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Abstract Traditionally, two alternative design design approaches have

been available to engineers: top-down and bottom-up. In the top-down ap-

proach, the design process starts with specifying the global system state

and assuming that each component has global knowledge of the system, as

in a centralized approach. The solution is then decentralized by replacing

global knowledge with communication. In the bottom-up approach, on the

other hand, the design starts with specifying requirements and capabilities

of individual components, and the global behavior is said to emerge out of

interactions among constituent components and between components and

the environment. In this paper we present a comparative study of both ap-

proaches with particular emphasis on applications to multi–agent system

engineering and robotics. We outline the generic characteristics of either
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approach from the MAS perspective, and identify three elements that we

believe should serve as criteria on how and when to apply either of the

approaches. We demonstrate our analysis on a specific example of load bal-

ancing problems in robotics. We also show that under certain assumptions

on the communication and the external environment, both bottom–up and

top–down methodologies produce very similar solutions.

1 Introduction

Traditionally, two alternative design methodologies, called top-down and

bottom-up, have been used in building complex systems. In the top-down

methodology, the design starts from the top with the assumption that re-

sources are globally accessible by each subcomponent of the system, as in

the centralized case. The specification is then defined in terms of the global

systems state and implies that each individual component should be able to

retrieve or estimate, with sufficient accuracy and within a reasonable time

delay, resources that are local to other agents of the system. Under these

conditions the properties of a classical centralized solution to the global

specification are expected to hold, up to some tolerable performance degra-

dation, also in a decentralized environment. In the bottom-up methodology,

on the other hand, the rules of agent interactions are designed typically in

an ad hoc manner, although recent work has attempted to formalize the

design process for some applications [1]. In systems designed starting from

the bottom, the global state of all the components is assumed to be impos-
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sible to obtain, and the desired collective behavior is said to emerge from

interactions among individual agents and between the agents and the envi-

ronment. In summary, in the top-down design the final distributed solution

is obtained as a process of relaxation of the constraints that require instant

access to remote resources with infinite precision. The bottom-up design

starts with a rigorously pre–decided set of rules for the individual behaviors

and local interactions and then proceeds with the inference of the global

emergent behavior.

While the question of which design is appropriate for a given system

extends over the most diverse areas in computer science and computer en-

gineering [2–6], we intend to conduct a comparative study of the two ap-

proaches in a typical domain of multi-agent systems engineering. The main

questions we are interested in understanding are the limitations and advan-

tages of either approach, and in establishing criteria for their applicability.

In this paper we focus on demonstrating how to apply the two method-

ologies separately to the same case study. We would like, in both cases, to

address questions such as: what are the analytical and design challenges?

What are the mental processes that lead a designer to the final solution?

What kind of assumptions are crucial in order to expect a high performance

solution? And do the two approaches produce the same solution?

In Section 3 we provide a detailed description of the two methodologies

in comparison. We then investigate nontrivial case studies, in the robotics

domain, that emphasize commonalities and differences between the two ap-
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Fig. 1 Conceptual representation of the two design methodologies

proaches (Section 4). Finally we conclude this work with a discussion on

the results and future developments (Section 5).

2 Previous Research

Evolutionary methods have a long track record in robot controller synthe-

sis [7,6]. Researchers have begun to formalize the design of different classes

of agents. Jones and Mataric [1,8] have proposed a methodology for for-

mally specifying the task domain and automatically synthesizing the con-

trollers which satisfy different spatio-temporal coordination requirements.

Their approach is appropriate to the construction domain, which requires

a specific sequence of actions (placing bricks) to be performed. Harper and

Winfield [9] present a methodology for designing behavior-based controllers
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using Lyapunov stability theory. They illustrate the methodology by con-

structing a position control system for a subsumption architecture-based

agent (an airplane). In another contribution Winfield [10] uses temporal

logic to design verifiable controllers for an MRS. The emphasis in that work

is on the formal definition of agent and group behaviors rather than con-

troller synthesis. McNew and Klavins [11] use graph grammars to synthesize

controllers for certain tasks where the network topology is important.

