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Abstract

In this report, we present a top-down VHDL modeling technique which consists of two main mod
eling levels: specification level and functional level. We modeled a RISC Processor (RP) in order to
demonstrate the feasibility and effectiveness of this methodology. All models have been simulated on a

SPARC 1 workstation using the ZYCAD VHDL simulator, version 1.0a. Experimental results show

feasibility of the modeling strategy and provide performance measures of RP design features.



Contents

1 Introduction 3

2 RISC Processor Example 3

2.1 Architecture 4

2.2 Instruction Set 6

2.3 Program Execution 6

3 Modeling Methodology and VHDL Implementation 8

3.1 Basic Modeling Methodology 8

3.1.1 Modeling at the Specification Level 10

3.1.2 Modeling at the Functional Level 12

3.2 Modeling in VHDL 15

4 Specification Level Model 17

4.1 Refined Specification Level Model 20

5 Functional Level Model 23

5.1 The Non-pipelined Model 23

5.1.1 Partitioning of the RP Design 24

5.1.2 RP Functional Blocks and Interconnection 25

5.1.3 General Structure and Testing of NPM 34

5.2 The Pipelined Model 35

6 Benchmarks and Experimental Results 39

6.1 Livermore Loop Benchmarks 39

6.2 Experimental Results 41

6.2.1 Feasibility of Modeling Methodology 42

6.2.2 Design Refinement 42

6.2.3 Performance Gain due to RP Hardware Features 43

7 Conclusions 45



List of Figures

1 Block diagram of RISC Processor. 5

2 RP instruction execution. 6

3 Example of RP program execution (if branch is taken) 7

4 Pipelined RP instruction execution (if branch is taken) 8

5 Modeling hierarchy 9

6 Conceptual View of the Specification Level Model 11

7 Refined Specification Level Model . 13

8 Block diagram for non-pipelined model 14

9 Block diagram for pipelined model 16

10 Pseudo code for the SLM model 18

11 Ports on the entity 19

12 Pseudo code for the refined SLM model 21

13 Pseudo code of host-interface process 22

14 Pseudo code for controller. . 27

15 Pseudo code for program memory 28

16 Pseudo code of register file 29

17 Pseudo code for ALU i 30

18 Pseudo code for data memory 31

19 Pseudo code for timer 32

20 Pseudo code for clock divider 33

21 NPM VHDL code excerpt 36

22 PM VHDL code excerpt . 37

23 Livermore Loop 1: Hydro excerpt 40

24 Livermore Loop 4: Banded linear equations 40

25 Livermore Loop 19: General linear recurrence equations. 41

List of Tables

1 Real-time performance of RP models 42

2 Simulation-time performance of RP models 43

3 Vector access register performance 44

4 Automatic loopback performance. 44



1 Introduction

For years, CAD tools have been developed to support the design process. Most of these

tools are intended for use at low levels, to eliminate some of the difficulty in tasks such

as schematic capture, circuit layout, and logic design [1, 6]. While low-level CAD tools

have certainly revolutionized IC design, the need for some organized, higher-level design

methodology remains unsatisfied.

Development of a modeling technique for the high-level design process provides several

benefits. First, system specifications can be documented using a high-level model so that

all participants in the design process will have access to them at all times. Secondly, the

specification level model can be simulated within its intended environment to ensure that

it is feasible to meet performance and functionality requirements. Thirdly, several target

architectures for the design can be tested by means of modeling and simulation, and the

"best", one in terms of predefined quality metrics is selected. Finally, high-level design

models may be used to balance the design so that all critical paths have nearly the same

delay. After choosing an architecture and verifying timing, existing low-level design tools

are used to implement the design.

In this report, we describe a modeling methodology for the top-down design process.

It is hoped that this methodology will form the basis for a CAD environment, capable of

supporting both system-level and chip-level designs. The methodology consists of four basic

levels: the specification level, the functional level, the register-transfer level, and the layout

level. As design modeling and synthesis at the register-transfer and layout levels are well-

studied problems, we focus on specification and functional levels. At each of these levels,

models of the unit under design (UUD) are developed and simulated to verify cost and

performance constraints. We demonstrate this modeling methodology on a RISC Processor

(RP) design.

Section 2 provides a brief description of the RP example, and Section 3 contains an

overview of the modeling methodology. Sections 4 and 5 discuss the specification and

structural level modeling steps. Section 6 describes simulation results for the design models

(at various stages in the design process) on the Livermore Loop benchmarks, and Section 7

contains concluding remarks.

2 RISC Processor Example

This section gives a brief description of our example. We shall first present an overview

of the architecture and then discuss the execution flow in the processor.



2.1 Architecture

RP is a 32-bit processor which contains a data memory, a program memory, an ALU,

registers, and a controller, as shown in Figure 1. Its features include a Harvard architecture

which permits simultaneous data and program memory accesses in each instruction cycle, a

large register address space which allows fast register-to-register access for more operands,

and special purpose registers which enhance array data transfer both to and from the data

memory. The RP also provides a simple hardware mechanism for automatic loopback at

the end of an inner loop based on loop length and loop count.

The register space (RS) of RP contains 256 32-bit registers, divided into two blocks of

128 registers each. The first block, called data registers, consists of vector access registers

(VARs), accumulators, and registers for temporary operand storage. The second RS block,

called the interface registers, consists of less frequently used control and I/O registers.

The memory space (MS) of RP contains internal and external memory. Internal memory

includes program memory and data memory. In our model, external memory is restricted

to data RAM, though it can be extended to include program memory as well. The internal

data memory and the external data memory share the same address space, and they are

accessed via the same address and data buses.

The ALU performs arithmetic, logic, and bit-manipulation operations. It is supplied

with two operands from RS and, depending on the instruction, the operands are directed

to the adder-shifter or multiply-accumulate unit. The result of the operation is returned to

RS.

The controller generates signals to initiate transfer of data via the buses, control the

operation of ALU, and store data into registers or memories, according to the instruction

currently stored in the instruction register (IR) as well as the status word.

The I/O features of RP include a serialreceiver/transmitter port (SRT interface), and an

8-bit parallel port (host interface). The host interface consists of a 32-wordx8-bit circular

buffer. The circular buffer can be simultaneously accessed by RP and the host device.

Typically, while one device is writing to the circular buffer the other could be reading from

it. The SRT interface consists of a controller, a transmitter and a receiver. The transmitter

and the receiver both contain a 16-bit buffer. The transmitter can be transmitting data to

the peripheral device while the receiver is receiving data.

In addition, clock divider and timer units are provided. The clock divider generates

pulses by dividing the frequency of the original RP clock according to a user-specified

parameter. The timer counts clock pulses and sends an interrupt signal to the controller

when a pre-specified number is reached.
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Stage 1 Stage 2 Stage 3 Stage 4

Instruction Fetch Operand Fetch ALU Execution Data MemoryAccess

Figure 2: RP instruction execution.

2.2 Instruction Set

The instruction set of RP consists of arithmetic, logical, program flow, interface, and

other specialized instructions. Three addressing modes, immediate, direct and indirect, are

provided. Examples of the various instruction types are as follows:

1. ALU instructions: add/subtract, shift, multiply, and logical operations.

2. Data transfer instructions: load from register to memory, store from memory to

register, move from register to register.

3. Program control instructions: branch, jump, call, return.

4. Interface instructions: set/reset/check interface signals, read/write interface reg

isters.

5. Special purpose instructions: VAR setup, automatic loopback.

The RP instruction word consists of an opcode, three sources, a destination, immediate

operands, and various options. The number and types of the sources, destinations, immedi

ate values, and options may vary from instruction-to-instruction since the RP has a variable

instruction word format.

2.3 Program Execution

The RP initiates program execution by initializing the program counter (PC) to the

address of the first instruction. The instructions are then fetched from program memory

and executed sequentially. Instruction execution consists of four stages:

1. stagel: instruction fetch,

2. stage2: operand fetch from registers,

3. stage3: ALU execution, and

4. stage4: data memory access (load/store/VAR operations).
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Figure 3: Example of RP program execution (if branch is taken).

as shown in Figure 2.

For an example, consider the execution of the ALU instruction shown below.

ADD-SUBJMMED, R5,50,i?5; (R5 ^ R5 + 50)

The instruction is fetched from program memory in Stage 1, and the source operand is

fetched from register i25 in Stage 2. During Stage 3, the addition is performed and the

result is returned to Rb. Since this instruction does not involve memory operations, Stage 4

is not used.

Execution of a memory access instruction such as

STORE_D, iZ5,l; {datajmemory[l\'^ Rb)

is described as follows. The instruction is fetched in Stage 1, while the operand is fetched

from Rb in Stage 2 and stored to data memory location 1 in Stage 4. Stage 3 is not used

since no ALU operation is needed.

In general, instructions are executed sequentially at the rate of one instruction per clock.

However, in the case of program control instructions, such as jumps, branches, calls, and

returns the execution sequence may be altered. For example, if the instruction fetched

is conditional (branch), the branch decision is performed during the second stage of the

instruction execution, and the PC is updated with the value indicated in the instruction

word.

