Top-k Exploration of Query Candidates for Efficient
Keyword Search on Graph-Shaped (RDF) Data*

Thanh Tran ', Haofen Wang 2, Sebastian Rudolph *, Philipp Cimiano *

L nstitute AIFB,

Universitdt Karlsruhe, Germany
{dtr,sru}@aifb.uni-karlsruhe.de

2Department of Computer Science & Engineering
Shanghai Jiao Tong University, Shanghai, 200240, China

whfcarter@apex.sjtu.edu.cn

3Web Information Systems
TU Delft, PO Box 5031, 2600 GA Delft, The Netherlands
p.cimiano@tudelft.nl

Abstract— Keyword queries enjoy widespread usage as they
represent an intuitive way of specifying information needs.
Recently, answering keyword queries on graph-structured data
has emerged as an important research topic. The prevalent
approaches build on dedicated indexing techniques as well as
search algorithms aiming at finding substructures that connect
the data elements matching the keywords. In this paper, we
introduce a novel keyword search paradigm for graph-structured
data, focusing in particular on the RDF data model. Instead
of computing answers directly as in previous approaches, we
first compute queries from the keywords, allowing the user to
choose the appropriate query, and finally, process the query
using the underlying database engine. Thereby, the full range
of database optimization techniques can be leveraged for query
processing. For the computation of queries, we propose a novel
algorithm for the exploration of top-%£ matching subgraphs. While
related techniques search the best answer trees, our algorithm
is guaranteed to compute all £ subgraphs with lowest costs,
including cyclic graphs. By performing exploration only on
a summary data structure derived from the data graph, we
achieve promising performance improvements compared to other
approaches.

I. INTRODUCTION

Query processing over graph-structured data has attracted
much attention recently, which can be explained by the mas-
sive availability of such type of data. For instance, XML
data can be represented as graphs. In many approaches, even
databases have been treated as graphs, where tuples correspond
to vertices and foreign relationships to edges (see [1], [2]).

A data model that explicitly builds on graphs is RDF!, a
framework for (Web) resource description standardized by the
W3C. RDF appears to have a great momentum on the web and
an increasing amount of data is becoming available. The RDF
model has also attracted attention in the database community.

*This work has been supported by the European Commission under contract
IST-FP6-026978 X-Media, and by the Deutsche Forschungsgemeinschaft
(DFG) under the ReaSem project.

Uhttp://www.w3.org/RDF/

Recently, many database researchers have proposed solutions
for the efficient storage and querying of RDF data (e.g. [3],
(4], [5D.

In this paper, we present an approach for keyword search on
graph-structured data, RDF in particular. Query mechanisms
that are accessible to ordinary users have always been an
important goal of database research. Relaxed-structure query
models aim at facilitating the construction of complex queries
(SQL or XQuery) by supporting relaxed patterns as well as
structure-free query components. Labelled query models do
not require any knowledge about the structure as the user
simply associates values with schema elements called “labels”.
At the end of the spectrum, keyword search does not require
any knowledge about the query syntax or the schema.

Much work has been carried out on keyword search over
tree-structured data (e.g. [6], [7], [8], [9], [10], [11], [12], [13])
as well as graph-structured data (e.g. [2], [14], [1]). The basic
idea is to map keywords to data elements (keyword elements),
search for substructures on the data graph that connect the
keyword elements, and output the top-k substructures com-
puted on the basis of a scoring function. This task can be
decomposed to 1) keyword mapping, 2) graph exploration, 3)
scoring and 4) top-k computation.

In many approaches ([1], [14]), an exact matching between
keywords and labels of data elements is performed to obtain
the keyword elements. For the exploration of the data graph,
the so-called distinct root assumption is employed (see [2],
[1], [14]). Under this assumption, only substructures in the
form of trees with distinct roots are computed and the root
element is assumed to be the answer. The algorithms for
finding these answer trees are backward search ([1]) and
bidirectional search ([14]). For top-k processing and ranking,
different scoring functions have been proposed (see [6], [9],
[8], [11], [15], [10], [12], [16]), where metrics range from path
lengths to more complex measures adopted from IR. In order
to guarantee that the computed answers indeed have the best



scores, both the lower bound of the computed substructures
and the upper bound of the remaining candidates have to be
maintained. Since book-keeping this information is difficult
and expensive, current algorithms compute the best answers
only in an approximate way (see [1], [14]).

In our approach, IR concepts are adopted to support an
imprecise matching that incorporates syntactic and semantic
similarities. As a result, the user does not need to know the
labels of the data elements when doing keyword search. We
now present our main contributions to keyword search on
graph-structured data:

« Keyword Search through Query Computation While
the mentioned approaches interpret keywords as neigh-
bors of answers, we interpret keywords as elements
of structured queries. Instead of presenting the top-k
answers, which might actually belong to many distinct
queries, we let the user select one of the top-k queries to
retrieve all its answers. Thus, the keyword search process
contains an additional step, namely the presentation of
structured queries. We consider this step as beneficial
because queries can be seen as descriptions, and can
thus facilitate the comprehension of the answers. Also,
refinement can be made more precisely on the structured
query than on the keyword query.

« Algorithms for Subgraph Exploration Our main techni-
cal contribution is a novel algorithm for the computation
of the top-k subgraphs. In current approaches, keywords
are exclusively mapped to vertices. In order to connect
the vertices corresponding to the keywords, current algo-
rithms aim at computing tree-shaped candidate networks
([10], [6], [9]) or answer trees ([1], [14], [2]). Since
keywords do not necessarily correspond to answers ex-
clusively in our approach, they might also be mapped
to edges. As a consequence, substructures connecting
keyword elements are not restricted to trees, but can be
graphs in general. Thus, algorithms as applied for tree-
exploration such as breadth-first search (e.g. [6], [9]),
backward search [1] or bidirectional search [14] are not
sufficient.

« Efficient and Complete Top-£ through Graph Summa-
rization So far, algorithms for top-k retrieval assume that
the computed substructures connecting keyword elements
represent trees with distinct roots (e.g. [1], [2], [14]).
Since book-keeping the information required for top-
k processing is difficult and expensive, existing top-k
algorithms (see [14], [1]) can not provide the guarantee
that the results indeed have the best scores. This problem
is exacerbated when searching for subgraphs. In order
to guarantee that the results are indeed top-k subgraphs,
we introduce more complex data structures to keep track
of the scores of all explored paths and of all remaining
candidates. For efficiency reasons, a strategy for graph
summarization is employed that can substantially reduce
the search space. This means that the exploration of
subgraphs does not operate on the entire data graph but a
summary containing only the elements that are necessary

to compute the queries.

We have achieved encouraging performance in comparison
with previous approaches ([14], [2]). The effectiveness studies
show that the generated queries match the meaning intended
by the user very well. The user feedbacks on the demo sys-
tem available at http://km.aifb.uni-karlsruhe.de/SearchWebDB/
suggest that the presentation of structured queries is valuable
in terms of comprehension and enables more precise refine-
ment than using keywords.

The rest of the paper is organized as follows. Section II
introduces the problem tackled by our approach. Section III
provides an overview of the off-line and online computation
required in our approach. Details on the computation of
the indices, the scores and the matching subgraphs are then
provided in Section IV, Section V and Section VI, respectively.
Section VII presents evaluation results. Finally, we survey the
related work in Section VIII and conclude in Section IX.

