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Abstract

Correlation mining has been widely studied due to
its ability for discovering the underlying occurrence
dependency between objects. However, correlation
mining in graph databases is expensive due to the
complexity of graph data. In this paper, we study the
problem of mining top-k correlative subgraphs in the
database, which share similar occurrence distributions
with a given query graph. The search space of the
problem is prohibitively large since every subgraph in
the database is a candidate. We propose an efficient
algorithm, TopCor, which mines the top-k correlative
graphs by exploring only the candidate graphs in the
projected database of a query graph. We develop three
key techniques for TopCor: an effective correlation
checking mechanism, a powerful pruning criteria, and
a set of useful rules for candidate exploration. The
three key techniques are very effective in directing the
search to those highly correlative candidate graphs. We
justify by experiments the effectiveness of the three key
techniques and show that TopCor is more than an order
of magnitude faster than CGSearch, the state-of-the-art
threshold-based correlative graph mining algorithm.

1 Introduction

Graph is a general tool for modeling structural relation-
ships between data objects. It has been prevalently used
in a wide range of application domains, such as protein
interaction graphs in biology [3], chemical compound
structures in chemistry [1], food webs in ecology [17], so-
cial networks in social science [2], as well as Web graphs
[20] and XML documents. With the increasing popular-
ity of graph databases in various applications, discover-
ing useful knowledge from graph databases emerges as
one of the most important mining problems.

In literature, there have been a number of studies
on mining interesting patterns from graph databases.
Most of them focus on finding frequent subgraphs (FGs)
[10, 13, 28, 8] and its compact representations, such as
closed frequent subgraphs (CFGs) [29] and maximal fre-
quent subgraphs (MFGs) [9, 24]. However, little atten-
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tion has been paid to mining correlative subgraphs from
graph databases, despite that correlation has been rec-
ognized as an interesting and useful type of patterns
due to its ability to reveal the underlying occurrence
dependency between data objects. Two correlative sub-
graphs have mutual implications on their occurrences
or absences in the database. Therefore, correlative sub-
graphs indicate hidden properties of the graphs in the
database, which are very useful in many applications.
For example, a set of user traversal graphs can be ex-
tracted from the Web log of a Web site. Correlative
subgraphs mined from these graphs have similar occur-
rence distributions and thus represent the navigation
patterns of a group of users who share common inter-
ests. By analyzing these correlative graphs, the Web
site owner is able to understand user behaviors better
in order to improve the Web site structure and detect
some abnormal navigation patterns, which is especially
important and useful in E-commerce.

In our earlier work [11, 12], we study the problem
of finding correlative graphs whose correlation with a
query graph is at least a given minimum correlation
threshold θ (0 < θ ≤ 1). However, since different
graph databases can have very different characteristics,
the number of correlative graphs obtained for the same
value of θ can vary significantly for different queries
and databases. We illustrate this problem using the
following example.

Example 1.1. Figure 1 shows two query graphs for a
real chemical compound structure database. When θ is
set to be 0.5, there are 66 correlative graphs for query A,
while there are as many as 5, 660 correlative graphs for
query B. Given such a great difference in the number of
answers, it is hard for a user to specify a suitable value
of θ for each specific query graph. As a result, a user
may need to try many times in order to obtain a set of
patterns that is truly useful to him, while trying each
value of θ itself is an expensive process especially when
θ is small. 2

To address this problem, we propose to discover
the top-k correlative subgraphs in graph databases,
which is formalized as follows. Given a graph database
D that contains N graphs, a query graph q and an
integer k, find the top-k subgraphs in D that have the
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Figure 1: Two Example Query Graphs

highest correlation with q. The usage of k has several
advantages. It circumvents the need for a user-specified
minimum correlation constraint θ and allows a user
to directly control the number of patterns discovered.
Therefore, a user is able to specify how to identify
interesting patterns by choosing a suitable k.

Mining top-k correlative subgraphs poses significant
challenges. First, the search space of the problem is
prohibitively large. Each subgraph of a graph in D
can be a candidate top-k answer graph while there are
exponentially many subgraphs in D. Second, correlation
measures do not have the anti-monotone property. As
a result, the apriori-like pruning strategy cannot be
applied to reduce the search space. Finally, graph
operations such as subgraph isomorphism testing are
expensive. In order to compute the correlation between
a candidate graph g and the query graph q, a number
of subgraph isomorphism testings need to be performed
to obtain their occurrence probabilities (also called
support). It is obviously intractable to compute the
correlation for every subgraph in D.

A straightforward solution for the top-k correlation
mining problem is by applying the θ-threshold-based
correlation mining algorithm, CGSearch [11], as follows.
We first set a high initial value of θ and gradually
lower θ until k answer graphs are obtained. However,
this approach has several drawbacks. First, there is
no obvious correspondence between the values of θ and
k. Therefore, given a specific k, there is no clue what
value of θ gives the k highest correlative answer graphs.
Therefore, different queries may require very different
values of θ in order to find the top-k answers using
CGSearch, for the same k. Second, in the process of
trying different values of θ, many correlative subgraphs
are re-computed and thus the computation time is
wasted. As a result, this approach is not efficient and
not scalable for the top-k mining task.

Example 1.2. Using the two queries in Figure 1, if
we want to find their top-20 correlative graphs using
CGSearch, the answers are obtained at θ = 0.5 for query
A but at θ = 0.9 for query B. Therefore, we cannot set
a universal θ for different queries. If we set θ = 0.9, we
miss some answers for query A. If we set θ = 0.5 instead,

we obtain 5, 660 answers for query B, the majority of
which are not useful to the user. More importantly,
setting a low θ for query B results in 40 times longer
processing time (0.45 vs. 17.91 seconds), which is not
necessary at all.

