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Abstract: Uncertain data are common due to the increasing usage of sensors, radio frequency identification (RFID), GPS and similar
devices for data collection. The causes of uncertainty include limitations of measurements, inclusion of noise, inconsistent supply voltage
and delay or loss of data in transfer. In order to manage, query or mine such data, data uncertainty needs to be considered. Hence,
this paper studies the problem of top-k distance-based outlier detection from uncertain data objects. In this work, an uncertain object
is modelled by a probability density function of a Gaussian distribution. The naive approach of distance-based outlier detection makes
use of nested loop. This approach is very costly due to the expensive distance function between two uncertain objects. Therefore,
a populated-cells list (PC-list) approach of outlier detection is proposed. Using the PC-list, the proposed top-k outlier detection
algorithm needs to consider only a fraction of dataset objects and hence quickly identifies candidate objects for top-k outliers. Two
approximate top-k outlier detection algorithms are presented to further increase the efficiency of the top-k outlier detection algorithm.
An extensive empirical study on synthetic and real datasets is also presented to prove the accuracy, efficiency and scalability of the
proposed algorithms.

Keywords: Top-k distance-based outlier detection, uncertain data, Gaussian uncertainty, cell-based approach, PC-list based
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1 Introduction

Outlier detection is a fundamental problem in data min-
ing. It has applications in many domains including credit
card fraud detection[1], network intrusion detection[2], in-
dustrial damage detection[3], environment monitoring[4],
medical sciences[5], etc. Several definitions of outlier have
been given in the past, but there exists no universally agreed
definition. Hawkins[6] defined an outlier as an observation
that deviates so much from other observations as to arouse
suspicion that it is generated by a different mechanism.
Barnet and Lewis[7] mentioned that an outlying observa-
tion, or outlier, is one that appears to deviate markedly
from other members of the sample in which it occurs.

In statistics, one can find over 100 outlier detection tech-
niques. These have been developed for different data distri-
butions, parameters, desired numbers of outliers and types
of expected outliers[7, 8]. However, most statistical tech-
niques are not useful in computer science due to several
reasons. For example, most statistical techniques are uni-
variate, in some techniques parameters are difficult to deter-
mine, and in other techniques outliers cannot be obtained
until the underlying data distribution is known. In order
to overcome these problems, several outlier detection ap-
proaches have been proposed for data mining[9−16].

Most of the outlier detection techniques proposed for
data mining are suitable only for deterministic data. How-
ever, due to the increasing usage of sensors, radio frequency
identifications (RFIDs), GPS and similar devices for data
collection these days, data contains certain degree of in-
herent uncertainty[17−20]. The causes of uncertainty may
include but are not limited to limitation of equipment, ab-
sence of data, inconsistent supply voltage and delay or loss
of data in transmit[17]. In order to get reliable results from
such data, uncertainty needs to be considered in calcula-
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tion. Therefore this work presents a top-k distance-based
outlier detection technique on uncertain data, where the un-
certainty of data is modelled by the most commonly used
probability density function, i.e., the Gaussian distribution.

Motivating example (identifying malfunctioning
sensors). As a result of advancement in technology, wire-
less sensor networks (WSNs) are often deployed for envi-
ronment monitoring, animal tracking, flood detection, and
weather forecasting. Usually a WSN covers an area of in-
terest where each sensor keeps reporting its measurements.
Due to calibration errors, short-circuited connections, dam-
aged sensors and low battery voltage, sensor reported mea-
surements may be different from true measurements[17].
In other words, such measurements are uncertain values.
Therefore, commercial sensor producers always mention ac-
curacy (measurement error) on their products. Table 1 lists
the maximum measurement errors of some commercially
available sensors. Detecting outliers from such uncertain
values is helpful in identifying malfunctioning or isolated
sensors in the WSN.

To obtain top-k distance-based outliers from uncertain
datasets using our proposed approach, distance needs to
be calculated between uncertain data objects. However,
the distance computation between uncertain data objects
is very costly. Therefore, a populated-cells list (PC-list)
based outlier detection approach is proposed in this paper to
quickly identify the top-k outliers from uncertain data. The
PC-list is a sorted list of non-empty cells of a d-dimensional
grid, where grid is used to index data objects[21] . Using
the PC-list, the top-k outlier detection algorithm needs to
consider only a fraction of the dataset objects and hence
quickly identifies candidate objects for the top-k outliers.
Finally, exact outlier score (#D-neighbors) is computed for
each candidate object to find the top-k outliers and their
ranking. Furthermore, two approximate top-k outlier detec-
tion algorithms are also presented in this work to increase
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Table 1 Uncertainty in commercial sensor measurements

Company Sensor type Model Parameter Max measurement error (%)*

Air temperature 1

Barometric pressure 0.2

Stevens[22] Weather WXT520 Relative humidity 5

Wind speed 5

Wind direction 3

Pyranometer LI200SA Solar radiation 5

HMP155 Air temperature 0.1

Barometric pressure 0.05

Vaisala[23] Weather WMT700 Relative humidity 1.7

Wind speed 2

PTB110 Wind direction 0.55

Pyranometer CM6B Solar radiation 2

WE100 Air temperature 1

WE550 Barometric pressure 0.2

Xylem[24] Weather WE570 Relative humidity 5

WE600 Wind speed 5

WE700 Wind direction 3

Pyranometer WE300 Solar radiation 5

*For some parameters, percentages are calculated from their respective maximum error values.

the efficiency of the outlier detection algorithm. The first
approximate algorithm only approximates the candidate
objects′ #D-neighbors, while the second approximate al-
gorithm makes use of the bounded Gaussian uncertainty to
increase the efficiency of the top-k outlier detection algo-
rithm. These approximate algorithms are denoted by top-k
approx and top-k BG, respectively in the following.

The rest of the paper is organized as follows. Section 2
surveys the related work. Section 3 formally defines the top-
k distance-based outlier detection on uncertain datasets.
The PC-list based pruning is presented in Section 4. The
top-k and the top-k approx algorithms are presented in
Section 5. Section 6 presents a top-k algorithm using the
bounded Gaussian uncertainty (the top-k BG). Section 7
contains an extensive experimental evaluation that demon-
strates the accuracy, efficiency and scalability of the pro-
posed algorithms. Section 8 concludes our paper.

2 Related work

The very first definition of distance-based outlier was
given by Knorr et al.[10]. They defined an object o to be
an outlier if at most M = N(1 − p) objects are within
D-distance of o, where N is the number of objects in the
dataset, and p is the fraction of objects that lie farther
than D-distance of o. They also presented a cell-based ap-
proach to efficiently compute the distance-based outliers.
Ramaswamy et al.[25] formulated distance-based outliers as
the top-t data objects whose distance to their k-th nearest
neighbour is largest. Angiulli and Pizzuti[26] gave a slightly
different definition of outliers than Ramaswamy et al.[25] by
considering the average distance to their k nearest neigh-
bours. Beside these, there are some works on the detection
of distance-based outliers over stream data[17−29]. These
works are based on the definition of distance-based outliers
by Knorr et al.[10]. Furthermore, Angiulli and Fassetti[27]

gave an approximate algorithm to reduce the memory space
required by its exact counterpart. Later on Kontaki et al.[28]

extended Angiulli and Fassetti′s work[27] by adding the con-
cepts of multi-query and micro-cluster based distance-based
outlier detection. However, all these approaches were given
for deterministic data and cannot handle uncertain data.