II. PROBLEM DEFINITION

We assume that users formulate their information needs
using some user query language Qp. Query engines support
queries specified in a system query language Qg. When these
two languages are different, a transformation is necessary
so that the user query can be processed by the system’s
query engine. We deal with such scenarios where queries
formulated by the user are simply sets of keywords and the
query engine supports conjunctive queries only. We elaborate
on this keyword search problem in what follows:

Data For both the translation of Qp to Qg and the actual
processing of Qg, we make use of the data graph G, a RDF
data model containing triples.

Definition 1: A data graph G is a tuple (V, L, E) where

e V is a finite set of vertices. Thereby, V' is conceived
as the disjoint union Vg W Vo W Vi, with E-vertices Vg
(representing entities), C-vertices Vi (classes), and V-
vertices Vi, (data values).

e L is a finite set of edge labels, subdivided by L = Lp W
L 4 W {type, subclass}, where Ly represents inter-entity
edges and L4 stands for entity-attribute assignments.

o E is a finite set of edges of the form e(vy,vs) with
v1,v2 € V and e € L. Moreover, the following restric-
tions apply:

— e € Lp if and only if vy,vs € Vg,

— ec€ Ly if and only if v; € Vg and vy € Vy,

— e = type if and only if v; € Vg and vy € Vo, and
— e = subclass if and only if vy, vy € V.

The two predefined types of edges, i.e. type and subclass,
have a special interpretation. The former captures the class
membership of an entity and the latter is used to define the
class hierarchy. Vertices corresponding to entities are identified
by specific IDs, which in the case of RDF data are so called
Uniform Resource Identifiers (URIs). As identifiers for other
elements we use class names, property names, attribute names
and values, respectively.

As mentioned, RDF is relevant in practice because of its
widespread adoption. Figure 1a shows an example RDF graph,



Sub. Prop. ObJ,‘ Example Keyword Query

pro2URI | type Project 2006 cimiano aifb

prolURI type Project Example Conjunctive Query

prolURIL name X-Media (x,y,2). type(x,Publication) A year(x,2006)

publURI type Publication A author(x,y) A name(y, P. Cimiano)

publURI author relURI A worksAt(y, z) A name(z, AIFB)

publURI author re2URI Example SPARQL Query

publURI year 2006 SELECT ?x,?y,?z WHERE {

pub2URI type Publication ?x type Publication. ?x year 2006.

relURI type Researcher ?x author ?y. ?y name ’P. Cimiano .

rel URI name Thanh Tran ?y worksAt ?z. ?z name ’AIFB’}

re[URI worksAt | inst1URI Example SQL Query

1e2URI type Researcher SELECT A.s., D.s., F.s.

re2URI name P. Cimiano FROM Ex AS A, Ex AS B, Ex AS C,

1e2URI worksAt | instTURT Ex AS D, Ex AS E, Ex AS F

instTURT type Tnsitute WHERE A.p. = type

TnstIURT name AIEB AND A.o. = Publication AND/’Xs = B.s.

inst2URI type Institute AND B.p. = year AND B.o. = "2006

Institute subclass Agent AND B.s. = C.s. AND C.p. = author

Researcher | subclass Person AND C.o. =D.s. AND D.p. = name -
AND D.s. = E.s. AND D.o. = 'P. Cimiano’

Person subclass Ag'ent AND E.p. = worksAt AND E.o. = F.s.

Agent subclass Thing AND F.p. = name AND F.o = 'AIFB’

Fig. 1.

containing data about publications, researchers, the institutes
they work for etc. Technically, RDF data is often stored in a
relational database. For instance, exactly one relational table
of three columns can be used to store entities’ properties and
attributes (such as in Jena [3], Sesame [17] or Oracle [4]).
In our example, the RDF graph is translated to data of the
table shown in Fig. 1b. Recently, more advanced techniques
such as the property table (c.f. [3], [4]) and vertical partitioning
that leverage column-oriented databases have greatly increased
performance of storage and retrieval of RDF data [5]. For
instance, the required number of self-joins, as apparent in the
SQL query shown in Fig. lc, can be reduced substantially
using these techniques.

Queries In our scenario, the user query Qp is a set of
keywords (k1, ..., k;). The system queries Qg are conjunctive
queries defined as follows:

Definition 2: A conjunctive query is an expression of
the form (x1,...,2k).3Tk41,... Tm. A1 A ... A Ay, where
z1,...,x) are called distinguished variables (those which will
be bound to yield an answer), xg+1,...,ZT, are undistin-
guished variables (existentially quantified) and Ay, ..., A, are
query atoms. These atoms are of the form P(vq,v2), where
P is called predicate, v, vo are variables or constants.

While variables and constants correspond to identifiers
of vertices, predicates correspond to labels of edges in the
considered data graph. Conjunctive queries have high practical
relevance because they cover a large part of queries issued
on relational databases and RDF stores. That is, many SQL
and SPARQL queries can be written as conjunctive queries
(cf. example query shown in Fig. 1c). SPARQL? is a query
language for RDF data recommended by the W3C.

Answers Since variables can interact in an arbitrary way,
a conjunctive query ¢ as defined above can be seen as a
graph pattern. Such a pattern is constructed from a set of
triple patterns P(vy,vy) in which zero or more variables might
appear. A solution to ¢ on a graph G is a mapping p from the

Zhttp://www.w3.org/TR/rdf-sparql-query/

a) Example RDF Data Graph b) Single Table Schema c) Example Queries

variables in the query to vertices e such that the substitution
of variables in the graph pattern would yield a subgraph of
G. The substitutions of distinguished variables constitute the
answers, which are defined formally as follows:

Definition 3: Given a data graph G = (V,L,E) and a
conjunctive query ¢, let Varg (resp. Var,,) denote the set of
distinguished (resp. undistinguished) variables occurring in gq.
Then a mapping i : Vary — V from the query’s distinguished
variables to the vertices of G will be called an answer to g,
if there is a mapping v : Var, — V from ¢’s undistinguished
variables to the vertices of G such that the function

vi— u(v)  if v e Vary
wiVargUVar, UV - V< ve—uv(v) ifveVar,
Vv ifveV

satisfies P(u'(v1), 1/ (v2)) € E for any P(vq,v2) in q.

Typically, search on RDF data starts with a SPARQL query
such as shown in Fig. lc, which is evaluated by the SPARQL
query engine. Using standard rewriting techniques (see [3],
[17], [4]), the engine translates the query to SQL and returns
the answers as computed by the underlying database engine.

Problem We are concerned with the computation of con-
junctive queries from keywords using graph-structured data.
We want to find the top-ranked queries, where the ranking is
produced by the application of a cost function C : ¢ — c. For
any given query ¢, C assigns a cost that captures the degree
to which a query g matches the user’s information need.

ITII. OVERVIEW OF THE APPROACH

We start with an overview of the different steps involved in
our process of keyword search, which is depicted in Figure 2.
We will partially illustrate the whole process on the basis of
a running example for the query ‘X-Media Philipp Cimiano
publications’.

The crucial challenge we address is to infer a structured
query from an information need expressed in the form of
keywords. For example, the above keyword query asks for



Query Computation

Keyword

1. Keyword-to-element Mapping . 3. Top-k Graph Exploration | Conjunctive
Queries

2. Augmentation of Graph Index 4. Element-to-query Mapping | ~ Queries

I I
Keyword Index Graph Index

|
RDF Summary Graph
Summarization / Scoring

RDF Data Graph
Data Preprocessing

Fig. 2. Data Preprocessing and Query Computation

‘publications’ that are in the hasProject relation with X-
Media’ and having author ‘Philipp Cimiano’. However,
there is no reference to the relations hasProject nor to
author in the query. These connections need thus to be
inferred to interpret the query correctly. In our previous work
[18], [19], we rely on the graph schema to infer such missing
connections. In this paper, we are concerned with the challenge
of doing this efficiently and propose an approach in which the
best interpretations of the query are computed using a top-k
algorithm. We detail the different steps of the approach below.

