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Abstract—Model trees are an extension of regression trees that associate leaves with multiple regression models. In this paper, a
method for the data-driven construction of model trees is presented, namely, the Stepwise Model Tree Induction (SMOTI) method. Its
main characteristic is the induction of trees with two types of nodes: regression nodes, which perform only straight-line regression, and
splitting nodes, which partition the feature space. The multiple linear model associated with each leaf is then built stepwise by
combining straight-line regressions reported along the path from the root to the leaf. In this way, internal regression nodes contribute to
the definition of multiple models and have a “global” effect, while straight-line regressions at leaves have only “local” effects.
Experimental results on artificially generated data sets show that SMOTI outperforms two model tree induction systems, M5’ and
RETIS, in accuracy. Results on benchmark data sets used for studies on both regression and model trees show that SMOTI performs
better than RETIS in accuracy, while it is not possible to draw statistically significant conclusions on the comparison with M5’. Model
trees induced by SMOTI are generally simple and easily interpretable and their analysis often reveals interesting patterns.

Index Terms—Inductive learning, linear regression, model trees, global and local effects, regression and splitting nodes, SMOTI.

1 INTRODUCTION

ANY problems encountered in common practice involve

the prediction of a continuous numeric attribute
associated with a case. More formally, given a set of observed
data (x,y) € X xY, where X denotes the feature space
spanned by m independent (or predictor) variables z; (both
numerical and categorical), the goal is to predict the
dependent (or response) variable Y which is continuous.
This problem has been approached in many ways, such as
standard regression, neural nets, and regression trees [1]. A
regression tree approximates a function y = g(x) by means of a
piecewise constant function. Model trees generalize the concept
of regression trees in the sense that they approximate g(x) by
a piecewise linear function, that is, they associate leaves with
multiple linear models. The problem of inducing model trees
from a training set has received attention both in statistics and
in machine learning. Some of the model tree induction
systems developed are: M5[18], RETIS [9], M5’ [23], TSIR [13],
HTL [20], which has been subsequently included in RT [21],
SUPPORT [2], which has been extended in GUIDE [12] and
SECRET [3].

All these systems perform a top-down induction of model
trees (TDIMT) by recursively partitioning the training set.
However, some of them (e.g., M5, M5’, and HTL) first build
the tree structure and then associate leaves with linear
models. In this way, the heuristic evaluation function used
to select the best partition is computationally efficient, but it
may compromise the discovery of the “correct” trees
because of its incoherence with the linear model associated
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with the leaves. A different approach is followed in
SUPPORT and SECRET, which reduce the computational
complexity by transforming a regression problem into a
classification problem and then by choosing the best
partition on the basis of computationally efficient evalua-
tion functions developed for classification tasks.

Another common characteristic of almost all these
TDIMT systems is that the multiple regression model
associated with a leaf is built on the basis of those training
cases falling in the corresponding partition of the feature
space. Therefore, models in the leaves have only a “local”
validity and do not consider the “global” effects that some
variables might have in the underlying model function. To
explain this concept, let us consider the case of a region R of
a feature space described by four continuous independent
variables X;, X,, X3, and X,. The region R can be
partitioned into two regions, R; and Rj, such that cases
with Xy < o (Xy > «), for a constant threshold «, fall in R,
(R2). Two regression models can be built independently for
each region R;, say:

Ry Yzbz)—i-blle +bl2X2 (1)

Ry : Y = b”o + b”]X] + b”ng. (2)

The presence of X in both models simply indicates that this
variable is relevant both when X, < o and when X, > ¢,
although its influence on the dependent variable Y can be
very different for the two regions. In this case, we say that
the effect of X; on Y is local since it can be properly
predicted by considering the test Xy < a. A global effect
occurs when the contribution of X; to Y can be reliably
predicted on the whole region R. In this case, an initial
regression model can be approximated by regressing on X;
for the whole region R:
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R:Y:bg+b1X1 (3)

and then by adding the effect of the variables X, and X;
locally to the subregions R; and Ry, respectively. This is a
case of stepwise construction of regression models [4]. As
explained later, the correct procedure to follow in order to
introduce the effect of another variable in the partially
constructed regression model is to eliminate the effect of X;.
In practice, this means that we have to compute the
following regression models for the whole region R:

R: Xy = by + b X, (4)

R: X3 =by+buX, (5)

and then to compute the residuals X, = X, — X, X, =
Xs—X;and V=Y -Y=Y— (bo + b1X1). By regressing
the residuals Y’ on X}, and X} for the regions R; and Ry,
respectively, the following two models are built:

Ry ZY: bo + b1 X1 —|—Z)2X;

6
= by + b1 X1 + by Xy — babyy — baby X ©)

RQZYIbQ—Flel—sz;Xg

7
= by + b1 X1 + b3 X3 — bgbzg — bsbs X;. @)

They show the global effect of X, since their first two
common terms do not depend on the test Xy < ¢, that is,
they are computed on the whole region R. Moreover, the
last term of each model corrects the contribution of X; due
to the local introduction of either X, or Xj;.

In model trees, global effects can be represented by
variables that are introduced in the multiple models at higher
levels of the tree. However, this requires a different tree-
structure where internal nodes can either define a further
partitioning of the feature space or introduce some regression
variables in the models to be associated with the leaves.

This paper, which extends and revises the work in [14],
presents the current state of the art on TDIMT and starting
from the strengths and weaknesses of some approaches,
proposes a new method, called Stepwise Model Tree Induc-
tion (SMOTI), that constructs model trees stepwise, by adding,
at each step, either a regression node or a splitting node.
Regression nodes perform straight-line regression, while
splitting nodes partition the feature space. The multiple linear
model associated with each leaf is obtained by composing the
effect of regression nodes along the path from the root to the
leaf. Variables of the regression nodes selected athigher levels
in the tree have a “global” effect since they affect several
multiple models associated with the leaves. In addition to
solving the problem of modeling phenomena where some
variables have a global effect while others have only a local
effect, the stepwise construction supported by SMOTI permits
atno additional cost to define a heuristic evaluation function
which is coherent with the linear models at the leaves.

The paper is organized as follows: The state of the art
model tree induction is described in the next section, while, in
Section 3 the SMOTI method is introduced and its computa-
tional complexity is analyzed. In Section 4, some experi-
mental results are reported for both artificially generated data
and data typically used in the evaluation of regression and
model trees. For this second set of experimental results, the
detected presence of some global effects is also discussed.

2 BACKGROUND AND MOTIVATION

In the top-down construction of a model tree, one of the
main problems to be solved is choosing the best partition of
a region of the feature space. Several evaluation functions
have been proposed. In CART [1], the quality of the
(partially) constructed tree T" is assessed by means of the
mean square error R (1), whose sample estimate is:

RT) = 305t~ (1), ®)

teT Ti€t

where N is the number of training examples (x;, v,), T is
the set of leaves of the tree, and y(t) is the sample mean of
the response variable computed on the observations in the
node ¢. By denoting with s?(¢) the sample variance at a
node ¢, R(T) can be rewritten as:

r0) =Y Wen =S pwse. o

teT teT

where N(t) is the number of observations in the node ¢ and
p(t) is the estimated probability that a training case reaches
the leaf t. When the observations in aleaf ¢ are partitioned into
two groups, we obtain a new tree 7", where ¢ is an internal
node with two children, say, ¢t; and tg. Different splits
generate distinct trees 7" and the choice of the best split is
made by minimizing the corresponding R(T”). More pre-
cisely, the minimization of R(7") is equivalent to minimizing
p(tr)s*(tr) + p(tr)s(tr), which is the contribution to R(T")
provided by the split.