Recently a lot of research has focused on managing,
querying and mining of uncertain datasets[15, 30]. The prob-
lem of outlier detection on uncertain datasets was first
studied by Aggarwal and Yu[30]. According to them, an
uncertain object o is a density-based (δ, η) outlier, if the
probability of existence of o in some subspace of a region
with density at least η is less than δ. In order to compute
(δ, η) outliers, firstly the density of all subspaces needs to
be computed and then the η-probability of each o in the
dataset is computed to tell o is an outlier. Since this com-
putation is very expensive, a sampling procedure is used to
approximate the η-probability. In contrast to Aggarwal and
Yu′s work[30], this paper addresses the detection of distance-
based outliers in full space, where the distance between two
uncertain objects is computed by the Gaussian difference
distribution[31]. Therefore, the problem definition is quite
different from Aggarwal and Yu[30].

Wang et al.[15] also proposed outlier detection on uncer-
tain data. Their work focused on the uncertainty in the
existence of a data object. In contrast, in this paper, the
uncertainty lies in the measurements obtained from sensors.
Each tuple in Wang et al.′s work[15] is associated with the
confidence of appearing at a corresponding location. How-
ever in this work, each uncertain object is represented by a
Gaussian probability density function (PDF), with an as-
sumption that sensor measurements may deviate from true
values due to the reasons discussed in Section 1.

We also proposed a cell-based approach of distance-based
outlier detection on uncertain data[32, 33]. According to our
previous works[32, 33], an uncertain object o is a distance-
based outlier if the expected number of objects lying within
its D-distance is not greater than M = N(1 − p), where N
is the number of objects in the dataset and p is the fraction
of objects that lies farther than D-distance of o. A prob-
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lem with our current work is that parameter p is difficult
to determine and is dependent on N .

An arbitrary value of p may result in a very few or a lot
of outliers for a different N . Moreover, outlier′s ranking
cannot be obtained.

In all the existing works including our previous
work[32, 33], an object can be either classified as outlier or
inlier. Since there is no universally agreed definition of
outliers, different algorithms return different outliers de-
pending upon the combination of parameter values. Some
combinations return a very few while others return a lot
of outliers. Moreover, no outlier ranking is available and
users are unable to differentiate between strong and weak
outliers. Therefore, we presented a top-k approach of
distance-based outliers in one of our recent works[34]. The
proposed approach[34] returns k objects with lowest outlier
scores (#D-neighbors), in other words, k strongest outliers
along with their ranking.

This paper is an extended version of our recent work[34].
The main contributions of this paper include a bounded
Gaussian approach of the top-k outlier detection presented
in Section 6, complexity analysis of the proposed top-k
algorithms (Section 5.3), discussion on the determination
of values for parameters D and l (Section 5.4), detailed
experiments comparing the accuracy of the proposed ap-
proach with the deterministic approach of outlier detection
by Knorr et al.[10] and an extensive empirical study on per-
formance using larger real and synthetic datasets. To the
best of our knowledge, the top-k distance-based outlier de-
tection on uncertain datasets has not been studied by other
researchers.

3 Outliers in uncertain data

Outlier detection is a significant problem in the field of
data mining. Due to its importance, several outlier detec-
tion approaches have been proposed for data mining. These
include the nearest-neighbour based[25], density based[35],
clustering based[36] and distance based[10, 11]. Due to the
increasing usage of automatic data collection devices, i.e.,
sensors, RFIDs, etc., measurements contain inherent un-
certainty (refer to Table 1). Therefore, outlier detection
from uncertain data is gaining popularity and a lot of
researchers are focusing on it[15, 30, 37]. In this work, our fo-
cus is distance-based approach because distance-based ap-
proaches are the simplest and the most commonly used.
Moreover, distance-based approaches are useful in mod-
elling other data mining techniques i.e., k-nearest neigh-
bours, clustering, etc.

3.1 Distance-based outliers in uncertain

data

The very first definition of distance-based outlier on de-
terministic data was given by Knorr et al.[10]. They defined
an object o to be an outlier if at most M objects are within
D-distance of o. This definition was given for determinis-
tic datasets. Later we extended this definition to uncertain
datasets whose attribute values are uncertain[32, 33]. In that
work, we assumed that the uncertainty of the data objects
follow a Gaussian distribution. The Gaussian distribution
is chosen for representing uncertainty, because in statistics

the Gaussian distribution (or the normal distribution) is
the most important and the most commonly used.

In this paper, d-dimensional uncertain objects oi are con-

sidered, with attribute
−→Ai = [xi,1, · · · , xi,d]

T following the
Gaussian PDF with mean −→µi = [µi,1, · · · , µi,d]

T and covari-
ance matrix Σi = diag(σ2

i,1, · · · , σ2
i,d), respectively. Namely,

vector
−→Ai is a random variable that follows the Gaussian

distribution
−→Ai ∼ N (−→µi , Σi). Note that −→µi denotes the

observed coordinates (attribute values) of an object oi.
The complete database consists of a set of such objects,
GDB = {o1, · · · , oN}, where N = |GDB| is the number of
uncertain objects in GDB. Hence, the Knorr et al.[10] def-
inition can be extended naturally to uncertain datasets as
follows.

Definition 1. An uncertain object o in a database GDB
is a distance-based outlier, if the expected number of ob-
jects oi ∈ GDB (including o itself) lying within D-distance
of o is less than or equal to threshold θ = N(1−p), where N
is the number of uncertain objects in database GDB, and
p is the fraction of objects in GDB that lies farther than
D-distance of o.

3.2 Top-kkk distance-based outliers in uncer-

tain data

Since the focus of this work is the detection of top-k
distance-based outliers and their ranking from uncertain
data, Definition 1 can be modified into the top-k distance-
based outliers as follows.

Definition 2. The top-k distance-based outliers are the
k uncertain objects in the dataset GDB for which the ex-
pected number of objects oi ∈ GDB lying within D-distance
is the smallest.

The objects that lie within the D-distance of oi are
called its D-neighbors, and the set of the D-neighbors of
oi and the number of D-neighbours are denoted by DN(oi)
and #D-neighbors(oi) or #D(oi), respectively. In order
to find the top-k distance-based outliers in GDB, the dis-
tance between uncertain objects needs to be calculated,
which is given by another distribution known as the Gaus-

sian difference distribution[31]. Let
−→Ai and

−→Aj be two
independent d-dimensional normal random vectors with
means −→µi = [µi,1, · · · , µi,d]

T and −→µj = [µj,1, · · · , µj,d]T and
diagonal covariance matrices Σi = diag(σ2

i,1, · · · , σ2
i,d) and

Σj = diag(σ2
j,1, · · · , σ2

j,d), respectively. Then,
−→Ai −

−→Aj =

N (−→µi −−→µj , Σi +Σj)
[31]. Let Pr(oi, oj , D) denotes the prob-

ability that oj ∈ DN(oi). Then,

Pr(oi, oj , D) =

∫

R

N (−→µi −−→µj , Σi + Σj)d
−→A (1)

where R is a sphere with centre (−→µi − −→µj) and radius
D. Lemma 1 gives the 2-dimensional expression for
Pr(oi, oj , D). However, the Pr(oi, oj , D) expressions for
higher dimensions can be derived using (1).

Lemma 1. Let oi and oj be two 2-dimensional un-

certain objects with attributes
−→Ai ∼ N (−→µi , Σi) and

−→Aj ∼
N (−→µj , Σj), where −→µi = [µi,1, µi,2]

T, −→µj = [µj,1, µj,2]
T, Σi =

diag(σ2
i,1, σ

2
i,2) and Σj = diag(σ2

j,1, σ
2
j,2). The Pr(oi, oj , D)
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is given as follows.