Instead of choosing a universal θ, a better way of
using CGSearch for top-k mining is to lower θ gradually
until k answer graphs are obtained. For example, if we
start at θ = 0.9, we need only 0.45 seconds for query
B. However, we need to perform several iterations of
lowering θ to process other queries such as query A,
which requires 1.9 seconds. By lowering θ to find top-k
answers is still not efficient enough since we need only
0.75 seconds for processing query A if we can directly set
θ at the correct value of 0.5. Unfortunately, the correct
θ for processing a query is not known.

Therefore, an algorithm for finding top-k correlative
graphs directly is highly demanded. The algorithm we
propose in this paper requires only 0.26 and 0.11 seconds
for processing queries A and B, which are even faster
than using CGSearch with a known correct θ. 2

In this paper, we propose an efficient algorithm,
TopCor, for computing the top-k correlative graphs for a
given query. We adopt Pearson’s correlation coefficient
φ [30] as the correlation measure; but we remark that
other measures [23] can also be applied in a similar
way. Instead of directly searching the whole database D,
TopCor limits the search space to the projected database
Dq, of q and explores only candidate graphs from Dq.
Here, the projected database of q refers to the subset
of graphs in D that are supergraphs of q. Since Dq is
usually much smaller than D, mining from Dq is much
more efficient than from D.

Transforming the search space to the projected
database alone is still inadequate. In order to more
effectively direct the search to those highly correlative
subgraphs, we develop three key techniques: an effective
correlation checking mechanism, a powerful pruning cri-
teria, and a set of useful rules for candidate exploration.

First, we investigate the property of the correlation
function φ and derive a maximum value φmax (g) that a
candidate graph g can achieve. By comparing φmax (g)
with the smallest correlation value in the current top-
k list (denoted as φmin), we can check whether g is a
potential answer without computing its exact φ value.
This φmax -based checking mechanism effectively prunes
unqualified candidate graphs and saves a lot of correla-
tion computations. Second, we further study the prop-
erty of φmax (g) and derive a minimum support thresh-
old as a function of φmin , denoted as ς(φmin), which
is used as a pruning criteria for mining the correla-
tive subgraphs from Dq. The distinguished property
of ς(φmin) is that ς(φmin) progressively becomes tighter



during the mining process and thereby significantly in-
creases the pruning power. Finally, we develop a set of
five rules to further save the correlation computations
and prune false-positive candidate graphs. Based on
these rules, we design a bi-directional search strategy to
avoid the expensive correlation computations on both
the subgraphs and supergraphs of a candidate graph.

We integrate the above-mentioned three key tech-
niques into our mining algorithm TopCor. Our compre-
hensive experiments show that each one of the key tech-
niques is a crucial contributor to the efficiency of Top-
Cor. Compared with the CGSearch algorithm, TopCor
is over an order of magnitude faster, which, together
with the flexibility on the usage of k, demonstrates
the benefit of designing a new algorithm specifically for
the top-k mining task. Experimental results also show
that TopCor achieves very impressive and stable perfor-
mance when varying the query support, database size,
as well as the density of the graphs in the database.

We summarize the contributions of this paper as
follows.

• We propose the problem of discovering top-k cor-
relations from graph databases, which provides the
user with the flexibility to control the number of
correlative subgraphs to be obtained.

• We develop three key techniques to facilitate the
mining of top-k correlations, all of which play an
important role in reducing the large search space
to a smaller and more promising one.

• We propose an efficient algorithm, TopCor, to solve
the problem of top-k correlation mining in graph
databases.

• We conduct extensive experiments that verify the
efficiency of our algorithm, as well as the effective-
ness of the key techniques.

The rest of the paper is organized as follows.
We introduce some background knowledge on graph
databases and frequent subgraph mining in Section
2. We define the top-k correlation mining problem in
Section 3. We present our solution, TopCor, in Section
4. Then, we evaluate the performance of TopCor in
Section 5. Finally, we review related work in Section 6
and conclude the paper in Section 7.

2 Background

In this paper, we focus on undirected labelled connected
graphs, while our approach can be straightforwardly
extended to handle directed and unlabelled graphs.

Let g = (V,E, l) denote a graph g, where V is
the set of vertices, E is the set of edges and l is a

labelling function that assigns a label to each vertex
and edge. A graph database is a collection of N graphs,
denoted as D = {g1, g2, . . . , gN}. Given two graphs,
g = (V,E, l) and g′ = (V ′, E′, l′), we call that g is a
subgraph of g′ (or g′ is a supergraph of g), denoted as
g ⊆ g′ (or g′ ⊇ g), if there exists an injective function
f : V → V ′, such that for every edge (u, v) ∈ E, we
have (f(u), f(v)) ∈ E′, l(u) = l′(f(u)), l(v) = l′(f(v)),
and l(u, v) = l′(f(u), f(v)). The injective function f

is called a subgraph isomorphism from g to g′. It have
been proved that testing subgraph isomorphism is an
NP-complete problem [7].

Given a graph database D and a graph g, we denote
the set of all graphs in D that are supergraphs of g as
Dg = {g′ : g′ ∈ D, g′ ⊇ g}. We call Dg the projected
database of D on g. The frequency of g in D, denoted
as freq(g;D), is defined as the number of graphs in D
that are supergraphs of g, i.e., freq(g;D) = |Dg|. The
support of g in D, denoted as supp(g;D), is defined as
the percentage of graphs in D that are supergraphs of

g, i.e., supp(g;D) = freq(g;D)
|D| =

|Dg|
|D| . For simplicity,

we use freq(g) and supp(g) to represent freq(g;D) and
supp(g;D), respectively, when D is clear in the context.
The support measure has the anti-monotone property,
i.e., if g1 ⊆ g2, then supp(g1) ≥ supp(g2).