For some classes of multi-agent systems an agent controller can be viewed

as an automaton, or a grammar, which can be automatically learned from

samples of sentences of the language generated by that grammar. A robot’s

task description, for example, is a sequence of symbols describing the rules

the robot follows while executing a task. A task description can be viewed

as a set of sentences generated by the grammar. Ott and Lerman [12] used

grammar induction to learn the controller from a relatively small subset of

all possible strings (task descriptions) of the grammar.

This paper borrows techniques from the mathematical analysis of the

collective behavior of multi-agent systems. Our earlier work proposed a for-

mal framework for creating mathematical models of the collective behavior

in groups of multi-agent systems [13]. This framework was successfully ap-

plied to study the collective behavior in groups of robots [14–16].
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3 Foundations of the Design

In this section we describe the fundamental components of each design ap-

proach.

3.1 Top Down

Employment of Agent-based technology in the design of distributed sys-

tems has been notoriously limited by the lack of a general unified model

for performance estimation. The difficulty in this matter concerns both the

qualification of candidate solutions and the quantification of their perfor-

mance.

In response to this need, a quantitative top-down design methodology

that combines ideas from Agent Based computing and Classical Control

Theory has been proposed [17,18]. This methodology is based on the hy-

pothesis that agent systems can be decomposed, by analogy to what happens

in classical systems theory, into three ingredients: observation, state esti-

mation and control, with the ultimate goal of being able to derive reliable

performance predictions and guarantees [19]. According to this approach

the design process follows three main phases as outlined in the subsequent

subsections. The relationship between the phases is illustrated in Fig. 1(a).

3.1.1 Modeling The purpose of this phase is twofold: a) agents in the sys-

tem are identified and categorized based on the taxonomy described below;

and b) a description of the knowable global state of the system is produced:
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– information agents that gather information about the environment

and allow dissemination of it in a distributed manner (these would be

“sensors” in classical systems theory for example);

– modeling agents that collect data from many information agents and

update internal knowledge, i.e., produce new estimates of “real world”

state (these would be state estimators, like Kalman filters, in classical

systems theory);

– planning agents that use the current world state estimates, the viable

action or control options and the current goals or intentions to plan

new actions to carry out. These agents may need additional information

for their planning operation, and so they may task brokering agents to

report on available resources such as additional state and action informa-

tion. This last category of agents have no counterpart in classical control

theory where resources are hardwired to components and so there is no

need for brokering.

3.1.2 Synthesis Agent controllers are designed following a three-stage top-

down process. At first, it is assumed that each agent can access remote re-

sources local to other agents instantly and with infinite precision. So an ini-

tial centralized solution is designed. Next, limitations of the distributed envi-

ronment are applied and so the visibility of each agent is gradually reduced.

Consequently inter-agent communication issues arise as now each agent

needs to replace global resources with local resources. As a result a fully

decentralized solution is produced. Finally, and this is a pre-optimization
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stage, the fully distributed solution must be calibrated in order to deter-

mine a minimum level of agent visibility necessary for the system to perform

reasonably well compared to the ideal non-distributed solution attained at

stage 1 of the process. More specifically:

a) Centralization The first stage of the design is characterized by the as-

sumption that each autonomous subcomponent of the system has full knowl-

edge of the global state through remote access to all the resources and events

that have been acquired or recorded by any other subcomponent of the sys-

tem. This produces a centralized solution that however runs locally on each

subcomponent.

b) Distribution The second step is to remove this assumption and replace

global resources with local resources compatibly with the constraints of the

given distributed environment. This introduces communication issues due

to the fact that now agents must acquire information through interactions

with other locally reachable (the notion of locally reachable is context de-

pendent) components in order to infer the most likely global state of the

system. The result of this stage is an algorithm that runs locally and uses

local information. It records all the events that occur within its range and

maintains a representation (hypothesis) of the global state. When two agents

come into contact, an exchange of knowledge and experience takes place on

a peer-to-peer basis.
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c) Calibration The final stage consists of calibrating the obtained dis-

tributed solution via parameter tuning. This in turn is achieved through

adaptation and learning.

