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M6.2 
TOP-DOWN IMAGE SEGMENTATION USING 

OBJECT DETECTION AND CONTOUR RELAXATION 

Til Aacb, Uwe Banke and Rudolf Mester 

Institute for Communication Engineering 
Melatener StraDe 23 

Technical University of Aachen, D-5100 Aachen, West Germany 

ABSTRACT 

A new segmentation technique which starts with the whole 
image being a single region is presented. First, an object 
detection scheme, which marks those locations where lo- 
cal statistics deviate significantly from the overall statis- 
tics, provides location and approximate shapes of the major 
objects (regions) in the scene. Exact boundaries are ob- 
tained by a subsequent contour relazalion algorithm, which 
includes a general model for typical region shapes. Object 
detection and contour relaxation are repeated recursively 
until a stable segmentation result is achieved. 

INTRODUCTION 

Segmentation methods which start with the whole picture 
as an entire region and work their way down by creating 
subregions until an acceptable result is achieved, are termed 
top-down techniques. The variety of these techniques can be 
divided in measurement space (MS) guided schemes on the 
one hand, and, on the other hand, algorithms incorporating 
region splitting (cf. [I]). 

MS guided schemes divide the MS into subspaces ac- 
cording to the clusters detected in it. These subspaces are 
mapped back onto the image lattice, and sets of connected 
pixels belonging to the same subspace form the regions. 

A MS guided top-down approach to the segmentation of 
colour images has been described in [2]. First, the image 
is initialized as one region. Then, the histograms for all 
features (R, G, B and 6 related measures) are computed, 
and the most prominent peak in any of these is selected. 
Regions are obtained by a connected component analysis 
of the pixels belonging to  the selected peak. Histogram 
computation and peak selection are then repeated for each 
region, and the regions are thus partitioned further until no 
more histogram peaks can be found in any of them. 

Another MS-guided top-down approach has been intro- 
duced by Coleman and Andrews 131. An ’optimal’ (intrinsic) 
number of clusters in the MS is determined by maximizing 
a measure of cluster separability. The image is then split 
according to  these clusters. 

These approaches, however, suffer from a major draw- 
back: During the segmentation process, the spatiai rela- 
tionship of the pixels is not taken into account. Partitioning 
takes place only in MS, and information about the location 
of a measurement on the image lattice is discarded. The 
resulting partitions thus exhibit ragged and spotty regions. 

Milgram and Kahl[4] try to reduce the number of small, 

erroneously detected regions by only accepting those regions 
where a sufficient amount of ’border definedness’ coincides 
with the occurence of a cluster. However, as their approach 
still remains mainly MS guided, the basic problem that a 
cluster can be formed by features belonging to pixels widely 
apart on the image lattice is not solved. 

Split and merge algorithms generally split each region 
into quadratic subregions until some homogeneity criteria, 
e.g. grey level difference or statistical uniformity IS], 161 are 
satisfied. The inherent problem with region splitting is that 
the ’best’ boundary along which to split can hardly be de- 
termined. 

A split and merge procedure using a maximum likelihood 
boundary finder to overcome this difficulty has been pub- 
lished [7], but this method imposes constraints on the tra- 
jectory of the boundary, and the number of final regions has 
to be preset. 

OUTLINE OF THE SEGMENTATION ALGORITHM 

To avoid the mentioned shortcomings, our algorithm pro- 
ceeds as follows: We start with the whole image being one 
region which is described by its overall statistics. The ba- 
sic idea is to extract those areas from this region where 
local statistics deviate significantly from the global overall 
statistics. New regions are formed from these statistically 
deviating areas by sets of connected pixels. The result is 
a partition consisting of several major regions (see flg. 1). 
The global parameters for all of these regions can then be 
computed. 

This process is continued for each region: We compare 
local statistics inside each region against the newly acquired 
global region statistics, and extract the deviating areas. The 
process comes to an end when no further inhomogeneities 
can be detected in any region. 

To be more specific, let us assume that the grey values 
inside each region Rj are samples from a stationary, uncor- 
related (’white’) and Gaussian distributed random field with 
individual mean mj and variance vi’. Hence the global re- 
gion statistics can be described by the maximum likelihood 
estimates Aj and d i  of the unknown parameters. To find 
inhomogeneities in region Rj ,  we compare the local mean, 
which is computed inside a small sliding window, against 
the global parameter mj. The occuring inhomogeneities - 
that is, areas with significant deviation of local mean - 
are marked, and new regions are created by the subsequent 
connected component analysis. The parameters A and 2 
of these new regions can then be computed. This procedure 
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Fig. 1 : Result after first inhomogeneity detection 

is applied recursively to every new region, and the process 
thus 'learns' more and more about the image statistics, un- 
til no further inhomogeneities can be located in any region. 
The principle of recursive inhomogeneity extraction by com- 
paring local statistics against global ones is, of course, not 
restricted to the described scheme. A straightforward ex- 
tension is to  design a test procedure for local versus global 
variance 2,  too. For the segmentation of colour images, the 
procedure can also be extended to vectorial features which 
have been obtained from the R, G and B data. This ap- 
plies as well to vectorial texture features for highly textured 
images, e.g. [SI. 