Query Computation In order to compute queries, the
keywords are first mapped to elements of the data graph.
From these keyword elements, the graph is then explored
to find a connecting element, i.e. a particular type of graph
element that is connected to all keyword elements. The paths
between the connecting element and a keyword element are
combined to construct a matching subgraph. For each sub-
graph, a conjunctive query is derived through the mapping
of graph elements to query elements. In particular, based on
the structural correspondence of triple patterns of a query and
edges of the data graph, vertices are mapped to variables or
constants, and edges are mapped to predicates. The process
continues until the top-k queries have been computed.

Preprocessing In order to perform these steps in an efficient
way, we preprocess the data graph to obtain a keyword
index that is used for the keyword-to-element mapping. For
exploration, a graph index is constructed, which is basi-
cally a summary of the original graph containing structural
(schema) elements only. At the time of query processing, this
index is augmented with keyword elements obtained from the
keyword-to-element mapping. The augmented index contains
sufficient information to derive the structure as well as the
predicates and constants of the query. Since we are interested
in the top-k queries, graph elements are also augmented with
scores. While scores associated with structure elements can be
computed off-line, scores of keyword elements are specific to
the query and thus can only be processed at query computation
time.

Running Example In Fig. 3a, the augmented summary
graph is shown for the example RDF data graph in Fig. la.
This summary graph contains both the structural information
computed during preprocessing (rendered gray) and the query
specific elements added at query computation time (shown in
white). In particular, the keywords of the query given in Fig. Ic

are mapped to corresponding elements of the augmented sum-
mary graph, i.e. the vertices v2008, Va1rB and vy, ... For each
of these keyword elements, the score as computed off-line is
combined with the matching score obtained from the keyword-
to-element mapping. The graph exploration starts from these
three vertices (corresponding to keywords in the query), result-
ing in three different paths as shown by the different arrow
types in Fig. 3b (note that the arrows indicate the direction of
the exploration, not the direction of the edges). Among them,
there are three paths that meet at the connecting element n.,
namely p1 (AIFB,...,n.), p2(Philipp Cimiano, ...,n.) and
p2(2006, year,n.) (rendered bold in Fig. 3b). These three
paths are merged, and the resulting matching subgraph is
mapped to the conjunctive query presented in Fig. 1c and
illustrated in Fig. 3c. Note that in this case, the matching
subgraph is actually a tree. However, keywords elements might
be edges that form a cyclic graph. The matching substructure
is also very likely to be a graph when keywords are mapped to
edges that are loops. We will see that the augmented summary
graph might contain many loops.

IV. INDEXING GRAPH DATA

This section describes the off-line indexing process where
graph data is preprocessed and stored in specific data structures
of a keyword and a graph index.

A. The Keyword Index

In our approach, keywords entered by the user might refer
to data elements (constants) or structure elements of a query
(predicates). From the data graph point of view, keywords
might refer to C-vertices (classes), E-vertices (entities) or V-
vertices (data values) and edges. Thus, in contrast to other
approaches, keywords can also be interpreted as edges in
our approach. We decided to omit E-vertices in the indexing
process as it can be assumed the user will enter keywords
corresponding to attribute values such as a name rather than
using the verbose URI of an E-vertex to refer to the entity in
question.

Conceptually, the keyword index is a keyword-element
map. It is used for the evaluation of a multi-valued function
f i — 2VeWWUYE which for each keyword 4, returns the
set of corresponding graph elements K, (keyword elements).
In the special cases where the keyword corresponds to an
V-vertex or an A-edge, more complex data structures are
required. In particular, for a V-vertex, a data structure of the
form [V-vertex, A-edge, (C-vertexy,...,C-vertex,)] is returned.
Elements stored in this data structure are neighbors of the
V-vertex, namely those connected through the edges rype(E-
vertex, C-vertex,) and A-edge(E-vertex, V-vertex). Likewise,
for an A-edge(E-vertex, V-vertex), the data structure [A-edge,
(C-vertexi,...,C-vertex, )] is used to return also the neighbor’s
class memberships. Using these data structures, query-specific
keyword elements can be added to the keyword index on-the-
fly (see Section IV-B, Def. 5).

In order to recognize also keywords that do not exactly
match labels of data elements, the keyword-element map is



Philipp
2005

/ 1
/ name |

AIFB

/

i
/ name |
year

hasProject worksAt

Publication

subclass subclass

Agent @
v subclass

subclass

Fig. 3.

implemented as an inverted index. In particular, a lexical
analysis (stemming, removal of stopwords) as supported by
standard IR engines (c.f. Lucene®) is performed on the labels
of elements in Vo WVy WE in order to obtain terms. Processing
labels consisting of more than one word might result in
many terms. Then, a list of references to the corresponding
graph elements is created for every term. Further, semantically
similar entries such as synonyms, hyponyms and hypernyms
are extracted from WordNet [20] for every term. Every such
entry is linked with the list of references of the respective
term. Thus, graph elements can be returned also in the cases
where the given keyword is semantically related with (but
does not necessarily exactly match) a term extracted from the
elements’ labels. In order to incorporate syntactic similarities,
the Levenshtein distance is used for an imprecise matching of
keywords to terms.

Thus, the keyword-element map is in fact an IR engine,
which lexically analyzes a given keyword, performs an im-
precise matching, and finally returns a list of graph elements
having labels that are syntactically or semantically similar.

B. The Graph Schema Index

The graph index is used for the exploration of substructures
that connect keyword elements. In current approaches, this
graph index is simply the entire data graph (see [1],[14],[2]).
Thus, exploration might be very expensive when the data graph
is large. As opposed to these approaches, we are interested in
computing queries, i.e. we want to derive the query structure
from the edges and the constants (variables) from the vertices
of the computed subgraphs. This type of vertices can be
omitted when building the graph index. To achieve this, we
introduce the summary graph, which intuitively captures only
relations between classes of entities:

Definition 4: A summary graph G’ of a data graph G =
(V. = V,L,E) is a tuple (V',L', E") with vertices V' =
Vo U {Thing}, edge labels L' = Lpr W {subclass}, and
edges F’ of the type e(vy,v9) with v1,v3 € V' and e € L'.
In particular, every vertex v € Vo C V' represents an
aggregation of all the vertices v € V having the type v/,
ie. [v'] := {v|type(v,v") € E} and Thing represents the
aggregation of all the vertices in V' with no given type, i.e.

[Thing] = {v|-3c € Ve with type(v,c) € E}. Accord-
ingly, we have e(v},v5) € E’ if and only if there is an edge
e(vy,v2) € E for some v1 € [vi] and vg € [us].

In essence, we attempt to obtain a schema from the data
graph that can guide the query computation process. The

3http://lucene.apache.org

Philipp
Cimiano
al
i

Philipp
Cimiano,

a) Augmented Summary Graph b) Exploration ¢) Query Mapping

computation of the summary graph follows straightforwardly
from the above definition and is accomplished by a set of
aggregation rules (see our TR [21]), which compute the
equivalence classes [v'] of all nodes belonging to one class
v’ and project all edges to corresponding edges at the schema
level with the result that for every path in the data graph, there
is at least one path in the summary graph (while this is not
the other way round). The summary graph is thus similar to
the data guide concept [22]. It is however not a strong data
guide as there might be several paths in the summary graph
for a given path in the data graph.