Given two graphs g1 and g2, we define the joint
frequency of g1 and g2 in D, denoted as freq(g1, g2), as
the number of graphs in D that are supergraphs of both
g1 and g2, i.e., freq(g1, g2) = |Dg1

∩ Dg2
|. Similarly, we

define the joint support of g1 and g2 as supp(g1, g2) =
freq(g1,g2)

|D| . Joint support has the following properties:

supp(g1, g2) ≤ supp(g1) and supp(g1, g2) ≤ supp(g2).
A graph g is called a Frequent subGraph (FG) [10]

in D if supp(g) ≥ σ, where σ (0 ≤ σ ≤ 1) is a user-
specified minimum support threshold. For an FG g, if
there exists no supergraph of g with the same support
value, g is called a Closed Frequent subGraph (CFG).

Example 2.1. Figure 2 shows an example graph
database, D, that contains ten graphs, g1, . . . , g10. For
clarity of presentation, all the nodes are of the same la-
bel, which is omitted in the figure; while the edges are
labelled with a, b and c.

The graph g8 is a subgraph of g2. The projected
database of g8, i.e., Dg8

, is {g2, g3, g6, g7, g8}, where
the corresponding subgraph isomorphism is indicated
by the colored nodes. The frequency of g8 in D is
computed as freq(g8) = |Dg8

| = 5. The support of

g8 in D is supp(g8) = freq(g8)
|D| = 5

10 = 0.5. Similarly

for g9, we have Dg9
= {g6, g7, g9}, freq(g9) = 3 and

supp(g9) = 0.3. The joint frequency of g8 and g9 is
computed as freq(g8, g9) = |Dg8

∩ Dg9
| = |{g6, g7}| = 2.

Therefore, the joint support of g8 and g9 is computed as
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Figure 2: An Example Graph Database, D

supp(g8, g9) = freq(g8,g9)
|D| = 0.2. If we set the minimum

support threshold σ = 0.4, then g8 is an FG while g9 is
not. Graph g8 is also a CFG since all of its supergraphs
have less support values. 2

3 Problem Definition

The top-k correlative graph mining problem we study
in this paper can be formalized as follows. Given a
graph database D = {g1, g2, . . . , gN}, a query graph q,
and a threshold k, find the top-k subgraphs in D with
the highest correlation with respect to q.

The correlation between two graphs is defined on
their occurrence distributions in the graph database D.
We use the following example to illustrate the concept
of correlation between two graphs.

Example 3.1. Consider the graph database D in Fig-
ure 2. Given a graph that contains two connected edges
labelled with a (denoted as graph aa), its occurrence
distribution in D is shown by the solid line in Figure
3. The occurrence of aa is set to be 1 for each graph
in D that is a supergraph of aa, and 0 otherwise. For
example, g6 is a supergraph of aa; therefore, the value
of the solid line at g6 is 1. Similarly, we can plot the
occurrence distribution of a graph ac as shown by the
dotted line in Figure 3.

The correlation between two graphs measures the
similarity of their occurrence distributions. As shown
in Figure 3, the correlation between aa and ac is high
since their occurrence distributions take the same value
for most graphs in D. 2

Any existing correlation measure [23] can be used to
characterize correlation between graphs. In this paper,
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Figure 3: Occurrence Distributions of Graphs aa and
ac in D

we focus on Pearson’s correlation coefficient [21], while
other correlation measures can also be adopted in a
similar way [12].

Definition 3.1. (Pearson’s Correlation Coefficient)
Given two graphs g1 and g2, the Pearson’s correlation
coefficient of g1 and g2, denoted as φ(g1, g2), is defined
as
(3.1)

φ(g1, g2) = supp(g1,g2)−supp(g1)supp(g2)√
supp(g1)supp(g2)(1−supp(g1))(1−supp(g2))

.

When supp(g1) or supp(g2) is equal to 0 or 1, φ(g1, g2)
is defined to be 0.

The value of φ(g1, g2) falls within the range of
[−1, 1]. The value 0 indicates that the occurrences of g1

and g2 in the database are independent; positive value
indicates that the occurrences of g1 and g2 are positively
correlative, while negative value means negative corre-
lation. In this paper, we focus on finding top-k positive
correlations.

We now present a property of Pearson’s correlation
coefficient, which will be used to develop effective
pruning techniques in the following section. We omit
the proof due to limited space.

Property 3.1. If both supp(g1) and supp(g1, g2) are
fixed, then φ(g1, g2) is monotonically decreasing with
supp(g2).

4 Our Solution

To solve the top-k correlative graph mining problem, a
naive approach is to mine all subgraphs in D, compute
their correlation with the query graph, sort them and
extract the top-k correlative subgraphs. This approach
is apparently intractable, especially when the database
D is large or the graphs in D are diverse (i.e., the number
of distinct subgraphs in D is large).

In our earlier work [11], we proposed an efficient
algorithm, CGSearch, to find all subgraphs in D whose
correlation with q is higher than a given threshold θ. For



top-k correlation mining, one possible way is to utilize
the CGSearch algorithm by initially setting a high θ and
progressively lowering it until the size of the answer set
is larger than k. Finally, the top-k answers are obtained
by sorting the results returned by CGSearch. However,
this approach is not efficient enough since it is hard to
specify a value of θ that is corresponding to a given k.
The lower the value of θ, the higher the complexity of
the mining problem. As a result, a lot of computation
effort is wasted in trying different θ values.

We propose an efficient solution that is able to di-
rect the searching to those highly correlative subgraphs.
Similar to the work in [11], we explore the search space
by mining FGs from the projected database of the query
graph, Dq. This is natural since correlation measures
the co-occurrences of a subgraph and the query graph
q. Furthermore, mining from Dq is much more efficient
than mining from the entire database D, since Dq is
much smaller than D.

After we transform the search space from D to Dq,
however, we still have three major challenges remaining
for the top-k correlation mining task. First, it is
inefficient or even infeasible to mine every possible
subgraph from the projected database. Thus, we
need a powerful pruning criteria to prune unpromising
candidates in the mining process as many as possible,
while at the same time guaranteeing the completeness
and correctness of the top-k answer graphs.