The recursive segmentation scheme, however, is not com- 
plete as described above. This is due to the following rea- 
sons: 

First, there is a trade-off between 'reliability' and spatial 
resolution inherent with the used significance test, which 
depends on the size of the sliding window inside which the 
local statistic is computed. The reliability increases with 
the window size. Unfortunately,the larger the window di- 
mensions are, the more inaccurate is the location of the 
boundary of the marked area, since a large window tends to 
misplace the transition between statistically different areas. 
Misplaced boundaries are not only visually unfavourable, 
but might also mislead the segmentation process if they can- 
not be corrected during the process. 
Secondly, only the region internal grey values are described 
by a stochastic model, but not the region shapes. This leads 
to noisy boundaries between those regions which differ only 
slightly in their respective statistics. 

Both of these shortcomings can be overcome by a re-  
lazation procedure, which examines e d  pixel situated at 
a region boundary, and assigns it to that neighbouring re- 
gion to which it fits best. Since this procedure predomi- 
nantly affects region shapes, it is reasonable to incorporate 
a stochastic model for these shapes, which tends to smooth 
noisy boundaries at statistically 'uncertain' transitions. 

Each step of the recursive segmentation process hence 
consists of two parts (see fig. 2): 

Detection of inhomogeneities (Object Detection 

Contour Relazation 
Both parts, as well as the underlying image mo 
now be discussed in detail. 

and 

one reglon parlltlon 

R e  I axatlon 

#del, shall 

1 n o  
flnal parlltlon 

Fig. 2 : Segmentation process 

THE IMAGE MODEL 

We assume the image Y = {ymn} to be composed of regions 
R j ,  with the grey values ymn inside each region being a 
sample from an uncorrelated Gaussian random field. The 
partition Q, that is, the spatial ensemble of the regions R I ,  
is represented by assigning a label qmn to  each pixel (m, n). 
To favour those partitions Q whose regions exhibit smooth 
contours, we intend to give an a priori probability density 
p(Q) such that the probability for the occrurence of such a 
partition is relatively high. As will be shown later, this is 
possible by regarding the label array as a sample from a 
second order Gibbs random field [9]. 

OBJECT DETECTION 

Consider a given partition Q for the image data Y. This 
might be the initial one-region partition, or one of the parti- 
tions emerging during the process. The notion 'inhomogene- 
ity' is specified as a significant deviation of local mean from 
the global estimate in (R j ) .  As already pointed out, other 
specifications are possible. The detection procedure works 
as follows: First, an error image E = {e,,,,,} is computed 
by normalizing the grey values inside each region according 
t" 

where Rj is the region to which the pixel (m,n) belongs. 
On the assumption that no inhomogeneity occurs at (m, n), 
emn obeys a zero mean Gaussian distribution N(O,1) with 
unit variance. Inside a sliding window of dimensions d x don 
the error image E the local average pmn is computed, and 
pmn is assigned to the pixel (m,n). A window dimension 
of d = 5 turned out as a good compromise between spatial 
resolution and reliability of the following significance test. 
If the local statistics comply with the global ones, pmn is 
distributed according to N ( 0 ,  d-'). With the distribution 
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of the local average known, we define a threshold t such that 
the probability of Ipmnl exceeding t is small. This proba- 
bility P(lpmn\ > t )  - the significance level - is chosen to 
about 

Each pixel (m,n) with Ipmnl > t is then marked as an 
inhomogeneity. In doing so, a positive mark is used if pmn is 
positive, and a negative one for pmn < 0. The new regions 
are provided by a connected component analysis of pixels 
bearing the same mark. 

CONTOUR RELAXATION 

The application of object detection provides a partition Qo 
which suffers from inaccurate region boundaries due to the 
limited spatial resolution of the detection scheme. Hence 
Qo has to  be modified until it matches the given image best. 
The 'best match' is evaluated on the basis of the Mazimnm 
a Posteriori (MAP) criterion, that is, we modify Qo until a 
local maximum of the 0 p o h r i o r i  density p(Q1Y) is found 

Using Bayes' rule, a local maximum of the joint likelihood 
p ( Q ,  Y )  = p(YIQ) .  p (Q)  has to be found by variation of Q .  
Both components of this product shall briefly be discussed. 
Wit,h 

[lo17 D11. 

and 

(3) 

being the maximum likelihood estimates for mean and vari- 
ance of a region Rj of size N j ,  we can write the likelihood 
of its Gaussian distributed internal grey values as 

. -N; 