Pr(oi, oj , D) =
1

2π
√

(σ2
i,1 + σ2

j,1)(σ
2
i,2 + σ2

j,2)
×

∫ D

0

∫ 2π

0

e

{

−
(

(r cos θ−α1)2

2(σ2
i,1+σ2

j,1)
+

(r sin θ−α2)2

2(σ2
i,2+σ2

j,2)

)}

rdθ dr (2)

where α1 = µi,1 − µj,1 and α2 = µi,2 − µj,2.
Proof. See Appendix. �

This paper assumes that σi,1 = σj,1 = σi,2 = σj,2 = σ,
and let α2 = α2

1 + α2
2. Hence (2) is simplified as

Pr(oi, oj , D) =
1

4πσ2
×

∫ D

0

∫ 2π

0

e

{

−1

4σ2 (r2−2αr cos θ+α2)
}

rdθ dr. (3)

Note that Pr(oi, oj , D) only depends on α2 and not on
the coordinates of oi and oj . Hence, Pr(oi, oj , D) is denoted
by Pr(α, D) when there is no confusion, where α is an or-
dinary Euclidean distance between the means of oi ∈ GDB
and oj ∈ GDB. Computing this probability is usually very
costly, and needs to be avoided as much as possible during
the computation of outliers. In the following, we assume
that the standard deviation is uniform in all the dimensions
to keep the discussion simple.

The naive approach of the top-k outlier detection given
in Algorithm 1 uses nested-loop. In order to find whether
an object oi ∈ GDB is a top-k outlier, its #D-neighbours
(#D(oi)) are computed. Computation of #D(oi) for an ob-
ject oi ∈ GDB requires evaluation of N expensive distance
functions. During the computation of #D(oi), if it becomes
greater than threshold θ, oi is an inlier and the computation
of #D(oi) is stopped. On the other hand, if #D(oi) is less
than or equal to θ, oi is added to the candidate list of out-
liers Cobj , along with its #D-neighbours. The Cobj is kept
sorted in the ascending order of #D-neighbours and the k
objects in it with lowest #D-neighbours are selected as the
outliers. In the worst case, this approach requires O(N2)
evaluations of costly distance function, which is computa-
tionally very expensive.

Algorithm 1. The top-k naive approach.
Input: GDB, D, k.
Output: Top-k distance-based outliers.
1. N ← |GDB|, θ ← ∞, Cobj ← φ (Candidate top-k outliers
list);
2. for each oi in GDB
3. #D(oi) ← 0; (#D-neighbours of oi)
4. for each oj in GDB do
5. #D(oi)+ = Pr(oi, oj , D);
6. if #D(oi) > θ then GOTO next oi;
7. end for
8. Insert oi and its #D(oi) into Cobj (Keep Cobj sorted

of #D(oi));
9. if |Cobj | > k then
10. Set θ = #D(o′), where o′ is the k-th object in Cobj ;
11. Remove all o′′ ∈ Cobj , such that #D(o′′) > θ;
12. end if
13. end for
14. return Cobj.

4 PC-list based outlier detection

The naive approach requires a lot of computation time to
detect the top-k outliers even from a small dataset due to
the costly distance calculation. To overcome this problem
a populated-cells list (PC-list) based approach of the top-k
distance-based outlier detection is proposed. The PC-list is
an array of non-empty cells of a d-dimensional grid. The
grid is used to index dataset objects in GDB. The PC-list
helps in the detection of top-k distance-based outliers by
identifying the grid cells containing candidate outliers.

Lemma 2. Let oi, oj ∈ GDB be two d-dimensional
uncertain data objects following the Gaussian distribution
and α denotes an ordinary Euclidean distance between the
means of oi and oj . Then for t ∈ R, by denoting the num-
ber of standard deviations required to enclose a large prob-
ability (say > 99%) of a d-dimensional Gaussian difference
distribution, the following statements hold.

(a) If α � D − tσ′, P r(oi, oj , D) ≈ 1

(b) If α � D + tσ′, P r(oi, oj , D) ≈ 0

where σ′ is the standard deviation of the Gaussian differ-
ence distribution in any one dimension (assuming that the
standard deviation is uniform in all the dimensions).

Proof. The number of standard deviations s needed to
enclose a given probability for a d-dimensional random vari-
able X following the Gaussian distribution can be obtained
using the expression Pr{dM (X, µ) � s} = Gd(s2)[38], where

dM (X, µ) =
√

(X − µ)T
∑−1(X − µ) is the Mahalanobis

distance and Gd(s2) is the cumulative distribution func-
tion (CDF) of the chi-squared distribution with d-degrees
of freedom.

Here, we are interested in computing the distance be-
tween two uncertain objects oi and oj following the Gaus-
sian distribution. This distance is given by another
Gaussian distribution known as the Gaussian difference
distribution[31]. Hence if t denotes the value of s, such that
Pr{dM (X, µ) � t} covers a large area of the Gaussian distri-
bution (say > 99%), then for α � D−tσ′, P r(oi, oj , D) ≈ 1
and for α � D + tσ′, P r(oi, oj , D) ≈ 0. �

4.1 Grid GGG structure

In order to find the top-k distance-based outliers from
uncertain dataset using the PC-list, each object in GDB
is quantized to a d-dimensional grid G that is partitioned
into cells of length l (The cell length is discussed in Section
5.4). Let Cψ1,··· ,ψd

be any cell in G, where positive integers
ψ1, · · · , ψd denote the cell indices. The layers (L1, · · · , Ln)
of Cψ1,··· ,ψd

∈ G are the neighbouring cells of Cψ1,··· ,ψd
, as

shown in Fig. 1 and are derived as follows:

L1(Cψ1,··· ,ψd
) ={Cx1,··· ,xd

|x1 = ψ1 ± 1, · · · , xd = ψd ± 1,

Cx1,··· ,xd
�= Cψ1,··· ,ψd

} (4)

L2(Cψ1,··· ,ψd
) ={Cx1,··· ,xd

|x1 = ψ1 ± 2, · · · , xd = ψd ± 2,

Cx1,··· ,xd
/∈ L1(Cψ1,··· ,ψd

),

Cx1,··· ,xd
�= Cψ1,··· ,ψd

}. (5)

L3(Cψ1,··· ,ψd
), · · · , Ln(Cψ1,··· ,ψd

) are derived in a similar
way. We will use C to denote Cψ1,··· ,ψd

when there is no
confusion.
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Fig. 1 Cell layers and bounds

Let RD−tσ(C) denote a region formed by
⌊

D−tσ

l
√

d
− 1

⌋

neighbouring layers of C ∈ G as shown in Fig. 2. The region
RD−tσ(C) is chosen in such a way that for each oi ∈ C and
oj ∈ RD−tσ(C), Pr(oi, oj , D) ≈ 1. Similarly, RD+tσ(C)
denotes a region formed by

⌈

D+tσ
l

⌉

neighbouring layers of
cell C ∈ G as shown in Fig. 1. Region RD+tσ(C) is chosen
in such a way that for each oi ∈ C and oj /∈ RD+tσ(C),
Pr(oi, oj , D) approaches zero.

Fig. 2 PC-list building

4.2 PC-list structure

Populated-cells list (PC-list) is an array of non-empty
cells of a d-dimensional grid. Let N(C) be the number of ob-
jects in C, and ND−tσ(C) be the number of objects within
cells in region RD−tσ(C) (including C itself). Then the PC-
list (PC) is a sorted list containing N(C) and ND−tσ(C) for
each non-empty cell C ∈ G as shown in Fig. 2. The tuples in
the PC-list are sorted in an ascending order of ND−tσ(C)
column. The idea behind sorting is that outliers tend to
exist in sparse regions. Sorting tuples in the PC-list, lets
us identify cells with few number of neighbouring objects
or cells in sparse regions.

