
Top-k Spatial Keyword Queries on Road Networks

João B. Rocha-Junior
∗

and Kjetil Nørvåg
Department of Computer and Information Science

Norwegian University of Science and Technology (NTNU), Trondheim, Norway
{joao,noervaag}@idi.ntnu.no

ABSTRACT

With the popularization of GPS-enabled devices there is an increas-
ing interest for location-based queries. In this context, one interest-
ing problem is processing top-k spatial keyword queries. Given
a set of objects with a textual description (e.g., menu of a restau-
rant), a query location (latitude and longitude), and a set of query
keywords, a top-k spatial keyword query returns the k best objects
ranked in terms of both distance to the query location and textual
relevance to the query keywords. So far, the research on this prob-
lem has assumed Euclidean space. In order to process such queries
efficiently, spatio-textual indexes combining R-trees and inverted
files are employed. However, for most real applications, the dis-
tance between the objects and query location is constrained by a
road network (shortest path) and cannot be computed efficiently
using R-trees. In this paper, we address, for the first time, the chal-
lenging problem of processing top-k spatial keyword queries on
road networks where the distance between the query location and
the spatial object is the shortest path. We formalize the new query
type, and present novel indexing structures and algorithms that are
able to process such queries efficiently. Finally, we perform an ex-
perimental evaluation that shows the efficiency of our approach.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query processing

General Terms

Algorithms, Experimentation, Performance

Keywords

Top-k spatial keyword queries, road networks, indexing

1. INTRODUCTION
Top-k spatial keyword queries return the k best spatio-textual

objects ranked in terms of both spatial proximity to the query loca-
tion and textual relevance to the query keywords. Despite the wide

∗On leave from the State University of Feira de Santana (UEFS).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

Figure 1: Top-k spatial keyword query on road networks.

range of location-based applications that can benefit from these
queries, the current approaches for processing top-k spatial key-
word queries are restricted to the Euclidean distance [3, 12, 18]. In
this paper, we address, for the first time, the challenging problem of
processing top-k spatial keyword queries on road networks. Given
a set of spatio-textual objects (e.g., restaurants annotated with a
text), a query location (latitude and longitude), and a set of query
keywords, a top-k spatial keyword query on road networks returns
the k best objects in terms of both 1) shortest path to the query
location, and 2) textual relevance to the query keywords.

For example, Figure 1 illustrates the road networks and spatio-
textual objects in a tourist area of Trondheim, Norway. The circles
represent spatio-textual objects p with a textual description, and the
cross mark q.l represents the query location. Assume a tourist in
q.l with a GPS-enabled mobile phone. The tourist poses a top-k
spatial keyword query looking for “hotel” (his spatial location is
automatically sent by the mobile phone). If a traditional query (Eu-
clidean distance) is considered, the top-1 hotel is p9 on the left side
of the figure. However, when road networks are considered, the
top-1 hotel is p4 on the right side of the figure. In top-k spatial
keyword queries on road networks both shortest path and textual
relevance are considered. For example, for the query “bar café”
posed in q.l, the spatio-textual object p6 may appear better ranked
than p7 because the description of p6 (“Egon Solsiden bar & café”)
is more textually relevant to the query keywords than the descrip-
tion of p7 (“Choco café”), and p6 is only slightly more distant to q.l
than p7. The top-1 object, however, is p10 because it is very near
to q.l and is also relevant to the query keywords. Note that p11 is
not returned as a result of this query, since none of the terms in the
description of p11 appear in the query keywords.

Top-k spatial keyword queries on road networks can be employed
by location-based applications to provide a more precise and real-
istic result. However, processing these queries is costly, since it

requires computing several shortest paths.
To the best of our knowledge, processing top-k spatial keyword

queries on road networks has never been proposed before. In this
paper, we formalize the concepts of this new query type and de-
scribe how to rank objects considering both the network distance
and the textual relevance. We also propose a basic approach for
processing top-k spatial keyword queries on road networks com-
bining the state-of-the-art approaches for road network and spatio-
textual indexing. Then, we present an enhanced approach that em-
ploys inverted files to index the description of the spatio-textual ob-
jects lying on the road networks and, therefore, can process queries
more efficiently. Finally, we describe how to create and employ
an overlay on top of the actual road network to improve the query
processing performance even further. The overlay allows to prune
the regions of the network that cannot contribute with relevant ob-
jects. In order to identify the relevant regions, we compute an upper
bound score for any object in the region in terms of both mini-
mum network distance to the query location and maximum textual
score. The maximum textual score of any object in a region is ob-
tained through an abstract textual representation that is maintained
for each region. We show the efficiency of our approach through
an extensive experimental evaluation.

In summary, the main contributions of this paper are:

• We introduce top-k spatial keyword queries on road networks.

• We describe a basic approach for processing top-k spatial
keyword queries on road networks combining state-of-the-
art techniques.

• We propose an enhanced approach that indexes the descrip-
tion of the objects on a segment of the road network for effi-
cient query processing.

• We employ an overlay network on top of the actual road net-
work to prune regions that cannot contribute with relevant
objects improving the query processing performance.

• Finally, we perform an experimental evaluation that demon-
strates the efficiency of our approach.

The remainder of this paper is organized as follows. First, we
describe the related work in Section 2. Next, we present the pre-
liminaries and problem statement in Section 3. Then, we describe
the basic approach in Section 4, the enhanced approach in Sec-
tion 5, and the overlay approach in Section 6. Finally, we present
the experimental evaluation in Section 7, and conclude the paper in
Section 8.

2. RELATED WORK
Top-k spatial keyword queries on road network are related to

keyword queries on relational databases [17] and data graphs [4].
However, in relational databases and data graphs, the addressed
problem is finding rooted trees of connected vertices that are rel-
evant for the query keywords.