To illustrate the execution of a small program in the RP, part of the Livermore Loop

benchmark is taken as an example.

instruction 1: ADD-SUBJMMED, ii5,50,i?5;

instruction 2: MULTJIEG-WORD, R\,R1,RZ\
instruction 3: STOREJ, i23, i24;

instruction 4: BRANCHJMM, i25,151,—3;

instructions: LOADJD, i?l,3;

Figure 3 gives the graphical illustration of program execution in the case where Rb^lbl.

{Rb ^Rb + 50)
(R3 ^ R1 X R2)
{data-memory[R'¥[ <— R3)
{ifRb = 151,execute instruction 5;
otherwise, execute instruction 1)
{R1 <— data-Tnemory[S\)
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Figure 4: Pipelined RP instruction execution (if branch is taken).

We also introduce pipelining into RP. In the pipelined design, each instruction is exe

cuted in the four stages described above. One instruction is launched at each clock, and

it progresses through the pipe at the rate of one stage per clock. The first clock is used

for instruction fetch, the second for operand fetch and branch decisions, the third for ALU

operations, and the fourth for memory accesses. The frequency of the clock in the pipelined

design is four times greater than the clock in the non-pipelined design.

Note that a cycle may be wasted if an instruction requires the result of a previous

instruction as a source operand. The RP provides special bypass interconnections which

make the result available to the source operand before it reaches its destination. In the

example above, instruction 2 uses R3 as the destination register, while instruction 3 uses it

as the source register (Figure 4). The result of the ALU operation in instruction 2 is stored

to R3 at the end of Stage 3, and instruction 3 fetches the operand from R3 in Stage 2.

Due to the pipelined architecture. Stage 3 of instruction 2 and Stage 2 of instruction 3 are

performed at the same time. The bypass hardware mechanism allows the ALU output to

be selected as the ALU source operand for instruction 3 rather the contents of iZ3.

It should also be noted that since the branch decision is made during Stage 2, instruc

tion 5 in Figure 4 is fetched into the instruction register at the time the decision is made.

Therefore, if the branch is taken, this instruction is converted to a nuU operation.

3 Modeling Methodology and VHDL Implementation

In this section, we describe the basic modeling methodology used to design the 32-bit

RISC processor introduced in Section 2. Modeling strategies in VHDL are also discussed.

3.1 Basic Modeling Methodology

The basic idea of our modeling technique is to iteratively refine a high-level design de

scription down to the layout level by systematically developing a hierarchy of VHDL models.

The modeling hierarchy is illustrated in Figure 5, and the RP example is used to explain



User

Interface

High Level
Specification 7

Specification Level Model

(with/without interfaces)

1
Functional Level Model

(pipelined/non-pipelined)

RTL Mode

Layout

Figure 5: Modeling hierarchy.

S mu ators



each level.

Initially, the system specification is captured in a high-level description called the "spec

ification level model". The designer then refines this model by adding architectural details

until the design consists of functional blocks and interconnections. The resulting model is

called the "functional level model". Functional blocks can be further refined to produce a

register-transfer level (RTL) model, from which the layout may be synthesized.

As RTL modeling and synthesis tools are gaining acceptance, we focus on specification

and functional level modeling only [2, 3, 4]. These models are discussed in greater detail in

the following subsections, using RP as an example.

3.1.1 Modeling at the Specification Level

The specification level model (SLM) is a "coarse-grain" model of the system. At this

stage of the design process, the modeler may have very little information about architectural

details such as the number and widthof internal buses, the number ofports on the memory,

the number of pipeline stages etc. Since these details are unavailable, it is not possible to

incorporate timing (such as functional unit delays, propagation delays on buses, memory

access times etc.) in the model. It should be noted that the SLM may be rewritten several

times if simulation reveals improper functionality. However, modeling time for SLM is

typically a small percentage of the entire design cycle.

The SLM test environment must be developed together with test vectors to provide a

mechanism for simulating and monitoring the unit under design. The same test vectors can

be used to verify models at successive levels of refinement in the design process.

In the RP example, the initial specification consists of the instruction set and a set

of protocols that define communication between the processor and its peripherals: host

processor, external memory, and the serial receiver and transmitter (SRT).

Since specifics of the architecture are not available at this point, RP is modeled with

a single VHDL process. In order to model concurrent behaviors, the process may contain

several procedures that, although written sequentially, execute in zero time according to the

simulation semantics of VHDL. Since the timer and clock divider units work concurrently

they are modeled as separate procedures ( Figure 6.)

The performance of the system is tested by executing benchmarks on the SLM. In the

testing environment, we model three peripheral devices, also as processes without specified

timing. The communication between RP and the three peripherals is assumed to be under

the control of the processor and is, therefore, implemented using RP instructions. Based on,

simulation results, the designer may detect that communication is too slow. He can then

introduce separate hardware interfaces between the RP and the peripherals, thus trading

10
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off software for hardware to improve performance.

In our example, the designer, for instance, can introduce two hardware interfaces: host

interface and SRT interface. The communication is controlled by the hardware, but the

RP has to set up the interface registers to start the communication. The instruction set

is modified to accommodate for the setup. Two separate processes are used to model the

hardware interfaces and the term "CPU Process" in Figure 7 identifies the remaining part of

the original process. The internal logic of the interfaces is not shown in the block diagram

as all interfaces are modeled at the behavioral level within the corresponding processes.

Several storage elements, however, are depicted.

After this model is completed, the instruction set, interfaces, and the communication

protocols are considered fixed, and ready for further refinement. Since the instruction set

is steady at this time, this model can be given to the compiler design group for compiler

validation. Timing of the communication interfaces can be incorporated, and the model

can be used by customers embedding the design into their own systems.

Section 4 gives the VHDL details of the SUM model for our example.

3.1.2 Modeling at the Functional Level

In a functional level model (FLM), the design is modeled as a set of functional blocks,

such as ALU, register files, or memory, that communicate via signals and buses. The main

purpose of FLM is to verify timing and balance delay paths in the design. This cannot

be done effectively with the SUM, which models the design as an abstract process with

no architectural details. It is to be noted that a detailed timing description, including

propagation delays for functional units and setup and hold time for storage elements, can

be incorporated into FLM.

The FLM requires specification of architectural parameters such as number and size of

buses, number of ports on memories/register files, number and type of functional blocks,

number of pipeline stages (if any) in the design, etc. This model encourages the designer to

vary these parameters and analyze the cost and performance of the system; therefore, the

process of writing the FLM is also an iterative one. Furthermore, due to the increased level

of modeling detail, writing an FLM is more time-consuming than writing the SLM.

After the FLM is completed, the basic structure of functional blocks and interconnections

is known. Hence, different design groups may work concurrently on the functional blocks,

thereby reducing the design time. The completed functional blocks maybe easily integrated

into the design since interfaces are also well-defined.

In our example, we decomposed RP into seven functional blocks: controller, register

file, ALU, program memory (PMEM), data memory (DMEM), timer and clock divider, as

12
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shown in Figure 8. Note that architectural details such as busing structure and number of

ports on memories and register files are also specified. For instance, the program memory

has one port, while the data memory has two ports.

The functional blocks are modeled as processes, and delay values may be inserted to

model timing behavior. Propagation delays for signals and buses may also be inserted, if

desired. Simulation with the component delays can be used to detect critical paths in the

design. In our case, this resulted in a 200 ns clock for the model. As this clock period is

long, and the utilization of the functional blocks is low, we pipelined the design to improve

the performance and component utilization.

The original non-pipelined FLM was converted into a four-stage pipelined model (Figure

9). The primary difficulty in constructing this new model, referred to as PM (Pipelined func

tional level Model, to be distinguished from NPM: Non-Pipelined functional level Model), is

obviously how to describe the pipeline in VHDL. The VHDL details of both non-pipelined

and pipelined structural level modeling are discussed in section 5.

3.2 Modeling in VHDL

In this section, we discuss the basic modeling strategy for specification level and functional

level models in VHDL. VHDL was selected as our modeling language because it allows

simulation over many different levels of abstraction and is widely accepted as a standard for

modeling hardware [5, 7, 8]. In aU our models, we follow the VHDL modeling conventions

listed below.

1. High-level behaviors are modeled as processes or sets of communicating processes.

2. AU the registers or buffers are modeled as variables within processes.

3. Processes communicate with each other using global signals.

4. Separate processes must be used to model different concurrent behaviors.

For example, the SRT port in RP consists of the transmitter, the receiver, and a con-

troUer. These components operate concurrently. For instance, the transmitter and the

receiver can transmit or receive data at the same time without interfering with each other.

Therefore, the SRT port is modeled as a block which contains three concurrent processes:

control process, transmitter process, and receiver process, and these processes communicate

with each other via VHDL global signals.

The VHDL details of the RP models are introduced in subsequent sections, and some

pseudo codes are given as examples to explain these models.

15
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4 Specification Level Model

The SLM models the system at a high level of abstraction, without incorporating archi

tectural details of the design. For instance, neither functional blocks nor internal buses are

specified in the model. In addition to utilization for functional verification and compiler

validation, the SLM is used to make preliminary design decisions involving tradeoffs be

tween hardware components and software subroutines. In this section, we explain the SLM

of the RP with the help of pseudo VHDL code.