This heuristic criterion, initially conceived for a regression
tree, has also been used for model trees. In the HTL system,
the evaluation function is the same as that reported above,
while, in M5, the sample variance s2(t) is substituted by the
sample standard deviation s(¢). The problem with these
evaluation functions, when used in model tree induction, is
that they do not take into account the models associated with
the leaves of the tree. In principle, the optimal split should be
chosen depending on how well each model fits the data. In
practice, many model tree induction systems choose the
optimal split on the basis of the spread of observations with
respect to the sample mean. However, a model associated with
a leaf is generally more sophisticated than the sample mean.
Therefore, the evaluation function is incoherent with respect to the
model tree being built.

To illustrate the problem, let us consider the data set
plotted in Fig. 1a and generated according to the model tree in
Fig. 1b. Neither M5 nor its commercial version, named Cubist,
nor HTL are able to find the underlying model tree because of
netseparation of the splitting stage from the predictive one and,
in particular, due to the fact that the partitioning of the feature
space does not take into account the regression models that
can be associated with the leaves. This seems to be inherited
by regression tree learners, such as CART. In this case,
however, the evaluation functions (e.g., R(1)) do take into
account the models built in the leaves (the sample means). On
the contrary, when we try to use the same heuristic criteria for
model tree induction, we are rating the effectiveness of a
partition with respect to different models from the ones
chosen in the subsequent predictive stage.

This problem cannot potentially occur in RETIS, whose
heuristic criterion is to minimize p(t7)s*(tz) + p(tr)s*(tr),
where s(t1) (s*(tg)) is now computed as the mean square
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Fig. 1. (a) Scatter plot of 20 cases; the values of the only independent variable range between -1.0 and 2.0. A simple linear regression on the whole
data set would give the dashed line. (b) The underlying model tree partitions the training cases into two subgroups: X < 0.4 and X > 0.4.

error with respect to the regression plane g, (gz) found for
the left (right) child:

() = §yy 2o W= o)’
) o (10)
(SQ(tR) = N Z (yi — gR(xi))Q)-

In practice, for each possible partitioning, the best
regression planes at leaves are chosen so that the selection
of the optimal partitioning can be based on the result of
the prediction stage. However, the computational com-
plexity of this evaluation function is cubic in the number
of independent continuous' variables, m, and quadratic in
the number of training observations, N. Indeed, the
selection of the first split takes time O(mNlogN) to sort
all values of the m variables, plus time required to test
(N — 1)m distinct cut points, at worst. Each test, in turn,
requires the computation of two regression planes on the
m independent variables, that is, twice the time of
computing (X'X) 'X'y, where y is the N(t)-dimensional
vector of values taken by the response variable in node ¢,
while X is an N(t)(m + 1) matrix of observations plus a
column with only 1s [4]. Solving this least-square problem
by normal equations takes time O(N(t)(m +1)>+ (m+
1)*) since, in general, N(t) > m, the time complexity can
be approximated to O(N(t)(m + 1)?). For at least one of
the tests, N(t) is proportional to N, thus the choice of the
first split takes time O(N(N — 1)m(m + 1)%).

In SUPPORT and SECRET, this inefficiency is solved by
transforming a regression problem into a classification
problem. More precisely, Chaudhuri et al. [2] propose
labeling the residuals of a linear model at a node as either
positive or negative and choosing the best partition on the
basis of computationally efficient statistical tests developed
for classification tasks. The justification of this approach is
that, if a fitted model is unsatisfactory, the lack of fit would be
reflected in the distributional pattern of the residuals. Dobra
and Gehrke [3] observe that this justification is not theoreti-
cally founded and propose identifying two normal multi-
variate distributions in the space X x Y and then classifying
observed data according to the probability of belonging to
these two distributions. The best partition is selected by
means of efficient techniques developed for decision trees. In
the case of binary splits of continuous attributes, Torgo [22]
proposes a solution based on a recursive least squares

1. The complexity for discrete variables cannot be evaluated since no
specification is reported in the literature on the procedure that RETIS
follows to select best subsets of attribute values.

algorithm whose average complexity is quadratic in the
number of different data points between two subsequent cut-
points of the continuous variable.

In addition to high computational complexity, another
problem may occur in RETIS since the regression planes g,
and gp involve all continuous variables. When some of the
independent variables are related to each other, that is, they
are (approximately) collinear, several problems may occur
[4], such as indeterminacy of regression coefficients, unrelia-
bility of the estimates of the regression coefficients, and
impossibility of evaluating the relative importance of the
independent variables. Interestingly, problems due to colli-
nearity do not show in the model’s fit. The resulting model
may have very small residuals, but the regression coefficients
are actually poorly estimated. A treatment suggested for data
that exhibit collinearity is that of deleting some of the
variables from a fitted model. Therefore, variable subset
selection is a desirable part of regression analysis.

Finally, RETIS, as well as many other TDIMT systems,
is characterized by models at leaves that can take into
account only local decisions, as explained in Section 1. A
solution to this problem is the stepwise construction of
multiple linear models by intermixing regression steps
with partitioning steps, as in TSIR. TSIR has two types of
node: splitting nodes and regression nodes. A splitting
node performs a Boolean test on a variable and has two
children. A regression node computes a single variable
regression, Y =a+0bX, and passes down to its unique
child the residuals y; — (a +bz;) as new values of the
response variable. Thus, descendants of a regression node
will operate on a modified training set. Lubinsky claims
that “each leaf of the TSIR tree corresponds to a different
multiple linear regression” and that “each regression step
adds one variable and its coefficients to an incrementally
growing model.” However, this interpretation is not
correct from a statistical point of view since the incre-
mental construction of a multiple linear regression model
is made by removing the linear effect of the introduced
variables each time a new independent variable is added to the
model [4]. For instance, let us consider the problem of
building a multiple regression model with two indepen-
dent variables through a sequence of straight-line regres-
sions: Y = a4 bX) + cX,. We start regressing Y on X; so
that the model:

Y =a 4+ 0 X,
is built. This fitted equation does not predict Y exactly. By
adding the new variable X, the prediction might improve.
Instead of starting from scratch and building a model with
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TABLE 1
Systems Comparison