There is also related work in the context of preference queries
in road networks and relational databases. Mouratidis et al. [14]
propose processing top-k and skyline queries on road networks as-
suming additional costs on the edges of the road networks. The
result of the queries is the set of facilities that can be achieved from
a given query location with minimum cost. Recently, Levandoski et
al. [10, 11] propose a framework for integrating preference queries
in database systems.

In the context of spatial objects on road networks [8, 9, 16], Pa-
padias et al. [16] propose a framework to store road networks and

spatial objects. They also propose algorithms to process nearest
neighbor and range queries. One interesting result of this work is
the observation that network expansion algorithms present better
performance when compared with algorithms based on Euclidean
distance heuristics. Recently, Lee at al. [8, 9] propose using route
overlays to improve the performance of nearest neighbor and range
queries on road networks. In contrast to their approach, we assume
keyword and top-k queries.

In the context of spatial keyword queries. Ian de Felipe et al. [6]
propose a new data structure that integrates signature files and R-
trees. Each node of the R-tree employ a signature to indicate the
keywords present in the node sub-tree. Zhang et al. [21] propose
finding the m-closest objects to a given query location that match
the set ofm query keywords. Cao et al. [2] propose finding a group
of objects that match the query keywords, minimizing intra-group
distance, and the distance among the objects in the group and the
query location. Different from our approach, these approaches are
restricted to boolean keyword queries and Euclidean distance.

Finally, related work has been proposed in the context of top-k
spatial keyword queries on spatial databases [3, 12, 18]. In top-k
spatial keyword queries, the spatio-textual objects are ranked in
terms of both spatial distance and textual relevance, where the dis-
tance between query location and the spatio-textual object is re-
stricted to the Euclidean distance. Cong et al. [3] and Li et al. [12]
propose augmenting the nodes of an R-tree with textual indexes
such as inverted files. The inverted files are used to prune nodes that
cannot contribute with relevant objects. Recently, Rocha-Junior et
al. [18] propose an indexing structure that associates each term to
a different data structure (block or aggregated R-tree) and can pro-
cess top-k spatial keyword queries more efficiently. Finally, Wu
et al. [20] cover the problem of keeping the result set of traditional
spatial keyword queries updated, while the user is moving on a road
network. Current approaches for processing top-k spatial keyword
queries are restricted to Euclidean distance and rely on R-trees to
compute the distance between the objects and the query location.
Therefore, the techniques proposed cannot be applied in the context
of road networks where the distance between the query location and
the objects of interest is the shortest path.

3. PRELIMINARIES
In this section, we define the model used to represent the road

networks, the set of objects of interest, and the problem statement.
Road networks. We model a road network as a graph

G = (V,E,W), where V is the set of vertices, E is the set of
edges, and W is the set of weights (network distances) that are
associated with each edge. A vertex v ∈ V represents a road inter-
section or an end-point in the road network, an edge (v, v′) ∈ E
represents a road segment, and the weight w ∈ W associated with
each edge (v, v′) represents the length (network distance) |v, v′| of
the road segment. For simplicity, we assume bidirectional traffic.
However, unidirectional traffic is also support by our approach. In
this case, (v, v′) 6= (v′, v) and the distance |v, v′| may be different
from |v′, v|.

Objects of interest. We assume a set of spatio-textual objects
p ∈ P on the edges E of the road network G. Each object p has a
spatial location p.l and a textual description p.d. The size (cardinal-
ity) of the set of objects P is denoted as |P |. The network distance
between an object p and the ends of the edge (vertices) in which it
belongs is defined as |v, p| or |v′, p|, where v and v′ are the ends
of the edge (v, v′) where p lies. The shortest path between two
objects p and p′ in the road network graph G is defined as ||p, p′||.
The set of objects in the edge (v, v′) and (v′, v) are the same, and
the distance |v, p| is equal to the distance |v, v′| − |v′, p|. There-

fore, knowing the distance between p and one vertex is sufficient to
obtain the distance between p and the other vertex. We denote ref-
erence vertex, the vertex used to compute the distance to the objects
on the edge. Note that if unidirectional traffic is considered, the set
of objects lying on edge (v, v′) is different from the set of objects
lying on the edge (v′, v), and the distance |v, p| may be different
from |v, v′| − |v′, p|.

Problem statement. We define a top-k spatial keyword query
on road network as QN = 〈q.l, q.d, q.k〉 where q.l is the query
spatial location (latitude and longitude), q.d is the set of query key-
words, and q.k is the number of results of interest. Without loss
of generality, we assume that the query location q.l lies on an edge
of the road network. This assumption can be bypassed finding the
nearest edge of a given query location. Given a query QN , a road
network G, and a set of spatio-textual objects P ; QN returns q.k
spatio-textual objects in descending order of score τ . The score
τ (p) is defined as:

τ (p) =
θ(p.d, q.d)

1 + α · δ(p.l, q.l)
(1)

where δ(p.l, q.l) represents the network proximity between the query
location q.l and the object location p.l, and θ(q.d, p.d) represents
the textual relevance of p.d according to the query keywords q.d.
The query parameter α is a positive real number (α ∈ R

+) and
defines the importance of one measure over the other. For example,
if α = 0 only textual relevance is considered, and α > 1 increases
the importance of the network proximity over textual relevance.

The measure τ∗(p) = α · δ(p.l, q.l) + (1− α) · θ(p.d, q.d) has
been used for top-k spatial keyword queries [3,12,18]. We employ
τ (p) instead of τ∗(p) to avoid normalizing the network distance,
which is a requirement for using τ∗(p). In the context of road
networks, normalizing the network distance requires computing the
shortest path between any two points in the road networks, which is
prohibitively costly to process in practice. However, our approach
also supports τ∗(p).