As mentioned previously, the SLM models the RP from an instruction execution point of

view. Figure 10 outlines the initial VHDL architecture for the specification level model. It

consists of two processes called the clock-generator process and the cpu-1 process. Since the

memory and register file are accessed only by cpu-1, they are modeled as global variables

within this process. The register file includes data registers such as VARs and temporary

storage registers, timer and clock divider registers, interface registers (for the host and the

serial receiver transmitter) as well as control registers such as the program counter and

the instruction register. Similarly, at this point, the memory is common for both program

and data. Since the design is not partitioned into functional units, it is prudent to group

storage in this manner. Both the memory and the register file have been modeled as arrays

of integers as opposed to arrays of bitvectors, for the sake of readability and ease of testing.

The clock signal (offrequency 5 MHz), produced by the clock.generator process, triggers

the cpu-1 process. The cpu-1 process models most of the RP behavior; ALU operations,

timer and clock divider operations, communication with the peripherals etc. Naturally,

only one process is used since the initial specification of the RP consists of a homogeneous

instruction set, without any notion of partitioning. The cpu-1 process consists of three pro

cedures. The fetch-and-execute procedure fetches an instruction from memory, increments

the program counter, decodes the opcode of the instruction, and executes the instruction.

Each instruction is fetched and executed at the rising edge of a clock signal. Instruction

execution wiU result in a change in either the memory, the register file or both. Note that

there is no concept of distinct functional units such as adders, multipliers, shifters etc. Since

the timer and clock divider function in parallel with the execution of instructions they are

modelled as separate procedures. Thus, the main code of the cpu-1 process consists of caUs

to the three procedures: fetch-and-execute, timer and clock-divider. Though the procedures

execute in sequence once every clock signal, they do so in zero time. They are thus modeled

as concurrent behaviors.

Figure 6 gives a conceptual view of the SLM. In this model it is assumed that the RP will

communicate with the peripheral devices using software subroutines (the instructions for

17



architecture specification Jevel of RP is

- Global signal declarations

signal : clock;

- Clock generator process

clock-generator : process

begin

Generate a square pulse with period WO ns and 50% duty cycle on clock signal
end process

- Main/Core process
cpu-l : process (clock)

- Global variable declarations

variable memory : memory-type;
variable registerJile-l ; register-type;

- Fetch and execute RP instructions

procedure fetch_and_execute is

begin

Fetch current instruction from memory and place in instruction register
Increment the value of the program counter
case opcode is

when ADD-SUBJMMED

Add and store result in given register
when MULT_REG-WORD

Multiply and store result in given register
when BRANCHJMMED

If condition is met, branch to given instruction

end case;

end fetch-and-execute;

procedure timer is

begin

If timer control is not reset then decrement the timer register.
If timer register = 0 then generate the interrupt signal and load the timer register with neiff value

end timer

procedure clock-divider is

begin

Divide input clock frequency by value given in clock divider register
end clock-divider

- Main/Core process begins here
begin

if clock = 1 then

fetch-and-execute;

timer;

clock-divider;

endif;

end process;

end specification-level;

Figure 10: Pseudo code for the SLM model
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entity RP is

port(

-Host Ports

DATA-BUS : inout 8_bit_bustype;
READ : in port-type;
WRITE : in port-type;

)
end RP;

BUSY : in port-type;

BUF_ST : in port-type;
IRQ? : in port-type;
FULL : in port-type;
EMPTY : in port-type;
DONE : in port-type;

-Serial Receiver Transmitter Ports

-External Memory Ports

Figure 11: Ports on the entity

communication typically set and reset an I/O signal, wait for an I/O signal to be asserted

or deasserted, place data or address on a bus etc). This places certain limitations on the

design: (1) in case ofslow peripheral devices, the RP has to wait for the data communication

(as opposed to performing data computation tasks in parallel), and (2) the data transfer

rate can be no more than the execution time of a "communication" subroutine (which may

consist of several instructions).

The RP entity depicted in Figure 10 consists of the I/O ports required for communication

with the external memory, host, and serial receiver/transmitter (Figure 11). Communication

protocols are modeled by associating appropriate delay values with signal assignments on

these ports. (This is done within the "communication" subroutines). As long as timing on

these ports is modeled accurately, the SLM can serve as an input specification for system

designers.

The SLM was simulated using three Livermore Loop benchmarks (Figures 23, 24,

and 25). The simulations were used to verify the functional correctness of the model as

well as gather some preliminary information regarding the performance of the RP. Since

software subroutines were used for communication the data transfer rate (between the host

and cpu-1 process) was notably slow.
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4.1 Refined Specification Level Model

In order to increase the data transfer rate we decided to use hardware interfaces for

the communication. The RP controls the interfaces by issuing instructions to set, reset or

monitor interface signals. Thus the instruction set must be modified. Some instructions

used to control or monitor the communication signals between the RP and the peripherals

are removed, and instructions used to control the interfaces are added. The communication

protocols are also changed.

The refined SLM consists of two additional hardware modules: a host interface, and a

serial receiver/transmitter (SRT) interface. Figure 12 gives the pseudo code for the refined

SLM and Figure 7 gives a conceptual view of the model. The two interfaces are completely

extracted from the core (modeled as the cpu-1 process in Figure 10), and a clearly defined

protocol exists between the interfaces and the RP. Thus the interfaces are modeled as two

separate processes, which execute in parallel with the RP cpu^2 process.

The global signal declarations now include aU the control signals and data and address

buses between the interfaces and the RP core. The RP core in this model (referred to as

cpu^2) is only slightly different from the cpu^l process in the previous model. The differ

ence is in instructions controlling the interfaces. The global variable declarations within the

cpu-2 process consist of the memory and the reduced register file, register-file.2. Whereas

register-file-1 consisted of the host and SRT buffers and status registers, these registers are

not included in register.file^. The registers used in host communication are declared as

variables within the host-interface process, and similarly, the registers required for commu

nication with the SRT device are included in the SRTJnterface process. This localization

of the host and SRT registers reduces the communication requirement between the interface

and core processes and hence, increases the performance of the RP. For instance, in the host

interface, had the tail pointer (required to keep track of an empty location in the circular

buffer) been declared in the cpu-2 process (as opposed to the host-interface process), every

time data was written to the circular buffer, extra clock cycles would be required to update

the tail pointer.

We now elaborate on the host interface to show the difference between the initial SLM

model and the refined model. Figure 13 gives the pseudo VHDL code of the host interface.

The host can send or receive data from the RP one byte at a time. The RP initiates data

transfer by writing a control word to the status register in the host interface. This indicates

the mode of transfer (read/write), the number of bytes to be transferred and the address

of the memory in the host from where the transfer should begin. If the host device is not

processing a previous data transfer request, the interface sends an interrupt signal to the

host device. The host device then reads the status information and informs the interface
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architecture refined-specification-level of RP is

- Global signal declarations

Includes signals for communication between the

hostJnterface process and the cpu-2 process
SRT-interface process and the cpu^ process
clock^enerator process and the cpu^ process

clock-generator : process

begin

Identical to clock.generator process in previous SLM model

end process

host-interface : process

Variable declarations of circular buffer, status register, head and tail pointers and the 2-bit counter
begin

Allows the RP core and the host device to write/read from the circular buffer
Signals between the RP core process and the interface, and between

the host device and the interface are used to control the data transfer

end process

SRTJnterface : process

Variable declarations of receive and transmit buffers, counters, enable bits, status flags etc.
begin

Allows the RP core to transmit or receive data from the SRT device one bit at a time

Signals between the RP core process and the SRT interface, and between

the SRT device and the SRT interface are used to control the data transfer
end process

- Main/Core process
cpu_2 : process (clock)

- Global variable declarations

variable memory : memory-type;

variable registerJile_2 : register-type;

procedure fetch_and-execute is

begin

Simiiar to fetch.and-execute procedure in previous SLM model

(except for a change in the RP instruction set being modeled)
end fetch-and-execute;

procedure timer is

begin

Identical to timer procedure in previous SLM model

end timer

procedure clock-divider is

begin

Identical to c/ocfc-dinider procedure in previous SLM model

end clock-divider

- Main/Core process begins here
begin

if clock = 1 then

fetch_and_execute;

timer;

clock-divider;

endif;

end process;

end reflned-speciflcationJevel;

Figure 12: Pseudo. code for the refined SLM model
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hostinterface : process

- Register Declarations

variable circular.bufTer ; buffer-type;

- 8 X 32 circular buffer

variable circular-status : register-type;
- for starting address, number of bytes etc

variable head-pointer : register-type;
- 3 bit register

variable tail-pointer : register-type;
- 3 bit register

variable counter : register-type;
- 2 bit register, for keeping track of next byte to transfer

procedure Update-FULL_signal

begin
Compare head-pointer and taiLpointer to determine if buffer is full

Accordingly set/reset the FULL signal
end

procedure Update_EMPTY.signaI

begin

Compare head^ointer and taiLpointer to determine if buffer is empty
Accordingly set/reset the EMPTY signal

end

begin

wait for rising edge o/clock signal;

if RP writes to circular-status then

if BUSY = 0 then - making sure that host is not busy processing the last request
INTR := 1; - interrupt the host device

counter := 0; - initialize the counter

else

Inform the RP that the host is busy

end if;

end if;

if READ signal is asserted then
if EMPTY = 0 then —indicates that the circular-buffer is not empty

Send bytefcounterj of wordjhead-pointer] in circular-buffer to DATA-BUS
When data on DATA-BUS is ready for reading inform the host by asserting the DONE signal
counter := (counter + 1) mod 4
Update-EMPTY-signal

else

Wait for RP to write a word to the circular buffer
end if;

if WRITE signal is asserted then

if FULL = 0 then - indicates that the circular-buffer is not full
Put contents of DATA-BUS in bytefcounter] of wordfhead^ointer] of circular-buffer
After reading DATA-BUS inform the host by asserting the DONE signal

counter := (counter + 1) mod 4
Update-FULL-signal

else

end if;

end process

Wait for RP to read a word from the circular buffer

Figure 13: Pseudo code^of host-interface process



when it is ready to transfer data. The interface has to keep track of which byte to transfer.