System M5 M5’ HTL RETIS GUIDE SECRET TSIR SMOTI
Coherent eval- | No No No Yes No Yes Only  for | Yes
uation function continuous
atiributes
Local/global No No No No No No Yes Yes
effects
Variables in the | Continuous | Discrete Continuous | All contin- | Continuous | Continuous | Continuous | Continuous
nodes at leaves variables and con- | wvariables uwous vari- | variables variables variables variables
tinuous ables
variables
Type of model Linear Linear Linear Linear Linear Linear Linear Linear
model model model model model model model (not | model
or kernel statistically
regressor inter-
or hybrid pretable)
Simplification Yes Yes Yes No Yes No No No
of models at
leaves
Tree pruning Yes Yes Yes Yes Yes Yes No Yes

both X; apd X5, we can build a linear model for X, if X;
is given: Xy = as + bX, then compute the residuals on X,
and Y:

Xé =X, — (ag + bQXl);Y/ =Y — (a1 + lel)

and, finally, regress Y’ on X}, alone: Y = a3 + b3 X},
By substituting the equations of X} and Y’ in the last
equation, we have:

Y- (al/—|—\b1X1) =a3z+ bg(XQ — (CLQ + bQXl))
Since Y — (a1/+\b1X1) =Y - (a1 + b1 X1), we have:

Y = (a3 + ay — agbg) + (b1 - b2b3)X1 + b,jXQ

It can be proven that this last model coincides with the first
model built, that is, a = a3z + a1 — asb3, b = by — babs, and
¢ = bs. Therefore, when the first regression line of Y on X is
built, we pass down both the residuals of Y and the residuals
of the regression of X, on X;. This means we remove the
linear effect of the variables already included in the model
(X7) from both the response variable (Y) and those
variables to be selected for the next regression step (X).
TSIR operates in a different way since it passes down the
residuals of Y alone. Therefore, it is not possible to assert
that the composition of straight-line models found along a
path from the root to a leaf is equivalent to a multiple linear
model associated with the leaf itself. Moreover, collinearity
problems are not properly solved, although only a subset of
variables may be involved in the models at leaves.

A summary of some characteristics discussed above is
reported in Table 1. It is noteworthy that all systems can
build multiple linear regression models at leaves. In
addition, HTL can build kernel regressors, which simply
implement but do not capture the structure of the domain
as linear models do. Some systems involve both continuous
and discrete variables in the linear models at leaves. The
latter are treated as dichotomous variables in standard
linear regression [4]; however, their real contribution is
unclear in the case of model trees. In some systems, linear
models at leaves can be retrospectively simplified by
deleting some variables.

In the next section, the new TDIMT system SMOTI is
presented. It has four distinguishing features:

1. A selection measure is chosen which is coherent
with respect to the (partial) linear model associated
with the leaves.

2. Multiple regression models are constructed stepwise
by intermixing both regression and splitting nodes.
Problems observed in TSIR are solved by removing
the effect of the variable selected in a regression
node before passing down training cases to deeper
levels and by adopting a look-ahead strategy when
regression nodes and splitting nodes are compared
for selection.

3. The multiple linear model associated with each leaf
involves all the numerical variables in the regression
nodes and the numerical variable in the straight-line
regression performed at the leaf. In this way, both
global and local effects of variables are considered.

4. The simplification strategies apply only to the tree
structure, thus the deletion of some variables in the
models at leaves is the result of pruning a regression
node.

The description of the simplification methods and the
related experimental results are not presented because of
space constraints. In this paper, the presentation is focused
only on the first three distinguishing features.

3 STEPWISE CONSTRUCTION OF MODEL TREES

In SMOTI, the development of a tree structure is not only
determined by a recursive partitioning procedure, but also
by some intermediate prediction functions. This means that
there are two types of nodes in the tree: regression nodes
and splitting nodes. They pass down observations to their
children in two different ways. For a splitting node ¢, only a
subgroup of the N(t) observations in ¢ is passed to each
child and no change is made on the variables. For a
regression node ¢, all the observations are passed down to
its only child, but both the values of the dependent variable
and the values of the (continuous) independent variables
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Fig. 2. (a) A continuous split node ¢ with two straight-line regression models in the leaves. (b) A discrete split node ¢ with two straight-line regression
models in the leaves. (c) Evaluation of a regression step at node t, based on the best splitting test below.

not included in the model are transformed to remove the
linear effect of those variables already included. This is
done coherently with the statistical theory for the incre-
mental construction of a multiple linear regression model,
as explained in Section 2. Thus, descendants of a regression
node will operate on a modified data set.

The validity of either a regression step or a splitting test
on a variable X; is based on two distinct evaluation
measures, p(X;,Y) and o(X;,Y), respectively. The variable
X, is of a continuous type in the former case and of any type
in the latter case. Both p(X;,Y) and o(X;,Y) are mean
square errors,” therefore, they can actually be compared to
choose between three different possibilities:

1. growing the model tree by adding a regression node ¢;

2. growing the model tree by adding a splitting node ¢;

3. stopping the tree’s growth at node ¢.
The evaluation measure o(X;,Y) should be coherently
defined on the basis of the multiple linear models at the
leaves. In SMOT], it is sufficient to consider the best straight-
line regression associated to each leaf 5 (¢1) since regression
nodes along the path from the root to t (¢) already partially
define a multiple regression model (see Figs. 2a and 2b).

If X; is continuous and « is a threshold value for X, then
o(X;,Y) is defined as:
N(tr) N(tr)
NG NG .
where N(t) is the number of cases reaching ¢, N(t;) (N(tr))
is the number of cases passed down to the left (right) child,

and R(t;,) (R(tg)) is the resubstitution error of the left (right)
child, computed as follows:

Rit:) = \/ﬁ -5,

o(X;,Y) = R(tr) + R(tg),

Ti€lL

2. This is different from TSIR, which, in the case of node selection,
minimizes the absolute deviation between a constant value (the median) and
the observed values Y. On the contrary, SMOTI coherently minimizes the
square error with respect to the partially constructed regression model at
each node.

The estimate:

9 =ao+ Zasxs (13)
S

is computed by combining all univariate regression lines
associated with regression nodes along the path from the
root to t;, (tr). Possible values of a are found by sorting the
distinct values of X; in the training set associated to ¢, then
identifying a threshold between each pair of adjacent
values. Therefore, if the cases in ¢ have k distinct values
for X;, k—1 thresholds are considered. Obviously, the
lower o(X;,Y), the better the split X; < a.

If X; is discrete, SMOTI partitions attribute values into
two sets so that binary trees are always built. Some TDIMT
systems, such as HTL and M5’, use the same criterion
applied in CART [1, p. 247]. More precisely, if k is the
number of distinct values for X; and Sy, = {z;,, i, ..., i}
is the set of distinct values of X;, Sy, is sorted according to
the sample mean of Y over all cases in t. A theorem by
Breiman et al. [1] (Theorem 4.5, Proposition 8.16) proves that
the best binary split is one of k — 1 partitions {x;,,...,;,}
and Sx, — {z;,, ..., }, thus greatly reducing the search for
the best subset of categories from 2¢~! to k — 1 partitions.
However, the theorem is based on the assumption that the
models at the leaves are the sample means, which is not the
case of SMOTI.? Therefore, SMOTI relies on a nonoptimal
greedy strategy as suggested by [16]. It starts with an empty
set Lefty, = ¢ and a full set Righty, = Sx,. It moves one
element from Right . to Lefty, such that the move results in
a better split. The evaluation measure o(X;,Y) is computed
as in the case of continuous variables and, therefore, a better
split decreases o(X;,Y). The process is iterated until there is
no improvement in the splits. The computational complex-
ity of this heuristic is O(k?). For all possible splits, the
measure o(X;,Y) is computed as in the case of continuous
variables.