Second, for each candidate graph g, we need to
obtain its support supp(g) and joint support supp(g, q)
in order to compute its correlation φ(g, q). The joint
support supp(g, q) can be obtained at a relatively low
cost from the smaller projected database; however,
computing supp(g) is in general expensive (even though
we may obtain supp(g) through a querying operation
using a graph index such as [6]). Therefore, we need an
effective correlation checking mechanism to determine
whether a candidate graph is a top-k answer without
obtaining its support.

Finally, since the search space of the problem is
prohibitively large, we need to develop useful rules for
candidate exploration so that the search can be di-
rected more quickly to those potentially high-correlative
graphs.

4.1 Key Techniques When mining FGs from the
projected database, we maintain a queue of current top-
k answer graphs discovered so far, which is denoted as
Qcur . Each graph g ∈ Qcur also has a corresponding
correlation value φ(g, q). The graphs in Qcur are sorted
in the descending order of their φ values. The φ value
of the k-th graph in Qcur is also denoted as φmin . For
each newly discovered candidate graph g, its correlation

value φ(g, q) should be at least φmin ; otherwise, g is not
a top-k answer graph and can thus be pruned.

During the mining process in the projected database
Dq, the support of a candidate graph g in the projected
database, i.e., supp(g;Dq), can be obtained. Therefore,
we can also obtain the value of the joint support of g and
q wrt the whole database D by the following equation:

(4.2) supp(g, q) = supp(g;Dq) · supp(q).

We now discuss a checking mechanism which can
effectively determine whether a candidate graph is a
potential top-k answer graph. More specifically, we
derive an upper bound on the φ value that a candidate
graph g can achieve given its joint support supp(g, q).

Lemma 4.1. Given a candidate graph g and its joint
support supp(g, q), the correlation φ(g, q) achieves the
following maximum value when supp(g) = supp(g, q):

(4.3) φmax (g) =

√

(1 − supp(q))supp(g, q)

supp(q)(1 − supp(g, q))
.

Proof. When computing φ(g, q) by Eq. (3.1), both the
values of supp(q) and supp(g, q) are fixed. By Property
3.1, φ(g, q) is monotonically decreasing with supp(g).
Since supp(g) ≥ supp(g, q), it follows that φ(g, q)
achieves its maximum value when supp(g) = supp(g, q).
The above φmax (g) thus follows by replacing supp(g)
with supp(g, q) in Eq. (3.1). 2

According to Lemma 4.1, we can compute the
maximum correlation φmax (g) for each candidate graph
g once it is mined from the projected database. Based
on Lemma 4.1, we derive the following theorem, which
can be utilized as an effective checking mechanism to
quickly prune the unqualified candidate graphs without
knowing their support values in D.

Theorem 4.1. A candidate graph g can be safely
pruned if φmax (g) < φmin .

We further investigate the property of φmax (g) in
order to achieve more pruning as well as to obtain a
pruning criteria for the mining process.

Lemma 4.2. Given two candidate graphs g1 and g2, if
supp(g1, q) ≥ supp(g2, q), then φmax (g1) ≥ φmax (g2).

Proof. The lemma follows since φmax (g) is monotoni-
cally increasing with supp(q, g) by Eq. (4.3). 2

By Lemma 4.2, we can determine whether it is
necessary to explore the branch rooted at g in the search
tree. Once we prune a graph g by Theorem 4.1, i.e.,



φmax (g) < φmin , we can safely prune all the supergraphs
of g. This is simply because the supergraphs of g can
only have less φmax than g by Lemma 4.2 and thus can
be pruned since their φmax values are less than φmin

for sure. Based on Lemma 4.2, we further develop a
pruning criteria for the mining process as stated in the
following theorem.

Theorem 4.2. When mining the projected database
Dq, the following function of φmin can be used as a
minimum support threshold:

(4.4) ς(φmin) =
φ2
min

φ2
min · supp(q) + 1 − supp(q)

.

Proof. We only need to prove that given any candidate
graph g, if supp(g;Dq) < ς(φmin), then φ(g, q) <

φmin . By Eq. (4.2), we have supp(g, q) < (ς(φmin) ·
supp(q)). By treating (ς(φmin) · supp(q)) as a joint
support of a graph g′ and plugging it into Eq. (4.3),
the corresponding φmax (g′) exactly equals to φmin .
According to Lemma 4.2, since supp(g, q) < supp(g′, q),
we have φmax (g) < φmax (g′) = φmin . Therefore, we
have proved that φ(g, q) ≤ φmax (g) < φmin and thus
the theorem follows. 2

Theorem 4.2 states a minimum support threshold
that can be used in the process of mining the projected
database without missing any top-k answer graph.
The minimum support threshold is a function of φmin

and the value of φmin increases in the mining process
since we keep on updating the queue Qcur with new
current top-k answers. Therefore, the minimum support
threshold is also increasing and the pruning on the
search space becomes more and more effective.

In the following, we further develop a number of
useful rules that can be applied in the mining process
to facilitate the correlation computation and to achieve
greater pruning.

Rule 4.1. Given a candidate graph g, if g ⊇ q, then
φ(g, q) = φmax (g).

Proof. Since g ⊇ q, we have supp(g) = supp(g, q). By
Lemma 4.1, φ(g, q) = φmax (g). 2

According to Rule 4.1, for each supergraph g of
q mined from the projected database, in order to
compute φ(g, q), we do not need to perform an expensive
querying operation to obtain its supp(g) since φ(g, q)
exactly equals to φmax (g). This saves the correlation
computation time for the supergraphs of q.

Rule 4.2. Given two candidate graphs g1 and g2, if
g1 ⊃ g2 and supp(g1, q) = supp(g2, q), then φ(g1, q) ≥
φ(g2, q).