3.1.3 Analysis/Optimization The inter-agent communication must be op-

timized in order for the distributed system to perform as predicted at the

beginning of the synthesis phase. The Analysis conducted in this phase

may lead to a review (feedback) of the original Modeling of the agent sys-

tem thus creating a cycle as depicted in 1.

The top-down synthesis of agent controllers relies heavily on the ability

of agents to approximate well information and resources that are collec-

tively known by any other agent in the system. In other words, the problem

is initially solved neglecting communication delays (between agents) and

bandwidth limitations and then successively refined by introducing those

constraints and applying approximation techniques from distributed com-

puting and Control Theory. This is the main point: being able to apply

powerful tools and techniques from well-established disciplines such as Dis-

tributed Computing, Optimization Theory and Control Theory in order to

obtain performance guarantees on the final distributed algorithm.

While stage 3 of the synthesis aims at optimizing various parameters

of the distributed algorithm (communication ranges, bandwidth, etc.), the

focus of the Optimization phase is on the characterization of what relevant

information should be maintained locally and communicated to peers during

local interactions. This is important since during the decentralization the
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centralized solution the representation of the global state is replicated into

many locally maintained approximations of it. One of the crucial problems

that arises is how to minimize redundancies (determine relevant informa-

tion) and characterize the minimum amount of information that needs to

be exchanged in local interactions (reduce communication complexity).

In summary this methodology (instances can be found in [20,21]) is the

summa of an Agent Taxonomy derived from classical Control Theory and

inspired by an Agent Based vision of the world and a Top-Down design

process. Its purpose is to be able to apply analytical and rigorous tools

from Classical Control Theory to Distributed Control Systems.

3.2 Bottom–Up

The bottom-up design methodology is very popular for producing autonomous,

scalable and adaptable systems often requiring minimal (or no) communica-

tion. It has been used to control robotic systems (e.g., [22–24]), embedded

systems, sensor networks [25], and information agents [26] among others.

Within this design paradigm, a researcher specifies an agent’s behavior,

its interactions with other agents and the environment. The behaviors are

specified by an algorithm called a controller. Useful collective behavior, be

it load balancing in Grid computing, or clearing an arena from pucks in a

robotics application, is said to emerge out of interactions among agents and

between agents and the environment.
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In the applications listed above, the agents themselves are rather sim-

ple and do not rely on abstract representation, planning, or higher order

reasoning functions. These agents usually use reactive control, although

increasingly, they are being endowed with a capacity to learn. Generally

speaking, the simple agents described above can be represented as stochas-

tic Markov processes or a probabilistic finite state automaton. Within this

framework, the design process consists of three steps: Synthesis, Modeling

and Analysis, and Optimization, as illustrated in 1(b). Below we describe

these steps in more details.

3.2.1 Synthesis In the Synthesis phase one has to define the agent con-

troller which can be described by an automaton that is the behavioral rep-

resentation of an agent. In the case of a reactive agent (i.e., one that makes a

decision about what action to take based on its current state and input from

its sensors) the controller can be characterized by a finite state automaton

(FSA). Each state of the automaton represents the action or a behavior

the agent is executing, with transitions coupling it to other states. Conse-

quently, the behavioral dynamics of a reactive agent can be considered as

an ordinary Markov process. Consider, for example, a foraging task, where

the goal is for robots to collect pucks scattered about an arena and deposit

them at a pre-specified home location. A single robot engaged in a foraging

task will have to execute the following behaviors: (i) searching for pucks

by wandering around the arena, (ii) puck pickup and (iii) homing or bring-

ing the puck to a pre-specified home location. Transition from searching
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to pickup is triggered by a puck being sensed in the arena, from pickup to

homing by the gripper closing around the puck, and transition from homing

to searching is caused by the the robot reaching the home destination. A

task description is a sequence of symbols specifying the rules robots follow

while executing a task: e.g., how observations trigger transitions from one

state to another.

Given that FSAs are equivalent to regular grammars, Ott and Ler-

man [12] showed that the automatic controller synthesis can be treated as a

grammar induction problem.1 In other words, given a task description — or

sentences generated by some grammar — one can learn the grammar, and

equivalently, the automaton, that produced these sentences. Moreover, Ott

and Lerman showed that the method was able to generate correct grammars

from relatively short task descriptions by learning to generalize properly.