The PC-list constructed in such a way that the majority
of cells at the top of the PC-list contain candidate outlier
objects. To prune the cells in the PC-list which cannot con-
tain top-k outliers, cell bounds are computed. In practice,
only small percentage of cells at the top of the PC-list re-
quire bounds computation. The rest of the cells are pruned
as inlier cells, i.e., the cells containing only inlier objects.

4.3 Cell bounds

In order to identify cells C ∈ PC, containing only in-
liers or candidate top-k outliers, their bounds on the #D-
neighbours are used. A cell C can be pruned as an inlier
cell if the minimum #D-neighbours for any object in C is
greater than threshold θ (θ is discussed shortly). Similarly,

a cell can be identified as containing top-k outliers (candi-
date outlier cell) if the maximum #D-neighbours for any
object in C is less than θ. Since the Gaussian distribution
is unbounded, Pr(oi, oj , D) is always greater than zero for
oi, oj ∈ GDB. Therefore all the cells in the PC-list need to
be considered for the computation of bounds of C ∈ PC. To
compute cell bounds, the minimum and the maximum ordi-
nary Euclidean distances between cells are required. Beside
this, object count of each C ∈ PC and Pr(α, D) values for
α ranging from the minimum to the maximum ordinary Eu-
clidean distances between cells in G are also required. The
Pr(α, D) values are precomputed and stored in a look-up
table to be used by the top-k outlier detection algorithm.
4.3.1 Distance between cells

Let Cp and Cq be two cells in PC with in-
dices ψp1, · · · , ψpd and ψq1, · · · , ψqd, respectively. Let
∆min(Cp, Cq) and ∆max(Cp, Cq) denote the minimum and
the maximum ordinary Euclidean distances between Cp and
Cq, respectively. Distance between Cp and Cq depends on
their positions in grid G and can be derived as

∆min(Cp, Cq) = l(

d
∑

s=1

δ2
min,s)

1
2 (6)

where δmin,s =

⎧

⎪

⎨

⎪

⎩

ψps − (ψqs + 1), ψps > ψqs

(ψps + 1) − ψqs, ψps < ψqs

ψps − ψqs, ψps = ψqs

∆max(Cp, Cq) = l(
d

∑

s=1

δ2
max,s)

1
2 (7)

where δmax,s =

{

(ψps + 1) − ψqs, ψps � ψqs

ψps − (ψqs + 1), ψps < ψqs.

Now the bounds for the PC-list cells can be obtained
using pre-computed Pr(α, D) values and the informa-
tion available in the PC-list. Let LB(Pr(Cp, Cq)) and
UB(Pr(Cp, Cq)) denote Pr(α,D) values at minimum α �

∆max(Cp, Cq) and maximum α � ∆min(Cp, Cq), respec-
tively. Then for a C ∈ PC, its lower bound LB(C) and
upper bound UB(C) are defined as follows:

LB(C) =
∑

C′∈PC

LB(Pr(C,C′)) × N(C′) (8)

UB(C) =
∑

C′∈PC

UB(Pr(C,C′)) × N(C′). (9)

Since the major contribution in the bounds for C ∈ PC
is done by the cells in region RD+tσ(C), the bounds for
C ∈ PC can be redefined to reduce the number of pre-
computations and bounds computation time as follows.

LB(C) =
∑

C′∈{PC∩RD+tσ(C)}
LB(Pr(C,C′)) × N(C′)

(10)

UB(C) =
∑

C′∈{PC∩RD+tσ(C)}
UB(Pr(C,C′)) × N(C′)+

Pr(l
√

d(⌈D + tσ

l
⌉ + 1), D)×

(N −
∑

C′∈{PC∩RD+tσ(C)}
×N(C′)). (11)
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4.3.2 Number of PrPrPr(α, D)(α, D)(α, D) pre-computations

Since the bounds of C ∈ PC are computed using the
cells in region RD+tσ(C), Pr(α, D) values need to be com-
puted only for the neighbouring layers within D + tσ dis-
tance of a cell. For

⌈

D+tσ
l

⌉

neighbouring layers, we require

2⌈D+tσ
l

⌉ pre-computations. Two more pre-computations
are required for the cell C itself and the objects that lie
greater than D + tσ distance of a cell. Hence the total
number of pre-computations of Pr(α, D) required are only
2⌈D+tσ

l
⌉ + 2.

4.4 Candidate outlier cells detection

Using the bounds discussed in Section 4.3, a cell can be
pruned as an inlier cell, i.e., a cell containing only inlier
objects or can be identified as containing the top-k out-
lier candidates. Let Ccell be a list for holding candidate
outlier cells from PC-list, sorted in the ascending order
of UB(C). Let Ck ∈ Ccell be a cell with the minimum
upper bound containing the k-th object. A C ∈ PC is
a candidate outlier cell whenever

∑

C′∈Ccell
N(C′) < k or

LB(C) � θ, where θ = UB(Ck) denotes the threshold. For
a C ∈ PC, if LB(C) > θ, then C cannot contain any of
the top-k outliers and can be pruned. On the other hand,
if LB(C) � θ, C may contain the top-k outliers. C is
added to Ccell, such that Ccell remains sorted of its UB(C)
attribute. Set θ = UB(Ck) and remove C′ from Ccell,
such that LB(C′) > θ, as they cannot contain the top-k
outliers.

Stopping condition: The PC-list is scanned from top to
bottom for candidate outlier cells. During the scanning, if a
C′ ∈ PC is found such that Pr(D−tσ, D)×ND−tσ(C′) > θ,
which is a lower bound on #D-neighbours of C′, C′ can-
not contain the top-k outliers and can be pruned. Since
the PC-list is sorted of ND−tσ(C), any cell after C′ must
have ND−tσ(C) � ND−tσ(C′). Hence the lower bound of
C ∈ PC after C′ must be greater than or equal to the
lower bound of C′ ∈ PC and cannot contain the top-k out-
liers. Hence, the PC-list scanning can be stopped at this
point.

5 Top-kkk and top-kkk approx algorithms

In this section, we present two algorithms to detect top-k
distance-based outliers from uncertain datasets. The first
algorithm (top-k) computes accurate #D-neighbours for all
the un-pruned objects, however the second algorithm (top-
k approx) approximates the #D-neighbours to reduce the
algorithm computation cost. In Section 6, we will present
another approximate top-k algorithm using the bounded
Gaussian uncertainty (top-k BG).

5.1 Top-kkk algorithm

The Algorithm 2 first maps dataset objects to appro-
priate grid cells and creates the PC-list in lines 4 and 5,
respectively. Since the PC-list is sorted in the ascending
order of its ND−tσ(C) column, it guarantees that cells in
the sparse regions of grid G are at the top of the PC-list.
Hence, the candidate outlier cells are expected to be at the
top of the list. We scan the PC-list and add the candi-

date outlier cells in Ccell until the stopping condition on
line 8 becomes true. The number of objects in Ccell may
be greater than k, hence their #D-neighbours are com-
puted to find the top-k outliers and their ranking. The
object is then added to the Cobj (set of candidate outlier
objects) along with its #D(o). The objects in Cobj are
sorted in the ascending order of #D(o) column. As the
k-th object′s #D(o) is found, threshold θ is set (refer to
line 10 of Algorithm 1). During the calculation of #D(o),
if for some o′, #D(o′) becomes greater than θ, then o′ can
not be among the top-k outliers and is removed from further
consideration.