C-vertices are preserved in the summary graph because they
might correspond to keywords and are thus relevant for query
computation. Both the dataguide and the summary graph as
defined above can be seen as a schema. In the following, we
define an augmented summary graph that is in fact a mixture
of schema and data elements.

So far, A-edges and V-vertices have not been considered
in the construction of the summary graph. By definition, a
V-vertex has only one edge, namely an incoming A-edge
that connects it with an E-vertex. This means that in the
exploration for substructures, any traversal along an A-edge
ends at a V-vertex. Thus, both A-edges and V-vertices do not
help to connect keyword elements. They are relevant for query
computation only when they are keyword elements themselves.
In order to keep the search space minimal, the summary graph
is augmented only with the A-edges and V-vertices that are
obtained from the keyword-to-element mapping:

Definition 5: Given a set K of keywords, the augmented
summary graph G% of a data graph G consists of G’s
summary graph G’ additionally containing

o e(v',vy) for any keyword matching element v;, where G

contains e(v, v;) and type(v,v’) and

e er(v',value) for any keyword matching element e

where G contains ey (v,?) and type(v,v’) and ¥ is not
a keyword matching element. Thereby, value is an new
artificial node.

In order to construct G’K, we make use of the data
structures resulting from the mapping, namely [V-vertex,
A-edge, (C-vertexy,...,C-vertex,)] and (A-edge, C-vertex).
Using neighbor elements given in this data, edges of the form
A-edge(C-vertex;, V-vertex) are added to G’ for every keyword
matching V-vertex, and an edge of the form A-edge(C-vertex,
Value) is added for every keyword matching A-edge. Note
that only A-edges and V-vertices are added as G’ already
contains the C-vertices.



Using these two indices, keywords that can be interpreted
must correspond to C-vertices, V-vertices or edges of the data
graph. We will discuss how this information can be used
to derive variables, constants and predicates of conjunctive
queries. In order to support access patterns beyond this type
of queries, these two indices can be extended with labels of
additional query operators (e.g. filter conditions).

V. SCORING

The computation process can result in many queries all
corresponding to possible interpretations of the keywords. This
section introduces several scoring functions that aim to assess
the relevance of the computed queries.

The scoring of answers has been extensively discussed in the
database and information retrieval communities (see [15], [10],
[11], [12], [8], [16]). In the context of graph-structured data,
metrics proposed often incorporate both the graph structure
and the label of graph elements. Standard metrics that can
be computed off-line are PageRank (for scoring vertices) and
shortest distance (for scoring paths). A widely used metric
that is computed on-the-fly for a given query is TF/IDF (for
scoring keyword elements).

Instead of answer trees (see [2], [1], [14]), we consider the
subgraphs from which queries will be derived. These graphs
are constructed from a set of paths P. The score of such
a graph is defined as a monotonic aggregation of its paths’
scores. In particular, Cq = > pC)y, is used, where Cp,
and Cg are in fact not scores, but denote the costs. In general,
the cost of a path is computed from the cost of its elements,
ie. Cp, = > _,c,. ¢(n). We will now discuss the metrics we
have adopted to obtain different schemes for the computation
of the path’s cost.

Path Length The path length is commonly used as a basic
metric for ranking answer trees in recent approaches to key-
word queries (e.g. [14], [2]). This is based on the assumption
that the information need of the user can be modelled in terms
of entities which are closely related [23]. Thus, a shorter path
between two entities (keyword elements) should be preferred.
For computing path length, the general cost function for paths
given above can be casted as C)p, = Znepi 1, i.e. the cost of
an element is simply one. Accordingly, the score of a graph
can be computed via C1 =37 p>_,c, 1)

Popularity Score The previous function can be further
extended to exploit structure information in the graph. For this,
weuse C2 =3 p(D_,c,, ¢(n)), where c(n) is an element-

specific cost function. In particular, we define ¢(v) = 1— %

for vertices v and c¢(e) = 1 — % for edges e, where |V|
is the total number of vertices in the summary graph, |vggg|
is the number of E-vertices that have been clustered to a C-
vertex during the construction of the graph index, |E| is the
total number of edges and |eqq4| is the number of original R-
edges that have been clustered to a corresponding R-edge of
the summary graph. These cost functions aim to capture the
“popularity” of an element of the summary graph, measured by

the relative number of data elements that it actually represents.

The higher the popularity, the lower should its contribution be
to the cost of a path. Note that while PageRank can also be
used in this context, this simple metric can be computed more
efficiently for the specific summary graph we employ for query
computation.

Keyword Matching Score A special treatment of the
keyword matchin% elements can be achieved through C5 =
D opieP 2nep; %, where s,,(n) is the matching score of
an element n. This matching score ranges between [0,1] in
case n is a keyword element (corresponding to a keyword)
and is simply set to 1 otherwise.

The higher s,,(n), the lower should be the contribution of
a keyword element to the cost of a path. In our approach,
Sm(n) reflects both syntactic and semantic similarity (by
incorporating knowledge from a lexical resource such as
WordNet [20]) between keywords and labels of graph
elements. If the labels contain many terms, an adoption of
TF/IDF could improve the keyword-to-element mapping.

While the path lengths and the popularity scores can be
computed off-line, the matching scores are query specific
and are thus computed and associated with elements of the
summary graph during query computation. Note that the costs
of individual paths are computed independently, such that if
the paths share the same element, the cost of this element
will be counted multiple times. As noted in [2], this has the
advantage that the preferred graphs exhibit tighter connections
between keyword elements. This is in line with the assumption
that closely connected entities more likely match the users’
information need [23]. We will show later that this also
facilitates top-k processing due to the fact that the cost of
paths can be computed “locally”.

VI. COMPUTATION OF QUERIES

For query computation, five tasks need to be performed: 1)
mapping of keywords to data elements, 2) augmentation of the
summary graph, 3) exploration of the graph to find subgraphs
connecting the keyword elements, 4) top-k processing and
5) generation of the query for the top-k subgraphs. For the
first task (1), the keyword index is used to obtain a possibly
overlapping set K; of graph elements for every given keyword.
Every element in this set is representative for one or several
keywords. These elements are added to the summary graph as
discussed (task 2). In the following, we will elaborate on the
other three operations (3-5).

A. Algorithms for Graph Exploration

Given the keyword elements, the objective of the exploration
is to find minimal substructures in the graph that connect these
elements. In particular, we search for minimal subgraphs that
include one representative of every keyword. This notion of a
minimal matching subgraph is formalized as follows.

Definition 6: Let G = (V,E) be a graph, K =
{k1,...,kn} be a set of keywords and let f : K — 2VVF
be a function that maps keywords to sets of corresponding



graph elements. A K-matching subgraph of G is a graph
G' = (V',E'") with V' CV and E’ C F such that

o forevery k € K, f(k)N(V'UE’) # (), i.e. G’ contains at

least one representative for every keyword from K, and

e G’ is connected such that from every graph element to

every other graph element from G, there exists a path.
A matching graph G is minimal if there exists no other G;-
in G such that Cost(G;) < Cost(G?).

Many approaches to keyword search on graph data or
databases have dealt with the same problem, i.e. the one of
finding substructures connecting keywords. Approaches that
operate on XML data rely on the exploration of tree structured
data (see [24], [7], [8], [25]). More related to our work are
approaches that deal with algorithms on graphs. We will now
discuss and compare them to our approach.