The split selection criterion explained above can be
improved to consider the special case of identical regression
model associated with both children. When this occurs, the
best straight-line regression associated with ¢ is the same as
that associated with both ¢; and ¢z, up to some statistically
insignificant difference. In other terms, the split is useless
and can be filtered out from the set of alternatives. To check
this special case, SMOTI compares the two regression lines

3. Sample means are used only when all independent variables are
discrete.
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associated with the children according to a statistical test for
coincident regression lines [24, pp. 162-167].

The evaluation of a regression step ¥ = a + bX; atnode ¢
cannot be naively based on the resubstitution error R(t):

(w;— )" (14)

where the estimator ¢; is computed by combining all
univariate regression lines associated with regression nodes
along the path from the root to ¢. This would result in
values of p(X;,Y) less than or equal to values of o(X;,Y) for
some splitting test involving X;. Indeed, the splitting test
“looks-ahead” to the best multiple linear regressions after
the split on X; is performed, while the regression step does
not. A fairer comparison would be growing the tree at a
further level in order to base the computation of p(X;,Y’) on
the best multiple linear regressions after the regression step
on X; is performed (see Fig. 2c).

Let ¢’ be the child of the regression node ¢ and let us
suppose that it performs a splitting test. The best splitting
test in ¢’ can be chosen on the basis of o(X;,Y) for all
possible variables X, as indicated above. Then, p(X;,Y") can
be defined as follows:

p(X;,Y) = min{R(t),o(X;,Y) for all possible variablesX}.
(15)

The possibility of statistically identical regression models
associated with the children of # may also occur in this case.
When this happens, the splitting node is replaced by another
regression node ¢’ where the straight-line regression model is
thesameasthatin the children of the splitting node. Therefore,
in this special case, p(X;,Y) can be defined as follows:

(X, Y) = min{R(t), R(t')}. (16)

Having defined both p(X;,Y) and o(X;,Y), the criterion for
selecting the best node is fully characterized as well. At each
step of the model tree induction process, SMOTI chooses
the apparently most promising node, according to a greedy
strategy. A continuous variable selected for a regression
step is no longer considered for regression purposes so that
it can appear only once in a regression node along a path
from the root to a leaf.

In SMOT], five different stopping criteria are implemen-
ted. The first uses the partial F-test to evaluate the contribu-
tion of a new independent variable to the model [4]. The
second requires the number of cases in each node to be
greater than a minimum value. The third stops the induction
process when all continuous variables along the path from
the root to the current node are used in regression steps and
there are no discrete variables in the training set. The fourth
creates a leaf if the error in the current node is below a fraction
of the error in the root node, as in [21, p. 60]. Finally, the fifth
stops the induction process when the coefficient of determi-
nation is greater than a minimum value [24, pp. 18-19]. This
coefficient is a scale-free one-number summary of the
strength of the relationship between independent variables
in the actual multiple model and the response variable.

The computational complexity of adding a splitting
node ¢ to the tree depends on the complexity of a splitting
test selection in ¢ multiplied by the complexity of the best
regression step selection in the children nodes ¢z and ¢;,. On

the contrary, the computational complexity of adding a
regression node ¢t depends on the complexity of a regression
step selection in ¢t multiplied by the complexity of the best
splitting test in its child ¢'.

A splitting test can be either continuous or discrete. In the
former case, a threshold « has to be selected for a continuous
variable. Let NV be the number of examples in the training set,
then the number of distinct thresholds can be NV — 1 at worst.
They can be determined after sorting the set of distinct values.
If m is the number of independent variables, the determina-
tion of all possible thresholds has a complexity O(mNlogN)
when an optimal algorithm is used to sort the values. For each
of the m(N — 1) thresholds, SMOTI finds the best straight-
line regression at both children, which has a complexity of
m(N — 1) in the worst case. Therefore, the splitting test has a
complexity O(mNlogN +m?*(N —1)?), that is, O(m?N?).
Similarly, for a discrete splitting test, the worst-case complex-
ity is O(mk?), where k is the maximum number of distinct
values of a discrete variable. The selection of the best discrete
splitting test has a complexity O(m?k? N). Therefore, finding
the best splitting node (either continuous or discrete) has a
complexity O(m?>N? +m?k?N) and, under the reasonable
assumption that k*< N, that is, the number of distinct values
of the a discrete variable is less then the square root of the
number of cases, the worst case complexity is O(m?N?).

The selection of the best regression step requires the
computation, for each of the m variables, of m straight-line
regressions (one for the regression node plus m — 1 toremove
the effect of the regressed variable) and the updating of the
data set. This takes time O(m(mN + mN)) since the complex-
ity of the computation of a straight-line regression is linear in
N.Moreover, for each straight-line regression, a splitting test
is required, which has a worst-case complexity of O(m?N?).
Therefore, the selection of the best regression step has a
complexity O(m?N + m3N?), that is, O(m?N?).

The above results lead to an O(m3N?) worst case
complexity for the selection of any node (splitting or
regression). This means that, relative to node selection,
SMOTI has the same complexity as RETIS but is less
efficient than TSIR which adopts a v-fold cross-validation
strategy without look-ahead for regression and splitting
nodes. In TSIR, the complexity is O(mvN) for regression
nodes and O(mwvN?) for splitting nodes. However, the
model that TSIR considers at the children of a discrete
splitting node during its evaluation is the sample mean and
not a linear regression, which means that it suffers from the
problems of adopting a heuristic evaluation function which
is not coherent with the models associated to the leaves.

In conclusion, SMOTI presents several advantages. First, it
defines the best partitioning of the feature space coherently
with respect to the model tree being built. Second, it provides
a solution to the problems of collinearity at the same
computational cost of RETIS. Third, the use of both regression
and splitting nodes permits the system to discover both global
and local effects of variables in the various regression models.
This is evident in the experimental results reported below.

4 AN EmpPIRICAL EVALUATION OF SMOTI

SMOTI has been implemented as a module of the knowl-
edge discovery system KDB2000 (http://www.di.uniba.it/
~malerba/software/kdb2000/) and has been empirically
evaluated both on artificially generated data and on data
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sets typically used in the evaluation of regression and
model trees. Each data set is analyzed by means of a 10-fold
cross-validation. The system performance is evaluated on
the basis of the average mean square error (MSE):

1 1 N2
AUQMSEZ%Z WZ(?J} = 9;(v))", (17)
veV JjeEv
where V = {vy,...,v;} is a cross-validation partition, each

v; is a set of indices of training cases, k is the number of
folds (i.e., 10), N(9) is the number of cases in V — v, and
9j(v) is the value predicted for the jth training case by the
model tree built from V — v.

