
Top-Down Online Handwritten Mathematical

Expression Parsing with Graph Grammar

Frank Julca-Aguilar1(B), Harold Mouchère1, Christian Viard-Gaudin1,
and Nina S.T. Hirata2

1 University of Nantes, Nantes, France
faguilar@ime.usp.br

2 University of São Paulo, São Paulo, Brazil

Abstract. In recognition of online handwritten mathematical expres-
sions, symbol segmentation and classification and recognition of relations
among symbols is managed through a parsing technique. Most parsing
techniques follow a bottom-up approach and adapt grammars typically
used to parse strings. However, in contrast to top-down approaches, pure
bottom-up approaches do not exploit grammar information to avoid pars-
ing of invalid subexpressions. Moreover, modeling math expressions by
string grammars makes difficult to extend it to include new structures.
We propose a new parsing technique that models mathematical expres-
sions as languages generated by graph grammars, and parses expressions
following a top-down approach. The method is general in the sense that
it can be easily extended to parse other multidimensional languages, as
chemical expressions, or diagrams. We evaluate the method using the
(publicly available) CROHME-2013 dataset.

Keywords: Mathematical expression recognition · Graph grammar ·
Top-down parsing · Bottom-up parsing

1 Introduction

An online handwritten mathematical expression consists of a sequence of strokes,
usually collected using a touch screen device. For example, in Figure 1, the
expression is composed of five strokes, that is (str1, . . . , str5), where stri is the
ith stroke, considering the input order. Recognition of online handwritten math-
ematical expressions involves three processes: (1) symbol segmentation, (2) sym-
bol classification and (3) structural analysis. The first process groups strokes that
form a same symbol; the second identifies which mathematical symbol represents
each group of strokes and the third identifies relations between symbols – as the
superscript relation between symbols “a” and “b” in the expression “abc”.

The recognition process is usually handled by a parsing technique [1,2,8,10].
In these techniques, a grammar defines the mathematical language (valid sym-
bols and structures) to be recognized and a parse algorithm determines the
structure of the expression, in accordance with the grammar. Reasons to use

c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 444–451, 2015.
DOI: 10.1007/978-3-319-25751-8 53



Top-Down Mathematical Expression Parsing 445

Fig. 1. Online handwritten mathematical expression composed of five strokes:
(str1, . . . , str5).

parsing techniques include: (1) they generate an structured result that can be
further processed, (2) the grammar represents our understanding or model of
the object to be recognized and (3) missing information can be completed using
syntactic or contextual information [3]. For example, in an expression “(1+1)”,
if all symbols but the closing parenthesis are already recognized, a parse algo-
rithm can determine that the missing symbol is actually a closing parenthesis.
Contextual information is useful when dealing with handwritten expressions as
ambiguous recognition cases can be generated.

Parsing techniques have been successfully applied in recognition of strings,
where symbols or words are arranged horizontally (there is only one relation
type between symbols). Those approaches generate a parse tree as result; and
according to how the parse tree is built, the techniques can be divided into two
types: top-down and bottom-up. Top-down techniques determine first high level
structures (subexpressions), then low level structures (symbols). The bottom-up
approaches perform the inverse process. According to the literature, top-down
techniques or bottom-up techniques with a top-down component are needed to
build powerful parsers [3]. A main advantage of the top-down components is
the fact that it avoids to parse some subexpressions that do not generate valid
parsing results [3,5].

Most grammars used to represent mathematical expressions are based on
grammars to parse strings [1,5,8,10]. However, as these grammars were originally
designed to represent only horizontal relations between symbols, it is difficult to
extend the model to represent languages with multiple relation types. About the
parse algorithms, most approaches follow a pure bottom-up parsing; for instance,
different adaptations of the CYK algorithm can be seen in [1,8,10].

Graph grammars [7] can provide a more natural model to represent mathe-
matical expressions: sentences (mathematical expressions) can be represented as
labeled graphs, where vertices represent (terminal) symbols and edges represent
relations among symbols. As arbitrary relations can be expressed as edges, the
model provides a flexible representation, so that it is easy to extend a particular
grammar to define new structures. On the other hand, if no strong constraints
are imposed, a similar parsing technique can be used to recognize other multidi-
mensional languages, as handwritten chemical expressions and diagrams. How-
ever, the general representation of graph grammars can generate a considerable
increase on the computational cost of the parse algorithm. As an example, a
tentative to use graph grammars for mathematical expressions recognition can



446 F. Julca-Aguilar et al.

be found in [2], where the authors proposed a bottom-up parse algorithm; but
even with a small grammar, time out failure was a problem.