Backward Search The backward search ([1]) algorithm
starts from the keyword elements and then performs an iter-
ative traversal along incoming edges of visited elements until
finding a connecting element, called answer root. At each
iteration, the element that is chosen for traversal is the one
that has the shortest distance to the starting element.

Bidirectional Search Noticing that their backward search
exhibits poor performance on certain graphs, the authors pro-
pose a bidirectional search algorithm (see [14]). The intuition
is that from some vertices the answer root can be reached
faster by following outgoing rather than incoming edges. For
prioritization, heuristic activation factors are used in order to
estimate how likely an edge will lead to an answer root. These
factors are derived from the general graph topology and the
elements that have been explored. While this search strategy
has been shown to have good performance w.r.t. different
graphs, there is no worst-case performance guarantee.

Searching with Distance Information Recently, an exten-
sion to the bidirectional search algorithm has been proposed,
which provides such a guarantee, i.e. it has been proven to
be m-optimal, where m is the number of keywords [2]. This
basically means that in worst case, the number of vertices
visited by the algorithm corresponds to at most m-times the
number of vertices visited by an optimal “oracle” algorithm.
This optimality can be ensured through the use of additional
connectivity information that is stored in the index. At each
iteration, this information allows to determine the elements
that can reach a keyword element as well as the shortest dis-
tance to the keyword element, thereby offering guidance and
enabling a more goal-directed exploration. Since in principle
any graph element could be a keyword element, encoding all
this information also largely increases space complexity [2].

Compared with these approaches, we tackle a more general
problem. It has been assumed that the keywords correspond
to leaf vertices and the answer is the root vertex of a tree.
In our approach, a keyword can represent any element in the
graph, including an edge. Thus, instead of trees, substructures
that connect these keyword elements might be graphs. Also,
since the connecting element is not assumed to be the root of a
tree, forward search is equally important as backward search.
The technique for indexing distance information as discussed

above is orthogonal. However, minimality is defined in terms
of cost in our approach. Costs come in two fashions: guery-
independent costs which can be computed off-line (such as
the distance between graph elements) and query-specific costs,
which have to be computed on-the-fly. Indexing techniques can
be applied to query-independent costs only.

We will now elaborate on our approach for finding matching
subgraphs that are minimal w.r.t to both query-specific and
query-independent costs.

B. Search for Minimal Matching Subgraph

The algorithm we propose for searching minimal matching
subgraphs is shown in Alg. 1.

Input and Data Structures The input to the Algorithm
1 comprises the elements of the graph summary G’ and
the keyword elements K = (Kji,..., K,,) where each K;
corresponds to the set of data elements associated to keyword @
(which have been retrieved using the keyword index). Further,
k is used to denote the number of queries to be computed.
The maximum distance d,,q, is provided to constrain the
exploration to neighbors that are within a given vicinity. The
cursor concept is employed for the exploration. In order to
keep track of the visited paths, every cursor is represented as
c(n, k,p,d, w), where n is the graph element just visited, & is
a keyword element representing the origin of the path captured
by c and p is the parent cursor of c. Using this data structure,
the path between n and k; captured by ¢ can be computed
through the recursive traversal of the parent cursors. Besides,
the cost w and the distance d (the length) is stored for the
path. In order to keep track of information related to a graph
element n and the different paths discovered for n during the
exploration, a data structure of the form (w, (C1,...,Cy,)) is
employed, where w is the cost of n as discussed in Section V
and C; is a sorted list of cursors representing paths from k;
to n. For supporting top-k (see next subsection VI-C), LG’
is used as a global variable to keep track of the candidate
subgraphs computed during the exploration and Kj,,c is
employed to store the keyword elements with low cost.

Initialization and General Idea Similar to backward
search, the exploration starts with a set of keyword elements.
For each of these, cursors with an empty path history are cre-
ated for the keyword elements and placed into the respective
queue @; € LQ (line 4). During exploration, the “cheapest”
cursor created so far is selected for further expansion (line 8).
Every cursor expansion constitutes an exploration step, where
new cursors are created for the neighbors of the element just
visited by the current cursor (line 9). At every step of the
exploration, top-k is invoked to check whether the element
just visited is a connecting element, and whether it is safe
to terminate the process (line 25). The top-k computation
is discussed in more detail later. Here we continue with the
discussion of the actual exploration.

Graph Exploration At each iteration, a cursor ¢ with the
lowest cost is taken from @; € L@ (line 8). Since Q; is
sorted according to the cursors’ cost, only the top element
of each (); has to be considered to determine c. In case



that the current distance c.d does not exceed the parameter
dmaz (line 10), c is first added to the corresponding list C;
of n, the graph element associated with ¢ (line 11). This
is to mark that n is connected with c.k through the path
represented by c. During top-k processing, these paths are used
to verify whether a given element n is a connecting element.
Then, the algorithm continues to explore the neighborhood of
n, expanding the current cursor by creating new cursors for
all neighbor elements of n (except the parent node (c.p).n
that we have just visited) and add them to the respective
queues @; (line 20). The distance and the cost of these new
cursors are computed on the basis of the current cursor ¢ and
the cost function as discussed in Section V. Since this cost
function allows the contribution of every path to be computed
independently, the cost of a new cursor is simply c.w + n.w,
where n is the neighbor element for which the new cursor has
been created. Note that compared with the mentioned search
algorithms, prioritization in our approach is based on the cost
of the cursor’s path. Also, n might be a vertex or an edge.
Thus, neighbors might be any incoming and outgoing edges,
or vertices.

Computation of Distinct Paths The goal of the itera-
tive expansion of cursors is to explore all possible distinct
paths, beginning from some keyword elements. During this
exploration, a graph element might be explored many times.
However, a cursor ¢; is only expanded to a child cursor c;
if the neighbor element for which c¢; should be created is not
the parent element just visited before, i.e. (¢;.p).n # ¢;.n (line
13). This is to prevent backward exploration of the current path
as captured by ¢;. Also, c;.n should not be an element of the
current path, i.e. it is not one of the parent elements already
visited by ¢; (line 17). Such a cursor would result in a cyclic
expansion. Thus, this type of cursors as well as the cursors
that have been completely expanded to neighbors (line 14),
are finally removed from the queue (line 24).

Termination The exploration terminates when one of the
following conditions is satisfied: a) all possible distinct paths
have been computed such that there are no further cursors in
LQ, b) all paths of a given length d,,,, have been explored
for all keyword elements, or c) the top-k queries have been
computed (see next subsection).

In [21], we prove via an inductive argument that during the
exploration, cursors are created in the order of the costs of the
paths they represent (Theorem 1). In other words, no cheap
paths are left out in the exploration. We will see that Theorem
1 is essential for top-k with best scores guarantee.

C. Top-k Computation

Top-k processing has been proposed to reach early termi-
nation after obtaining the top-k results, instead of searching
the data graph for all results (see [1], [2], [10]). The basic
idea originates from the Threshold Algorithm (TA) proposed
by Fagin et al. [26]. TA finds the top-k objects with best
scores, where the score is computed from the individual scores
obtained for each of the object’s attributes. It is required that,
for each attribute, the scores are given in a sorted list and the

Algorithm 1: Search for Minimal Matching Subgraph
Input: k; dppes; G = VWE; K = (Kq,..., Kp).
Data: c(n, k,p,d,w); LQ = (Q1, ..., Qm);

n(w, (C1, ...,Cp)); LG’ (as global var.).
Result: the top-k queries R

1 // add cursor for each keyword element to Q); € LQ

2 foreach K; € K do

foreach k£ € K; do
| Qi.add(newCursor (k,k, 0,0, k.w));

end

while not all queues QQ; € LQ are empty do

3
4
5
¢ end
7
8 ¢ + minCostCursor(LQ);
9

n « c.n;

10 if c.d < dpq, then

1 n.addCursor(c);

12 /I all neighbors except parent element of ¢

13 Neighbors < neighbors(n) \(c.p).n;

14 // no more neighbours!