Proof. Since g1 ⊃ g2, we have supp(g1) ≤
supp(g2). The result φ(g1, q) ≥ φ(g2, q) follows since
φ(g, q) is monotonically decreasing with supp(g) when
supp(g1, q) = supp(g2, q) by Property 3.1. 2

According to Rule 4.2, we know that a CFG in the
projected database always has a higher correlation than
its graphs with the same support values (we call the set
of these subgraphs the closure of a CFG). Therefore,
we can design the following strategy when computing
correlation values: we query the supp(g) for a CFG first
and then determine whether it is necessary to query the
subgraphs in its closure. For a CFG, if it is not added to
Qcur after checking its correlation, we can safely prune
all the subgraphs in its closure by Rule 4.2 and save the
querying time to obtain their support values.

Rule 4.3. Given two candidate graphs g1 and g2, if
g1 ⊃ g2 and supp(g1) is known, the following two
statements are true:

(a) If supp(g2, q) < supp(g1), then φmax (g2) can be
updated as

φmax (g2) = supp(g2,q)−supp(q)supp(g1)√
supp(q)(1−supp(q))supp(g1)(1−supp(g1))

.

(b) If supp(g2, q) < f(supp(g1), φmin), then φ(g2, q) <

φmin , where

f(supp(g), φmin)

= φmin

√

supp(q)(1 − supp(q))supp(g)(1 − supp(g))

+ supp(q)supp(g).

Proof. We first prove Part (a). Since g1 ⊃ g2 and
supp(g1) > supp(g2, q), we have supp(g2) ≥ supp(g1) >

supp(g2, q). In Lemma 4.1, φmax (g2) is obtained by us-
ing supp(g2, q) as the lower bound of supp(g2). Ac-
cording to Property 3.1, φ(g2, q) is monotonically de-
creasing with supp(g2). Since we now have a lower
bound of supp(g2), i.e., supp(g1), which is higher than
supp(g2, q), a tighter φmax (g2) can be obtained by re-
placing supp(g2) with supp(g1) in Eq. (3.1).

We now prove Part (b). It is easy to prove
that the function f is monotonically increasing with
supp(g) when φmin is fixed (we omit the detailed
proof due to limited space). Since g1 ⊃ g2, we
have supp(g1) ≤ supp(g2). We then further have
supp(g2, q) < f(supp(g1), φmin) ≤ f(supp(g2), φmin).
The result φ(g2, q) < φmin thus follows by replacing
supp(g2, q) with f(supp(g2), φmin) in Eq. (3.1). 2

By Rule 4.3(a), after checking the correlation of a
graph g (i.e., supp(g) is known), we can update the φmax



of its subgraph whose joint support is less than supp(g)
to achieve better pruning. On the other hand, in Rule
4.3(b), the condition supp(g2, q) < f(supp(g1), φmin)
also implies that φ(g1, q) < φmin . Therefore, if we
prune a candidate graph g1, we can also prune all
its subgraphs whose joint support values are less than
f(supp(g1), φmin).

Rules 4.2 and 4.3 can be applied to achieve better
pruning for the subgraphs of a given candidate graph.
We now develop the following two rules that work for
supergraphs of a candidate graph.

Rule 4.4. Given two candidate graphs g1 and g2, if
g1 ⊂ g2 and supp(g1) = supp(g1, q), then φ(g2, q) =
φmax (g2).

Proof. Since g1 ⊂ g2 and supp(g1) = supp(g1, q), we
have supp(g2) = supp(g2, q). Therefore, it follows that
φ(g2, q) = φmax (g2) by Lemma 4.1. 2

According to Rule 4.4, if we find a candidate graph
whose support equals to its joint support, we can avoid
querying all its supergraphs since their exact φ values
are essentially their φmax values.

Rule 4.5. Given two candidate graphs g1 and g2, where
g1 ⊂ g2 and supp(g1) is known, if supp(g2, q) ≥
f(supp(g1), φmin), then φ(g2, q) ≥ φmin .

Proof. Since g1 ⊂ g2, we have supp(g1) ≥ supp(g2).
As stated in the proof of Rule 4.3, the function f

is monotonically increasing with supp(g) when φmin

remains the same. Therefore, we have supp(g2, q) ≥
f(supp(g1), φmin) ≥ f(supp(g2), φmin). By replacing
supp(g2, q) with f(supp(g2), φmin) in Eq. (3.1), we have
φ(g2, q) ≥ φmin . 2

Notice that in Rule 4.5, the condition supp(g2, q) ≥
f(supp(g1), φmin) also implies that φ(g1, q) ≥ φmin .
Therefore, Rule 4.5 can be applied as follows: if
we add a candidate graph g1 to Qcur , we can also
add its supergraphs whose joint support values are at
least f(supp(g1), φmin) to Qcur without performing any
querying operation to obtain their support values.

The following example demonstrates how these key
techniques can be applied for search exploration.

Example 4.1. Figure 4 shows an example search tree
(a prefix tree) when mining the projected database Dq.
Each node in the search tree represents a subgraph in
Dq and a child node is a supergraph of its parent node.
When a candidate graph g is mined from Dq, its support
in Dq, denoted as supp(g;Dq), is also obtained. Suppose
that the query graph q corresponds to graph g6. By Rule
4.1, we do not need to compute the exact φ values for
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Figure 4: An Example Search Tree

g7, g8 and g9 which are supergraphs of q, since their
φ values equal to their φmax values. Moreover, φmax

can also be used for early correlation checking. For
example, if we find that φmax (g5) is less than φmin at
the time when it is mined, we can directly prune g5 by
Theorem 4.1. Given φmin , we can compute a minimum
support threshold ς(φmin) for the mining process by
Theorem 4.2. For example, if supp(g11;Dq) is less than
ς(φmin), we can immediately prune the branch rooted
at g11 as indicated in the figure. Suppose that g3 is a
CFG and g1 and g2 are its subgraphs with the same
support in Dq (i.e., g1 and g2 are in the closure of
g3). By Rule 4.2, φ(g3, q) is guaranteed to be higher
than φ(g1, q) and φ(g2, q). Therefore, we can skip the
correlation checking of g1 and g2 until finding its CFG
g3. We then obtain supp(g3) by performing a querying
operation and compute φ(g3, q). After that, we can
explore both directions of g3 by applying Rule 4.3 for
its subgraphs and Rules 4.4 and 4.5 for its supergraphs,
which is shown in Figure 4. 2

4.2 Our Algorithm: TopCor We apply the three
key techniques to devise an efficient algorithm, Top-

Cor, as shown in Algorithm 1. We use a queue, Qcur ,
to keep the current top-k correlative subgraphs with re-
spect to a query q. TopCor mines the top-k answers
from the projected database Dq of q, which can be ob-
tained using a graph index [6]. Then, the mining pro-
cess starts from a graph with a single edge e and invokes
MineTopCor to grow the graph in a depth-first man-
ner by adding one edge at each step. Intuitively, the
mining process conceptually constructs a prefix tree and
thus a valid graph refers to a graph that is represented
as a node in the prefix tree (similar to [29]).