Algorithm 2. Top-k.
Input: GDB, D, l, k.
Output: Top-k distance-based outliers.
1. N ← |GDB|, θ ← ∞;
2. Ccell ← φ, Cobj ← φ; (Candidate outlier cells list and

top-k candidate outlier objects list, respectively);
3. Map each o ∈ GDB to an appropriate cell C of grid G;
4. Create PC-list PC, using non-empty cells of G;
5. Sort PC w.r.t. ND−tσ(C) column;

/*Searching candidate outlier cells*/
6. for each C in |PC| do
7. /*Stopping condition*/
8. if ND−tσ(C) × Pr(D − tσ, D) > θ then exit for loop.
9. Compute LB(C) and UB(C);
10. if LB(C) � θ then
11. Add C to Ccell (keep Ccell sorted of UB(C)

attribute);
12. if Ccell contains � k objects then
13. Set θ = UB(Ck), such that Ck contain the k-th

object;
14. Remove all C from Ccell, such that LB(C) > θ;
15. end if
16. end if
17. end if

/*Calculating #D(o) of candidate top-k outliers*/
18. The computation of #D(o) is similar to that of the
naive approach. The only difference is that in this algo-
rithm #D(o) are computed for the candidate objects in
Ccell only.

5.2 Top-kkk approx algorithm

In the top-k algorithm, the minimum number of dis-
tance function computations required for the evaluation of
k #D(o) is kN . However, the candidate outlier objects
which require the evaluation of #D(o) may be greater that
k. When the distance function is expensive to compute (as
in our case), computation of even k #D(o) is very expen-
sive. According to our distance function, the major con-
tribution to the evaluation of #D(o) is done by the nearer
objects. Hence, #D(o) for each unpruned o can be ap-
proximated with a high accuracy by considering objects
only within D + tσ distance of o according to Lemma 2,
rather than considering all the objects in the dataset. It
saves a lot of computation time. The rest of the algo-
rithm is the same as that of the accurate top-k algori-
thm.

Maximum approximation error: For any o ∈ GDB, the
maximum approximation error (εmax) happens if all the
o′ ∈ GDB \ o are at a distance slightly greater than D + tσ
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from o. Hence, εmax = (N − 1)×Pr(D + tσ + β, D), where
β ∈ R is a very small real value to make the distance greater
than D + tσ.

For example, for t = 9, d = 2 and N = 105 objects,
εmax ≈ 10−5. εmax depends mainly on t. In practice t � 3
gives sufficiently accurate #D(o) for d = 2 and 3. For
higher d values, we need to increase t value according to
Lemma 2.

5.3 Complexity analysis

We will first analyse the complexity of the top-k algo-
rithm for the 2D case. Lines 1 and 2 contain only the ini-
tializations of variables. Since there are N objects in the
dataset GDB, line 3 takes O(N) time. Line 4 takes O(m)
time, where m ≪ N is the total number of populated cells
in the cell-grid. Sorting m cells in the PC-list in line 5 takes
O(mlog(m)) time. The main loop of the algorithm in lines
6−17 is executed for all the cells in the PC-list in the worst
case. The loop computes the lower and upper cell bounds,
each of which takes O(m) time because the cell bounds
computation requires the contributions of all the cells in
the PC-list. Keeping the Ccell sorted in Line 11 takes O(m)
time in the worst case. Lines 13 and 14 within the loop
takes at-most O(m) each. Hence, the overall loop takes
O(m2) time. Finally, computation of the #D-neighbours
in Line 18 takes O(nN) time, where n ≪ N is the num-
ber of candidate objects for the top-k outliers. Thus, the
worst case time complexity of the top-k outlier detection
algorithm in 2D is O(nN + m2).

However, in the top-k algorithm, the major cost lies in
the evaluation of #D-neighbours of the candidate outlier
objects (Line 18). This cost is so high that it hides the
cost of the rest of the algorithm. This is due to the expen-
sive distance calculation between uncertain objects. There-
fore, we give the time complexity of the proposed algo-
rithms in terms of the number of distance function eval-
uations. Hence, the complexity of the top-k algorithm in
2D is O(nN). Although the number of distance function
evaluations required for the processing of candidate outlier
objects in the top-k approx algorithm is far lower than its
exact counter part, its worst case complexity is still O(nN)
in a 2D case.

The complexity of the proposed algorithms does not
change with the increase in dimensions d, as long as only the
number of distance function evaluations are considered for
the computation of algorithms′ complexity. Although with
the increase in d, the number of grid cells increases exponen-
tially, yet the cost of the evaluation of #D-neighbours for
the candidate outlier objects remains dominant and hence
the complexity remains the same, i.e., O(nN) for a higher
dimensional case.

From the above analysis, it is evident that the computa-
tional complexity of the proposed algorithms is lower than
the naive algorithm, which is O(N2) in terms of the dis-
tance function. Hence, the execution times of the proposed
algorithms are far lower than the naive algorithm. However,
with the increase in d, the distance computation between
uncertain objects becomes very expensive and it becomes
impractical to detect outliers from very high dimensional
data.

5.4 Discussion: determination of values

for DDD and lll

Let us begin by stating that there is no universally cor-
rect value for parameters D or l. Parameter D has an affect
on the #D-neighbors of an object, as our distance function
Pr(oi, oj , D) is dependent on D. A larger D value results in
large Pr(oi, oj , D) values and therefore large #D-neighbors
and vice versa. However, a very small or very large D value
is not recommended as it may result in very small or very
large #D-neighbors, respectively for all the dataset objects
and may hide the difference between strong and weak out-
liers. Therefore, we recommend a moderate value of D,
not too large to cover the entire dataset objects and not
too small to cover only the object itself. Hence, an appro-
priate D value may be decided by considering the dataset
distribution by the end user.

Parameter l (cell length) has an affect on the performance
of the algorithms rather than the accuracy. Smaller l values
are good for cell pruning as they result in tighter bounds.
However, very small l may increase the number of cells in
the grid exponentially and the time required to construct
the PC-list and the bounds computation. This phenomenon
becomes severe with the increase in dimension d. On the
other hand, larger l values result in looser bounds and hence
reduce the pruning capability of the algorithms. Therefore,
small l values are recommended for lower dimensions and
relatively larger values are recommended for higher dimen-
sions.

6 Outlier detection using the bounded

Gaussian uncertainty

Approximating the Gaussian uncertainty by the bounded
Gaussian uncertainty enables an approximate but more ef-
ficient outlier detection. According to this paper′s assump-
tion, attributes of uncertain objects follow the Gaussian dis-
tribution. Therefore, according to the 3-sigma rule, there
are a 95.45% chance that uncertain objects′ attribute val-
ues lie within 2 standard deviations of the observed values
and a 99.73% chance that the values lie within 3 standard
deviations of the observed values[39]. Hence, the conven-
tional Gaussian distribution can be normalized within cer-
tain boundaries to increase the efficiency of the top-k outlier
detection at a small cost of accuracy.

Given a two dimensional conventional Gaussian function
g−→A(x1, x2) with mean −→µ = (µ1, µ2) and co-variance ma-

trix Σ = diag(σ2, σ2), the bounded Gaussian distribution
f−→A (x1, x2) can be defined following the practice of Tao et

al.[40] as follows:

f−→
A

(x1, x2) =

⎧

⎪

⎨

⎪

⎩

g−→
A

(x1, x2)
∫

(x1,x2)∈o.ur
g−→
A

(x1, x2)dx1dx2

, (x1, x2) ∈ o.ur

0, otherwise

(12)

where o.ur denotes the uncertainty region of the bounded
Gaussian distribution. This paper assumes that the un-
certainty region is a sphere with centre (µ1, µ2) and radius
r = tσ (t is discussed in Lemma 2).