15 if Neighbors # () then

16 foreach n € Neighbors do

17 /I cyclic path when n already visited by ¢

18 if n & parents(c) then

19 // add new cursor to respective queue

20 Q;.add(new cursor (n,c.k,c.n,c.d +1,
cw + n.w));

21 end

22 end

23 end

24 Qi-pop(c);

25 R « Top-k(n, LG, Kipwe, LQ, k, R);

26 end

27 end

28 return R;

function for the computation of the total score is monotonic.
Through (random) access, these attribute scores are retrieved
from the list to compute the total object score. Iteratively, the
computation is performed for candidate objects that are added
to a list. This process continues until the lower bound score of
this candidate list (the score of the k-ranked object) is found to
be higher than the upper bound score of all remaining objects.

Our algorithm for top-k subgraphs computation is shown in
Alg. 2. Compared with TA, the object is a matching subgraph
G’, attributes correspond to connections from graph elements
n to keyword elements K; and attribute score is measured in
terms of the cost of the path between n and K. Instead of a
score, the function in Section V is used to compute the cost
of a subgraph. Thus, the lower bound score corresponds to the
highest cost and vice versa, the upper bound score corresponds
to the lowest cost. The highest cost of candidates and the
lowest possible cost of the remaining objects are computed
as follows:

o Candidate Subgraphs As mentioned, top-k is invoked at



Algorithm 2: Top-k Query Computation
Input: n, LG', LQ, k, R.
Output: R.
if n is a connecting element then
// process new subgraphs in n
C' « cursorCombinations(n);
foreach c € C do
‘ LG'.add(mergeCursorPaths(c));
end
end
LG’ «— k-best(LG");
highestCost < k-ranked(LG");
lowestCost < minCostCursor(LQ).w;
if highestCost < lowestCost then
foreach G’ € LG’ do

R R B Y N L

-
N - O

13 // add query computed from subgraph
R.add(mapToQuery(G"));

14 end

15 /I terminates after top-k have been computed

16 return R;

17 end

every step of the exploration. First, the element n that just
has been visited during the exploration is examined. In
particular, the visited paths stored in n are used to verify
whether n is a connecting element. This is the case if all
n.C; are not empty, i.e. for every keyword ¢, there is at
least one path in n.C}; that connects n with an element in
K;. Thus, at least one graph can be obtained by merging
the paths that have a different keyword element as origin.
However, since every C; might contain several paths,
several combinations of paths are possible. All these
combinations are computed and the resulting subgraphs
are added to the candidate list LG’ (line 5). Since LG’ is
sorted according to the cost of subgraphs, the highest cost
of the candidate list is simply the cost of the k-element
(line 9).

o Remaining Subgraphs During exploration, any element
might be found to be a connecting element. Thus, any
element could be a candidate from which subgraphs can
be generated. In fact, even an element already found to
be a connecting element through expansions from some
cursors might still generate further candidate subgraphs,
when being explored through expansions from some other
cursors. Thus, all elements have to be considered in order
to keep track of all the remaining subgraphs. However,
we know that in order for some element n to become
a connecting element (or generate further subgraphs), it
must still be visited by some cursor in L. Thus, the
lowest cost of any potential candidate n must be higher
than or equal the cost of the cheapest cursor ¢ from LQ).

Top-k results have been obtained if the highest cost of the
candidate list is found to be lower than the lowest cost of the
remaining objects. From the candidate list LQ’, k top-ranked

subgraphs are retrieved. Every subgraph is then mapped to a
query (line 13) and results in R are finally returned (line 16).

Compared with related approaches for keyword search, the
top-k algorithm discussed above supports general subgraphs
and is not limited to trees. Typically, only distance information
is incorporated into top-k processing (see [2], [14]), while
our approach builds on a variety of cost functions. Indexing
this information a priori can improve the efficiency of graph
exploration as well as top-k processing. This information
helps to chose the vertex with the minimal distance to a
keyword vertex at every step of the exploration. In fact, it
has been shown in [2] that the results of such a guided-
exploration coincide with top-k using TA. However, while
such an approach guarantees minimality of top-k results w.r.t.
a distance metric, it is not straightforward to support scores
that cannot be determined a priori. In our approach, minimality
can be guaranteed for any score metrics, given that the scoring
function is monotonic.

More similar to our approach is the top-k algorithm in [1],
which is also based on TA. The highest cost is also computed
using a candidate list. The lowest cost is simply derived from a
queue containing the vertices that have not been explored. The
authors notice that this is only a coarse approximation since
answer trees with higher scores can still be generated with
visited vertices. Note that in our approach, the computation of
the lowest cost incorporates any graph elements, i.e. visited
as well as connecting element. Based on Theorem 1, which
basically guarantees that paths are explored in ascending cost
order, we prove in [23] that Alg. 2 indeed returns the list of
the & minimal matching subgraphs.

For the complexity of the exploration, the following worst
case complexities can be established: the overall number
of cursors to be processed (and hence the time needed) is
bounded by |G|%me=. This is the maximum number of paths
of length d,,,, that can be discovered during exploration.
Moreover, the space complexity is bounded by & - |K]| - |G|,
because for any graph element n from G and any keyword
from K, at most k£ cursors have to be maintained, namely
those representing the k cheapest paths from n to the re-
spective keyword elements. Note that |G| refers to the size
of the augmented summary graph which tends to be orders of
magnitude smaller than the data graph.

D. Query Mapping
In this step, the subgraphs as computed previously are
mapped to conjunctive queries. Note that exploration has been
performed only on the augmented summary graph. Thus, edges
of subgraphs must be of the form e(vy,vs), where e € Ly W
LrW{subclass} and v1,ve € VoW {Thing}wVy W{value}.
Further, v1 € VoW{Thing} and vy € VyyW{value} ife € L4,
and vy, v9 € Ve if e € LrW{subclass}. A complete mapping
of such a subgraph to a conjunctive query can be obtained as
follows:
o Processing of Vertices Labels of vertices might be used
as constants. Thus, vertices are associated with their
labels such that constant(v) returns the label of the



vertex v. Also, vertices might stand for variables. Every
vertex is therefore also associated with a distinct variable
such that var(v) returns the variable representing v.

o Mapping of A-edges Edges e(vi,v2) where e €
Ly and ve # walue are mapped to two query
predicates of the form type(var(vyi),constant(vy))
and e(var(vy),constant(vs)). Note that e is an A-
edge, s.t. vy denotes a class and constant(vy) re-
turns a class name. In case vo = wvalue, e(v1,vs) is
mapped to the predicates type(var(vy),constant(vy))
and e(var(vy), var(value)).

o Mapping of R-edges Edges e(vi,v2) where
e € Lp are mapped to three query predicates
of the form type(var(vy), constant(vy)),
type(var(ve), constant(ve)) and e(var(vy),var(vsy)).
Note that since e is an R-edge, vy, v, denote classes.

By processing the vertices and by the exhaustive application
of these mapping rules, a subgraph can be translated to a
query. The query is simply a conjunction of all the predicates
generated for a given subgraph.