The counter, head.pointer and taiLpointer are used for this purpose. After transferring a

word to (from) the host device, the interface updates the taiLpointer (head-pointer) and

the EMPTY (FULL) line, if necessary.

For example, if the RP requires 50 pieces of data from the host device, then, in the initial

SLM, the user would have to program the RP to interrupt the host device, send the status

word to the host device, and for each byte of data transfer (there are 50 X4 such bytes)

issue appropriate control signals (this is approximately, a sequence of 5 RP instructions for

each byte transfer). Since the data transfer is handled by the RP core single handedly, it

cannot perform any other task while the communication is in progress.

In the refined SLM, the user has to program the RP to send the status word to the host

interface and, for each word transfer, issue appropriate control signals to read from the cir

cular buffer within the host-interface process. This sequence also consists of approximately

5 RP instructions, but it is issued once every word (32 bit width) rather than for every

byte. This reduces the length of the communication code by a factor of four.

The refined SLM model was tested using the same benchmarks. It was considerably

faster than the previous model (Table 2). Furthermore, we used the SLM to obtain other

performance paramenters. For instance, we measured the effectiveness of the vector access

registers and the automatic loopback register. We found that both the VARs and the

automatic loopback register increase performancedramatically on our benchmarks (Table 3

and 4). This is discussed in more detail in Section 6.

5 Functional Level Model

The basic idea in functional level modeling is to decompose the design into several func

tional blocks which communicate via signals/buses. As mentioned in Section 3, a functional

level model is useful for verifying timing, locating critical paths, and selecting the number

of pipeline stages (if any) needed in the design. It should also be noted that grouping or

partitioning of the design at the functional level determines the target architecture. In other

words, the functional blocks of the design and the interconnection between them must be

completely specified.

We have written two functional level models for the RISC Processor, non-pipelined

(NPM) and pipelined (PM), which are described in the following subsections.

5.1 The Non-pipelined Model

We shall divide our discussion of NPM into three main sections. First, we describe how we

partitioned the RP design into functional level components and how those components are

23



modeled in VHDL. Secondly, we describe each RP functional block in some detail, as well

as the interconnection (busing structure) between the functional blocks. We then discuss

the the general structure of the NPM code, as well as testing of NPM and the need for a

pipelined model.

5.1.1 Partitioning of the RP Design

In the non-pipelined version of the RP functional level model, the RP core is decomposed

into seven functional blocks: controller, register file, ALU, program memory (PMEM), data

memory (DMEM), timer, and clock divider. Figure 8 shows the block diagram for NPM.

Decomposition is done in two main phases: storage grouping and behavioral partitioning.

In the storage grouping phase, variables from the functional level model are arranged into

groups that will be implemented as a single storage unit such as a memory or register file.

These groupings reduce the interconnection cost in the design since each element ofa register

file pr memory is accessed using a protocol and is not connected directly to any functional

unit. It should be noted, however, that there is a cost/performance tradeoff involved in

storage grouping since the access of memory and register files will be slower than access to

single registers. In the behavioral partitioning phase, design behaviors which may execute

in parallel with one another are partitioned into functional blocks. Decomposition of the

RP design is performed as foUows.

RP Storage Grouping

Storage grouping divides the RP storage space into three functional blocks. Temporary

storage elements, used to hold data entering and leaving functional units, are grouped into

a register file. Register file elements are characterized by low frequency, random access;

hence, they can be grouped together. Frequently accessed registers such as PC, IR, or the

loop register, for example, cannot be grouped into the register file since they cause too

many conflicts at ports. Introduction of the register file into the design helps to reduce

interconnection cost in the RP; however, since many register file elements must be accessed

concurrently, the register file needs to have multiple ports (specifically, 7 ports) in order to

satisfy timing requirements. For this reason, interconnection cost is only slightly improved.

RP memories (program and data) are separated from the register file because they

are used for, comparatively, long term storage and, in the case of data memory, provide

some shared memory locations between the interfaces and the RP. The shared memory

cannot be implemented in the register file because it is too large. (A large register file

would necessitate an abnormally long instruction word length.) Data and program memory

have been separated from one another in order to reduce the size of the PC and minimize

24



instruction word length.

RP Behavioral Partitioning

RP behavior is partitioned into four functional blocks: controller, ALU, timer, and clock

divider. The behavior of the controller is to decode the current instruction and issue signals

to control the register file, ALU, data memory, program memory, timer, clock divider, and

also the host/SRT interfaces. The control portion of the RP has been separated from the

ALU behavior because the ALU behavior operates on data from the register file, whereas

the controller requires information from the PC and IR, which cannot be grouped into the

register file. The ALUbehavior consists of addition, shifting, logical and bitwise operations,

and multiplication. These behaviors have been grouped together because they are mutually

exclusive and all require data from (and store data to) storage elements in the register file.

The timer unit is separated from the controller, ALU, and clock divider because its

behavior is not mutually exclusive with that of the other functional blocks (controller,

ALU, clock divider). The timer implements the following behavior. It is loaded with an

initial value using RP instructions, and then, it counts down on every rising-edge of the RP

clock until it reaches zero, at which time it sends an interrupt to the RP. Since the timer

behavior may execute at (potentially) every RP clock, it is prudent to consider the timer as

a separate functional block. The cloek divider is separated from the controller, ALU, and

timer units because its behavior too is not mutually exclusive with that of the other RP

functional blocks. The behavior of the clock divider unit is to produce an output frequency

which is ^ times the RP clock frequency where N and M are values that can be assigned

using RP instructions.

5.1.2 RP Functional Blocks and Interconnection

In this section, we discuss the behaviors of the RP functional blocks and how to model

them using VHDL. The interconnection between functional blocks (RP busing structure)

is also described. In general, we follow the basic modeling conventions described in Sec

tion 3.3. For example, functional blocks are modeled as processes which communicate with

one another using global signals. Temporary storage elements such as registers or buffers

are modeled as variables, and memories/register files are modeled as array variables. VHDL

descriptions of the seven RP functional blocks (controller, program memory, register file,

ALU, data memory, timer, and clock divider) are as follows.

Controller

The RP controller performs two main functions: decoding instructions and controlling
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program flow. As shown in Figure 14, instruction decoding is modeled using IF statements

to group those instructions (according to their opcodes) which require a common value for

some control signal. For example, if the current instruction in IR is OP-ADD^UB JMMED

or OP-ADD^UB_REG and the option field op(l) has value zero, then the ALU control sig

nal ALUJnstr receives the value ADD, indicating that the ALU must perform an ADD

operation. Similarly, if the current instruction in IR has opcode OP_LOADJMMED,

OP_MOVE_REG, OPJNIT-SI, OPJNIT_SC, or OP_START_LOOPJNDIRECT, then the

signal ALUJnstr gets the value PASS. Generation of control signals for the remaining func

tional blocks is done in a similar fashion to control generation for the ALU; although, for

the sake of brevity, only the ALU case is shown in Figure 14. It should be noted that, in the

VHDL model of the controller, there must exist one IF statement for each possible value of

each control output signal.

The other main function of the controller is to manage program flow. During each

control cycle, an instruction is fetched from the program memory according to the value

stored in the PC. The value of the PC is then incremented or (possibly) modified if the

current instruction is a BRANCH, JUMP, CALL, RETURN, or WAIT. The PC may also

be modified by the controller when automatic loopback is required. In this case, the PC

receives the "start of loop" value which is stored in the loop register.

Also, NPM uses a "lumped delay" model, so all circuit delay is incurred within the

processes representing the functional blocks. For example, the controller delay is modeled

using the "WAIT FOR controller-delay NS" statement shown in Figure 14.

Program Memory

Obviously, the program memory provides storage locations for program instructions.

In NPM, aU program memory is modeled as program ROM. This is done for simplicity,

to eliminate the need for an operating system in the model. The VHDL description of

the program memory is shown in Figure 15. Note that the PMEM itself is modeled as

an array variable pmem. If the pmem-enable signal is HIGH, then the program memory

delay is incurred, and if the pmem-vead signal is also HIGH, a PMEM read is performed.

During a read operation the data stored at location pmem^addr is written to the program

bus pmem-data. It should also be noted that program memory needs only one port since it

is accessed only by the controller process. The size of PMEM is 16K x32 bits.