By bounding the Gaussian uncertainty, a cell can be
pruned by simply counting the number of objects in its
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neighbouring cells. Moreover, the major cost of outlier de-
tection, that is, the processing of un-pruned objects also
reduces significantly. This is because, with the bounded
Gaussian uncertainty, the outlier detection algorithm needs
to consider limited number of objects for the computation
of an object′s #D-neighbors rather than all the objects in
the dataset. Interested readers may refer to our previous
work[33], for the details of the bounded Gaussian uncer-
tainty.

6.1 Grid (G)(G)(G) and PC-list structure for the

bounded Gaussian

In order to identify distance-based outliers using the PC-
list, each object in GDB is mapped into a d-dimensional
space that is partitioned into cells of length l (l is dis-
cussed in Section 5.4). Let Cψ1,··· ,ψd

be a cell in Grid G;
then cells in region RD−2r(Cψ1,··· ,ψd

) are those which com-
pletely lie within D−2r distance of Cψ1,··· ,ψd

, including the
Cψ1,··· ,ψd

itself. Let nD−2r =
⌊

D−2r
l

⌋

− 1; then the region
RD−2r(Cψ1,··· ,ψd

) is derived as

RD−2r(Cψ1,··· ,ψd
) = {Cx1,··· ,xd

|x1 = ψ1 ± nD−2r, · · ·

xd = ψd ± nD−2r,

√

√

√

√

d
∑

i=1

((xi + 1)l)2 < D − 2r

Cx1,··· ,xd
�= Cψ1,··· ,ψd

.

(13)

The number of cells in the region of RD−2r(Cψ1,...,ψd
)

vary depending upon nD−2r. Note that the
RD−2r(Cψ1,...,ψd

) satisfies the following property.
Property 1. If Cx1,··· ,xd

∈ RD−2r(Cψ1,··· ,ψd
), then the

objects oi ∈ Cψ1,··· ,ψd
and oj ∈ Cx1,··· ,xd

are at most D−2r
distance apart.

From Property 1, the oi ∈ Cψ1,··· ,ψd
and the oj ∈

RD−2r(Cψ1,··· ,ψd
) are guaranteed to be D-neighbours mu-

tually. Hence, the Pr(oi, oj , D) is always equal to 1. Cells in
region RD+2r(Cψ1,··· ,ψd

) are those which fall within D +2r
distance of the Cψ1,··· ,ψd

. Let nD+2r =
⌈

D+2r
l

⌉

; then the
region RD+2r(Cψ1,··· ,ψd

) is derived as

RD+2r(Cψ1,··· ,ψd
) = {Cx1,··· ,xd

|x1 = ψ1 ± nD+2r, · · ·

xd = ψd ± nD+2r,

√

√

√

√

d
∑

i=1

((xi − 1)l)2 < D + 2r

Cx1,··· ,xd
/∈ RD−2r(Cψ1,··· ,ψd

), Cx1,··· ,xd
�= Cψ1,··· ,ψd

.

(14)

Note that RD−2r(Cψ1,··· ,ψd
) and RD+2r(Cψ1,··· ,ψd

) sat-
isfy the following property.

Property 2. If Cx1,··· ,xd
is neither in RD−2r(Cψ1,··· ,ψd

)
nor in RD+2r(Cψ1,··· ,ψd

), and Cx1,··· ,xd
�= Cψ1,··· ,ψd

, then
objects oi ∈ Cψ1,··· ,ψd

and oj ∈ Cx1,··· ,xd
are greater than

D + 2r distance apart.
From Property 2, it can be guaranteed that oi ∈

Cψ1,··· ,ψd
and oj ∈ Cx1,··· ,xd

are greater than D + 2r dis-
tance apart. Hence, the Pr(oi, oj , D) is always equal to 0.
In the following, C is used to denote Cψ1,··· ,ψd

when there
is no confusion.

The PC-list structure for the bounded Gaussian is sim-
ilar to that of the conventional Gaussian (refer to Section

4.2) except the column ND−tσ(C). Instead of N(C) and
ND−tσ(C), the PC-list contains N(C) and ND−2r(C) for
each non-empty cell of G. The tuples in the PC-list are
sorted in an ascending order of ND−2r(C) column.

6.2 Cell bounds for the bounded Gaussian

In order to identify cells C ∈ PC containing only in-
liers or candidate top-k outliers, their bounds on the #D-
neighbours are used. A cell C can be pruned as an inlier
cell if the minimum #D-neighbours for any object in C
is greater than threshold θ (θ is discussed in Section 4.4).
Similarly, a cell can be identified as containing top-k out-
liers if the maximum #D-neighbours for any object in C is
less than θ. In case of the bounded Gaussian distribution,
Pr(oi, oj , D) = 0 if the means of oi and oj are greater than
D + 2r distance. Hence, only cells within regions RD−2r

and RD+2r of a C ∈ PC need to be considered for the
computation of its lower and upper bounds, respectively.

Thus for a C ∈ PC, its lower bound LB(C) and upper
bound UB(C) are defined as

LB(C) =
∑

C′∈{PC∩RD−2r(C)}
N(C′) (15)

UB(C) =
∑

C′∈{PC∩RD+2r(C)}
N(C′). (16)

6.3 Candidate outlier cell detection and

stopping condition for the bounded

Gaussian

For the bounded Gaussian case, the procedure of can-
didate outlier cell detection is similar to that discussed in
Section 4.4. However, the stopping condition is slightly dif-
ferent. During the scanning of PC-list, if C′ ∈ PC is found
such that ND−2r(C

′) > θ, which is a lower bound on #D-
neighbors of C′, C′ cannot contain the top-k outliers and
can be pruned. Since the PC-list is sorted of ND−2r(C), any
cell after C′ must have ND−2r(C) � ND−2r(C

′). Hence, the
PC-list scanning can be stopped safely at this position.

6.4 Top-kkk BG algorithm

The major part of the top-k BG algorithm is the same
as that of the top-k algorithm (Algorithm 2). The main
difference lies in the construction of the PC-list and the
computation of bounds as discussed in Sections 6.1 and 6.2,
respectively. Moreover, evaluation of the candidate outlier
objects now only requires objects within D +2r distance of
the target object rather than all the objects in the dataset,
bringing down the overall cost of execution.

7 Experiments

Extensive experiments are conducted on synthetic and
real datasets to evaluate the accuracy and efficiency of the
proposed algorithms. All algorithms were implemented in
C++, GNU compiler. All experiments were performed on
a system with an Intel Core 2 Duo E8600 3.33 GHz CPU
and 2GB main memory running Ubuntu 12.04 OS. All pro-
grams run in main memory and no I/O cost is considered.
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7.1 Datasets

In this paper, two synthetic and three real datasets are
used for experiments. Synthetic datasets, unimodal Gaus-
sian (UG) and trimodal Gaussian (TG) are 2-dimensional
and are generated using BoxMuller method[41]. This
method generates pair of independent, standard, normally
distributed (zero mean, unit variance) random numbers,
given a source of uniformly distributed random numbers.
High dimensional (3D, 4D and 5D) uni-modal Gaussian
datasets are also generated for the evaluation of our pro-
posed approaches on high dimensional data. Unless spec-
ified, 2-dimensional and high dimensional datasets consist
of 10 000 and 1 000 tuples, respectively.