When compared with related approaches, we compute
queries instead of answers. Commonly, answers are assumed
to be the roots of some trees found in the data graph (see [1],
[2], [14]). This is reasonable if there are no intermediate ele-
ments between the root and the keyword elements. Otherwise,
also intermediate elements have to be considered as candidate
answers since just like the root, they might be relevant for the
user’s information need. These candidate answers cannot be
retrieved using current techniques. Further, candidate answers
might be part of different trees having the same root. These
answers are left out due to the distinct root assumption.

We compute all different substructures that can connect
keywords. Since queries are derived from these substructures,
the underlying query engine can be leveraged to retrieve all
answers for a given query. If there is no further information
available other than keywords, a reasonable choice is to treat
all query variables as distinguished to obtain all variable
substitutions of a given query. In the final presentation of the
queries, specific mechanisms can be provided for the user to
choose the distinguished variables.

VII. EVALUATION

The implementation of the presented approach is available
at http://km.aifb.uni-karlsruhe.de/SearchWebDB/. Based on a
keyword query, it computes the top-k conjunctive queries,
transforms them to simple natural language (NL) questions,
and presents them to the user. In addition, the graph data that
has been explored by the algorithm is visualized to enable
query refinement through drag-and-drop.

We now discuss the experiments we have performed to
assess the efficiency, effectiveness and usability of the pre-
sented approach. We use DBLP, a dataset containing 26M
triples about computer science publications that has been
commonly used for keyword search evaluation (see [14], [2]).

-

o oo
w o

wn
I -

Mean Reciprocal Rank

K=J == =N le]
o R N
ﬂ—‘—‘
E—— |

sl
I
ks
=
~
~
w
o
=8
a Q
&
]
=2
wn @
o)
Q
.
=]
uQ
m Q
=
=]
S
g
=1
7
Q
3
g
=}
-
av}

Additionally, TAP* and LUBM? have been employed to ensure
the validity of our experimental results. TAP is an ontology
of the size of 220k triples, published by Stanford University.
It describes knowledge about sports, geography, music and
many other fields. LUBM is the Lehigh University benchmark
commonly used in the semantic web community. We use
LUBM(50,0) which describes fifty universities. Experiments
are conducted on a SMP machine with two 2.0GHz Intel Xeon
processors and 4GB memory. Further details on the evaluation
can be found in [21].

A. Effectiveness Study

In order to assess the effectiveness of the approach, we have
asked colleagues to provide keyword queries along with the
description in natural language of the underlying information
need. 12 people participated, resulting in 30 different queries
for DBLP and 9 for TAP. An example query is “algorithm
1999” and the corresponding description is “All papers about
algorithms published in 1999”.

For assessing the effectiveness of the generated queries and
their rankings, a standard IR metric called Reciprocal Rank
(RR) defined as RR = 1/r is used, where 7 is the rank of the
correct query. According to our problem definition, a query is
correct if it matches the information need (the provided NL
description). If none of the generated queries match the NL
description, RR is 0. Fig. 4 shows the Mean RR (MRR, the
average of the RR scores obtained from the 12 participants),
which we have calculated using the scoring functions Cy, Cs
and Cj5 as discussed in Section V.

We observe that some queries such as Q2, Q4, Q6, Q9 and
Q10 get rather good results even though only the path length is
used for scoring (C). This is because the exploration results
in a low number of alternative substructures and queries,
respectively. When many substructures can be found, Co
seems to be more effective as it enables the exploration to
focus on more “popular” elements. Clearly, MRR obtained
using Cs is at least as high as MRR obtained using C; for
all 30 queries. However, MRR is low for Co when ambiguity
introduced through the keyword-to-element matching is high.
That is, there are many keywords that match several graph
elements, such as in Q4, Q6, Q9, an Q10. Incorporating the
matching relevance of keywords helps to prioritize elements
that more likely match the user information need. The results
show that C' is superior in all cases.

“http://tap.stanford.edu
Shttp://swat.cse.lehigh.edu/projects/lubm/



= Qur Solution ™ Bidirect 1000 BFS ®1000 METIS ®=300BFS = 300METIS
100000

10000

1000

5]
S

o

Average Query Processing Time (ms)

Fig. 5.

Query Performance on DBLP Data.

We get similar conclusions in the evaluation with TAP, but
omit them for reasons of space (see [21]).

B. Performance Evaluation

We start with a comparison with the most related ap-
proaches, namely bidirectional search in [14] and several
techniques based on graph indexing, i.e. 1000 BFS, 1000
METIS, 300 BFS, 300 METIS (see details in [2]).

Comparative Analysis The experiment is performed using
the same DBLP data set and the queries as discussed in [2].
Since these approaches compute answers, we measure both
the time needed for query computation and the time needed
for query processing. For the latter, a prototypical RDF store
called Semplore® is used. Precisely, the total time is the time
for computing the top-10 queries plus the time for processing
several queries (the top ones) until finding at least 10 answers.
Strictly speaking, the approaches are not directly comparable.
Nevertheless, since the interaction and the number of output
is the same, the comparison seems reasonable.

The comparison results are shown in Fig. 5. According to
these results, our approach outperforms bidirectional search by
at least one order of magnitude in most cases. It also performs
fairly well when compared with indexing based approaches.
In particular, our approach achieves better performance when
the number of keywords is large (Q7-Q10).

Search Performance We have investigated the impact of
parameter k£ on search performance. Fig. 6a shows that the
average search time (ms) for 30 queries (length 2-4) on DBLP
using C3 varies at different k. It can be observed that the
time increases linearly when & becomes larger. In addition, the
impact of query length on the search performance is minimal
when k is 10. The impact of query length is substantial when
a higher £ is used instead.

Index Performance Since the efficiency largely depends
on the size of the summary graph, we now present details
on the employed indices. Fig. 6b shows that the size of the
keyword index is very large for DBLP. DBLP has much more
V-vertices than LUBM and TAP. This indicates that the size
of the keyword index is largely determined by the number of
V-vertices in the data graph. However, the size of the graph
index rather depends on the structure of the data graph, the
number of edge labels and classes in particular. TAP has much
more classes than LUBM and DBLP, resulting in a much

Shttp://apex.sjtu.edu.cn/apex/_wiki/Demos/Semplore

Hlength=2 ®length=3 m Length=4 = TAP mLUBM(1,0) =LUBM(20,0) = LUBM(50,0) = DBLP

2000 125

1500 +— 25

Query PRocessing Time (ms)
- =
S 8
3 3
| 1
Imdex Size & Index Time
«

Top-10 Top-15  Top-20 Inverted Index(MB)  Graph Index(KB) Index Time(ms)

Fig. 6. a) Query Performance b) Index Performance
larger graph index. Further, the indexing time indicates that
the preprocessing is affordable for practical usage.

VIII. RELATED WORK

We have extended our previous work on keyword inter-
pretation [18], [19] by proposing a concrete algorithm for
top-k exploration of query graph candidates. Throughout the
paper, we have discussed the most relevant related work,
namely the dataguide concept [22], IR-based scoring metrics
(e.g. [15], [10], [11], [12], [8], [16]), basic search algorithms
for graph exploration (in particular [2], [1], [14]) and the
Threshold Algorithm [26], the fundamental algorithm for top-%
processing. We will now present a broader overview of related
work on keyword search, and further information on graph
exploration and top-k.