3.2.2 Modeling and Analysis Once a controllers for individual agents have

been constructed, one needs to develop a mathematical model of the collec-

tive behavior. Remarkably, the finite automaton of a single agent in many

cases can be used for adequately describing the macroscopic or collective

behavior of a large-scale system composed of many such controllers. In par-

ticular, Lerman et. al. have developed models based on Stochastic Master

Equation and its first moment, Rate Equation, to describe the average col-

lective behavior from the details of the agent automaton. The model consists

1 That work treats a more general problem of context-free grammar induction,

but can be easily extended to regular grammar induction.
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of coupled differential equations describing how the average group behavior

changes in time. This modeling approach is based on the theory of stochas-

tic processes. Many types of computer processes (including robots, sensor

nodes, Grid agents) can be represented as stochastic processes, because

they are subject to unpredictable influences, including environmental noise,

errors in sensors and actuators, forces that cannot be known in advance,

interactions with other agents following complex trajectories, etc. One does

not assume knowledge of agents’ exact trajectories; instead, we model each

agent as a stochastic process and derive a probabilistic model of the aggre-

gate, or average, behavior. Such probabilistic models often have very simple,

intuitive form, and can be easily written down by examining details of the

individual agent control diagram [27,14,28].

3.2.3 Optimization Mathematical models can be used not only to validate

the controller, but also to estimate individual parameters that optimize

group-level performance. Using mathematical analysis one can finally an-

swer a number of design questions. Controller synthesis may produce a

range of values for internal parameters that result in a valid controller, but

these different controllers might result in different group–level efficiency.

For example, some parameter values may lead to faster convergence to the

desired steady state, while others will lead to smaller deviations from it.

Moreover, in a case when an agent’s controller is represented as a Finite

State Automata (FSA), analysis can be used not only for estimating the

parameters of the controller, but also suggesting appropriate structure and
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transition probabilities for the FSA, so that the desired global behavior will

be achieved on average.

4 A Case Study

In the preceding sections we described the main characteristics of two design

methodologies from the multi–agent system perspective. In this section we

further elaborate on the features of the two approaches on an example multi–

robot load balancing problem. This application, while simple, is non-trivial

and illustrative of the challenges faced in designing a generic multi-agent

system.

Here is the scenario, introduced by [29] and analyzed by [16]: In a closed

arena a known number of M = R + G (G are green and R are red) pucks

have been disseminated in unknown positions. The numbers of either type

of puck, R and G, are unknown and can even change in time. We deploy

N robots equipped with a red lamp and a green lamp to collect the pucks.

Each robot can be foraging for one type of puck at any given time and its

foraging state will be displayed by lamp color to other robots. We assume

that robots have a memory buffer of a certain length where they can store

their recent observations of pucks and other robots. The goal of the appli-

cation is to have, on average, the same proportion of red to green robots

as the proportion of red to green pucks in the arena. The task is to define

color–selection rules based on robots’ memory and interaction with other

robots and/or environment.
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4.1 Top-down solutions

4.1.1 Distributed Potential and Gradient Descent How should we approach

this problem using the top-down methodology? We assume that each com-

ponent, in this case robot, is capable of accessing resources that are local to

other components, as happens typically in any centralized control system.

The general idea is to start with this assumption in order to apply well-

known and tested methods from classical control theory (i.e., machine learn-

ing, parameter estimation, gradient descent, etc). Then, at a second stage,

we study the effects of the decentralization and we determine conditions

under which the solution still performs satisfactorily.

In the following we define an objective function to be minimized us-

ing a gradient descent method that will lead to a distributed algorithm.

This function should contain as constants all the quantities that are known

to the robots, i.e., all the observations. The variables instead become the

descriptors of the changing state of the robots. As in dynamical systems

theory robots will try to optimize the objective function by following an

appropriate “trajectory” on the search space towards an optimal point.