Before we invoke MineTopCor, we first compute
supp(g;Dq) in Dq, which can be used to obtain
supp(g, q) by Eq. (4.2). We apply Theorems 4.1 and
4.2 to determine whether we need to invoke MineTop-
Cor or MineTopCor-1 for a graph g (Line 7 of Algorithm
1, Line 12 of Procedure 2, and Line 1 of Procedure 3).
This step is the key to the mining efficiency since we
can prune all supergraphs that are to be grown from a



Algorithm 1 TopCor

Input: Graph database D, a query q, and an integer k.
Output: The top-k correlative graphs with respect to q.

1. Initialize an empty queue, Qcur , of size k;
2. Obtain Dq;
3. Find the set of distinct edges, E, in Dq;
4. Set φmin and ς(φmin) initially as 0;
5. for each e ∈ E do

6. Obtain supp(e;Dq);
7. if(φmax (e) ≥ φmin and supp(e;Dq) ≥ ς(φmin))
8. Invoke MineTopCor(e);
9. Output the graphs in Qcur ;

Procedure 2 MineTopCor(g)

1. if(g ⊇ q)
2. MineTopCor-1(g); /∗ By Rule 4.1 ∗/

3. else

4. Let G be the set of valid graphs
that are grown from g by adding one edge to g;

5. Compute supp(g′;Dq) for each g′
∈ G;

6. if(g is a CFG)
7. Compute supp(g);
8. if(φ(g, q) ≥ φmin)
9. Push g into Qcur and

refine ς(φmin) by Theorem 4.2;
10. for each g′

∈ G do /∗ Explore supergraph g
′ of g ∗/

11. Apply Rule 4.5 to determine
whether to push g′ into Qcur ;

12. if(φmax (g′) ≥ φmin and supp(g′;Dq) ≥ ς(φmin))
13. if(supp(g) is computed and supp(g) = supp(g, q))
14. MineTopCor-1(g′); /∗ By Rule 4.4 ∗/

15. else

16. MineTopCor(g′);
17. if(supp(g) is not computed)
18. Apply Rules 4.2 and 4.3 to determine

whether supp(g) needs to be computed;
19. if(supp(g) is not computed and φmax (g) ≥ φmin)
20. Compute supp(g);
21. if(φ(g, q) ≥ φmin)
22. Push g into Qcur and

refine ς(φmin) by Theorem 4.2;

Procedure 3 MineTopCor-1(g)

1. if(φmax (g) ≥ φmin) /∗ By Rules 4.1 and 4.4 ∗/

2. Push g into Qcur and
refine ς(φmin) by Theorem 4.2;

3. Grow g by one edge;
4. for each valid graph g′ grown from g do

5. MineTopCor-1(g′);

graph g if φmax (g) < φmin or supp(g;Dq) < ς(φmin).
This pruning is very effective since the pruning power
increases when φmin increases (Lines 9 and 22 of Pro-
cedure 2 and Line 2 of Procedure 3).

To compute φ(g, q), we need both supp(g, q) and
supp(g). However, computing supp(g) is costly since
D is large, while computing supp(g, q) is more efficient
since Dq is in general much smaller. Therefore, we at-
tempt to avoid computing supp(g) as much as possible.

First, Lines 1-2 and Lines 13-14 of Procedure 2
invoke MineTopCor-1 to process the supergraphs of
a graph g. Since φ(g, q) = φmax (g) by Rules 4.1 and
4.4, we can avoid computing supp(g) from D. Line 1
of Procedure 2 invokes a subgraph isomorphism testing;
however, this is avoided in our implementation since we
first start growing the graphs from q in order to fill Qcur

with a set of potentially higher correlative subgraphs. In
this way, we also obtain a higher φmin and ς(φmin) in
an early stage to achieve greater pruning.

Second, we do not compute supp(g) for every graph
g; rather, we only compute supp(g) if g is a CFG.
When supp(g) is computed, we can apply Rule 4.5
to determine whether a supergraph grown from g can
be counted as the current top-k answers (Line 11 of
Procedure 2). If g is not a CFG, we determine whether
it is necessary to compute supp(g) when MineTopCor
returns from processing the supergraph, g′, of g (Lines
17-18 of Procedure 2). First, if supp(g′, q) = supp(g, q)
and g′ is not in Qcur , then we can safely prune g by Rule
4.2. Second, if supp(g, q) < f(supp(g′), φmin), then we
can safely prune g by Rule 4.3(b). Third, if supp(g′) >

supp(g, q), then we can refine φmax (g) by Rule 4.3(a).
Thus, we compute supp(g) only if g is not pruned and
φmax (g) ≥ φmin (Lines 19-20 of Procedure 2).

Finally, the top-k answers are obtained as the
graphs in Qcur when the depth-first mining process
terminates.

5 Performance Evaluation

In this section, we evaluate the performance of our
algorithm. We compare our algorithm, TopCor, with
CGSearch [11], which is the only existing work that
finds the set of correlative graphs for a given query, with
respect to a user-specified correlation threshold θ. For
both TopCor and CGSearch, we use FG-index [6] as the
graph index to obtain the projected database Dq and the
support supp(g) of a candidate graph g. The parameters
in FG-index are set as the default values suggested in
[6]. We run the experiments on a linux machine with
an AMD Opteron 248 CPU and 4GB RAM.

