excitatory projections to L5, and L5 pyramids

projected to L2/3 SI and FS cells. As in Kramer et al. [32],

synapses connecting L5 pyramids to L2/3 SI cells decayed

much more slowly than those connecting L5 pyramids to L2/3

FS cells: the rise and decay times of synapses connecting L5

pyramids to L2/3 SI were 2.5 and 50 msec, respectively,

whereas synapses conveying postsynaptic inputs to L2/3 FS

cells had 0.25 msec-rise time and 1.0 msec-decay time.

N Connections between L4 and L5: L4 E cells projected

excitatory synaptic inputs to L5 pyramids (RS and IB) and

FS cells. Since L5 Martinotti cells have vertical axons

[29,30,37,108], we connected SI cells to L4. L5 SI cells

produced ascending inhibitory inputs to L4 FS cells since one

of main targets of L5 Martinotti cells is L4 [108]. L5 SI cells

inhibited L4 FS cells only in the model.

Two columns were connected with each via ascending

excitation (Figure 1B). The intercolumnar connections to L2/3

SI cells were 50% stronger than those within the column.

Table 3 shows details of the connectivity of our model. We

considered each synapse as a gating variable that controls the

conductance of synaptic currents on a post-synaptic neuron. Each

synaptic variable s was simulated by the same rule:

ds

dt
~{

s

td
z

1{s

tr
(1ztanh(

Vpre

10
)), ð20Þ

where Vpre the membrane potential of pre-synaptic cell. td and tr
determine how fast synapses can close and open, respectively, and

thus they were referred to as the decay time and rise time, as in

Kramer et al. [32]. For a post-synaptic cell, synaptic input is the

sum of excitatory and inhibitory synaptic currents:

Isyn~gAMPA,i

X

j

sjVzgGABAi

X

j

sj(Vz80), ð21Þ

where i the is index for type of pre-synaptic cells (out of 9 types of

cells in our model) and j is the index for neurons in the population

of the same type. The maximal conductance, rise time and decay

time of individual synapse depends on both pre-synaptic and post-

synaptic cell types, and chosen values are given in Table 2. In our

model NMDA synapses were simulated with slow rise and

decaying time constants (Table 2).

Table 2. Rise time and decay time of synapses used in our
model.

rise (msec) decay (msec)

excitatory synapses 0.25 1

inhibitory synapses from FS cells 0.5 8

NMDA synapses 5.0 100

inhibition from SI cells 0.5 20

excitation from L5 pyramids to L2/3 SI 2.5 50

Non-fast spiking interneurons elicited slowly decaying inhibition [77,113], and
inhibition of L5 Martinotti cells has slower kinetics than that of L5 FS cells [53].
Thus, we set SI to produce slowly decaying inhibition. Specifically, we adopted
decaying time from models of low threshold spiking interneurons in earlier
computational works [32,38].
doi:10.1371/journal.pcbi.1003164.t002
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External inputs
To understand the modulatory effect of top-down signals on

bottom-up sensory signal processing, we introduced top-down and

bottom-up signals to our model. In this study, we did not explicitly

implement higher cognitive areas or the thalamus, the sources of

top-down and bottom-up signals. Instead, we assumed that top-

down signals were synchronous synaptic inputs and bottom-up

inputs were asynchronous ones. Specifically, both top-down signals

and bottom-up inputs were simulated as trains of excitatory post

synaptic currents (EPSCs), which caused instantaneous increase of

AMPA current up to a maximal conductance and exponential

decay with a 2 msec time-constant: Top-down signals were

synchronized and oscillating at 20 Hz, and thus all L5 pyramidal

cells of the attended column received the same EPSC trains; we

did not introduce top-down signals to deep layer interneurons. In

contrast, L4 E and FS cells of both columns received asynchronous

100 Hz EPSC trains generated from Poisson processes. We also

introduced additional 50 Hz Poisson trains of EPSCs to L2/3 RS

cells to simulate inputs from other parts of cortex [44,109] and

non-selective thalamic inputs such as matrix projections [110];

these inputs are referred to as background inputs in Results.

Table 1 shows the maximal conductance values of external inputs.

Simulation protocol
We ran the network for 1 sec each during the delay and

stimulus periods. To simulate the delay period (after the cue and

before the presentation of a stimulus), we introduced top-down

signals into the attended column with no bottom-up input. In

contrast, during the stimulus period, bottom-up inputs were

introduced to both columns, with the attended column continuing

to receive top-down signals. As control experiments for both

periods, we considered simulations without top-down inputs; only

background inputs were introduced to our model in a control

experiment for the delay period. In order to uncover functional

roles of SI cells and lateral inhibition, we also ran simulations

removing such components from our model.

For each set of simulations, we created 10 realizations of

networks with randomly chosen connections among cells (Table 3)

and ran each of them with independently generated EPSC trains

to minimize any bias from random connections and stochastic

EPSC trains.