The likelihood of the image data Y given the partition Q is 
then expressed by 

( 5 )  

with the product covering all regions of the partition. In 
the probability d Q )  for a partition Q we incorporate the 
4 priori knowledge that regiom typically exhibit smooth 
boundaries. To find a probability measure related to the 
smoothness of region contours, we consider pairs of adjacent 
pixels situated at region boundaries. Since both pixels of 
each pair belong to different regions, their labels are differ- 
ent. As illustrated in fig. 3, the number of these pixel pairs 
across a boundary is the lower, the smoother the boundary 
is. Hence, we first determine the number n B  of horizontal or 
vertical boundary pixel pairs, and the number nc of diago- 
nal boundary pixel pairs of the partition. Then, a positive 
cost parameter B is assigned to each horizontal or vertical 
pair, and a positive cost parameter C to each diagonal pair. 
Modeling the partition, that is, the array of labels qmn, as 
a sample from a second order Gibbs random field, the prob- 
ability density p ( Q )  is given by 

p(Q)  = k I e s p { - ( n e B  + ncc)}. (6) 

(For a detailed derivation, see [ll]). p ( Q )  now exhibits 
the desired properties: the smaller the number of bound- 
ary pixel pairs is, that is, the smoother the region contours 
of the partition ace, the higher is the probability of such a 
partition. The values for the cost parameters B and C are 
not critical. We chose B between 0.5 and 6, and C = B/2.  

Fig. 3 : Example of smooth (left) and wriggled (right) boundary 

The maximization of p(Q,  Y )  is carried out by scanning 
the image several times, with the scan direction being chan- 
ged for every scan. While scanning, each pixel situated at 
a region boundary is examined. Whenever a substitution of 
the pixel's actual label by the label of a neighbouring region 
leads to an increase of p ( Q , Y ) ,  this change is performed. 

Fig. 4: Situation of 
boundary pixel 

The situation for a boundary pixel 
50 is as depicted in flg. 4. Be- 
sides its actual label q(zo) ,  only 
the labels of its four nearest neigh- 
bours are legal for 10, as otherwise 
a single-pixel region would be cre- 
ated. p ( Q , Y )  is evaluated for all 
possible label choices according to 
equations (5) and (6), and the la- 
bel which maximizes p(Q,  Y )  is as- 
signed to IO.  The evaluation of ( 5 )  

and (6) is considerably simplified by this strictly local one: 
pixel operation: To evaluate equation ( 5 ) ,  the product needs 
to comprise only the set of regions whose label q ( q )  is d- 
lowed to take. To evaluate expression ( 6 ) ,  only the bound- 
ary pixel pairs in the subset of fig. 4 have to be considered. 
When a label change has occured, the statistics of the two 
participating regions are updated immediately. 

Ideally, the process of relabeling stops when no more pixels 
whose labels have to be changed are found during a scan. A 
more practical solution is to terminate the relaxation when 
the number of relabeled pixels during a scan drops below a 
prespecified level, e.g. 100 for a 256 x 256 image. Neverthe- 
less, convergence of the relaxation is guaranteed since only 
operations which increase p ( Q J Y )  are carried out. 

Convergence of the segmentation 

Object detection and contour relaxation are performed re- 
cursively as illustrated by fig. 2. The number of emerged 
regions versus the number of iteration steps is depicted in 
fig. 5 for three exemplary images. Only between 5 and 8 it- 
erations are required to achieve a stable segmentation result. 
The depicted convergent behaviour of the procedure is made 
plausible by the following reasoning: During each step, the 
application of object detection provides an initial partition 
from which the relaxation converges to a local maximum of 
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or 'false' contour has been 'trained' to  'imitate' human per- 
ception. (For details of the classifier as well as the used 
properties see [Ill). 
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Fig. 5 : Region number versus number of iterations 

p(Q1Y). During the progress of segmentation, the similar- 
ity between the partitions of two subsequent steps of the 
recursion increases. As a mewure of similarity the region 
numbers in the partitions are compared. The segmenta- 
tion stops when the increase of the region number during 
one iteration falls below a given level. As fig. 5 illustrates, 
the process might alternatively be 'hard-limited' after the 
eighth step. 

Fig. 6 : Segmentation result 

RESULTS 

A segmentation result is given in fig. 6. As can be seen, all 
important boundaries have been found. The result, how- 
ever, is not yet visually acceptable, because the image is 
partitioned in t w  many regions, which are not perceived 
as different objects by humans, but differ in their respec- 
tive statistics. This is due to continuous changes in local 
statistics, which can be caused for instance by curved ob- 
ject surfaces. Since the contours which separate this kind of 
regions have typical properties, e.g. low contrast along the 
boundary, we can use these properties to  classify each con- 
tour as either a 'false' one or a 'true' one. Regions which are 
separated by a 'false' contour are merged, and the contour is 
thus eliminated. The classifier which decides between 'true' 

Fig. 7 : Segmentation result after elimination of false con- 
tours 
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The final segmentation result - shown in fig. 7 - har- 
monizes with human perception, and can serve as a basis 
for further analysis of the image. Note that the described 
method works also well in the highly textured areas of the 
image. 
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