Register File

The register file performs four basic types of operations: fetching operands for ALU

operations, performing comparisons for BRANCH operations, fetching data for memory
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controller ; process

variable PC : register_type; - program counter
variable IR ; register-type; - instruction register
variable loop-register : register-type; - loop register
variable status-register : register-type; - status register

begin
wait on rsp_clk-p=:l and not rsp.clk-p'stable;
- fetch instruction from program memory and store it in IR;

wait for controller-delay ns;

- generate control signals for ALU;

if (ir.opcode = OPJLOADJMMED or ir.opcode = OP-MOVE-REG or ir.opcode = OPJNIT.SI
or ir.opcode = OPJNIT-SC or ir.opcode = OP_START_LOOPJNDIRECT) then

ALUinstr <= PASS;

end if;

if (ir.opcode = OP_ADD.SUBJMMED or ir.opcode = OP_ADD-SUB-REG) then
if (ir.op(l) = 0) then ALUJnstr ADD; end if;
if (ir.op(l) = 1) then ALUJnstr •<= SUB; end if;

end if;

if (ir.opcode = OP-MULTJMMED-WORD or ir.opcode = OP-MULT-REG-WORD or
ir.opcode = OP-MULT-ACC-WORD) then

ALUJnstr <= MUL;

end if;

if (ir.opcode = OP-COMPAREJMMED-LT) then
ALUJnstr <= COMPARE;

end if;

if (ir.opcode = OP-BITWISE-REG-OR) then
ALUJnstr «t= MY-OR;

end if;

if (ir.opcode = OP.BIT.SETJMMED) then
if (ir.op(I) = 0) then ALUJnstr <t= SETl; end if;
if (ir.op(l) = 1) then ALUJnstr SETO; end if;
if (ir.op(l) = 2) then ALUJnstr •t= TOGGLE; end if;

end if;

if (ir.opcode = OP-BIT-TESTJMMED) then
if (ir.op(l) = 0) then ALUJnstr •i= TESTO; end if;
if (ir.op(l) = 1) then ALUJnstr <t= TESTl; end if;

end if;
- generate control signals for register file;

- generate control signals for data memory;

- generate control signals for timer;

- generate control signals for clock divider;

- generate control signals for host interface;

- generate control signals for SET port;

- if automatic loopback is needed, then update PC;

- if hranch/jump/call/return is taken, then update PC;
- if an interrupt has occured, then update PC;

end process controller;

Figure 14: Pseudo code for controller.
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program-memory : process

variable pmem : memory-type; - program memory
begin

wait until pmemjenable=l and not pmem-enable'stable;
wait for pmem-delay ns;
if (pmem-read=l) then

pmem-data pmem(pmem-addr);
end if;

end process program-memory;

Figure 15: Pseudo code for program memory.

LOAD/STORE operations, and storing the results of ALU computations. For an example

of ALU operand fetching, the REGJMM operation shown in Figure 16 fetches data from

the location on the srcl address bus, sends this data to the ALU via the alujdatal bus, and

sends data from the immediate jdatal bus to the ALU via the alujlata2 bus. A REGJMM

operation might be performed during an RP instruction such as OP-ADD-SUBJMM. In the

case of a BRANCH operation, data is fetched from the location given by srcl and compared

to the value on immediatejdatal. If the comparison indicates that a branch should occur

the branchjsignal is set; otherwise, it is reset. In the case of a DMEMJNST operation,

appropriate data is fetched from the register space and loaded onto addrJ)usl, addrJ)us2,

dataJ)usl, and/or dataJ)us2. The exact process of selecting which data to load onto each

bus is slightly more complicated (requires additional control signals) and has been omitted

for the sake of brevity.

Finally, if the control signal RFjdest has value DESTINATION then the result of the

current ALU computation (taken from the alujresult bus) must be stored to the register

file location on the address bus dest. Depending on the value of ACC, the value on dest

may be the address of an AC register, in which case the result of the ALU computation is

accumulated with the value currently stored in AC register dest. It should be noted that

due to the large number of concurrent data accesses required in the RP register file, seven

ports are needed on register file memory. The corresponding register file data buses are

alujdatal, alujdata2, alujresult, addrJ)usl, dataJ)usl, addrJ)us2, and dataJ)us2. During

refinement of NPSM to the register-transfer level, multiphase clocking could be introduced

to enable time-multiplexing and merging of buses; however, at the functional level, only a

single-clock design is considered.

ALU

The function of the ALU process is to perform arithmetic, logical, compare, bit set,

or bit test operations on data inputs received from the register file. Data enters the ALU
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register-file : process

variable TDS : register-type; - temporary data storage

variable ZERO : register-type; - hardware zero
variable AC : register-type; - accumulators

variable VI : register-type; - VAR index registers

variable VC ; register-type; -VAR context registers

variable YD : register-type; -VAR data registers
procedure UasStore {addr.iji integer; data:in integer) is
begin

- store data to the address addr

end;

function UasFetch {addr.in integer) return integer is
begin

- return data fetched from the address addr

end;

begin

wait on RF-instr'transaction;

case RFjnstr is

when REGJMM

alu-datal •<= UasFetch(srcl);
alu-data2 immediate-datal;

when BRANCH ^

if (UasFetch(srcl)=immediate_datal) then
branch-signal '1' - take the branch

else

branch-signal «;= '0' - do not branch

end if;

when DMEMJNST ^

- place appropriate data onto dataJjus 1 and/or addr-bus 1
end case;

wait for register-file-delay ns;
if (RF.dest=DESTINATION) then

UasStore(alu_result,dest);
end if;

if (RFJest=DESTINATION and ACC='l') then
UasStore(UasFetch(dest)+alu-result,dest);

end if;

end process register-file;

Figure 16: Pseudo code of register file
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alu ; process

begin

wait on alu-datal'transaction, alu_data2'transaction;
wait for ALU^elay ns;

case ALUJnstr is

when PASS =>

alu_result alu_datal;
when ARITHMETIC.OPERATION ^

alu_result •<= Rel(o/u_datal, o/ji_data2);
when COMPARE-OPERATION =)•

status-register <;= alu-datal Rel alu_data2;
when LOGICAL-OPERATION =>

alu-result Rel{alu.datal, aluudata2)-,
when SET 1 =>

- set bit binary-toJnteger(alu.data2) of word alu-datal
when SET 0 =>•

- reset bit binaryJ,0-integer{aluJLata2) of word aluuiatal
when TEST 1 =>•

status-register Leftarrow ReI(o/jt-dotal, aiuudata2,' l');
when TEST 0 =>

status-register Leftarrow Rel{alu-datal, alujdata2,' 0');
end case;

end process alu;

Figure 17: Pseudo code for ALU.

via the data buses alujdatal and alujiata2, while data is output using the alujresult bus.

As shown in Figure 17, the current ALU operation is selected, using a CASE statement,

according to the value of the ALUJnstr signal. The RP ALU performs eight basic type

of operations: PASS, ARITHMETIC, COMPARE, LOGICAL, BIT SET, BIT RESET,

BIT TEST 1, and BIT TEST 0. The PASS operation simply outputs the data the is

received on aluJLatal, without modification. ARITHMETIC operations ..) perform

calculations such as addition, subtraction, or multiplication on the values from alujdatal

and alujdata2 and write the result to the alujresult signal. Similarly, LOGICAL operations

(and,or,invert,...) compute logical functions on the ALU inputs and return an output value

on alujresult. COMPARE operations perform relational functions (>,<,=,...) on the

alujiatal and alujlata2 values and update the status bits depending on the result. The

BIT SET (BIT RESET) operations set (reset) the bit of the value stored on alujdatal

where i = binaryJoJnteger{alujdata2), and the BIT TEST 1 (BIT TEST 0) instructions

test whether the f"' bit of alujdatal is T' ('0'). Note that all BIT SET and BIT TEST

operations update the status register. The ALU delay value is modeled using the statement

"WAIT FOR ALU_delay NS."
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datajnemory : process

variable dmem : memory.type; - data memory

begin
wait until rspjclk_p=l and not rsp.clk.p'stable;

data.bus 1 <= null;

data-bus 2 •<= null;

wait until dmem_enable=l and not dmem_enable'stable;

wait for dmem.delay ns;

if (port.select=l or port.select=3) then
if (dmemjead 1=1) then

data.bus 1 dmem(addr.bus 1);
datajdy 1 •t= 1;

end if;

if (dmem.write 1=1) then
dmem(addr.bus 1) •<= data.bus 1;

end if;

end if;

if (port.select=2 or port jelect=3) then
if (dmemjread 2=1) then

data.bus 2 •;= dmem(addr.bus 2);
datajdy 2^1;

end if;

if (dmem.write 2=1) then
dmem(addr.bus 2) •i= data.bus 2;

end if;

end if;

end process datajnemory;

Figure 18: Pseudo code for data memory.