Network proximity (δ) gives the importance of the location of a
spatio-textual object p.l to a query QN . Therefore, the network
proximity is defined as:

δ(p.l, q.l) = ||p.l, q.l|| (2)

which is the shortest path between p and q.
Textual relevance (θ) gives the importance of the textual descrip-

tion of a spatio-textual object p.d to a query QN in terms of cosine
similarity between p.d and q.d [22]. The textual relevance is de-
fined as:

θ(p.d, q.d) =

∑

t∈q.d wt,p.d · wt,q.d
√

∑

t∈p.d
(wt,p.d)2 ·

∑

t∈q.d
(wt,q.d)2

(3)

the weight wt,p.d = 1 + ln(ft,p.d), where ft,p.d is the number of
occurrences (frequency) of term t in p.d; and the weight

wt,q.d = ln(1 + |P |
dft

), where |P | is the number of objects in the
collection and dft is the number of objects that contains t in their
description (document frequency). We also define the impact λt,d

of a term t in d, where d is the document (text or description) of
an object p.d or the keywords in the query q.d. The length of a

document is Wd =
√

∑

t∈d
(wt,d)2. Hence, the impact is the nor-

malized weight of the term in the document [1, 19], λt,d =
wt,d

Wd
.

The impact takes into account the length of the document and can
be used to compare the relevance of two different documents ac-
cording to a term t present in both documents. The textual rel-

Figure 2: Basic indexing architecture.

evance θ(p.d, q.d) can be rewritten in terms of the impact [19],
θ(p.d, q.d) =

∑

t∈q.d
λt,q.d · λt,p.d.

Other relevance measures for textual relevance, such as Okapi
BM25 [13], can be supported by our approach. However, in this
paper, we focus on the efficient processing of top-k spatial keyword
queries on road networks.

4. BASIC APPROACH
In this section, we present the basic approach to support top-k

spatial keyword queries on road networks. We start presenting the
indexing architecture in Section 4.1. Then, we present the query
processing algorithm in Section 4.2.

4.1 Indexing Architecture
The basic indexing architecture combines a spatio-textual in-

dex [3, 12, 18], such as IR-tree, and the road network framework
proposed by Papadias et al. [16]. The framework proposed by Pa-
padias et al. permits starting a query at any location of the road
network, while the spatio-textual index permits finding the objects
in a given spatial region relevant for the query keywords.

Figure 2 presents the basic indexing architecture. The spatial

component is used to identify the road segment in which the query
location q.l lies. The adjacency component permits retrieving the
adjacent vertices of a given vertex, it is used to traverse the net-
work. The mapping component is the connection between the net-
work and the objects through the edge of the network. The mapping
component maps an edge id (identification number) to the Mini-

mum Bounding Region (MBR) that encloses the edge. Finally, the
spatio-textual component stores the objects. In the following, we
describe each component in more details.

Spatial component. The spatial component (Figure 2(a)) com-
bines spatial and network connectivity information as proposed by
Papadias et al. [16], and permits starting queries from any spatial
location (latitude and longitude) on the road network. Each road

segment (edge) is composed by a detailed polyline describing the
edge. Each polyline is stored in an R∗-tree named Network R-tree.
In fact, only the MBR of the polyline is stored in the Network
R-tree. The detailed polyline is stored in the polyline file. The
polyline file stores also the end vertices of the edge. Locating the
edge in which the query q.l lies is executed in two steps: first, a
point location query is performed in the Network R-tree for finding
all MBRs (polylines) covering q.l, then, a filtering process is exe-
cuted for selecting the exact polyline. This process permits finding

the edge where q.l lies, and starting a network expansion from the
end vertices of the edge. The Network R-tree is accessed only once
during the query processing.

Adjacency component. The adjacency component (Figure 2(b))
points to the adjacent vertices of a given vertex permitting travers-
ing the network from vertex to vertex. The adjacent B-tree points
to the block in the adjacency file where the adjacent vertices of a
given vertex vi are. The adjacency file stores the id (e.g., (v, vi))
of the edge, and the length of the edge (e.g., |v, vi|). The id of the
edge is used to retrieve the objects that lie on the edge through the
mapping component.

Mapping component. The mapping component employs a
B-tree named Map B-tree that maps an edge id to the MBR of the
edge. Although not explicitly shown in the figure, the mapping
component also points to the polyline of the edge. The MBR of
the edge is used to find the spatio-textual objects lying on the edge
through the spatio-textual component.

Spatio-textual component. The spatio-textual component can
be any spatio-textual index that stores spatial and textual informa-
tion of the objects [3, 12, 18]. Given the MBR enclosing the edge
and the set of query keywords, the spatio-textual index is employed
to retrieve the objects inside the MBR of the edge relevant for the
query keywords. First, the spatio-textual index is accessed to re-
trieve all spatial objects inside the MBR enclosing the edge. Then,
the polyline of the edge is used to prune the points that are inside
the MBR of the edge, but not lying on the polyline of the edge.
This is necessary because the MBR of an edge covers an area of
the space that may contain objects belonging to other polylines.

Our basic indexing architecture preserves location and connec-
tivity and can be employed to process top-k spatial keyword queries
on road networks. In the next section, we present a query process-
ing algorithm to process top-k spatial keyword queries on road net-
works employing the basic indexing architecture.

4.2 Query Processing
The basic query processing algorithm expands the adjacencies

of a query location similarly to Dijkstra’s algorithm [5]. The k best
spatio-textual objects are maintained in a heap in decreasing order
of score. The algorithm stops when the remaining objects cannot
have a better score than the score of the k-th object already found,
or the entire network has been expanded.