Analysis of neural responses
The firing rate of cells is the average number of action

potentials produced per second by 20 cells of each type, and we

reported mean and standard errors of those values from 10

simulations. LFPs were simulated by summing up synaptic

currents projecting onto L2/3 RS cells from all neurons in our

model [111], and spike-triggered average (STA) of LFPs were

calculated. In order to calculate STA of LFPs, we collected

segments of LFPs surrounding each spikes of L2/3 RS cells from

10 independent simulations; thus, the simulated STA is averaged

over spikes from 200 L2/3 RS cells. Specifically, we took

600 msec-long LFP segments; 300 msec before and 300 msec

Table 3. Connectivity map.

# presynaptic cells L2/3 L4 L5

(mS=cm2) RS FS SI E FS IB RS FS SI

L2/3 RS 5 10 10 0 0 20 20 0 0

(0.22) (0.3) (0.03) (0.212) (0.212)

FS 5 8 5 5 0 0 0 0 0

(0.4) (0.6) (0.1)

SI 5 5 0 0 0 0 0 0 0

(0.1) (0.2)

L4 E 5 0 0 10 10 10 10 20 0

(0.2) (0.4) (0.2) (0.212) (0.212) (0.3)

FS 5 0 0 10 10 0 0 0 0

(0.02) (1.0) (0.3)

L5 IB 0 2 2 0 0 10 10 10 10

(0.2) (0.2) (0.02) (0.02) (0.12) (0.12)

RS 0 2 2 0 0 10 10 10 10

(0.2) (0.2) (0.02) (0.02) (0.05) (0.15)

FS 0 0 0 0 0 20 20 20 10

(0.1) (0.1) (0.5) (0.3)

SI 0 0 0 0 10 20 10 10 20

(0.4) (0.3) (0,3) (0.6) (0.4)

In our model, each post-synaptic cell received synaptic inputs from various types of cells. The rows show the the type of post-synaptic cells, whereas columns represents
pre-synaptic cells. We list how many pre-synaptic cells of a particular type were connected to a post-synaptic cell. For instance, L2/3 FS cells received excitation from 2
L5 IB cells. The numbers inside parentheses are maximal conductance of corresponding synapses. Additionally, L2/3 FS and LTS cells received excitation from 10 L2/3 RS
cells via NMDA synapses; the maximal conductances are 0.04 mS=cm2 and 0.03 mS=cm2 , respectively. Since Roopun et al. [24] suggested that only L5 SI cells produced
inhibition oscillating in the beta frequency band and that all L5 cells received beta rhythmic inhibition, all L5 cells of our model received inhibition from L5 SI cells. Also,
we made inhibitory connections among L2/3 SI cells sparse and weak, since they are known to be rare [103].
doi:10.1371/journal.pcbi.1003164.t003
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after each spike. All spectral analysis is done with Chronux, a

matlab toolbox [112].

For each simulation run, we also calculated the spike-field

coherence (SFC), a ratio of the power spectrum of STA of LFPs

over the average of spike-triggered spectral spectra: This measure

allows us to evaluate the synchrony of cell activity independently

from the firing rate and spectral power of raw LFPs [5]. We

reported mean values and standard errors of attentional indices

from 10 simulations to show the modulatory effect of top-down

beta rhythms [31]; three attentional indices are given as:

AI(c)~
SFCc(attended){SFCc(unattended)

SFCc(attended)zSFCc(unattended)

AI(a=b)~
SFCa=b(attended){SFCa=b(unattended)

SFCa=b(attended)zSFCa=b(unattended)

AI(R)~
R(attended){R(unattended)

R(attended)zR(unattended)
,

where SFCc is the spike-field coherence in the high frequency

band, 25–70 Hz, calculated from each simulation run; SFCa=b is

the spike-field coherence in the low frequency band, 8–25 Hz; R is

the average firing rate of L2/3 RS cells from each simulation run.

We also measured synchrony of L2/3 RS cell activity with

Equation (22) [104]

k~
SK
l~1X (l)Y (l)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SK
l~1X (l)SK

l~1Y (l)

q , ð22Þ

where X (l) and Y (l) are the spike trains of two RS cells with 1-

msec resolution.

Supporting Information

Figure S1 Attentional indices in the alpha and beta

frequency band. Attentional effects were measured from L5

pyramidal cells and deep layer LFPs in the alpha (8–15 Hz) and

beta (15–25 Hz) frequency band, respectively.

(EPS)

Figure S2 The impact of background inputs to L4 E cells

on attentional modulation (A). The mean value and standard

errors of L4 E cells, induced by 20 Hz Poisson EPSCs. Attentional

indices with various amplitudes of EPSCs. AI(a/b), AI(c), AI(R)

are displayed in (B),(C) and (D), respectively. * represents

distributions significantly different from 0.

(EPS)
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