Data Memory

The RP data memory is a dual port, 4096-word x 32-bit RAM with ports connected

to the buses addrJtusl, dataJbusl, addrJ)us2, and dataJ)us2. It is modeled using an array

variable dmem as shown in Figure 18. If the dmemjenable signal is HIGH, a memory read

or write operation is performed depending on the value of the portselect, and read/write

signals. If port^elect = 1, then the values on addrJ)usl and dataJbusl are used for the

operation. If port^elect — 2, then the values on addrJ)us2 and dataJbus2 are used. If

port^elect = 3, then memory operations occur on both ports. The signals dmemjreadl,

dmemjwritel, dmemjread2, and dmem^write2 are used to select the type of operation

(read or write) to occur on each port. Data memory delay is incurred using the WAIT FOR

dmemjdelay statement. Also, it should be noted that the data output during a DMEM

read operation is valid on the data bus for one clock period.

Timer

The behavior modeled by the timer process is to count down from the value stored in

the timer counter register TICTR until TICTR = 0, at which time an interrupt is sent to
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timer : process

variable TILTH : register.type; - timer load register

variable TICTR : register-type; - timer counter register

variable Csel : register-type; - clock select

begin

wait on rsp-clk-p;

if (read_LTH=l and rsp-clk-p=:l) then
data-bus 1 *t= TILTH;

end if;

if (read-CTR=l and rsp-clk-p=l) then
data-bus 1 >t= TlCTR;

end if;

if (write-LTH=l and rsp-clk_p=l) then
TILTH <= data-bus 1;

end if;

if (write-CTR=:l and rsp-clk_p=l) then
TlCTR 4= data-bus 1

end if;

if ((Csel=l and rsp-clk-p=l) or (Csel=0 and rsp-clk-p=l and ext-clk-p=l)) then
- decrement TlCTR;

if (T1CTR=0) then
- generate RP interrupt;

TlCTR := TILTH;

end if;

end if;

- generate output frequency;

end process timer;

Figure 19: Pseudo code for timer.
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clock-divider : process

variable CDIVAM : register-type;
variable CDIVAN ; register-type;
variable phase ; register-type; - phase generator

begin

wait on rsp-clk-p;
if (read-m=l and rspjclk-p=l) then

data-bus 1 CDIVAM;
end if;

if (read-n=l and rsp-cik-p=l) then
data-bus 1 <= CDIVAN;

end if;

if (write-m=l and rsp-clk-p=l) then
CDIVAM := data-bus 1;

end if;

if (write-n=l and rsp-clk-p=l) then
CDIVAN := data-bus 1;

end if;

if (rsp-clk-p=l) then
phase := not phase;

end if;

if (phase=l and rsp-clk-p=l) then
- generate output pulse on CDIVAO;

end if;

if (rsp-clk-p=0) then
CDIVAO Leftarrow 0;

end if;

end process clock-divider;

Figure 20: Pseudo code for clock divider.

the RP controller. Also, when the interrupt is generated, a new value is loaded into TICTR

front the timer load register TILTH. As shown in Figure 19, TICTR and TILTH can be read

from or written to depending on the value of the control signals readJjTH, write-LTH,

readJJTR, and writeJOTR. Also, the timer may perform its decrement operation on

TICTR according to either the RP clock rsp-clkjp or an external clock extjclkjp which is

synchronized the the RP clock.

Clock Divider

The function of the clock divider process is to take the RP clock rspjclkjp as input and

output the frequency rspjclk4)-^, where N and M are the values stored in the registers

CDIVAN and CDIVAN, respectively. Note that CDIVAN and CDIVAM can be read or

written by a RP program depending on the values of the control signals readjm, writejm,

readjn, and write jn,. The output frequency is produced by implementing a phase generator

as shown in Figure 20. The CDIVAO output is set HIGH whenphase = 1 and rspjdk^ = 1

and not rspjclkjp'stable. It is reset when rspjclk-p = 0 and not rspj^lkjp'stable.
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Interconnection Structure

Note that, in the NPM model, all system buses and their sizes are completely speci

fied. The general RP interconnection structure is as follows. The RISC processor has two

primary, 32-bit data (address) buses, data^busl and dataJ)us2 {addrMisl and addrJ)us2).

DataJjusl connects the controller, register file, data memory, timer, clock divider, host

interface, and SRT interface, whereas dataJous2 connects the register file, data memory,

and SRT interface. Three other 32-bit data buses, aluudatal, alujdata2, and alujresult,

are provided to pass data between the register file and the ALU. As mentioned earlier,

the register file has seven ports and is connected the register file data buses datajbusl,

dataJ)us2, addrJmsl, addrJ)us2, alujdatal, alujiata2, and alujresult. The address buses

for the register file are srcl, src2, src3, dest, imml, and imm2, and the appropriate register

file address for each data bus is selected depending on the register file control. The last two

system buses connect the program memory and the controller. The pmemjdata bus is a

32-bit data bus (for the instruction word), and pmemjaddr is a 22-bit address bus for the

PC value. The complete RP busing structure is shown in Figure 8. It should be noted that

in NPM, delay values for buses/signals are not modeled.

Although the interconnection structure in a functional level model impUes a basic ar

chitecture for the design, it may not correspond exactly to the final layout. Bus merging

and time-multiplexing of buses is often implemented at a later stage in the design process.

For example, in the RP design, buses should be merged so that the register file does not

require seven ports in the final layout.

5.1.3 General Structure and Testing of NPM

In this section, we shall discuss the overall structure of NPM as well as testing of the

model. Figure 21 depicts a portion of the VHDL code for NPM. In each clock cycle, the

controller issues the appropriate instructions and data values to the PMEM, register hie,

ALU, and DMEM according to the value stored in the instruction register. The register hie

process is activated by the arrival of data on one of its address buses. It then executes a read

operation and puts data onto the appropriate register hie data bus {dataJbusl, addrJ)usl,

dataJ)us2, addrJ)us2, alujiatal, and/or alujdata2). Since the register hie process also

models branching hardware, if the current register hie Instruction is a BRANCH, a signal

(T' or '0') is sent to the controller depending on the result of the "branching" comparison.

The register hie process then waits for any data that must be stored either from data memory

{dataJ)usl, dataJ)us2) or from the ALU {alujresult) then terminates. The ALU process

is triggered by any transaction on the signals alujdatal and/or alujdata2, writes its result

to the signal alujresult, and then terminates. Both data and program memory processes
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are activated by transactions on their address buses {pmem-addr in the case of PMEM and

addrJ)usl or addrJ)us2 in the case of DMEM) and write results the the corresponding data

buses [pmemjdata, dataJbusl or dataJbus2).

For an example, we consider the execution of the instruction: ADD_SUB_REG Rl,

R2, R3. This instruction adds (or subtracts, depending on instruction options) the values

stored in Rl and R2 and writes the result to register R3. (We consider the caseof addition.)

First, we must fetch the ADD_SUB JIEG instruction from the program memory according

to the value stored in the PC. For the ADD_SUB_REG instruction, the controller would

load the values Rl and R2 onto the address buses srcl and src2 and the value R3 onto

the dest bus. The register file control signals RFJnstr and RFjdest are set to REG2 and

DESTINAT10N, TespectiYely, and the ALU controFsignal aluJnstr gets the value ADD.

Data is fetched from the Rl and R2 registers and placed onto the ALU data buses aluJtatal

and alujdata2. Once the alujresult signal is updated with the result of the computation,

the alu-result value is stored to register file location R3. This completes the execution

of the ADD_SUB_REG instruction. Note that during this computation, the dmemjenable

signal remains LOW since no memory operation is required.

Recall that one of the main purposes of functional level modeling is to obtain timing

data through model simulation and adjust the model/design accordingly. We performed

such timing simulations on the NPM model for RP. Simulation results indicating the real

time (time taken in hr:min:sec for the NPM simulation,to complete) performance of NPM

and the simulated performance (time in terms of ns for an RP program to execute on the

NPM model) of NPM on Livermore Loop benchmarks are given in Section 6. Due to the

delay values for the RP functional blocks, a 200 ns clock period is required for NPM. As this

clock period is "too long" and does not match with RP specifications, we decided to pipeline

the RP design, since the data memory, program memory, ALU, and register file functional

units all have low utilization. This pipelined design is described in detail in Section 5.2.

5.2 The Pipelined Model

In order to reduce the clock period of the RISC Processor and improve component uti

lization, we introduce a four-stage pipeline into the design. In Stage!, we fetch the next

instruction from the program memory. Stage 2 is used to fetch ALU operands from the

register file as well as to implement branches. In Stage 3, ALU operations are executed,

and in Stage 4, memory loads/stores are performed. It should be noted that the timer and

clock divider circuits, once initialized, execute in parallel with remaining RP processes. In

other words, these basic blocks are not considered as part of the pipeline.