Datasets: We evaluate the performance of our algo-
rithm on both real and synthetic datasets. We use real
datasets from the NCI Open Database and we name
them as NCI datasets. The NCI datasets contain the
compound structures of cancer and AIDS data (detailed
characteristics of the data can be found from their web-



site1), and we extract six datasets that consist of 10K,
20K, 40K, 60K, 80K, and 100K graphs, respectively. We
also generate four synthetic datasets2 of 100K graphs
that have average densities3 of 0.05, 0.1, 0.15 and 0.2,
respectively, because the average density of the graphs
in the NCI datasets is only 0.1.

Query-sets: For each dataset, we randomly generate
four sets of queries, F1, F2, F3 and F4, each of which
contains 100 query graphs with support values ranging
in [0.001, 0.005], (0.005, 0.01], (0.01, 0.03] and (0.03, 1).
Assume that commonness is related to the support
value, these query-sets correspond to very rare, rare,
rare-to-common, common queries. But for clarity of
presentation (there are 8 lines in a figure otherwise), we
combine the four query-sets to represent a more general
set of queries for the experiments in Sections 5.3-5.5.

5.1 Effectiveness of Three Key Techniques We
first assess the effectiveness of the three key techniques
in TopCor by disabling each of them in TopCor. We
compute the top-10 answers on the NCI dataset with
100K graphs. Table 1 reports the average query re-
sponse time and peak memory consumption for discov-
ering the top-10 answers, for the query-set F3 (only the
complete version of TopCor is able to obtain the results
for F1 and F2). The result shows that without applying
either Theorem 4.1 or 4.2, the algorithm immediately
becomes infeasible. This justifies that both the corre-
lation checking mechanism by φmax and the pruning
criteria for the mining process by ς(φmin) are essential
to the efficient discovery of top-k answers. In addition,
applying Rules 4.1-4.5 also tremendously speeds up the
mining process by over an order of magnitude. Thus,
the result clearly demonstrates the significance of the
three key techniques in TopCor.

Table 1: Effectiveness of Pruning in TopCor
Response Peak

Time Memory

TopCor 7.14 sec 65 MB

Without applying Theorem 4.1 > 3 hr > 1 GB

Without applying Theorem 4.2 > 3 hr > 1 GB

Without applying Rules 4.1-4.5 230 sec 70 MB

5.2 Performance on Different Query-Sets We
now test the performance of TopCor for processing
queries with different support ranges, corresponding to
very rare, rare, rare-to-common, common queries. We
use the NCI dataset with 10K graphs and set k = 50.

1http://cactus.nci.nih.gov/ncidb2/download.html.
2We use GraphGen: http://www.cse.ust.hk/graphgen.
3Density of a graph = Size of the graph

Size of its complete graph
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Figure 5: Performance on Different Query-Sets

CGSearch for top-k: To use CGSearch for computing
the top-k answers, we need to specify the value of θ

corresponding to the top-k answers. However, it is
difficult to guess the correct θ for different queries.
Thus, in our experiments, we set θ = (1 − s ∗ i), where
i = 1, 2, 3, . . . and s is the amount that θ is decreased
for each step i, until the top-k answers are found by
CGSearch. We also remark that it may seem natural to
apply the binary search strategy to find the best value
of θ. However, it does not really work because the set
of answer graphs at a low value of θ covers that at a
high θ. Once a low value of θ is tested, there is no need
to test higher θ values. Moreover, a low θ can easily
result in long processing time for CGSearch, which is
definitely undesirable.

We report the results for s = 0.05, 0.1, and 0.2,
which give the best performance of CGSearch among
other values of s. We denote them as CGSearch(s)
in the figures. Figure 5 presents the average query re-
sponse time and peak memory consumption of TopCor
and CGSearch(s). The results show that TopCor is over
an order of magnitude faster than CGSearch(s) for pro-
cessing all query-sets, and also consumes significantly
less memory, especially for queries of low support.

The results also show that TopCor uses more time
and memory for processing F1 queries than others. This
is because a query q ∈ F1 has a small supp(q), which
means a small ς(φmin) according to Eq. (4.4). There-
fore, F1 queries have a much larger number of candi-
dates due to the small value of the pruning threshold
ς(φmin), which results in longer processing time. How-



ever, the same trend is also observed for CGSearch(s).
We also observe an unusual trend on the perfor-

mance of processing F4 queries using both TopCor and
CGSearch(s). Our examination finds that many F4

queries have very high support and hence a much larger
projected database (some are even close to the entire
database), which results in a higher cost of computing
the support of a graph in the projected database.

Among the three values of s for CGSearch(s),
we find that s = 0.1 gives the best average per-
formance. This is because s = 0.05 results in too
many iterations in running CGSearch to obtain the
top-k answers, while s = 0.2 lowers the value of θ

too rapidly and returns much more than k answers.
We find that CGSearch(0.05) is only more efficient
than CGSearch(0.1) for a small subset of the queries
and therefore, on average, CGSearch(0.05) is always
worse than CGSearch(0.1). CGSearch(0.2) is some-
times more efficient but can also be much worse than
CGSearch(0.1); in particular, CGSearch(0.2) for pro-
cessing F1 is not reported in Figure 5 because the result
is exponentially worse (even drawn in the logarithmic
scale). Thus, for the subsequent experiments, we only
report the results for CGSearch(0.1).

The results of this experiment clearly demonstrate
the advantages of an algorithm that finds the top-k
correlative graphs automatically and directly, without
the need of any user-specified thresholds that can be
hardly determined for different queries and datasets.

5.3 Performance on Varying k We then assess
the performance of varying the value of k from 20 to
200. We use the NCI dataset with 10K graphs and
combine the four query-sets, F1 to F4, to represent a
more general set of queries.