For pairwise comparison of methods, the nonparametric
Wilcoxon two-sample paired signed rank test is used [17]
since the number of folds (or “independent” trials) is
relatively low and does not justify the application of
parametric tests, such as the t-test. To perform the test,
we assume that the experimental results of the two
methods compared are independent pairs of sample data
{(u1,v1), (ug,v), ..., (un,v,)}. We then rank the absolute
value of the differences u; — v;. The Wilcoxon test statistics
Wt and W~ are the sum of the ranks from the positive and
negative differences, respectively. We test the null hypoth-
esis Hy: “no difference in distributions,” against the two-
sided alternative H,: “there is a difference in distributions.”
More formally, the hypotheses are: Hy: “u, = p,” against
Hy: “py, # pp.” Intuitively, when W+ > W~ and vice versa,
Hj is rejected. Whether W should be considered “much
greater than” W~ depends on the significance level a. The
basic assumption of the statistical test is that the two
populations have the same continuous distribution (and no
ties occur). Since, in our experiments, u; and v; are MSE,
W+ > W~ implies that the second method (V) is better
than the first (U). In all experiments reported in this
empirical study, the significance level o used in the test is
set at 0.05.

SMOTI has been compared to both M5’, which is
considered the state-of-the-art model tree induction system,
and RETIS, which has an evaluation function coherent with
the models at the leaves.* The empirical comparison with
TSIR, which is the only other system with regression and
splitting nodes, was not possible since the system is not
publicly available.

4.1 Experiments on Artificial Data Sets

SMOTI was initially tested on artificial data sets randomly
generated for model trees with both regression and splitting
nodes. These model trees were automatically built for
learning problems with nine independent variables (five
continuous and four discrete) where discrete variables take
values in the set {A, B, C, D, E, F, G}. The model tree building
procedure is recursively defined on the maximum depth of
the tree to be generated. The choice of adding a regression or
a splitting node is random and depends on a parameter
6 € [0,1]: The probability of selecting a splitting node is 6;
conversely, the probability of selecting a regression node is
(1 — 6). In the experiments reported in this paper, 0 is fixed at

4. When running M5’, the pruning factor (parameter —F) is set to 0 since
the evaluation of the pruning effects in model tree induction is beyond the
scope of this work. For the same reason, the pruning function is not invoked
in RETIS. All remaining parameters are set to default values.

0.5, while the depth varies from four to nine. Fifteen model
trees are generated for each depth value, for a total of 90 trees.

Sixty data points are randomly generated for each leaf so
that the size of the data set associated with a model tree
depends on the number of leaves in the tree itself. Data points
are generated by considering the various constraints asso-
ciated with both splitting nodes and regression nodes. In the
case of a splitting node, the only constraint is that the
distribution of cases between left and right children should
take into account the number of leaves in each subtree. In the
case of a regression node, the constraints are the (partial)
multiple linear model associated with the node, as well as the
linear models defined for the residuals of the variables passed
down. The noise effect is introduced by adding a normally
distributed error ~ N(0,1) to the linear models relating
independent variables and ~ N(0,.001) to the linear models
at the leaves involving the dependent variable. In all
experiments, the thresholds for stopping criteria are fixed
as follows: The significance level o used in the F-test is set to
0.075, the minimum number of cases falling in each internal
node must be greater than the square root of the number of
cases in the entire training set, the error in each internal node
must be greater than the 0.01 percent of the error in the root
node, the coefficient of determination in each internal node
must be below 0.99.

In Table 2, the results of the test on the accuracy of trees
induced by SMOTI, M5’, and RETIS are reported. Three
main conclusions can be drawn from these experimental
results: First, SMOTI performs generally better than M5’
and RETIS on data generated from model trees where both
local and global effects can be represented. Second, by
increasing the depth of the tree, SMOTI tends to be more
accurate than M5” and RETIS. Third, when SMOTI performs
worse than M5" and RETIS, this is due to relatively few
hold-out blocks in the cross validation so that the difference
is never statistically significant in favor of M5” or RETIS.

An example of different results provided by SMOTI and
M5’ is reported in Fig. 3. The underlying model tree,
according to which a data set of 180 cases is generated, is
reported in Fig. 3a. It first partitions the feature space into
two subregions:

Ry {(X,Y)|X5 € {0}}; R : {(X,Y)| X5 € {1,2,3,4,5,6,7}}.

The subregion R; is in turn partitioned into two sub-
regions:

Ri {(XLY')[ X6 € {0,1,2,3,4}};
Ry : {(X’,Y’)|XG € {5,6, 7}}

The variable X;, which contributes to the regression
models associated with both R;; and R, has a global effect
on the response variable Y since its coefficient can be reliably
estimated on the region R;. On the contrary, the variables X
and X, have a local effect since their contributions to the
regression models at the leaves can be estimated on the basis
of the cases falling in the subregions R, R, and R
associated with the leaves. Actually, straight-line regressions
at the leaves involve variables X{, X}, and X{/, which are
obtained by removing the effect of other variables already
introduced in the model. It is noteworthy that the intercepts
of straight-line regressions associated with nodes below a
regression node are all equal to zero since we are using sets of
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TABLE 2

SMOTI versus M5’ and RETIS: Results of the Wilcoxon Signed Rank Test on the Accuracy of the Induced Model Trees

Depth 4 Depth 5 Depth 6 Depth 7 Depth 8 Depth 9

SMOTI vs | SMOTI SMOTI SMOTI SMOTI | SMOTI | SMOTI SMOTI| SMOTI | SMOTI SMOTI | SMOTI

RETIS vs M5’ vs RETIS | vs M5’ Vs vs M5’ vs RETIS | vs Vs v§ Vs Vs

RETIS M5’ RETIS | M5 RETIS | M5’