Let ci be the optimal probability that robot i displays green. So, a

potential objective might be the following:

V (c1, c2, . . . , cn) =

(

n
∑

i=1

ci

n
−

∑n

i=1 gi
∑n

i=1(gi + ri)

)2

, (1)

where, n is the total number of robots and gi (ri) is the number of green

(red) pucks observed by robot i. This function states literally that the aver-
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age proportion of green robots a priori should be the same as the globally

observed proportion of green pucks. In fact we can observe that V = 0 is

the global optimum and is attained at

n
∑

i

ci

n
=

∑n

i=1 gi
∑n

i=1(gi + ri)
. (2)

Since each ci represents the probability that the robot should be green in

order to reflect the correct rate of observed green pucks then each robot

can guess the color to display by sampling (periodically) from a Bernoulli

distribution with probability ci. So, on average, the rate of green robots

should reflect the estimated probabilities. Values ci are local to robots and

are updated in order to attain the global minimum of V . A classical way to

achieve this is through a gradient descent optimization method:

ci(t + 1) = ci(t) − γt∇ci
V (c(t)) . (3)

Here, γt is a sequence chosen according to well-know sufficient conditions

that depend on properties of the gradient (see for example [30]). This is to

ensure mathematical convergence to a stationary point.

If we now limit the communication range of the robotic agents they will

be forced to interact only with other agents at close range. As a consequence

each agent will need to approximate its gradient whose exact computation

depends on global quantities, i.e., vector c. The result is the following dis-

tributed algorithm:
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1. Each robot maintains locally a history of observations within a bounded

time interval. In particular it keeps a local statistics of the pucks: gi, ri. It

also maintains a local estimate of the optimal color probability ci.

2. At fixed intervals of time each robot updates its local ci variable by

applying the following rule that depends only on local quantities: ci(t+1) =

ci(t) −
2γt

|N(i)|





∑

j∈N(i)

cj(t)

|N(i)|
−

∑

j∈N(i) gj
∑

j∈N(i)(gj + rj)



 (4)

where N(i) = {j | d(i, j) < ρ} with ρ being the communication range of the

robots and d the Euclidean distance (in the experimental verification we set

γt to 0.1).

3. Each robot i decides its own color by sampling from a Bernoulli distri-

bution with mean ci(t + 1).

The analysis of this solution can be conducted using classical tools in

Nonlinear Optimization and Distributed Computing [30,21]. First, it is nec-

essary to discuss the possible presence of local minima for V (in this special

case there are none but in general we may expect a nontrivial issue). Then

we need to establish bounds to γt that ensure convergence of the method

to a stationary point of V (also we may introduce barrier functions to force

ci(t) within range (0, 1)). Finally study how the performance degrades as the

communication range reduces to zero. Figure 2 (a) provides experimental

evidence of the validity of this solution.

4.1.2 Parameter Estimation Another top-down way to look at the same

problem is that the various robots need to estimate, as the time varies, the
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proportion of green vs red pucks and then sample their own color accord-

ingly.

If we assume that the parameters of the population of pucks are constant

(g and r do not vary overtime) we can approach the estimation problem

using a Least Square (LS) method. Define p = g/(r + g). Each robot i

gathers an observation of the environment in the form of a ratio pi = gi/ni,

where gi and ni are respectively the number of green pucks and the total

number of pucks observed by robot i.

We may see the combined observations of all the robots as n independent

measurements of the form

pi = p + wi (5)

where wi are n normal random variables with zero mean and common vari-

ance σ. Random variables wi’s represent a notion of noise corresponding to

what the robot does not know because of lack of experience. We can real-

istically model wi as a Gaussian RV under the assumption that the pucks

have been disseminated on a grid with a certain degree of spacial unifor-

mity and that the robot explores the area without reversing course over the

observation window. The (global) LS Estimator (LSE) of p is then [31]

p̂ = arg min
p

n
∑

i=1

(p − pi)
2 =

1

n

n
∑

i=1

pi . (6)

The assumptions on the densities of wi’s imply that p̂ is also the Maximum

Likelihood Estimator (MLE). In particular it is unbiased and, as the number

of observations increases to infinity, it converges to the right value of the

parameter.
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Finally let us apply the restrictions imposed by the decentralized en-

vironment: in this case a limited communication range of the robots that

reduces the size of the samples each robot is able to average at any instant of

time. These restrictions translate into the following distributed algorithm:

– Each robot maintains locally a history of observations within a bounded

time interval. In particular it keeps a local statistics of the pucks: pi =

gi/(gi + ri).