Modeling pipelined designs in VHDL is diflRcult since VHDL does not have built-in
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entity E is port( ... ); end E;

architecture A of E is

- (Global Signal Declarations)

controller ; process

- (Variable Declarations)
begin

- Initiate Control Cycle

wait until (rsp_clk_p = '1') and not (rsp_clk_p'stable);
- Update Instruction Registers

IR := pmemJata;

end process controller;

register-file : process

- (Variable Declarations)
begin

- Initiate Register File Cycle

wait on RF_instruction'transaction;

end process register-file;

alu : process

- (Variable Declarations)
begin

- Initiate ALU Cycle

wait on alu.datal'transaction, aIu-data2'transaction;

end process alu;

data-memory ; process

- (Variable Declarations)
begin

- Initiate DM EM Cycle

wait until (dmem-enable = '1') and not (dmem.enable'stable);

end process data-memory;

program-memory : process

- (Variable Declarations)
begin

- Initiate PMEM Cycle

wait until (pmem_enable =1") and not (pmem-enable'stable);

end process program-memory;

end A;

Figure 21: NPM VHDL code excerpt.
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entity E is port( ... ); end E;

architecture A of E is

- (Global Signal Declarations)

controller : process

- (Variable Declarations)
begin

- Initiate Control Cycle

wait until (rsp^clk-p = '1') and not (rsp_clk_p'stable);
- Instruction Registers

irl := pmemjdata; ir4 := ir3; ir3 := ir2; ir2 := irl;

end process controller;

registerJile : process

- (Variable Declarations)
begin

- Initiate Register FUe Cycle

wait until (rsp^clk-p = '1') and not (rsp^clk-p'stable);

end process registerJile;

alu : process

- (Variable Declarations)
begin

- Initiate ALU Cycle

wait until (rsp^lk.p = '1') and not (rsp_clk_p'stable);

end process alu;

data_memory : process

- (Variable Declarations)
begin

- Initiate DMEM Cycle

wait until (rsp^clk-p = '1') and not (rsp_clk_p'stable);

end process data-memory;

program-memory ; process

- (Variable Declarations)
begin

- Initiate PMEM Cycle

wait until (rsp^clk-p = '1') and not (rsp_clk_p'stable);

end process program-memory;

end A;

Figure 22: PM VHDL code excerpt.
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constructs for pipelining. Our solution to this problem is to create one process to rep

resent each pipeline stage. Naturally, our four RP pipeline stages correspond directly to

the program memory, register file, ALU, and data memory processes from NPM, as these

functional blocks have similar delay values. If this is not the case, it may be necessary

to restructure the NPM model such that the delay values for functional blocks are similar

or can be grouped into pipelined stages such that the maximum delay value through the

blocks in each stage is approximately the same as for the remaining stages. In the case

of PM, since each pipeline stage corresponds to one process, the four pipeline processes

(program memory, register file, ALU, and data memory) are activated on the rising edge

of the RP clock as shown in Figure 22, rather than on bus transactions as in NPM. Effec

tively, these processes execute in parallel in the pipelined model rather than serially as in

the non-pipelined case. It should be noted that this method of activating pipeline processes

is designed for the case where each stage consists of only one functional block. For pipelines

with several functional blocks per stage, a VHDL block containing several communicating

processes is used to model a stage, and the clock triggers one or more (but not necessarily

all) of the processes in each stage.

Due to the style of pipeline modeling used in PM, the PM VHDL code is very similar to

its non-pipelined counterpart. Of course, the primary difference is that program memory,

register file, ALU and data memory processes (each corresponding to a pipeline stage)

are triggered by the rising edge of the RP clock rather than by bus transactions. The

other important deviation from the non-pipelined VHDL model is the introduction of an

additional three instruction registers. (There are four in total.) One instruction register is

needed for each pipeline stage in order to generate control for the corresponding functional

block (program memory, register file, ALU, and data memory). Consequently, the controller

must also change so that control signals are generated using data from the appropriate

instruction register. A block diagram of the RP pipelined model is shown in Figure 9.

It should be noted that two additional operand registers (not shown) were added in the

ALU process to separate the operand fetch stage (register file) from the ALU stage of the

pipeline. Approximately 1 person week was needed to implement PM.

To demonstrate the functioning of the pipelined model, we consider the RP code ex

ample from Section 2.3. The ADD_SUBJMMED instruction assumed to be in Stage 1 of

the pipeline, the MULT_REG_WORD instruction in Stage 2, the STOREJ instruction in

Stage 3, and the BRANCHJMM instruction in Stage 4.

instructionl: ADD-SUBJMMED, R5, 50, R5; - add immediate
instruction2: MULT_REG_WORD, Rl, R2, R3; - multiply register
instructions: STOREJ, R3, R4; - store indirect
instruction4: BRANCHJMM, R5, 151, -3; - branch immediate
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The control signals issued as this time are as follows. The pmem-read and pmem^nable

signals are both set HIGH since we wish to fetch the ADD_SUBJMMED instruction into

instruction register IRl. The pmemjaddr bus contains the current value of the PC. The

main register file control signal RFJnstr is set to REG2 because the MULT_REG_WORD

instruction is in IR2 (Stage 2 of the pipeline). The register file signal RFulest is set to

NO-DESTINATION because no data from the ALU or from the data memory wiU be

stored into the register file during the present clock cycle. The current ALU operation is

ALU-instr = PASS. This is due to the fact that the STOREJ instruction in Stage 3 (IRS)

does not require any ALU computation, and the default value for ALU-instr is PASS.

Finally, the dmemjsnable signal is set LOW because no memory operation should take

place in Stage 4 at the present time. (Data memory control is generated from IR4 which

currently contains the BRANCH JMM instruction.)

The PM model was also tested on the Livermore Loop benchmarks. As in the case of

NPM, both real-time (hr:min:sec needed for the simulation to complete) and simulated-

time (number of ns needed to execute an RP program on PM) results were recorded. A

comparison of PM and NPM simulation results is provided in Section 6; however, we note

here that the clock period in the PM model is reduced to 50 ns, from 200 ns in NPM.

6 Benchmarks and Experimental Results

To demonstrate the effectiveness of our top-down modeling technique, we simulated the

RP models (specification level, non-pipelined functional, and pipelined functional) on a

SPARC 1 workstation using the ZYCAD VHDL simulator, "zvsim," version 1.0a. The

simulation results were used as a basis for comparing the different models. They also gave

us a quantitative estimate of the performance gain due to design features such as VAR, and

automatic loopback. In this section, we describe the benchmarks and experimental setups

used for the simulations, and present experimental results.

6.1 Livermore Loop Benchmarks

We tested the performance of the models, in terms of both real time and simulated time,

by executing three loops taken from the Livermore C Kernel. Livermore Loops are standard

benchmarks used in supercomputing applications. Loops 1, 4, and 19 were selected as test

cases for the RP models. The RP features (such as the VARs) support DSP applications

and the selected loops are representative of such applications as they involve computations

on large arrays of data. It should be noted that the Livermore Loops are written in C, and
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main()

{
register int k;

double x[1002], y[l002], x[1002];
double r, t;

register double q;

r=4.86;

t=276.0;

q=0.0;

for (k=l; k<=400; k++)
x[k]=q+y[k]*(r+z[k+10]+t*z[k+ll]);

Figure 23: Livermore Loop 1: Hydro excerpt.

main()

{
register int Iw;

register int j, 1;

double x[l002], y[1002];

for (1=7; 1<=107; 1+50) {
lw=l;

for (j=30; j<=870; j+=5)
xp-1]- =x[lw++]+yp];

x[l-l]=y[5]*x[l-l];

}

Figure 24: Livermore Loop 4: Banded linear equations.

translation from C to the RP instruction set has been carried out manually.

Although the three loops do not test the instruction set of the RP exhaustively, they

incorporate a large number of the RP features. For example, VARs are used as source

and destination operands, the automatic loopback mechanism is tested and the hardware

bypass feature is exercised for both VAR and non-VAR operations. The Livermore Loop

benchmarks include floating point as well as double precision datatypes. As signal process

ing operations only require these datatypes to a limited extent, we have found it sufficient

to use integer variables (rather than floating point, double precision) in our translations.

The C programs for Livermore Loops 1, 4, and 19 are depicted in Figures 23, 24,

and 25. The loops essentially, consist of array computations iterated within one or more

loops. LL#1 has only one loop, while LL#4 contains two nested loops. LL#19 consists of

two inner loops nested within a single outer loop. Since data initially does not reside in

RP, a large percentage of LL#1 is spent in data communication while the major portion of
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main()

{
long k, 1, i, kbSi;

double sa[101], sb[101], b5[10l], stb5;

kb5i=0;

for (1=1; 1<=1000; 1++) {
for (k=0; k<101; k++) {

b5[k+kb5i]=sa[k]+stb5*sb[K];
stb5=b5[k+kb5i]-stb5;

}
for (i=0; i<101; i++) {

k=101-i;

b5[k+kb5i]=sa[k]+stb5+sb[K];
stb5=b5[k4-kb5i]-stb5;

}
}

Figure 25: Livermore Loop 19: General linear recurrence equations.

LL#19 involves data computations. Thus, LL#1 can be classified as data communication

intensive, while LL^I9 is data computation intensive.

6.2 Experimental Results

In this section, we discuss the performance of the RP models in terms of both real time

and simulated time. Real time is defined as the CPU time (in hours:minutes:seconds)

required to complete a simulation. (Crudely put, this is the time the designer would have

to wait to get the results of a simulation after having started it.) On the other hand, the

simulation time is the time in ns taken by the RP to complete the program execution. Thus,

if the simulation time for one of the experiments is 1000 ns with clock period equal to 25

ns, it implies that the RP required 40 clocks to execute the program.

There are three premises that we wish to verify via our experiments. The first is to show

feasibility of the modeling strategy presented in this report. In other words, we show that

the real-time needed to simulate our models (SLM,NPM, and PM) is not prohibitivelylarge.