0| 0.001953 0.0019 0.001953 | (-)0.375 | 0.001953| 0.275 0.001953 | 0.0019 | 0.001953 0.0039| 0.001953 0.0097
1| 0.001953 0.0019 0.005859 | 0.019 0.001953| 0.0839 0.001953 | 0.0019 | 0.001953 0.0019| 0.001953 0.0019
2 | 0.001953 0.0645 0.001953 | 0.0019 0.001953| 0.0644 0.001953 | 0.0019 | 0.001953 0.0019| 0.001953 0.0019
3| (-)0.1602 | 0.0019 0.001953 | 0.0058 0.2754 | (-)0.769 | (-)0.0839 | 0.375 | 0.001953 0.0136| 0.001953 0.0019
4 | 0.001953 0.0019 0.001953 | 0.7695 0.001953| 0.4316 0.001953 | 0.0019 | 0.001953 0.0019| 0.001953 0.0644
5| 0.001953 0.0019 0.001953 | 0.12 0.001953| 0.0019 0.001953 | 0.0058 | 0.001953% 0.0839| 0.001953 0.0019
6 | 0.003906 0.8457 (-) 0.8457 | (-)0.2754 | 0.001953| 0.0136 0.001953 | 0.4922 | 0.001953 0.0839| 0.001953 0.0019
7| 0.009766 0.0234 (-)0.0839 | 0375 0.001953( 0.0039 0.001953 | 0.2324 | 0.001953 0.0019| 0.001953 0.0019
8 | 0.1309 0.0644 0.001953 | 0.0019 0.001953| 0.0019 0.08398 0.0019 | 0.001953 0.0019| 0.001953 0.0019
91 (-)0.04883 | (-)0.2754 | 0.001953 0.1934 0.001953| 0.0019 0.001953 | 0.0097 | 0.00195% 0.0019| 0.00195% 0.0039
10| 0.001953 0.0136 0.001953 | 0.2969 0.001953| 0.0097 0.001953 | 0.0839 | 0.001953 0.6953| 0.001953 0.0195
11| 0.003906 0.0273 0.003906 | 0.0019 0.001953| 0.0019 0.001953 | 0.0019 | 0.375 0.4316| 0.001953 0.0019
12| 0.001953 0.0019 0.001953 | 0.0019 0.001953| 0.0195 0.001953 | 0.0019 | 0.001953 0.1309| 0.001953 0.0039
13| 0.007812 0.0019 0.005859 | 0.0019 0.001953| 0.0039 0.001953 | 0.0019 | 0.001953 0.0019| 0.001953 0.0019
14 ()1 (-)0.375 | 0.007812 | 0.1934 0.009766| 0.0039 0.001953 | 0.1934 | 0.001953 0.0058| 0.001953 0.0039

The statistically significant values (p-value < «/2) are in boldface. The symbol ““” means that SMOTI performs worse than M5’ or RETIS. All

statistically significant values are favorable to SMOTI.

residuals whose sums are zero and, thus, the lines must pass
through the origin.

The tree built by SMOTI on a cross-validated training set
of 162 cases is shown in Fig. 3b. It well approximates the
underlying model by discovering both global and local
effects. The tree found by M5’ (see Fig. 3c) is less accurate on
the validation set of the remaining 18 cases and is not easily
interpretable, especially because of the smoothing process
adopted by the system to compensate for the sharp
discontinuities that occur between linear models at adjacent
regions [23].

The clear superiority of SMOTI on these data sets should
not be surprising since neither M5" nor RETIS have been
designed to discover both global and local effects of variables
in the underlying data model. However, this has a computa-
tional cost. Fig. 4 plots the computation time of the three
systems for the 90 artificial data sets. Naturally, M5 is the
most efficient because of its evaluation function, which is
incoherent with respect to the model tree being built. RETIS
has time performance comparable to SMOTI for small data
sets (about 650 cases), while it becomes surprisingly faster
than SMOTI for larger data sets. Coherently with our
theoretical analysis, SMOTI shows a quadratic behavior,
while RETIS does not. There are two possible explanations of
RETIS efficiency. First, our theoretical analysis of RETIS
computational complexity refers only to continuous variables
since the case of discrete variables is undocumented. If RETIS
used the same criterion applied in CART and M5’, then it
would be more efficient than SMOTI, but its evaluation
function could no longer be considered coherent with the
models at the leaves. Second, an undocumented stopping
criterion prevented the system from generating large model

trees in the experiments.5 Finally, we observe that several
optimizations can still be implemented in SMOTI. In
particular, the recursive least squares algorithm proposed
by Torgo [22] fits very well SMOTI learning strategy.

4.2 Experiments on Benchmarks for Regression
and Model Trees

SMOTIwas also tested on 14 data sets (see Table 3) taken from
either the UCI Machine Learning Repository (http://
www.ics.uci.edu/~mlearn/MLRepository.html) or the site
of the system HTL (http:/ /www.niaad.liacc.up.pt/~ltorgo/
Regression/DataSets.html) or the site of WEKA (http://
www.cs.waikato.ac.nz/ml/weka/). They have a continuous
variable to be predicted and have been used as benchmarks in
related studies on regression trees and model trees.

In all experimental results reported in this section, the
thresholds for the stopping criteria are set at the same values
used in the experiments on artificial data sets, except for the
coefficient of determination that is set at 0.9. Experimental
results are reported in Table 4, where SMOTI is compared to
M5” and RETIS on the basis of the average MSE. As in the
previous experimentation, differences are considered statis-
tically significant when the p-valueisless than orequal to a:/2.

The comparison with RETIS is clearly in favor of SMOTI.
Unfortunately, not all experimental results could be collected
for RETIS because of two limitations of the system on the
maximum number of attributes and on the maximum
number of distinct values for discrete attributes.

5. The system often outputs the message “Too many nodes. Making a
leaf.”
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Fig. 3. (a) A theoretical model tree of depth 4 used in the experiments, (b) the model tree induced by SMOTI from one of the cross-validated training
sets, and (c) the corresponding model tree built by M5’ for the same data.
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Fig. 4. Running time on artificial data sets. Experiments are performed on a Pentiumlll PC-366MHz running Windows 98.

Differently from artificially generated data, SMOTI does experimental results evidenced that, for some training sets,
not exhibit an irrefutable superiority with respect to M5, the thresholds defined for the stopping criteria prevented
although results are still good. A deeper analysis of the SMOTI from growing model trees more accurate than those
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TABLE 3
Data Sets Used in the Empirical Evaluation of SMOTI

Dataset No.Cases | No.Attr. Continuous | Discrete Goal

Abalone 4177 10 9 1 Predicting the age of abalone from
physical measurements

Auto-Mpg 392 8 5 3 Predicting the city-cycle fuel con-
sumption

Auto-Price 159 27 17 10 Predicting auto price

Bank8FM 4499 9 9 0 Predicting the fraction of bank cus-
tomers who leave the bank because of
full queues

Cleveland 297 14 7 7 Predicting the heart disease in a pa-
tient.

Delta Ailerons 7129 6 6 0 Predicting the variation in the control
action on the ailerons of the aircraft.

Delta Elevators 9517 7 T 0 Predicting the variation in the action
taken on the elevators of the aircraft.

Housing 506 14 14 0 Predicting housing values in areas of
Boston

Kinematics 8192 9 9 0 Predicting the distance of the end-
effector from a target in an 8 link all-
revolute robot arm.

Machine CPU 209 7 7 0 Predicting CPU relative performance.

Pyrimidines 74 28 28 0 Predicting the activity (QSARs) from
the descriptive structural attributes

Stock 950 10 10 0 Predicting the daily stock price of an
aerospace company from daily stock
prices of other nine aerospace compa-
nies

Triazines 74 61 61 0 Predicting the structure (QSARs)
from the descriptive structural at-
tributes

Wisconsin Cancer 186 33 33 0 Predicting the time to recur for a
breast cancer case

built by M5’. This problem cannot be straightforwardly
solved by defining higher thresholds since that would lead
to data overfitting problems. SMOTI can actually apply
some postpruning strategy to reduce data overfitting;
however, this aspect is beyond the scope of this paper.

The interesting aspect of this experimentation is that, for
some data sets, SMOTI detected the presence of global
effects that no previous study on model trees has revealed.
In the following, we account for some of them, thus proving
another desirable characteristic of the system, that of easy
interpretability of the induced trees. The comparison is
made with M5” which outperforms RETIS.