Algorithm 1 presents the basic query processing algorithm. The
algorithm receives as parameter a query QN and returns the q.k
best objects in decreasing order of score τ (p). First, the Network
R-tree is accessed to find the edge (v, v′) in which q.l lies (line 6).
Then, the polyline of the edge is used to compute the network dis-
tances between q.l and the end vertices v and v′ of the edge (line 7).
Next, the vertices v and v′ are inserted intoN in increasing order of
network distance to q.l, and marked as visited (line 9). After that,
the findCandidates(ID(v,v′), q.d, ǫ) procedure is used to retrieve the
spatio-textual candidate objectsC laying on the edge (v, v′)whose
score τ (p) is higher than e (k-th score inHq.k). ID(v, v′) is the id
of the edge (v, v′). Then, the heapHq.k is updated with the objects
inC (line 10). As the insertion of a new object inHq.k, the k-th ob-
ject inHq.k is removed and ǫ receives the score of the new k-th ob-
ject in Hq.k. The algorithm continues accessing the nearest vertex
v to q.l inN (line 11), and processing the non-visited adjacent ver-
tices of v (lines 13-17). The algorithm terminates when the entire
network is expanded (N = ∅), or the minimum network distance
to any remaining object produces an aggregated score smaller or
equals the score of the k-th object already found (line 12). The ag-
gregated score τ−(v) of a vertex v is obtained through the distance
between v and q.l, and the maximum textual relevance (θ = 1),

Algorithm 1 BasicQueryProcessingAlgorithm(Query QN)

1: INPUT: Top-k spatial keyword query on road networks,
QN = 〈q.l, q.d, q.k〉.

2: OUTPUT: Reports the top-k objects found.
3: MaxHeap Hq.k ← ∅ //q.k best objects in decreasing order of τ .
4: ǫ← 0 //k-th score in Hq.k; While |Hq.k| < q.k, ǫ = 0.
5: MinHeap N ← ∅ //vertices v in increasing order of |v, q.l|.
6: (v, v′)← network edge in which q.l lies
7: compute |v, q.l| and |v′, q.l| using the polyline of (v, v′)
8: insert v and v′ into N , mark (v, v′) as visited
9: C ← findCandidates(ID(v,v′), q.d, ǫ)

10: update Hq.k (and ǫ) with p ∈ C
11: v ← N.pop() //Vertice v in N with minimum |v, q.l|.
12: while v 6= ∅ and (1

1+α·δ(v.l,q.l)
≤ ǫ) do

13: for each non-visited adjacent edge (v, v′) of v do

14: C ← findCandidates(ID(v,v′), q.d, ǫ)

15: update Hq.k (and ǫ) with p ∈ C
16: insert v′ into N , mark (v, v′) as visited
17: end for

18: v ← N.pop()
19: end while

20: return Hq.k

τ−(v) = 1
1+α·δ(v.l,q.l)

. Therefore, if the aggregated score of a ver-

tex is smaller or equals ǫ, it means that even if there is a non-visited
object m with maximal textual relevance (θ(m.d, q.d) = 1); the
score of m is smaller or equal the score of the k-th object already
found because δ(m.l, q.l) ≥ δ(v.l, q.l). This is guaranteed by the
fact that the algorithm always expands the vertex v with minimum
distance to q.l (line 11 and 18). Consequently, the algorithm can
safely terminate reporting the top-k objects found so far.

In order to find the candidate spatio-textual objects lying on the
edge (v, v′) that are relevant for the query keywords q.d, the
findCandidates(ID(v,v′), q.d, ǫ) procedure starts accessing the map-
ping component (Figure 2(c)) to obtain the MBR(v,v′) that covers
the edge (v, v′). The MBR(v,v′) is used to perform a query in the
spatio-textual index to obtain the objects inside the MBR(v,v′) that
are relevant for q.d. These relevant objects are, then, filtered by the
polyline of the edge (v, v′) to obtain the exact set of relevant ob-
jects that lie on the polyline of the edge. The polyline is also used
to compute the network distance between the objects lying on the
edge, and the end vertices of the edge. Finally, the score of the ob-
jects p lying on the edge are computed and compared with ǫ. Only
the objects whose score is higher than ǫ are returned.

In order to simplify the presentation, we assume, in all examples,
that the textual relevance θ is the number of occurrences of the
query keywords in the description of an object p.d divided by the
number of keywords in the document. For example, the score of
p10 (p10.d ={Orens, café}) for the query starting at location q.l in

Figure 3 with keywords q.d ={café} is τ (p10) =
θ(q.d,p10.d)

1+δ(p10.l,q.l)
=

0.5
2

= 0.25. In the experimental evaluation section, we remove this
assumption and employ the definitions presented in Section 3.

EXAMPLE. In this example, we show how to employ the basic
query processing algorithm on the road network depicted in Fig-
ure 3 using the data presented in Figure 1. Assume a top-1 spatial
keyword query on road networks at q.l with q.d ={café}. The al-
gorithm starts accessing the Network R-tree and finding the edge
(v11, v12) where q.l lies (line 6). Then, the algorithm computes
the distance |v11, q.l| = 2 and |v12, q.l| = 8 using the polyline of
(v11, v12) (line 7). Next, v11 and v12 are added intoN in increasing
order of network distance to q.l (line 8). After that, the findCandi-
dates procedure is used to get the object lying on (v11, v12) with
the keywords in q.d (line 9) whose score is higher than ǫ. The pro-

Figure 3: Graph representing the network and objects depicted

in Figure 1.

cedure returns p10 that is added intoH
q.k and ǫ is updated (ǫ = 1

4
).

The algorithm continues expanding the vertex v11 whose aggregate
score τ−(v11) =

1
2
is higher than ǫ. Since there is no adjacent edge

starting at v11 (line 13), the algorithm continues expanding the ver-
tex v12 (line 18). The aggregated score of v12 (τ−(v12) = 1

9
) is

lower than ǫ (line 12), which causes the algorithm to finish (line
20) reporting p10 as top-1.