In this work, we introduce a new parsing technique for recognition of online
handwritten mathematical expressions. We propose a graph grammar model
to represent mathematical expressions and compare this approach with gram-
mars used in other approaches (Section 2.1). To cope with the complexity
problem, we process input strokes so that symbol and relation hypotheses are
pre-calculated and used to limit the subexpressions evaluated by the parse algo-
rithm (Section 2.2). The proposed parse algorithm follows a top-down approach
and can be extended to parse other multidimensional languages. To evaluate the
proposed method, we used the CROHME-2013 dataset [6] (Section 3).

2 Top-Down Graph Grammar Parsing Method

The proposed method consists of three components: a context-free graph
grammar, a symbol hypotheses relational graph (SHRG) and a top-down parse
algorithm. The graph grammar defines the valid mathematical symbols, subex-
pressions and relations among them. The SHRG defines the groups of strokes
that will be evaluated to determine if they can be interpreted as a symbol or
subexpression. Finally, the top-down parse algorithm uses the grammar to deter-
mine valid interpretations of all subexpressions and symbols given by the SHRG.

2.1 Context-Free Graph Grammar

A graph grammar is defined by a tuple M = (N,T, I,R), where N is a set
of non-terminal symbols (or non-terminals); T is a set of terminal symbols (or
terminals), such that N ∩ T = ∅; I is an initial or start graph and R is a set of
production or rewriting rules [7]. Figure 2 shows a graph grammar example.

Fig. 2. Graph Grammar example: N={ME, TRM, OP, CHAR}, T = {+,-, <, >, a,
. . . ,z, A, . . . , Z, 0, . . . , 9}. I corresponds to the left hand side graph of rule r-1 and R
= {r-1, . . ., r-73}.



Top-Down Mathematical Expression Parsing 447

We denote a rule as r = (A,B) to indicate a replacement of a graph A by
a graph B. In addition, we call A the left hand side (LHS) grammar graph of
r (A = LHS(r)), and B the right hand side (RHS) graph of r (B = RHS(r)).
Both, A and B, are digraphs. As it can be seen in Figure 2, vertices and edges of
the rule graphs are labeled. For a given rule graph G = (V,E), we define vertex
labels by a mapping function α: VG → N ∪ T , and edge labels by a mapping
function β: EG → SR, where SR is a set of mathematical relation labels. In
Figure 2, SR includes the following labels: “sp” (superscript), “sb” (subscript)
and “h” (horizontal).

A context-free graph grammar is a graph grammar such that for each rule
(A,B), A is a single vertex graph – as in the case of Figure 2. To clarify the
further explanations, we assume that a grammar is defined only with two types
of rules: terminal and non-terminal. In a terminal rule the RHS graph is a single
vertex graph , whose vertex is labeled with a terminal symbol – rules from r-7
to r-73 of Figure 2 for instance. A non-terminal rule refers to a rule whose RHS
graph contains one or more vertices, labeled only with non-terminal symbols –
as r-1 of Figure 2. In addition, we will refer to the non-terminal of the start
graph as start symbol.

As mentioned above, most approaches for recognition of mathematical
expressions extend the grammars used for strings. Figure 3 shows a compari-
son of a grammar model proposed in [5] and one used in our approach. The

grammar proposed in [5] defines production rules of the form: A
r
→ A1A2 . . . Ak,

where r indicates a relation between adjacent elements in the RHS. As the model
defines a unique relation type between consecutive elements, rules that include
different relation types must be split into several rules (as shown in Figure 3(a)).
Further, when a CYK parse algorithm is used (as in [1,8,10]), the grammar needs
to be transformed to a Chomsky Normal Form, which requires the grammar to
have no more than two elements the RHS. As a result, grammar rules with more
than two elements in the RHS must be split, incrementing the total number
of rules. These restrictions make difficult to extend string grammars to model
multidimensional languages.

(a) (b)

Fig. 3. Integration rule example used in [5] (a) and its corresponding representation
using graph grammar (b). “a” and “b” edge labels indicate above and below relations
respectively.eps



448 F. Julca-Aguilar et al.

2.2 Symbol Hypotheses Relational Graph

A symbol hypothesis is a set of strokes that can be interpreted as a terminal
symbol. Each symbol hypothesis is assigned a label set defined by a function
γ : SH → P (L), where SH is a set of symbol hypotheses, L is a set of symbol
labels, and P (L) is the power set of L.