As for real-world data, three datasets are used:
ADAPTE, SDSS and ISPD. ADAPTE and ISPD are ob-
tained from CISL Research data archive[42] and SDSS is
obtained from Sloan Digital Sky Survey[43]. ADAPTE con-
sists of about 1 851 maximum and minimum temperature
values collected from the National Polytechnic Institute of
Mexico and National Meteorological System. SDSS dataset
contains 10 136 right ascension and declination coordinates
of stars and galaxies. SDSS dataset used in the experiments
is a subset of SDSS data release 7 (DR7), which includes
a huge collection of more than 6 million stars, 8 million
galaxies, and 4 500 quasars[43]. The International Surface
Pressure Databank (ISPD) dataset consists of 108 015 val-
ues of sea level pressure and surface pressure, which is the
world′s largest collection of pressure observations[44].

All the datasets are normalized to have a domain of
[0 1000] on every dimension. For each point z in any dataset,
an uncertain object o is created, whose uncertainty is given
by the Gaussian distribution with mean z and standard
deviation σ in all the dimensions. Pre-computation time is
not included in the measurements. Unless specified, the fol-
lowing parameter values are used in experiments: D = 100,
σ = 10, l = 10, t = 3, r = tσ and k = 10. In the following
figures, the Knorr et al.[10] algorithm is denoted by Knorr
and the proposed top-k, the top-k approximate and the top-
k bounded Gaussian algorithms are denoted by top-k, top-k
approx and top-k BG, respectively.

7.2 Accuracy

Firstly, experiments are performed to evaluate the accu-
racy of the proposed algorithms. Since there are no known
algorithms for the top-k distance-based outlier detection on
uncertain data, the deterministic algorithm for distance-
based outlier detection given by Knorr et al.[10] is used as a
baseline. Slight changes are made in the Knorr′s algorithm
to obtain the top-k outliers from it. Since the outliers are
not known, for both synthetic and real datasets, baseline
algorithm is used to determine the outliers on the original
datasets. The results obtained from the baseline algorithm
are used as the ground truth. In order to judge the ac-
curacy of the proposed algorithms, the precision and recall
are measured on the perturbed dataset for the baseline algo-
rithm and the proposed algorithms. The perturbed dataset
is obtained by adding normal random numbers with zero
mean and standard deviation σp to each of the tuple values
of the original dataset. The σp was varied from 10 to 50
(with a step of 10) to generate perturbed datasets of five

different levels. Experiments show that the proposed algo-
rithms are superior to the baseline algorithm, since they do
not degrade quite as much with increasing uncertainty.

The quality of the results are measured in terms of the
precision and recall compared to the ground truth. The pre-
cision is defined as the ability of the algorithm to present
only true outliers. The recall is defined as the ability of the
algorithm to present all true outliers. Unless specified, the
following parameter values are used for the experiments in
this subsection: D = 70, σ = 10, σp = 30, l = 10, t = 3,
r = tσ and k = 50.

Firstly, the precision-recall trade-off curves are presented
for different datasets. In all the graphs in Fig. 3 both
the precisions and recalls of the proposed algorithms are
higher than those of the baseline approach. Moreover, the
precision-recall curves of the top-k and the top-k approx
are exactly the same. This is due to the fact that both the
algorithms returned the same outliers. Although there was
a slight difference in the #D-neighbours of the outliers re-
turned by both the proposed algorithms, but this difference
was not big enough to change the top-k outlier objects or
their ranking. The precision-recall of the top-k BG algo-
rithm is also better than that of the baseline algorithm and
in most datasets is equal to the top-k algorithm.

In Fig. 3 (a), the precision-recall curves are almost same
for all the algorithms, however, in Figs. 3 (b), 3 (c) and 3 (d)
the precision-recall curves of the proposed algorithms are
comparatively higher than that of the baseline approach.
Specially, the low recall in Figs. 3 (c) and 3 (d) shows the
presence of a large number of false positive outliers in the
outliers obtained from the baseline algorithm.

The accuracy of the proposed algorithms is also evalu-
ated with the increasing level of uncertainty. From Fig. 4,
it is clear that the precision falls with the increasing un-
certainty level. Moreover, the precision of the proposed
algorithms is always higher than that of the baseline algo-
rithm in Fig. 4, which means that fewer false-positive out-
liers were returned by the proposed algorithms than by the
baseline algorithm. Similar results are illustrated for recall
in Fig. 5. In all four plots of Fig. 5, the recall is somewhat
consistent with increasing uncertainty level for the proposed
algorithms. This proves that the proposed algorithms are
better than the baseline algorithm in retrieving only true
outliers, even from the noisy data.

7.3 Efficiency

In this subsection, experiments are conducted to evaluate
the efficiency of the proposed top-k outlier detection algo-
rithms presented in Sections 5 and 6. Fig. 6 (a) compares
the execution times of the naive and the proposed algo-
rithms on UG dataset. Please note the use of logarithmic
scale in all the efficiency graphs to keep the graph lines vis-
ible. The proposed algorithms are several times faster than
its naive counterpart due to their strong pruning capability
as can be observed from Fig. 6 (b). The stopping condition
discussed in Sections 4.4 and 6.3 helps identify candidate
outlier cells very quickly. Fig. 6 (c) shows the percentage of
cells considered in the PC-list to identify candidate outlier
cells. The percentage is comparatively higher for trimodal
Gaussian dataset because the dataset is relatively sparse
and hence results in larger number of candidate outlier cells.
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Moreover, the top-k approx and the top-k BG algorithms
are thousands of times faster than the top-k algorithm. This
is due to the fact that these algorithms, in contrast to the
top-k algorithm, do not consider all the dataset objects for
the computation of #D-neighbors of the candidate objects.

From theoretical analysis in Section 5.2 and experiments we
found that the top-k approx algorithm gives an accuracy of
up to several decimal digits in the evaluation of #D(o) and
hence the outliers obtained from the top-k and the top-k
approx are the same.

Fig. 3 Precision-recall trade-off curves (D = 70, σ = 10, σp = 30, l = 10, t = 3 and k = 50)

Fig. 4 Precision with increasing σp (D = 70, σ = 10, σp = 30, l = 10, t = 3 and k = 50)
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Fig. 5 Precision with increasing σp (D = 70, σ = 10, σp = 30, l = 10, t = 3 and k = 50)

Fig. 6 Effectiveness of the PC-list based approach

Fig. 7 Varying dataset size N (D = 100, σ = 10, l = 10, t = 3 and k = 10)

In addition, the execution time of the top-k approx algo-
rithm in all the experiments is several times lower than
its exact counterpart. On the other hand, the accuracy of
the top-k BG algorithm is not as high as that of the top-
k approx algorithm, however its efficiency is higher than
that of the top-k approx, algorithm for the higher dimen-
sional data (refer to Fig. 12) and it does not require any
pre-computation.

Fig. 7 shows the affect of varying the number of objects
in the synthetic datasets UG and TG. With the increase in
the number of dataset objects, execution times of all the
algorithms also increase. However, in Fig. 7 (b), the exe-
cution times do not appear to increase from N = 10 000
to N = 15 000. As discussed in the previous sections, the

major cost of the proposed algorithms lie in the process-
ing of the un-pruned objects (candidate outlier objects). In
Fig. 7 (b), the number of un-pruned objects for N = 15 000
is less than that of N = 10 000, which is the cause of sta-
bility in the graph lines from N = 10 000 to N = 15 000.