The basic query processing algorithm can be employed to pro-
cess top-k spatial keyword queries on road networks. The main
problem of this algorithm lies on the findCandidates procedure that
is repeated for each adjacent edge. This procedure is expensive be-
cause it requires performing a search on a spatio-textual index, a
filtering process for finding the relevant spatio-textual objects lying
on a given polyline, and computing the network distance between
the objects and the end vertices of the polyline.

5. ENHANCED APPROACH
In this section, we present an enhanced approach that indexes

the objects lying on the edges of the road network for improving
the query processing performance. First, we present the indexing
architecture in Section 5.1. Next, we present the query processing
algorithm in Section 5.2.

5.1 Enhanced Indexing Architecture
Figure 4 presents the new components employed in the enhanced

indexing architecture. The mapping component depicted in Fig-
ure 4(a) replaces the mapping component presented in Figure 2(c),
and the inverted file component shown in Figure 4(b) replaces the
spatio-textual component shown in Figure 2(d). Similarly to the ba-
sic indexing architecture, the new mapping component is the con-
nection between the network and the objects through the edge of the
network. The inverted lists and vocabulary compose the inverted

file component. In the following, we describe the new components.
Mapping component. The mapping component employs a

B-tree named map B-tree that maps a key composed by the pair
edge id and term id to the inverted list that contains the objects ly-
ing on the edge with term t in their description, see Figure 4(a).
The mapping component contains also the maximum impact λ−

t of
a given term t among the description of the objects lying on a given
edge. The maximum impact λ−

t is an upper-bound impact for any
object on the edge that contains t. Therefore, the inverted list of a
term t on an edge is accessed only if the upper bound score com-
posed by minimum distance and λ−

t may turn an object, present in
the edge, inside the top-k objects found so far.

Inverted file component. The inverted file component (Fig-
ure 4(b) is composed by inverted lists and vocabulary. The inverted
file contains inverted lists identified by a key composed by edge

Figure 4: Enhanced Indexing architecture.

id and term id. Each inverted list stores the objects lying on the
edge (v, v′) that have a term t in their description. For each ob-
ject, the inverted list stores: 1) the network distance between the
object and the reference vertex of the edge (e.g., |v, pi|), and 2) the
impact of the term ti in the description of the object (e.g., λti,pi).
Figure 3 shows the inverted file IF(v,v′) associated with each pop-

ulated edge (edge that has at least one object). IF(v,v′) is the set
of inverted lists containing objects lying on the edge (v, v′). One
list per different keyword in the description of the objects. The
inverted lists are stored together for efficiency [22]. The Vocabu-
lary file stores general information about each term t such as the
document frequency dft of each term. This information is used to
compute the textual relevance of the object for a given query.

In the enhanced indexing, the objects lying on a given edge are
stored in inverted files. Therefore, it does not require performing
a search on a spatio-textual index for finding the spatio-textual ob-
jects relevant for the query that lie on the index. For each pair
(term id, edge id), the inverted file keeps the objects lying on the
edge with the given term. The network distance between the ref-
erence vertex of the edge and the object location is also stored in
the inverted file. Consequently, the objects lying on a given edge
relevant for a query keyword can be accessed directly boosting the
performance of top-k spatial keyword queries on road networks.

Furthermore, the enhanced indexing keeps an upper-bound score
for each pair (term id, edge id) that permits pruning edges whose
the upper-bound score is smaller than the score of the k-th object
found so far. This verification, thus, permits processing fewer edges
terminating the query processing earlier.

5.2 Enhanced Query Processing
Processing top-k spatial keyword queries on road network em-

ploying the enhanced indexing architecture can be performed using
the basic algorithm (Algorithm 1). The only, but significant, change
lies on the findCandidates procedure.

The new findCandidates procedure employed in the enhanced
approach works as follows. First, the mapping component (Fig-
ure 4(a)) is accessed to compute an upper-bound score using the
maximum impact λ−

t of a given term t ∈ q.d and the minimum
network distance between the edge and the query location. Second,
if the upper-bound score is higher than ǫ, the inverted lists (one
list per query keyword) are accessed. The lists that contain objects
are retrieved and the objects whose scores are higher than ǫ are
returned.

The findCandidates procedure on the enhanced approach is more
efficient. First, only the lists that can produce relevant objects are
accessed. Second, retrieving the inverted lists is faster than pro-
cessing a query location for retrieving all objects inside a given
MBR. Only relevant objects are retrieved since the key of the map-
ping component incorporates the query keyword. Third, it does not
require a filtering process to remove the objects that are inside the
MBR of the edge, but not on the polyline of the edge. Finally, it
does not require computing the network distance between the ob-

Figure 5: Single-layer overlay network.

jects and the end vertices of the edges. The distances are computed
and stored in the inverted lists during the index construction.

The enhanced query processing algorithm performs well when
the network is populated, the query keywords are frequent, or the
query preference parameter gives more weight to the network dis-
tance. In these cases, k objects with good scores are found rapidly,
which permits the algorithm to terminate earlier. On the other hand,
it can perform poorly if the k objects cannot be found rapidly,
which can be common in top-k spatial keyword queries on road
networks due to queries with non-popular terms, a large number
of distinct terms in the datasets, or a sparse network. In the next
section, we present how to overcome these problems employing an
overlay network.

6. OVERLAY APPROACH
In this section, we describe how to employ an overlay network

to improve the performance of the enhanced query processing al-
gorithm. The main idea is to prune regions of the network that
have a score smaller or equal to the score of the k-th object already
found. Hence, fewer network regions are visited (expanded) and
the algorithm terminates faster.