A Symbol hypothesis relational graph is a digraph (V,E), where V is a set
of symbol hypotheses and E is a set of spatial relation hypotheses, defined over
pairs of compatible symbol hypotheses 1. As in the case of symbol hypotheses,
we define a function δ : E → P (SR), where SR is a set of relation labels (as
defined in Section 2.1), and P (SR) is the power set of SR. Figure 4 shows an
example of a SHRG.

Fig. 4. SHRG example. Edge labels indicate relation types: sp = superscript, h =
horizontal.

To compute symbol hypotheses, we built a 3-nearest neighbor graph from a
graph with the bounding box center of the input strokes as vertices and euclidean
distances as edge weights. Then, for each stroke, we generate all combinations
of the stroke with its neighbors. Each combination defines a symbol hypothesis.
For each symbol hypothesis, its corresponding labels are calculated by a neural
network classifier that uses shape context and online features, as defined in [4].

To calculate relation hypotheses, we evaluate all pairs of compatible symbol
hypotheses and use a neural network classifier, with shape features, to determine
the most probable relations. Both symbol and relation classifiers were trained
to reject false symbol and relation hypotheses – by including wrong stroke
combinations and pairs of symbols in the symbols and relations training sets
respectively [4].

It is important to note that, instead of a single label, a symbol and relation
hypothesis may have multiple labels. Thus, this configuration keeps several possi-
ble interpretations to cope with ambiguous recognition cases. The selection of the
most probable labels is based on recognition scores calculated by the classifiers.
Given a hypothesis h (symbol or relation) and a set of probable labels (l1, . . . , lm),
sorted in descending order by their likelihood score, score(li), for i = 1, . . . , m,

1 Two symbol hypotheses shi, shj are compatible if shi ∩ shj = ∅.



Top-Down Mathematical Expression Parsing 449

we select k labels, such that:
k∑

i=1

score(li) > tr, where tr is a threshold defined

experimentally.

2.3 Top-Down Parse Algorithm

The proposed algorithm considers that the input to the algorithm is a set of
strokes, denoted as str = {str1, . . . , strn} 2. Given str, a graph grammar M ,
and a SHRG G, the algorithm calculates recursive partitions of str according to
the rules of M , starting from the rules derived by the start symbol of G, until
generating partitions derived by terminal rules. For a given rule r, we consider
only partitions of str derived by minors of G3 that are isomorphic to RHS(r).

Figure 5 illustrates the parsing process of the input expression and SHRG
of Figure 4 and graph grammar of Figure 2. The process starts by determining
partitions of the complete set of strokes (top of the image), according to the
rules derived by the non-terminal ME (the start symbol of the grammar). Two
partition candidates are found, one using rule r-1 and the other using rule r-
2. Each partition is actually a minor graph isomorphic to the RHS graph of
the rule that generates the partition. A graph that defines a partition is called
instantiated graph. The strokes of each vertex of each instantiated graph are
further partitioned using the rules derived by their corresponding non-terminals.
For example, in the instantiated graph derived by rule r-1, the strokes of the
subexpression “pb” are partitioned according to the rules derived by the non-
terminal TRM.

As it is shown in Figure 5, for a given set of strokes str and a non-
terminal NT, several instantiated graphs may be generated. Those results are
recorded in a table denoted as T , where T (str = {str1, . . . , strn}, NT ) =
{(g1, r1), . . . , (gq, rq)}, gi is an instantiated graph and ri is the rule that “gen-
erated” gi. The use of the parse table T is usually used in strings parsing [3] to
calculate parse results only once (memoization).

The partial results recorded in table T define a parse forest– set of different
interpretations of the input. A tree of the parse forest represents a particular
interpretation of the input and is defined by a sequence of partitions calculated
from the start symbol to terminals. For instance, Figure 5 shows a total of 8
interpretations or parse trees and one of those may be composed by the partitions
indicated with red arrows. The tree corresponds to the interpretation “P b4”.

Once the parse forest is built, the final step consists on extracting a tree that
better represents the input, according to a given measure. To do that, we defined
a ranking function p : t → R, where t is a parse tree. Currently, we calculate

2 We denote a set as a braced list of elements, that is set = {element1, . . . , elementn}
and a sequence (ordered set) as a bracketed list of elements, that is sequence =
(element1, . . . , elementn), where elementi is the ith element considering a particular
order.

3 A graph H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges [9].



450 F. Julca-Aguilar et al.

Fig. 5. Recursive partitions calculated by the top-down parse algorithm.eps

p(t) with the geometric mean of the relations and classification scores given by
the symbol and relations classifiers to the partitions that compose t.