We present the average query response time
and peak memory consumption of both TopCor and
CGSearch(0.1) in Figure 6. The results show that
TopCor is over an order of magnitude faster than
CGSearch(0.1) and also consumes significantly less
memory for values of k. TopCor is also more stable than
CGSearch(0.1) since the difference in performance be-
comes more obvious when k becomes bigger. This result
is because CGSearch needs to find the right θ step-wise,
while TopCor finds the top-k answers directly and can
more effectively prune the unpromising search space.

5.4 Performance on Varying Dataset Sizes We
now evaluate TopCor by varying the size of the NCI
dataset from 20K to 100K graphs. We set k = 50 and
also combine the four query-sets, F1 to F4.

Figure 7 reports the average query response time
and peak memory consumption of both TopCor and
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Figure 7: Performance on Different Dataset Sizes

CGSearch(0.1) for different dataset sizes. The results
are consistent with those of the previous experiments
that TopCor is over an order of magnitude faster
than CGSearch(0.1) and also consumes significantly less
memory, for all dataset sizes.

However, we notice that there is an upheaval in the
memory consumption at the dataset size of 60K graphs.
We examine the queries and find that for one particular
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Figure 8: Performance on Different Graph Densities

query, the top-50 answers span over a wide range of
φ values and hence both TopCor and CGSearch(0.1)
generate a much larger number of candidates than usual,
which results in much higher memory consumption.
Since we record the peak memory consumption rather
than the average, it creates the upheaval in the curve
for memory consumption in Figure 7(b). This abnormal
result is not revealed in Figure 7(a), for both TopCor
and CGSearch(0.1), because the query response time is
averaged over all the queries.

5.5 Performance on Varying Graph Densities

We now assess the effect of graph density on the
performance of TopCor using the synthetic datasets.
We set k = 50 and use the combined query set.

We report the performance for both TopCor and
CGSearch(0.1) in Figure 8. The results show that
TopCor is very stable in response time, while that of
CGSearch(0.1) varies greatly. CGSearch(0.1) is not sta-
ble because it cannot effectively prune the unpromising
search space for finding the top-k answers as does Top-
Cor. As a result, TopCor outperforms CGSearch(0.1)
by about an order of magnitude on average.

The memory consumption of TopCor and
CGSearch(0.1) follows a similar trend. Moreover,
the difference in the memory consumption of TopCor
and CGSearch(0.1) for processing the synthetic datasets
is not as big as for processing the real datasets. One
reason is that there are less abnormal queries for the
synthetic datasets as we observe for the real datasets.

In general, the algorithms consume more memory

when the graph density increases. The exception that
the memory consumption is not the lowest when the
density is equal to 0.05 is because at the density of
0.05, the top-50 correlative graphs have much lower φ

values than those of the other densities. Since a lower φ

implies a lower pruning threshold ς(φmin) (as indicated
in Eq. (4.4)) and hence a larger number of candidates,
and the memory consumption increases as a result.

6 Related Work

Correlation mining has been widely studied in vari-
ous contexts. In market-basket data, many studies
[4, 15, 14, 16, 27, 26, 25] aimed to discover correlative
patterns that are formed by basket items. A number of
correlation measures were proposed or adopted to de-
fine different correlative patterns, including the χ2 test
[4, 15], the interest measure [4], the m-pattern measure
[14], any-confidence [16], all-confidence (or equivalently
h-confidence) [16, 27], bond [16], Pearson’s correlation
coefficient [26, 25], etc. All the above work set a thresh-
old θ for the correlation measure, except [25], which
studied the top-k mining. Our work is incomparable to
[25] due to different nature of market-basket data and
graph data. In stream data [22, 19], lagged correlation
based on Pearson’s correlation coefficient was proposed
to study the relationship between time series. In mul-
timedia data [18], correlation between multimedia ob-
jects was studied for the task of automatic captioning
of media data. In the context of graph databases, there
are only two existing studies on correlation mining, the
stepwise correlated pattern mining in [5] and CGSearch
in [11] with its extended version in [12]. Although the
work of [5] also studied top-k correlated graph min-
ing, their algorithm is specifically designed for graph
classification by investigating the correlation of a sub-
graph with a class attribute. Our work, on the other
hand, studies the correlation between a subgraph with
any given query graph, which is more general. As for
CGSearch, we have shown in the experiments that our
TopCor algorithm significantly outperforms it.

Our work is also related to graph pattern mining,
which mainly focuses on mining FGs [10, 13, 28, 8]
and its compact representations, CFGs [29] and MFGs
[9, 24]. There are two typical search strategies of
the mining algorithms: breadth-first search (also called
Apriori-like levelwise search) [10, 13] and depth-first
search [28, 8, 29, 9, 24]. These studies discovered
the whole set of frequent subgraphs from the database
without investigating their inter-relationship. In this
paper, we study the correlation between subgraphs,
which reveals their occurrence dependencies. Frequent
subgraph mining is used as a module in our algorithm
to explore candidate graphs.



7 Conclusions

In this paper, we study the problem of mining top-
k correlative graph patterns. We develop three key
techniques to address the problem. First, we devise a
correlation checking mechanism, by which we determine
whether a candidate is a potential top-k answer or
is an unpromising result that can be pruned, and
more effectively, pruned together with its supergraphs.
Second, we derive a pruning criteria for the mining
process which is dynamically refined with the current
top-k answers, thereby allowing us to quickly prune a
large portion of the search space. Third, we develop
a set of useful rules for efficient candidate exploration,
by which we minimize the execution of the expensive
operations during the mining process. We integrate the
three key techniques and propose an efficient algorithm,
TopCor, for mining the top-k correlative graphs. Our
extensive experiments show that all these three key
techniques are essential to the efficiency of computing
the top-k answers. We also show that TopCor is
significantly more efficient than the threshold-based
correlative graph mining algorithm, CGSearch, for a
wide range of query sets, database sizes, values of k,
and graph densities.
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