6.1 Overlay Network
Employing an overlay network to reduce the shortest path com-

putation is not new [7–9]. In this paper, we propose a novel algo-
rithm for creating an overlay network that takes into account the
textual description of the objects lying on the segments of the road
network. We construct the overlay network bottom-up aggregating
edges into regions. The decision about which edges to aggregate is
taken based on an aggregation cost. The aggregation cost takes into
account the textual similarity between the region and the candidate
edge, and the number of border vertices of the region.

For each region, we employ a vector term model of a pseudo-
document representing the documents of all objects in the region.
The pseudo-document is an abstract representation that permits sum-
marizing the description of a group of documents [3, 12]. The
pseudo-document of a region is composed by a set of tuples (term
id, weight), where the weight is the maximum impact of the term
among all objects in the region. The pseudo-document can be
stored efficiently (one entry per term), and permits computing an
upper bound score (term impact) for a term in the region.

The overlay network employs a direct connection among border
vertices of the same region. A border vertex is a vertex that is in the
border of two or more partitions. For road networks, the number of
border vertices generated by an effective construction algorithm is
far smaller than that of regular vertices (non-border vertices) [7]. A
direct connection is a virtual edge connecting two border vertices
in the same region. There is a direct connection when there is a path

Figure 6: Multi-layer overlay network.

within the region between the two border vertices. The weight of
the virtual edge is the shortest path, within the region, between the
two border vertices. Therefore, once a region cannot contribute to
the query in terms of textual relevance, the direct connection among
the border vertices can be used to prune the region.

Figure 5 depicts a single-layer overlay network on top of the
road network used in the Figures 1 and 3. The overlay contains
four regions R1, R2, R3, and R4 whose the border vertices are
v3, v4, v6, and v8. The pseudo-document representing the region
R1 is composed by the terms R1.d ={Music, store, Olavs}. The
term t = “store” appears in two documents p2 and p8. The vector
representingR1 keeps only the occurrence of twith highest impact.
The directed connections are represented with dashed lines.

EXAMPLE. The overlay network improves the performance of
top-k spatial keyword queries on road networks. Assume a query
QN on the Figure 5 whose q.l is on the edge (v11, v12) and q.d =
{pub}. From the border vertex v8, it is possible to prune the entire
region R3 going directly to vertex v4, since the term “pub” is not
present in the pseudo-document (vector) of R3.

Employing document similarity. We also propose an over-
lay construction method that employs document similarity. Hence,
documents with similar content are stored in the same region, which
increases the probability of pruning more regions during the query
processing. The textual similarity among the objects in the same
region improves the query processing performance even further. If
objects with similar textual descriptions are put together in the same
region, fewer regions will have occurrences of the same keyword.

EXAMPLE. In Figure 5, the terms in bold are those that appear in
more than one object in the same region. Hence, if a top-k spatial
query on road network looking for “Solsiden” is issued, all other
regions except R3 are pruned because R3 is the only region with
objects that have the keyword “Solsiden” in their description.

Multi-overlay network. The overlay network may be composed
of multiple layers, where each layer corresponds to an abstract rep-
resentation of the subsequent layer. Neighboring regions with sim-
ilar content are grouped, which permits pruning even larger regions
of the road network. The pseudo-document representing a grouped
region is a superset of the pseudo-documents of the sub-regions.

The direct connections, border vertices, and pseudo-documents
of one layer are sufficient to produce the subsequent layer [7, 9].
Figure 6 shows a multi-layer overlay network. The layer-2 is cre-
ated using the information of layer-1. In this case, the regions R2

and R3 of the layer-1 are grouped to compose a new region R22

on layer-2. Consequently, the border vertices of the region R22 is
a subset of the union of the border vertices of the regions R2 and

(a) No overlay. (b) Single-overlay. (c) Multi-overlay.

Figure 7: Adjacency hierarchy of the border vertex v3 for dif-

ferent overlay networks.

R3, and the pseudo-document of R22 is a superset of the pseudo-
document of regions R2 and R3. The direct connections used in
layer-2 are derived from the direct connection in layer-1.

A multi-layer overlay network permits improving the process-
ing of top-k spatial keyword queries on road networks. Assume
a query QN on Figure 6 whose q.l is on the edge (v11, v12) and
q.d ={Music}. From the border vertex v8 is possible to prune the
entire region R22 going directly to vertex v3, since the term “Mu-
sic” is not present in R22.d.

6.2 Adjacency Hierarchy
The overlay network employs a hierarchy model to represent the

adjacencies of the border vertices. The adjacency hierarchy of a
border vertex v represents the adjacent vertices of v through an hi-
erarchy so that it is possible to avoid regions that do not contain
objects relevant for the query in terms of textual relevance. The
adjacency hierarchy is obtained through intermediary vertices vR

labelled with the region R in which v is a border vertex. The re-
gion R is pruned if the best score produced by any object in R is
smaller than the score of the k-th object already found. Therefore,
the children entries of an intermediary vertex vR are accessed only
if R can contain relevant objects.

Figure 7 depicts the adjacency hierarchy of the border vertex v3
for different overlay networks presented in Figure 6. Figure 7(a)
shows the adjacency hierarchy of v3 when no overlay network is
considered which corresponds to the actual adjacencies of v3. Fig-
ure 7(b) depicts the adjacency hierarchy of v3 when a single-overlay
network is considered (layer-1). In this case, the intermediary ver-
tices vR1

3 and vR2

3 act as filtering vertices giving access to the chil-
dren vertices only when the regions associated with the vertices are
relevant for the query. For example, the children vertices v2 and
v9 are accessed only when R1 is relevant for the query. Finally,
Figure 7(c) presents the adjacency hierarchy of v3 for the multi-
overlay network (Figure 6). In this case, the vertices vR21

3 and

vR22

3 are able to prune more vertices. Each level in the adjacency
hierarchy is built adding vertices on top of the previous hierarchy.