Abalone. Abalones are marine crustaceans whose age can
be determined by counting under the microscope the rings in
the cross section of the shell. Other measurements, which are
easier to obtain, can be used to predict the age. Forall 10 cross-
validated training sets, SMOTI builds a model tree with a
regression node in the root. The straight-line regression
selected at the root is almost invariant for all model trees and
expresses a linear dependence between the number of rings
(dependent variable) and the shucked weight (independent
variable). This is a clear example of a global effect, which

cannot be grasped by examining the nearly 350 leaves of the
unpruned model tree induced by M5 on the same data.
Interestingly, the child of the root is always a splitting test on
the whole weight or, more precisely, on the residuals of the
whole weight once the effect of the shucked weight has been
removed. As for the root, the threshold selected for this
continuous split is almost the same for all 10 induced model
trees. Unfortunately, this stability of the tree structure occurs
only at the root and its child.

Auto-Mpg. The data concerns city-fuel consumption in
miles per gallon. For all 10 cross-validated training sets,
SMOTIDbuilds a model tree with a discrete split test in the root.
The split partitions the training cases in two subgroups, one
whose model year is between 1970 and 1977 and the other
whose model year is between 1978 and 1982. That can be easily
explained with the measures for energy conservation
prompted by the 1973 OPEC oil embargo. Indeed, in 1975,
the US Government set new standards on fuel consumption
for all Vehicles. These values, known as C.A.F.E. (Company
Average Fuel Economy) standards, required that, by 1985,
automakers doubled average new car fleet fuel efficiency.
These standards came into force only in 1978 and model trees
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TABLE 4
SMOTI versus M5 and RETIS: Results of the Wilcoxon Signed Rank Test on the Accuracy of the Induced Models
Dataset :‘;i:r?E M5 RETIS syor ey | SMOTLwREDS
Abalone 253637 277242 6.03224 (+)0.1934 {+)0.001953
Auto-Mpg 3.14938 3.20106 NA (+)0.5566
Auto-Price 2246.03873 235881872 NA (+)0.6953
Bank&FM 0.07833 0.04099 0.46629 (+)0.064 (+)0.001953
Cleveland 1.31603 1.24963 297914 (-)0.2324 (+)0.009766
Delta Ailerons 0.000232 0.0002 0.00129 (-)0.6404 (+)0.02734
Delia Elevators 0.00476 000163 000579 (-)0.1934 {+)0.1309
Housing 358 427927 36.366273 (+)0.048 (+)0.001953
Kinematics 01581 0.194737 1.98614 (+)0.0039 (+)0.001953
Magchine CPU 5531482 573527607 305.609 (+)0.5566 (+)0.003906
Pyrimidines 0.10566 0.09279 0.07813 (-)0.8457 (-)0.4316
Stock 1.8225 L0932 1.5931833 (-)0.03711 (-)0.4375
Triazines 02017 0.15503 NA (=)0.02
Wisconsin Cancer 51.41376 45.40644 NA (-)0.625

The best average MSE is in italics. The statistically significant values (p-value < «/2) are in boldface. The symbol “+” (*”) means that SMOTI
performs better (worse) than M5’ or RETIS. Most of statistically significant values are favorable to SMOTI. For RETIS, not all values are available
since the system limits the number of attributes to 30 and the maximum number of distinct values for discrete attribute to 26.

induced by SMOTI capture this temporal watershed. More-
over, in the case model year between 1970 and 1977, SMOTI
performs another discrete splitting test on the number of
cylinders, while, in the case model year between 1978 and 1982,
SMOTI introduces a regression step generally involving the
variable weight. Also, this difference seems reasonable since it
captures the different technologies (e.g., lightweight materi-
als) adopted by automakers before and after the introduction
of C.A.F.E. standards. Differently from SMOTI, model trees
induced by M5’ perform a first continuous splitting on the
variable displacement (< 191 versus > 191) and a second
splitting on the variable horsepower for both leftand right child.
A test on the variable model year appears only at lower levels.

Auto-Price. This data set consists of three types of entities:
1) the specification of an auto in terms of various character-
istics, 2) its assigned insurance risk rating, and 3) its
normalized depreciation as compared to other cars. Almost
all induced trees have a regression node in the root which
expresses a linear dependence between the price (dependent
variable) and the normalized losses (independent variable).
Interestingly, one of the findings of a recent study
(February 2000) from the Highway Loss Data Institute
(HLDI) is that “sports cars and luxury cars continue to have
the worst claims losses among passenger cars for crash
damage repairs under insurance collision coverages. Pas-
senger vans have the best loss result.” Therefore, the global
effect of normalized losses is confirmed by independent
studies. On the contrary, the continuous splitting test on the
variable curb weight generally performed by M5’ at the root
of the induced model trees seems less intuitive.

Bank8FM. This data set is synthetically generated from a
simulation of how bank customers choose their banks. The
goal is predicting the fraction of bank customers who leave
the bank because of long queues. The models induced by
SMOTI from all 10 cross-validation sets are quite simple and
are characterized by a chaining on six regression nodes
starting from the root. In most of the trials, the model tree is
actually a chaining of only regression nodes, thus revealing
the multiple linear regression nature of the problem. As
shown in Table 4, M5’ also finds good predictive model trees,

although they have about 400 leaves with as many regression
models associated with them.

Cleveland. The domain is heart disease diagnosis and the
datawas collected from the Cleveland Clinic Foundation. The
dependent variable refers to the presence of heart disease in a
patient. It is an integer valued from 0 (no presence) to 4. The
high average MSE measured for both SMOTI and M5’ (> 1.2)
shows the complexity of this prediction task. The tree models
induced by SMOTI in almost all trials have a chaining of
regression nodes involving the variables ca (number of major
vessels (0-3) colored by flourosopy), thalach (maximum heart
rate achieved), age (age in years), and chol (serum cholestoral
in mg/dl). We actually do not know the criteria adopted by
specialists to define the presence of heart disease in a patient,
but it is likely that the final score was synthesized as a
weighted linear combination of several factors with a global
effect. Differently from SMOTI, M5’ partitions by performing
a test on the variable thale {fixed defect; reversable defect}
versus thal€ {normal} or on the variable cp (chest pain type):
asymptomatic versus {typical angina, atypical angina,
nonanginal pain}. The error found by M5’ on some leaves is
null since M5” approximates the dependent variable with one
of the admissible values (e.g., constants 0 or 1).

Delta Ailerons. The problem is that of grafting the skills of
flying a F16 aircraft in a flight simulator from behavioral
traces of a human expert. In this control problem, the
independent variables describe the status of the airplane,
while the goal is to predict the control action on the ailerons
of the aircraft. It is not obvious which independent variables
the human pilot uses; he may build more complex variables
out of simple ones or may extract them from the landscape
image. What we observe is that, in eight model trees
induced through cross-validation, SMOTI selects regression
nodes at the top four levels. Variables used in these nodes
are the roll-rate, diff-roll-rate, curr-roll, and pitch-rate. This
means that the only variable that seems to have a local effect
is curr-pitch. Model trees induced by M5” are more complex
and, therefore, more difficult to interpret.