The second is to demonstrate: (1) that the hardware interfaces introduced in the refined

SLM model enhance RP performance, and (2) that introduction of pipelining produces

the expected speedup. The third is to show how design features such as VAR, automatic

loopback, and external memory affect RP performance.

It should be noted that to validate our premises we have gathered experimental data from

running simulations on three of the models described in this report: SLM (specification level

model without interfaces), NPM (non-pipelined functional level model), and PM (pipelined
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Livermore Loop #1 Livermore Loop #4

Commun. Comput. Total
Inst.

Commun. Comput. Total Inst.

Model Type (hr:min:sec) (hr:min:sec) (hr:min:sec) (hr:min:sec) (hr:min:sec) (hr:min:sec)
SLM 00:55:59 00:02:09 01:00:35 13.95 00:24:09 00:03:45 00:32:40 10.19

NPM 01:56:12 00:13:34 02:13:14 2.01 00:42:41 00:21:30 01:03:55 1.85

FM 01:58:08 00:18:52 02:17:05 1.95 00:53:48 00:26:51 01:09:53 1.69

Spdup. SLM
over NPM 51.82 % 84.15 % 54.53 % 43.42 % 82.56 % 48.89 %

Spdup. NPM

over PM 1.64 % 28.09 % 2.81 %
-

20.66 % 19.93 % 8.54 %
-

Table 1: Real-time performance of RP models.

functional level model). We use NPM rather than a refined SLM to illustrate the difference

between software subroutines and hardware interfaces for communication with peripheral

devices. We divide our discussion of results into three sections, one for each premise.

6.2.1 Feasibility of Modeling Methodology

In this section, we demonstrate the real-time feasibility of our modeling methodology.

The real-time performance of the three RP models on Livermore Loop benchmarks 1 and 4

is shown in Table 1. For each loop, the time required for communication, {i.e. data transfer

from HOST to RP and from RP back to HOST), computation (execution of the loop on the

data received and stored in RP data memory) is listed along with the total time taken for

the complete (both communication and computation) simulation. It should be noted that

for Livermore Loop 1 (Livermore Loop 4), communication involves transfer of 800 (439)

words from HOST to RP and 400 (3) words from RP to HOST.

As shown in Table 1, the number of instructions per second executed by the RP models

decreases with model complexity. For example, SLM executes about 7 times as many

instructions per second as NPM; whereas, NPM and PM execute approximately the same

number of instructions per second. From Table 1, we can approximate the amount of time

needed to simulate a program on one of the RP models using the ratios provided.

6.2.2 Design Refinement

The simulation-time performance of the specification level, non-pipelined functional, and

pipelined functional models on Livermore Loops 1 and 4 is shown in Table 2. Note that,

for both loops, the computation times taken by SLM and NPM are equivalent, while the

communication times for NPM are, on the average, 73.03 % faster than those for SLM.

This is due to the fact that a hardware interface for HOST communication has been in

troduced into NPM, while HOST communication is performed using software routines in
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Livermore Loop #1 Livermore Loop #4

Commun. Comput. Total Commun. Comput. Total

Model Type (ns) (ns) (ns) (ns) (ns) (ns)
SLM 9,896,000 243,300 10,139,300 3,679,300 314,100 3,993,400

NPM 2,965,800 243,300 3,209,100 1,103,200 314,100 1,417,300

PM 741,900 60,975 802,875 275,950 78,775 354,725

Spdup. NPM

over SLM 70.03 % 00.00 % 68.35 % 70.02 % 00.00 % 64.51 %

Spdup. PM

over NPM 74.98 % 74.94 % 74.98 % 74.99 % 74.92 % 74.97 %

Table 2: Simulation-time performance of RP models.

SLM. In other words, the RP can perform data computation in parallel (at least partly)

with HOST/SRT communication.

A similar improvement in performance is noted for PM over NPM; however, both com

munication and computation times are affected. Introduction of a four-stage pipeline in the

PM model resulted in an average speedup of 74.98 % over the NPM model. In other words,

the pipelined model is about four times ~ 4) as fast in terms of simulated time as the

non-pipelined model. This is due to the fact that pipelining increases the utiUzation of the

functional blocks in each stage by allowing the blocks in each stage to execute a different

instruction simultaneously.

6.2.3 Performance Gain due to RP Hardware Features

In this section, we demonstrate the effects of VAR, automatic loopback, and external

memory on RP performance. The SPLM model is used to test the performance of these

features due to its fast real-time execution speed.

Table 3 shows the performance of SPLM on Livermore Loop benchmarks 1, 4, and 19

(both with and without VARs) in terms of simulated time. It should be noted that the

automatic loopback feature was used in both of the test cases (with and without VARs).

Experimental results show that, for Livermore Loops 1, 4, and 19, a simulated time speedup

of 53.03%, on the average, is obtained if VARs are used for array data references.

The performance improvement generated by the use of VARs is due to the fact that, in the

absence of VARs, an additional load instruction is required for each memory location used

as a source operand, and a store operation for each memory location used as a destination

operand.

We also demonstrate that an average speedup of 49.24% can be achieved by using the

automatic loopback feature for inner loops in the Livermore Loop benchmarks. Table 4
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Loop No.

With VARs Without VARs

SpeedupSimulated Time (ns) Simulated Time (ns)
1 243,300 639,500 61.95%

4 314,100 612,100 48.69%

19 125,602,600 243,601,800 48.44%

Table 3: Vector access register performance.

Loop No.

With Loopback Without Loopback

SpeedupSimulated Time (ns) Simulated Time (ns)
1 243,300 483,000 49.63%
4 314,100 615,500 48.97%

19 125,602,600 246,802,600 49.11%

Table 4: Automatic loopback performance.

shows the performance of SPLM on Livermore Loops 1, 4, and 19 both with and without

the automatic loopback feature. Note that, in both test cases, (with and without automatic

loopback) vector access registers were used for array data.

The speedup induced by the automatic loopback mechanism is due to the fact that auto

matic loopback eliminates the need for test, increment, and jump instructions (loop over

head) at each loop iteration.

SLM was also tested on Livermore Loops 1 and 19 in the case where data is taken from

and stored to external memory. We assume that the data initially resides in the external

memory. For each iteration of the loop, data is fetched from the external memory, and after

the loop computation, results are returned to external memory. In other words, internal

memory is never used during execution of the loop.

Communication for Livermore Loop 19 involves transfer of 200 (100) words of data

from external memory (RP) to RP (external memory), and communication for Livermore

Loop 1 is described in Section 6.2.1. With an external memory speed of 100 ns, the real

time required for simulating Livermore Loop #1 (#19, 500 iterations) is 00hr:18min:33sec

(57hr:49min:09sec). Note that when internal memory is used for Livermore Loop #1, only

00hr:02min:9sec is needed for loop execution. Hence, loop execution is about 9 times slower

when external memory, as opposed to internal memory, is used.
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7 Conclusions

In this report, we present a top-down modeling methodology for RISC processors. We

discuss four basic models: specification level, refined specification level, functional level

(non-pipelined), and functional level (pipelined).

In a SLM, we modeled only functionality as described in the English language specifica

tion. For a processor such as RP, this was its instruction set with communication protocols

for interfacing with the outside world. The main purpose of the specification level model is

to provide high-level documentation of the design, which represents a starting point for de

sign management and marketing and facilitates lifetime maintenance of the product. Also,

in the case of a processor, a SLM can be used by compiler designers for compiler validation.

In a refined SLM, communication protocols were modeled more accurately, including timing

relationships between signals. In the case of embedded designs, system designers may use

the refined SLM to test communication and timing between the device and the environment

in which it is embedded.

In a functional level model (non-pipelined case), the design is decomposed into several

functional blocks which communicate via a well-defined interconnection structure. After the

ELM is finalized, design teams may work concurrently on the different functional blocks.

Due to the well-defined functional block and interconnection structure as well as the ex

tensive simulation, changes and errors in the completed design are reduced. The ELM

functional blocks may be used to construct an initial floorplan for the design and estimate

design time for each block. Hardware estimators can also be used to approximate the area

as well as performance of the functional blocks. A pipelined ELM is simply a refined version

of the non-pipelined ELM developed to improve the performance (in terms of clock speed,

critical path) of the non-pipelined version.

We developed the SLM for RP in 4 person weeks and NPM and PM models in an

additional 8 weeks, from which we obtained an approximate chip layout. Industrial design

practice shows that design details at the functional level are typically known in 8-12 months,

while the first layout is obtained in 12 to 18 months. Thus, a proper modeling methodology

may reduce design time by a factor of two, because architectural and performance tradeoffs

can be made during the functional modeling phase rather than after 12 months of design

time.

We believe that our top-down modeling technique wiU dramatically reduce design time,

especially for future revisions of the unit under design. Since this technique provides docu

mentation of the entire design process (from high level to low level), we believe that the cost

of maintenance throughout the life cycle of the design will be greatly reduced; however, an
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overhead is incurred for maintenance ofthe models themselves. For example, design changes

made at low levels must propagate to the higher level models. This extra effort, however,

spent in maintaining the models is more than compensated by reduction in design time,

documentation, and number of design errors.
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