– At fixed intervals of time each robot tries to compute the LS Estimator

of the unknown parameter p exchanging values pi’s with all the other

robots that are within range:

p̂i =
1

|N(i)|

∑

j∈N(i)

pj (7)

where N(i) = {j | d(i, j) < ρ} and ρ is the communication range of the

robots.

– Each robot i decides its own color by sampling from a Bernoulli distri-

bution with mean p̂i.

The performance analysis of this solution is conducted by applying well

known instruments from the theory of parameter estimation to establish,

for example, how the variance of the distributed estimators varies in relation

to the communication range and other quantities. This gives us the means to

study with precision the time of convergence and the adaptation capabilities

of the system to sudden changes of the environment (e.g., changes in the

distribution of pucks).



20 Valentino Crespi et al.

4.2 Bottom–up solutions

While the top-down design cycle started with defining a global potential

function Eq. 1 to be minimized, the design process in the bottom-up ap-

proach starts with specifying an individual robot controller without any

regard to global system properties. Again, let ri and gi be the number of

red and green pucks respectively in ith agent’s observation window. Our task

is to construct a controller that prescribes an action for each realization of

gi and ri. For the present problem two possible actions are choosing red

or green foraging state. Hence, the agent’s controller can be characterized

by a finite states machine with two states, Red and Green, and transitions

between the state with probabilities fR→G(ri, gi) and fG→R(ri, gi). During

a sufficiently short time interval, the robot can be considered to belong to

a Green or Red foraging state. This is a very high level, coarse-grained

description. In reality, each state is composed of several robot actions and

behaviors, such as wandering the arena, detecting pucks, avoiding obstacles,

etc. However, since we want the model to capture how the fraction of robots

in each foraging state evolves in time, it is a sufficient level of abstraction

to consider only these states.

The transition probabilities between the states depend on the robot’s

observations, specifically, on the number of pucks of each type, ri and gi

that the ith robot has encountered during a certain time interval. Generally

speaking, ri and gi are random variables that depend on a variety of factors

such as a robot’s speed, view angle, local density of pucks, and so on. To
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make the model amenable to analysis, however, we make a simplifying as-

sumption that the process of encountering a puck is a Poisson process with

rate λ = αM0 where α is a constant characterizing the physical parameters

of the robot such as its speed, view angles, etc., and M0 is the number of

pucks in the arena. Thus, we assume that a robot’s observation is inde-

pendent of the robot’s actual physical trajectory, but is instead governed

by probabilities determined by simple geometric considerations2. Let R(t)

and G(t), R(t) + G(t) = M0, be the actual number of red and green pucks

respectively (unknown to robots), that generally can be time dependent.

The probability that in the time interval [t− τ, t] the robot has encountered

exactly r and g pucks is the product of two Poisson distributions:

P (r, g) =
λr

Rλg
G

r!g!
e−λR−λG (8)

where λR = α
∫ t

t−τ
dt′R(t′) and λG = α

∫ t

t−τ
dt′G(t′) are the means the of

respective distributions. In the case when the puck distribution does not

change in time, R(t) ≡ R = const, G(t) ≡ G = const, one has λR = αRτ ,

λG = αGτ .

Once we have specified the individual controller and the observation

model, the next step is to derive the resulting global behavior. Recall that

the goal of the system designer is to achieve a balance in the number of

Red and Green robots that reflect the distribution of red and green pucks.