There exists a large body of work on keyword search on
structured data (see [6], [1], [9], [10], [12]). Here, native
approaches can be distinguished from the ones that extend
existing databases with keyword search support. Native ap-
proaches support keyword search on general graph-structured
data. Since they operate directly on the data, these approaches
have the advantage of being schema-agnostic. However, they
require specific indices and storage mechanisms ([1], [14], [2])
for the data. Database extensions require a schema, but can
leverage the infrastructure provided by an underlying database.
Example systems implemented as database extensions are
DBXplorer [6] and Discover [9]. These systems translate
keywords to candidate networks, which are essentially join
expressions constructed using information given in the schema.
These candidate networks are used to instantiate a number of
fixed SQL queries. Our approach combines the advantages of
these two approaches: in line with native approaches, it is also
schema agnostic. This is crucial because even when there is
a schema, it often does not capture all relations and attributes
of entities (this is very frequently the case for RDF data).
The summary graph is derived from the data to capture the
”schema” information that is necessary for query computation.
Unlike the natives approaches, the exploration does not operate
directly on the data, but on the summary graph. In addition, our
approach can leverage the storage and querying capabilities
of the underlying RDF store. A main difference to both the
mentioned types of approaches is that, instead of comput-
ing answers, we generate top-k queries. Instead of mapping
keywords to data tuples, we map keywords to elements of
a query. In this way, more advanced access patterns can be



supported. In particular, keywords are treated as terms in
previous approaches, while they might be recognized also as
query predicates in our approach. This querying capability
can be further extended by introducing special elements in
the summary graph that represent additional query constructs
such as filters. Besides, the presentation of queries to the user
can facilitate comprehension and further refinement. Also, all
variable bindings are retrieved for a chosen query, instead of
the roots of the top-k trees only (compare [2], [1]).

With respect to graph exploration, there are algorithms for
searching substructures in tree structured data (see [24], [7],
[8], [25]). More related to our work are algorithms on graphs,
particularly backward search [1] and bidirectional search as
discussed previously. Since the exploration of a large graph
data is inherently expensive, dedicated indices are proposed
to store not only keyword elements but also specific paths [§]
or connectivity information of the entire graph [2]. While our
approach can benefit from indexing distance information (for
a more guided exploration), its application is limited to scores
that can be computed off-line. The crucial difference is that
while existing algorithms compute trees with distinct roots
only, our search algorithm computes general subgraphs. For
this, we need to traverse both incoming and outgoing edges
as well as keep track of all possible distinct paths that can be
used to generate subgraphs.

We have discussed that a perfectly guided exploration using
pre-indexed distance information [2] can lead to results with
best scores. This is however only possible with scores that can
be derived from pre-indexed information. Top-k algorithms
that compute scores online typically rely on TA (e.g. [1],
[14], [10]). Compared to our top-k procedure, these algorithms
compute tree structures only and most importantly, rely on
heuristics such that no top-k guarantee can be provided for
the results.

IX. CONCLUSIONS AND FUTURE WORK

We have presented a new approach for keyword search on
graph-structured data, focusing on the RDF data model in
particular. However, our algorithm is also applicable to graph-
like data models in general. Instead of computing answers,
novel algorithms for the top-k exploration of subgraphs have
been proposed to compute queries from keywords. We have
argued that it is beneficial to have an additional intermediate
step in the keyword search process, where structured queries
are presented to the user. Structured queries can serve as
descriptions of the answers and can also be refined more
precisely than using keywords. Moreover, our approach offers
new ways for speeding up the process. Query computation
can be performed on an aggregated graph that represents a
summary of the original data while query processing can
leverage optimization capabilities of the database.

In the future, techniques for indexing connectivity and
scores will be considered for further speed up. Also, there
is potential to advance the current query capability. For in-
stance, the current indices and algorithms can be extended to

recognize keywords that correspond to special query operators
such as filters etc.

REFERENCES

[1] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
“Keyword searching and browsing in databases using banks,” in /CDE,
2002, pp. 431-440.

[2] H. He, H. Wang, J. Yang, and P. S. Yu, “Blinks: ranked keyword searches
on graphs,” in SIGMOD Conference, 2007, pp. 305-316.

[3] K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds, “Efficient rdf
storage and retrieval in jena2,” in SWDB, 2003, pp. 131-150.

[4] E. I Chong, S. Das, G. Eadon, and J. Srinivasan, “An efficient sql-based
rdf querying scheme,” in VLDB, 2005, pp. 1216-1227.

[5] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach, “Scalable
semantic web data management using vertical partitioning,” in VLDB,
2007, pp. 411-422.

[6] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: enabling keyword
search over relational databases,” in SIGMOD Conference, 2002, p. 627.

[71 S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “Xsearch: A semantic
search engine for xml,” in VLDB, 2003, pp. 45-56.

[8] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, “Xrank: Ranked
keyword search over xml documents,” in SIGMOD Conference, 2003,
pp. 16-27.

[9] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword search in

relational databases,” in VLDB, 2002, pp. 670-681.

V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient ir-style

keyword search over relational databases,” in VLDB, 2003, pp. 850—

861.

H. Hwang, V. Hristidis, and Y. Papakonstantinou, “Objectrank: a system

for authority-based search on databases,” in SIGMOD Conference, 2006,

pp. 796-798.

F. Liu, C. T. Yu, W. Meng, and A. Chowdhury, “Effective keyword

search in relational databases,” in SIGMOD Conference, 2006, pp. 563—

574.

B. Kimelfeld and Y. Sagiv, “Finding and approximating top-k answers

in keyword proximity search,” in PODS, 2006, pp. 173-182.

V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and

H. Karambelkar, “Bidirectional expansion for keyword search on graph

databases,” in VLDB, 2005, pp. 505-516.

J. Graupmann, R. Schenkel, and G. Weikum, “The spheresearch engine

for unified ranked retrieval of heterogeneous xml and web documents,”

in VLDB, 2005, pp. 529-540.

S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman,

“Structure and content scoring for xml,” in VLDB, 2005, pp. 361-372.

J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame: A generic

architecture for storing and querying rdf and rdf schema,” in Interna-

tional Semantic Web Conference, 2002, pp. 54-68.

H. Wang, K. Zhang, Q. Liu, T. Tran, and Y. Yu, “Q2semantic: A

lightweight keyword interface to semantic search,” in ESWC, 2008, pp.

584-598.

T. Tran, P. Cimiano, S. Rudolph, and R. Studer, “Ontology-based

interpretation of keywords for semantic search,” in ISWC/ASWC, 2007,

pp- 523-536.

C. Fellbaum, WordNet, an electronic lexical database. MIT Press, 1998.

T. Tran, H. Wang, S. Rudolph, and P. Cimiano, “Efficient

computation of formal queries from keywords on graph-

structured rdf data,” in Technical Report http://www.aifb.uni-
karlsruhe.de/WBS/dtr/papers/keywordTopk tr.pdf, University Karlsruhe.

R. Goldman and J. Widom, “Dataguides: Enabling query formulation

and optimization in semistructured databases,” in VLDB, 1997, pp. 436—

445.

T. Tran, P. Cimiano, S. Rudolph, and R. Studer, “Ontology-based

interpretation of keywords for semantic search,” in ISWC/ASWC, 2007,

pp- 523-536.

D. Florescu, D. Kossmann, and I. Manolescu, “Integrating keyword

search into xml query processing,” Computer Networks, vol. 33, no.

1-6, pp. 119-135, 2000.

Y. Li, C. Yu, and H. V. Jagadish, “Schema-free xquery,” in VLDB, 2004,

pp- 72-83.

R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for

middleware,” in PODS, 2001.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

(22]

(23]

[24]

[25]

[26]