The adjacent vertices that are accessed through a direct connec-
tion are stored outside of the region because they may be accessed
in the case where a region is not relevant. For example, in Fig-
ure 7(b), the adjacent vertex v4 is accessed through a direct con-
nection and is not stored as a child of vR2

3 .
If one vertex v is adjacent to another vertex u through more than

one direct connection, only the shortest direct connection is stored.
This happens because the vertices are accessed in increasing order
of distance to the query location during the query processing. For
example, in Figure 5, v8 is connected to v6 through two direct con-
nections (beyond the actual connection): one through region R3

and another through region R4. Since the direct connection is not
part of a region, it is sufficient to keep the shortest direct connection
through region R4.

Algorithm 2 OverlayQueryProcessingAlgorithm(Query QN)

1: INPUT: Top-k spatial keyword query on road networks QN .
2: OUTPUT: Reports the top-k objects found.
3: Lines 3-10 of Algorithm 1 (BasicQueryProcessingAlgorithm)
4: v ← N.pop() //Vertex v in N with minimum |v, q.l|.
5: while v 6= ∅ and ǫ < 1

1+α·δ(v.l,q.l)
do

6: for each non-visited adjacent vertex u of v do

7: if u is an intermediary vertex then

8: R← region associated with the intermediary vertex u

9: if ǫ < θ(R.d,q.d)
1+α·δ(u.l,q.l)

then

10: insert u into N
11: end if
12: mark u as visited
13: else //u is a regular vertex.

14: Lines 14-16 of Algorithm 1
15: end if

16: end for

17: v ← N.pop()
18: end while
19: return Hk

6.3 Overlay Query Processing Algorithm
The overlay query processing algorithm takes advantage of the

overlay network to improve the performance of top-k spatial key-
word queries on road networks. The idea is to avoid expanding
the intermediary vertices that are not relevant for the query. Con-
sequently, fewer vertices are expanded and the query processing
terminates earlier.

Algorithm 2 presents the overlay query processing algorithm.
The algorithm receives as parameter a query QN and returns the k
best objects in decreasing order of score τ (p). The beginning of the
algorithm is identical to the beginning of the basic query process-
ing algorithm (Algorithm 1). If u is a regular vertex (line 7), the
algorithm performs the same operation as Algorithm 1 (line 14).
On the contrary, the pseudo-document R.d of the region R as-
sociated with the intermediary vertex u is accessed (line 8), and
the relevance of u is evaluated. The intermediary vertex u is rel-
evant only if it can produce an aggregated score higher than the
score of the k-th object already found (ǫ), otherwise it can be dis-
carded (line 12). This is evaluated through the upper-bound score

of u τ−(u) = θ(R.d,q.d)
1+α·δ(u.l,q.l)

that gives the best score that any ob-

ject in the region R may have when R is accessed from the border
vertex u. The network distance δ(u.l, q.l) is the minimum net-
work distance between q.l and any non-visited object in R; and the
textual relevance θ(R.d, q.d) is the maximum impact for a term t
among any object p in R (including the visited objects). This is
guaranteed by the fact that the vertices are accessed in increasing
order of distance to q.l. Therefore, when a border vertex of a re-
gion is accessed, it represents the minimum distance among any
non-visited object in the region. Note that the region loses proxim-
ity relevance as new border vertices of the region are visited, since
the distance between the query location and a new border vertex
visited is longer or equal the distance between the query location
and any previously visited border vertex of the region.

EXAMPLE. Assume a query QN whose q.l is on the edge
(v11, v12) and q.d ={Music} (Figure 6). The algorithm starts ex-
panding the edge (v11, v12) adding into N the vertices v11 and
v12. These vertices are expanded leading to the border vertex v8.
The direct adjacent vertices in the adjacency hierarchy of v8 are
vR22

8 , vR23

8 , v3, and v6. The vertices vR22

8 and vR23

8 are identified
as intermediary vertices, and are not added into N because they
are not relevant for the query keywords. The algorithm continues
retrieving from N the nearest vertex v6 whose adjacent vertices in

Figure 8: Example of the modified adjacency component stor-

ing the adjacency hierarchy of v3 shown in Figure 7(b).

its adjacency hierarchy are vR22

6 , vR23

6 , v3, and v8. However, none

of these vertices are added into N because vR22

6 and vR23

6 are not
relevant, v8 has been visited, and the nearest occurrence of v3 to
q.l is already in N . The algorithm continues expanding the inter-
mediary vertex v3 whose adjacent vertices are vR21

3 , vR22

3 , v6, and

v8. The vertices v6 and v8 have been visited and vR22

3 is not rele-

vant because θ(R22.d, q.d) = 0. Hence, the vertex vR21

3 is added
into N , which leads to expanding the vertices v2 and v9. The ver-
tex v2 is accessed and the relevant object p2 is added in the top-k.
The edge (v3, v9) is also accessed, but it does not have any relevant
objects. Since N is empty, the algorithm terminates.

6.4 Overlay Indexing
We build the overlay indexing architecture on top of the en-

hanced indexing architecture (Section 5.1) with two modifications.
The first modification is adding a B-tree named region mapping

B-tree to map the edge or sub-region to the region it is part of.
The region mapping B-tree is required to propagate updates in the
edge (Section 6.4.2). The second modification is adding a column
in the adjacency file (Figure 2(b)) to indicate the type of the adja-
cent vertex. For example, Figure 8 shows the adjacency hierarchy
of the vertex v3 (Figure 7(b)) stored in the new adjacency compo-
nent. The flag column indicates the type of the relationship of the
adjacent vertex that can be intermediary (I), direct connection (C),
or regular vertex (R).

For an intermediary vertex, instead of storing the id of the edge,
we employ the id of the region. The id of the region is created in the
same universe of the edge id. Therefore, the vector of the pseudo-
document associated with the region can be obtained through the
mapping component (Figure 2(c)).