Delta Elevators. This data set is also obtained from the
task of controlling an F16 aircraft. The goal variable is
related to an action taken on the elevators of the aircraft. As
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in the previous domain, for eight model trees induced
through cross-validation, SMOTI selects regression nodes at
the top five levels. Variables used in these nodes are the
diffclb, altitude, climb-rate, roll-rate, and diff-diffclb. This means
that the only variable that seems to have a local effect is
curr-roll. Once again, the model trees induced by M5’ are
more complex (generally more than 350 leaves).

Housing. This data set concerns housing values in the
suburbs of Boston. The goal is that of predicting the median
value of owner-occupied homes in 1,000s. By treating the
independent variable chas (an indicator variable equal to 1 ifa
tract bounds the Charles River, 0 otherwise) as continuous,
SMOTI generally creates amodel tree with the regression step
medv = 22.09 + 5.6 chas in the root. Surprisingly, model trees
induced by M5” almost totally neglect this indicator variable.

Kinematics. This data set is synthetically generated from a
realistic simulation of the forward kinematics of an eight
link all-revolute robot arm. The goal is predicting the
distance of the end-effector from a target, given the angular
position of the joints [6]. Despite the claimed high
nonlinearity of the data, SMOTI finds a model tree whose
top seven nodes are all regression nodes involving the
independent variables theta3, theta, theta6, thetal, theta8,
theta2, and theta4. After the introduction of the seven nodes,
the algorithm starts partitioning the data set in many
subregions, where linear dependencies on the remaining
independent variable are considered. The simplicity of the
model trees induced by SMOTI does not penalize their
predictive accuracy since M5’ generates less accurate model
trees with a thousand leaves.

Pyrimidines. The task consists of learning the Quantita-
tive Structure Activity Relationships, in particular, the
inhibition of dihydrofolate reductase by pyrimidines [11].
For this data set, both M5 and SMOTI learn very simple
model trees with few leaves. The model trees have almost
the same predictive accuracy. Their main difference is that
SMOTI detects the global effect of some variables. However,
the limited training set size does not allow us to draw
meaningful conclusions because of the instability of the tree
structure built from the 10 cross-validated training sets.

Triazines. As for the Pyrimidines data set, the problem is to
learn a model tree which predicts the activity from the
descriptive structural attributes. The data and methodology
are described in detail in [7],[10]. M5’ finds smaller and more
accurate trees than those induced by SMOTI. Once again, the
main difference is that SMOTI detects the global effect of
some variables, but the limited training set size does not allow
us to draw some conclusions on the tree structure.

5 CONCLUSIONS

TDIMT methods generally grow a tree structure in two
phases. In the first splitting phase, leaf nodes are expanded
and associated with split tests. In the second predictive phase,
leaf nodes are labeled with a multiple linear model. One
drawback with this tree-building strategy is that the choice of
the split tests is often made independently of the type of
model associated to the leaves. This could result in a model
tree that does not capture the underlying data model, even in
very simple cases that can be perfectly represented by amodel
tree. To overcome this problem, one of the TDIMT methods
reported in the literature merges the two phases and chooses
the best split test on the basis of the best multiple linear
regression model associable to the leaves. Although correct,

this approach considers only full regression models, while, in
statistics, it is well-known that models based on subsets may
give more precise results than will models based on more
variables. This is due to the problem of collinearity. On the
other hand, finding the best subset of variables while
choosing the best split becomes too costly when applied to
large data sets since it may require the computation of a high
number of multiple linear regression models.

In this paper, we propose a new TDIMT method, SMOT],
which integrates the splitting phase and the predictive
phase. Specifically, model trees generated by SMOTI
include two types of nodes: regression nodes and splitting
nodes. The former are associated with straight-line regres-
sion, while the latter are associated with split tests. Both
types of nodes are considered at the same level during the
tree construction process. This allows SMOTI to build the
model tree stepwise and to overcome the computational
problem of testing a large number of multiple linear
regression models, while choosing the best split test with
respect to the best multiple linear regression model at the
leaves. In addition, this approach potentially solves the
problem of modeling phenomena, where some variables
have a global effect while others have only a local effect.
Indeed, variables of the regression nodes selected at higher
levels in the tree have a “global” effect since they affect
several multiple models associated with the leaves.

A comparison with two TDMTI systems, namely, M5” and
RETIS, has been reported for laboratory-sized data sets. It
proves that SMOTI can induce more accurate model trees,
when both global and local behaviors are mixed in the
underlying model. However, the computation time of SMOTI
is quadratic in the training set size, while it is linear for both
M5’ and RETIS. The low-computation time of M5 can be
explained by the more efficient TDIMT strategy (i.e., the split
test is chosen independently of the linear model associated
with the leaves). Unfortunately, no clear justification can be
given for RETIS efficiency, which is at variance with our
computational complexity analysis.

The comparison has been extended to 14 benchmark data
sets typically used to test regression tree induction algo-
rithms. In this second experimentation, SMOTI clearly
outperforms RETIS in accuracy, while it is not possible to
draw statistically significant conclusions on the comparison
with M5’. Model trees induced by SMOTI are generally
simpler and can more easily be interpreted than those
generated by M5’. The interesting aspect of this second
experimentation is that, for some data sets, SMOTI detected
the presence of global effects that no previous study on
model trees has ever revealed.

The experimental results reported in this work are
necessarily limited and do not include some important
research tendencies. First, how model trees are induced by
SMOTI compare to other approaches, such as neural net-
works. Obviously, model trees offer some advantages over
neural networks, both computationally (no repetitive data
feeding to converge toward a solution) and with respect to
usability (the user is not forced to make guesses about the
structure of the network to obtain accurate results). However,
the neural networks can partition the feature space into
irregular regions (e.g., ellipsoids), while model trees perform
axis-parallel partitioning (and oblique partitioning when
continuous split nodes are descendants of regression nodes).
The hierarchical mixture-of-experts architecture presents
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some interesting similarities with SMOTI that will be
empirically investigated in the near future [8]. The compar-
ison can also be extended to support vector machines, which
can be used for regression problems as well [15].

The second important research direction is the application
of model trees induced by SMOTT to classification problems,
as suggested by Frank et al. [5]. In this case, SMOTI can be
used to predict class probabilities and, by learning multiple
regression models instead of multiple linear models for each
node, it would be possible to overcome the problem of
building a separate tree for each class.

Similarly to many decision tree induction algorithms,
SMOTI may generate model trees that overfit training data.
Therefore, a third research direction is the a posteriori
simplification of model trees with both regression nodes
and splitting nodes. We plan to investigate simplification
methods based on both pruning and grafting operators that
require an independent pruning set. An extension of the
MDL-based pruning strategies developed for regression
trees [19] to the case of model trees with split and regression
nodes is also under consideration since MDL-based pruning
algorithms do not use an independent pruning set, which
can be a problem when the data set is small.
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