Hence, it is natural to choose the number of robots in each state as variables

2 This approximation has been shown to produce remarkably good agreements

with experiments [32,33].
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describing the global state. Let Nr(t) and Ng(t) be the average (or expected)

number of Red and Green robots at time t, Nr(t) + Ng(t) = N . During a

small time interval [t, t + ∆t] the i–th robot will change their color with

probabilities specified by the controller, i.e., probabilities fR→G(ri, gi)∆t

and fG→R(ri, gi)∆t. Recall that P (r, g) is the probability that a robot has

observed r red and g green pucks in the observation window [t− τ, t]. Since

the robots’ observations are statistically independent, P (r, g) is also the

probability that a randomly chosen robot (of either color) has observed r

Red and g Green pucks. Thus, the expected change in the number of Red

robots during the time interval ∆t can be represented as

Nr(t + ∆t) − Nr(t) = −Nr(t)

∞
∑

r,g=0

fR→G(r, g)P (r, g)∆t

+ (N − Nr(t))
∞
∑

r,g=0

fG→R(rj , gj)P (r, g)∆t (9)

The first (second) term in Eq. 9 describes the number of Red (Green) robots

changing their state to Green (Red). Furthermore, defining the fraction of

Red robots as nr(t) = Nr(t)/N , and taking the limit ∆t → 0 we arrive at

dnr(t)

dt
= −nr(t)

∞
∑

r,g=0

fR→G(r, g)P (r, g)

+ (1 − nr(t))

∞
∑

r,g=0

fG→R(r, g)P (r, g) (10)

Clearly, the properties of Eq. 10, such as steady state value nr(t →

∞), are determined by the transition probabilities fR→G and fG→R. As a

designer, we want to choose these functions in such a way as to ensure the

desired global behavior. In our case, this amounts to having fractions of
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robots of either color that reflect the puck distribution in the steady state.,

e.g., ns
r ≡ nr(t → ∞) ≈ R/G. As we will see below, this condition can be

met by choosing the following transition rates:

fG→R(r, g) = ε
r

r + g
≡ εγ(r, g) (11)

fR→G(r, g) = ε
g

r + g
≡ ε(1 − γ(r, g)) (12)

where ε is a constant characterizing how often robots have to make a decision

whether to switch states. Eq.10 then reads

dnr

dt
= εγ(1 − nr) − ε(1 − γ)nr (13)

where γ is give by

γ =

∞
∑

r,g=0

P (r, g)
r

r + g
(14)

Note that if the pucks distribution changes in time then γ is time–dependent,

γ = γ(t). The solution of Eq. 10 subject to the initial condition nr(t = 0) =

n0 is readily obtained:

nr(t) = n0e
−εt + ε

∫ t

0

dt′γ̄(t − t′)e−εt′ (15)

To proceed further, we need to calculate γ(t) (e.g., the average of γ over the

Poisson distribution). Instead of going through lengthy but straightforward

calculations, we present the final result which reads

γ(t) =
1

τ

∫ t

t−τ

dt′µr(t
′) + e−ατM0

(

1

2
−

1

τ

∫ t

t−τ

dt′µr(t
′)

)

(16)

where µr(t) = R(t)/M0 is the fraction of red pucks. Eq. 15 and 16 fully

determine the evolution of the dynamics of the system.
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To analyze its properties, let us first consider the case when the puck

distribution does not change with time, µr(t) = µ0. Then the we have

nr(t) = γ + (n0 − γ)e−εt (17)

γ = µ0 + e−ατM0(1/2 − µ0) (18)

Hence, the probability distribution approaches its steady state value ns
r = γ

exponentially. Note that for large enough ατM0 the second term in the

expression for γ can be neglected so that the steady state attains the desired

value ns
r ≈ µ0. For small values of ατM0 (i.e., small density of pucks or

short history window), however, the desired steady state is not reached, and

in the limit of very small ατM0 it attains the value 1/2 regardless of the

actual puck distribution.