3 Experimentation

We evaluated the proposed methods using the CROHME 2013 competition
dataset [6]. The dataset includes 101 symbol classes and 6 relation types: super-
script, subscript, horizontal, above (for example, between a fraction bar and
its numerator), below (fraction bar with denominator), and inside (between the
radical symbol and its radicand). Using the training part of the dataset, the
threshold tr, was fixed in 0.98 for the symbol classifier and 0.95 for the relations
classifier.

Table 1 shows our results compared to those of the two best systems (out of
five) that used only the CROHME dataset for training (the systems are identi-
fied by numbers, as in [6]). The used metrics are: recognition rate (percentage of
mathematical expressions correctly recognized), symbol segmentation and sym-
bol and relation recognition rates. The tree rel. metric measures the percentage

Table 1. Comparison of our method with results of CROHME-2013 competition

recognition segmentation classification tree rel.

System rate recall precision recall precision recall precision

IV 23.40 84.97 87.4 73.94 75.77 49.73 51.48
II 19.97 80.70 86.35 66.41 71.06 22.44 27.00

ours 21.61 75.70 83.41 62.63 69.00 44.67 49.73



Top-Down Mathematical Expression Parsing 451

of pairs of correctly segmented and classified symbols from the total number
of relations between adjacent symbols. While our system obtained comparable
results in terms of recognition rate, it obtained better results in terms of relations
detection than in symbols detection.

4 Conclusions and Further Work

In this paper, we describe a new parsing technique for recognition of online hand-
written mathematical expressions. The proposed method provides comparable
results to those of the best systems of the CROHME-2013 competition. Results
show that the use of symbol and relation hypotheses to define valid subexpres-
sions is an effective method to reduce the parsing complexity. In addition, the
graph grammar modeling of the proposed method provides a general framework
to parse other multidimensional languages, as chemical expressions, or diagrams.

Future work includes the optimization of the symbol and relation classifica-
tion modules. New features should be explored and evaluated in the context of
the complete system performance.

References

1. Álvaro, F., Sánchez, J.A., Bened́ı, J.M.: Recognition of on-line handwritten mathe-
matical expressions using 2d stochastic context-free grammars and hidden markov
models. Pattern Recognition Letters (2012)

2. Celik, M., Yanikoglu, B.: Probabilistic mathematical formula recognition using a
2d context-free graph grammar. In: 2011 International Conference on Document
Analysis and Recognition (ICDAR), pp. 161–166, September 2011

3. Grune, D., Jacobs, C.J.H.: Parsing Techniques: A Practical Guide, 2nd edn.
Springer (2008)

4. Julca-Aguilar, F., Viard-Gaudin, C., Mouchère, H., Medjkoune, S., Hirata, N.:
Mathematical symbol hypothesis recognition with rejection option. In: 14th Inter-
national Conference on Frontiers in Handwriting Recognition (2014)

5. MacLean, S., Labahn, G.: A new approach for recognizing handwritten mathemat-
ics using relational grammars and fuzzy sets. International Journal on Document
Analysis and Recognition (IJDAR) 16(2), 139–163 (2013)

6. Mouchère, H., Viard-Gaudin, C., Garain, U., Kim, D.H., Kim, J.H., Zanibbi, R.:
Icdar 2013 crohme: Competition on recognition of online handwritten mathemati-
cal expressions @ONLINE, April 2013

7. Pflatz, J., Rosenfeld, A.: Web grammars. In: Proc. First International Joint
Conference on Artificial Intelligence, pp. 193–220 (1969)

8. Simistira, F., Katsouros, V., Carayannis, G.: Recognition of online handwritten
mathematical formulas using probabilistic SVMs and stochastic context free gram-
mars. Pattern Recognition Letters 53, 85–92 (2015)

9. Wagner, K.: Über eine eigenschaft der ebenen komplexe. Mathematische Annalen
114(1), 570–590 (1937). http://dx.doi.org/10.1007/BF01594196

10. Yamamoto, R., Sako, S., Nishimoto, T., Sagayama, S.: On-line recognition of hand-
written mathematical expressions based on stroke-based stochastic context-free
grammar. In: International Workshop on Frontiers in Handwriting Recognition
(2006)

http://dx.doi.org/10.1007/BF01594196

	Top-Down Online Handwritten Mathematical Expression Parsing with Graph Grammar
	1 Introduction
	2 Top-Down Graph Grammar Parsing Method
	2.1 Context-Free Graph Grammar
	2.2 Symbol Hypotheses Relational Graph
	2.3 Top-Down Parse Algorithm

	3 Experimentation
	4 Conclusions and Further Work
	References