Graphs in Figs. 8–11 show the affect of varying different
parameters on the execution times. Firstly, consider the
variation of parameter l in Fig. 8. The numbers above and
below the graph lines show the number of candidate objects
requiring exact #D-neighbors computation. As cell-length
varies, the number of objects requiring #D-neighbors com-
putation also varies. As discussed in previous sections, the
major cost of our algorithms lie in the processing of can-
didate objects, because they required computation of #D-
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neighbors. Hence, as the cell length increases, the execution
time of the algorithms also increases due to the increase in
number of candidate objects. Moreover, it is obvious from
the graphs in Fig. 8 that smaller cell lengths require lower

execution times. However, very small cell length increases
the number of cells exponentially and therefore the execu-
tion time of the algorithm. This phenomenon is discussed
in Section 5.4.

Fig. 8 Varying parameter l (D = 100, σ = 10, t = 3 and k = 10)

Fig. 9 Varying parameter σ (D = 100, l = 10, t = 3 and k = 10)

Fig. 10 Varying parameter D (σ = 10, l = 10, t = 3 and k = 10)
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Next we perform experiments by varying the parameter
σ. As σ increases, the uncertainty of objects also increases.
This increase in uncertainty results in smaller Pr(oi, oj , D)
values even if oi and oj are located nearby. Hence, the num-
ber of distance function evaluations required increases for
un-pruned objects, which results in higher execution times
as can be observed from graphs in Fig. 9. Moreover, it can
be observed from Fig. 9 that for smaller a σ, the computa-
tion cost is the lowest for the top-k BG algorithm. Please
recall that the bounded Gaussian uncertainty is bounded
by radius r = tσ. Hence, smaller σ results in a smaller r
and it helps in early pruning of objects, bringing down the
overall cost of the algorithm.

Graphs in Fig. 10 show the affect of varying parameter D.
For each un-pruned o from the PC-list-based pruning, in-
crease in D results in an increase in the #D-neighbours,
which needs to be considered for the approximation of
#D(o). Therefore, it increases the execution time of the
top-k approx algorithm. Similarly, the execution time of
the top-k BG algorithm increases with the increase in D.
Since increase in D results in an increase in region RD+2r

and the number of objects need to be considered for the
computation of an object′s #D-neighbors. However the
execution times of the top-k algorithm decrease with the
increase in the parameter D. This is due to the fact that
for larger D, Pr(oi, oj , D) is higher. Hence an un-pruned
object is easily pruned if it is an inlier, reducing the overall
cost of the algorithm.

From graphs in Fig. 11, increase in k results in an increase
in execution times of the algorithms, which is quite obvious
behaviour of the algorithms.

Finally, experiments are performed by varying the num-

ber of dimensions. Experiments in Fig. 12 are performed
on the synthetic dataset UG with N = 1000. Computation
cost of the top-k and the top-k approx algorithms increases
with the increase in dimensions, however the computation
cost decreases for the top-k BG algorithm with the increase
in dimensions. The reason for this decrease in execution
time is the sparsity of data objects in higher dimensions.
As a result, the top-k BG algorithm can quickly identify
the cells in sparse regions and can obtain top-k outliers.
Moreover, we found that there were no un-pruned objects
for the top-k BG algorithm for dimensions 3 to 5. Fig. 12 (b)
can help further in understanding the graph of Fig. 12 (a).
For the top-k and the top-k approx algorithms, pruning per-
centage decreases with the increase in d, causing the execu-
tion times to increase with d. On the other hand, pruning
percentage increases with the increase in d for the top-k BG
algorithm, causing the execution times to decrease dramat-
ically. Fig. 12 (c) shows the percentage of cells considered
before the execution of stopping condition. From the graph
it is very obvious that it decreases with d for the top-k and
the top-k approx algorithms and increases for the top-k BG
algorithm.

8 Conclusion

In this work, an exact (top-k) and two approximate (top-
k approx and top-k BG) algorithms on top-k distance-based
outlier detection from uncertain datasets of the Gaussian
distribution are proposed. All the algorithms make use of
a cell grid and a PC-list (populated-cells list) to quickly
identify the candidate outlier objects. The only difference
between the top-k and the top-k approx algorithms is the

Fig. 11 Varying parameter k (D = 100, σ = 10, l = 10 and t = 3)

Fig. 12 Varying dimensions d (N = 1000, D = 100, σ = 10, l = 10, t = 3 and k = 10)
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computation of #D-neighbours. The exact top-k algorithm
computes #D-neighbours of the top-k candidate objects
by considering all the objects in the dataset, however, the
top-k approx algorithm considers only nearer objects for
its #D-neighbour computation. The top-k BG algorithm
makes use of the bounded Gaussian uncertainty to reduce
the computation cost of outlier detection. An extensive
empirical study on real and synthetic datasets is also pre-
sented to prove the accuracy, efficiency and scalability of
the proposed algorithms.

Appendix

Let o be a k-dimensional uncertain object with attributes−→A = [x1, · · · , xk], mean −→µ = [µ1, · · · , µk]T and a diagonal
covariance matrix Σ = diag(σ2

1 , · · · , σ2
k). The probability

density function of o can be expressed as

f−→A (x1, · · · , xk) =
1

√

(2π)kdetΣ
×

e

{

− (
−→
A−

−→µ )TΣ−1(
−→
A−

−→µ )
2

}

. (A1)

Since Σ is diagonal, the distribution functions are in-
dependent of coordinates. Hence, the k-dimensional nor-
mal distribution function is given by the product of k 1-
dimensional normal distribution functions.

f−→A (x1, · · · , xk) =
∏

1�i�k

1
√

2πσ2
i

e

{

− (xi−µi)
2

2σ2
i

}

. (A2)

Let oi and oj be two k-dimensional uncertain objects with

attributes
−→Ai = [xi,1, · · · , xi,k]T and

−→Aj = [xj,1, · · · , xj,k]T,
means −→µi = [µi,1, · · · , µi,k]T and −→µj = [µj,1, · · · , µj,k]T and
diagonal covariance matrices Σi = diag(σ2

i,1, · · · , σ2
i,k) and

Σj = diag(σ2
j,1, · · · , σ2

j,k), respectively. Assuming that
−→Ai

and
−→Aj are independent random vectors, then

−→Ai −
−→Aj =

N (−→µi −−→µj , Σi + Σj)
[31].

Since Σi and Σj are diagonal matrices, the k-dimensional
normal difference distribution function can be given by the
product of k 1-dimensional normal distribution functions as

f−→Ai−
−→Aj

(x1, · · · , xk) =
∏

1�m�k

1
√

2π(σ2
i,m + σ2

j,m)
×

e

{

−
(xm−(µi,m−µj,m))2

2(σ2
i,m

+σ2
j,m

)

}

. (A3)

The normal difference distribution of 2-dimensional un-
certain objects oi and oj is given by

f−→Ai−
−→Aj

(x1, x2) =
1

2π
√

(σ2
i,1 + σ2

j,1)(σ
2
i,2 + σ2

j,2))
×

e

{

−
(

(x1−α1)2

2(σ2
i,1

+σ2
j,1

)
+

(x2−α2)2

2(σ2
i,2

+σ2
j,2

)

)

}

(A4)

where α1 = µi,1−µj,1 and α2 = µi,2−µj,2 are the differences
between the means of objects oi and oj , respectively. Hence,

the probability that oj ∈ DN(oi) denoted by Pr(oi, oj , D)
is given as

Pr(oi, oj , D) =
1

2π
√

(σ2
i,1 + σ2

j,1)(σ
2
i,2 + σ2

j,2)
×

∫ D

0

∫ 2π

0

e

{

−
(

(r cos θ−α1)2

2(σ2
i,1+σ2

j,1)
+

(r sin θ−α2)2

2(σ2
i,2+σ2

j,2)

)}

r dθ dr. (A5)
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