In Fig 2 we present the results of application of top–down and bottom–up

algorithms described above. There are 20 red and 80 green puck scattered

in an arena of size 600. Initially, all the robots are at state Red. Both

algorithms (top–down with gradient descent and bottom–up) converge to

the correct value after some transient. Starting from an initial fraction of red

red pucks nr(t = 0) = 1 In the top–down case one can clearly see the effect

of the communication on the convergence rate. Remarkably, in the case

where there is no communication, the top–down gradient–descent method

produces the very similar results with the bottom–up algorithm. In fact

the homologue of ci(t) in the top-down method is nr(t) in the bottom-up

approach. If we discretize in the same way the differential equation defining
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(a) Top-down approach (b) Bottom-up approach
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Fig. 2 Convergence to correct puck distribution for (a) top–down and (b)

bottom–up approaches. Two curves for the top down approach are for ρ = 0

(no communication) and ρ = 200 in a 100 × 100 square grid of side length 600

(along each direction points were separated by 6 units of length).

nr(t) (13) we obtain

nt(t + 1) = (1 − δtǫ)nr(t) + δtǫγ

which has the same form as (4) with γt ∼ δtǫ. This explains well the ex-

perimental curves. This is not surprising as both γt and ǫ somehow control

how new observations (gi, ri in the top-down approach) or new estimates

of averages (γ in the bottom-up approach) affect current estimates.

A quite different result is obtained by analysing the second top-down

approach based on the LS estimation (see Fig. 3). Here we can observe that

the value of ρ affects essentially the variance of the estimator. The intuition

here is that as ρ increases then the number of samples that concur to the

calculation of the mean also increases thus reducing the variance consistently

with the well-known convergence properties of the sample mean estimator.
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Top-down LS approach
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Fig. 3 Convergence to correct puck distribution for the top–down LS approach.

5 Conclusion

In conclusion, we have presented a comparative study of top-down and

bottom-up design methodologies from the perspective of multi-agent sys-

tem engineering. We suggest that the difference between two approaches

is primarily manifested in the requirements about the availability of local

resources to the rest of the system. This requirement is very important for

the top-down approach, while not so imperative for the bottom-up. Note

also that the statistical properties of the external environments in which

agents operate affect their ability to generalize their local experience. So,

under certain conditions both approaches not only become viable but may

even produce the same solution. An example is represented by the Puck Al-

location problem when approached using parameter estimation techniques

in both the methodologies.

More generally, we have identified the following three main elements in

our comparison:
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Specifications: Bottom-up approach starts with the specification of

the individual agent behavior through a set of agent capabilities or rules

of engagement which delimit the set of obtainable group–level behaviors.

The top-down approach starts with global requirements as in a centralized

control system and translates those into necessary agent capabilities. Note

that the last step assumes implicitly that the global system requirements

can be delegated to individual components. For some tasks this might not

be straightforward.

Communication and Noise: Communication is important in both

the approaches but its impact is completely different if not opposite. In the

top-down case a form of explicit communication is a requirement implied by

the necessity for individual components to access remote resources accord-

ing to the global design. In the bottom-up case, communication is optional

in so far as the impact of the propagation of the information throughout

the system on the emergent behavior is more like a positive side effect of

the design rather than an expected feature required in the specification.

As a consequence the performance of top-down systems, although optimal

in ideal conditions, is expected to be very sensitive to communication noise

and latency. It is then necessary to analyze the parameter space that defines

how accurately individual components access or estimate remote resources.

In extreme situations caused typically by intolerable levels of noise, inade-

quate communication range or insufficient propagation of information, the

bottom-up approach seems to represent the only viable solution.
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Analysis and performance guarantees: Both approaches are sim-

ilar in their reliance on simulations to analyze global system properties.

Whenever mathematical analysis is possible, however, the two approaches

differ in their choice of mathematical tools. The top-down approach usually

utilizes mathematically rigorous tools such as Classical and Stochastic Con-

trol Theory, Operations Research, Optimization Theory, Machine Learning

and Parameter Estimation, whereas the bottom–up design relies heavily on

mean–field methods such as statistical mechanics and the Master Equation,

mean–field theory, dynamical systems theory, etc. Hence, in the top-down

approach it is possible to establish stringent bounds on the system behav-

ior and make performance guarantees within its range of applicability as

it relies on well established classical methods. The analysis tools in the

bottom-up approach, on the other hand, can be extremely efficient in de-

scribing the average system behavior but as a rule they do not allow for

worst-case analysis.

While we do not claim this list to be complete, we strongly believe

that these features will be helpful in determining the applicability of either

methodology for a given multi-agent system problem and resources for its

solution.
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