Intermediary vertices are not stored in the spatial component (Fig-
ure 2(a)) and the distance stored in the new adjacency file (Fig-
ure 2(b)) is zero. The intermediary vertices are virtual vertices
whose the main role is creating the adjacency hierarchy structure.
Therefore, they are not stored in the spatial component, but only
in the adjacency component. Furthermore, the distance from the
root vertex in the adjacency hierarchy and the intermediary vertex
is zero, because the intermediary vertex is a representative (surro-
gate) of the root vertex in the hierarchy (Figure 8).

Similar to intermediary vertices, the direct connection vertices
are not stored in the spatial component, but only in the new adja-
cency file. However, different from the intermediary vertices, the
direct connection vertices have a weight (distance) that represents
the shortest path between the two vertices.

In the following, we describe how to create the overlay index (Sec-
tion 6.4.1), and briefly sketch how to perform updates (Section 6.4.2).

6.4.1 Index Construction

Our overlay index construction algorithm has three main objec-
tives: 1) creating regions with similar number of objects, 2) creat-

Algorithm 3 Overlay Construction(MinHeap H)

1: INPUT: MinHeap H initialized with |R| seed regions in increasing
order of |R.P |.

2: OUTPUT: Updates the adjacency and mapping components to reflect
the new layer created.

3: while H 6= ∅ do
4: Ri ← H.pop() //Region Ri in H with smallest |Ri.P |.
5: Rj ← ∅ //Region Rj with smallest aggregation cost.

6: for each v ∈ Ri.V do
7: for each regular or intermediary adjacent vertex u of v do

8: Rt ← region associated with u
9: if Rt is not assigned to any other region then
10: if Rj = ∅ or γ(Ri, Rt) < γ(Ri, Rj) then
11: Rj ← Rt

12: end if

13: end if
14: end for

15: end for

16: if Rj 6= ∅ then //Expands Ri aggregating Rj .

17: assign region Rj to Ri in the region mapping B-tree

18: update ~Ri.d with ~Rj .d
19: update border vertices of Ri.V
20: |Ri.P | ← |Ri.P |+ |Rj .P |.
21: insert Ri into H
22: else //Store the region persistently.

23: for each v ∈ Ri.V do

24: U ← current adjacent vertices of v
25: T ← ∅ //New adjacent vertices of v.
26: for each u in U do

27: Rj ← region associated with u

28: if vRj /∈ T then

29: create vRj , and add vRj into T
30: end if
31: set u as child of vRj

32: if v ∈ Rj .V then //Computes direct edges.

33: for each border vertex w in Rj .V do
34: compute ||v,w|| and insert w into T
35: end for

36: end if

37: end for
38: store T as the new adjacent vertices of v
39: end for

40: end if
41: end while

ing regions with small number of border vertices, and 3) obtaining
textual similarity among the objects in the same region.

The construction algorithm starts with a set of seed regions Ri

that are expanded aggregating regions of the previous layer. In the
case of layer=1 (first layer), the regions aggregated (layer=0) are
the actual edges of the road network. The algorithm maintains the
current border vertices Ri.V , the current number of objects in the
region |Ri.P |, and the pseudo-document of the region Ri.d. The
regions Ri are maintained in a MinHeap H in increasing order
of |Ri.P |. The region Ri with smallest number of objects is ex-
panded. All neighboring regions of Ri.V not assigned to any other
region are evaluated. The region with smallest aggregation cost is
added into Ri. Once a region Ri cannot be further expanded, it is
stored persistently and removed fromH . The algorithm terminates
when all regions have been fully expanded (H = ∅).

We define the aggregation cost γ(Ri, Rj) of adding the region
Rj into Ri as:

γ(Ri, Rj) =
|Ri.V ∪Rj .V | − |Ri.V |

1 + β · θ(Ri.d, Rj .d)
(4)

where |Ri.V ∪ Rj .V | is the number of border vertices of Ri after
adding Rj and θ(Ri.d, Rj .d) is the textual similarity between the

two regions. The smaller the aggregation score the better. The over-
lay construction parameter β permits tuning the trade-off between
textual similarity between the regions, and the number of border
vertices. The larger the number of border vertices, the higher the
storage and construction cost. On the other hand, the higher the
value of β, the higher the textual similarity between the regions.

Algorithm 3 presents the construction algorithm. It receives as
parameter a heap with |R| seed regions Ri in increasing order of
number of objects |Ri.P |. For the construction of the first layer,
each edge in the actual network corresponds to a region. The end
vertices of the edge are the border vertices Ri.V , the number of
object in the edge is |Ri.P |, and the pseudo-document of the edge
isRi.d. The seed regions are obtained from the Network R-tree. In
this paper, we pick |R| random edges from the Network R-tree to
be the seed regions.

The construction algorithm is divided in three main parts. In the
first part (lines 5-15), the algorithm finds the neighboring region
Rj of Ri with smallest aggregation cost. In the second part (lines
17-21), the region Ri is expanded adding Rj . Finally, in the third
part (lines 23-39), the regionRi is stored in the adjacency and map-
ping components (Figure 2).

First part. In order to find the neighboring region Rj of Ri

with smallest aggregations cost, the border vertices v ∈ Ri.V are
visited (line 6). The intermediary or regular adjacent vertices u
of v that are not assigned to any other region are evaluated (line
7). The temporary region Rt associated with u is obtained in the
adjacency file through the region id or edge id for intermediary and
regular vertices respectively. Rj keeps the region with smallest
aggregation cost (lines 10-12).

Second part. If Ri can be expanded (Rj 6= ∅), Rj is added
into Ri (lines 17-21). Rj is marked as part of Ri (line 17). Then,

the vector of the region Ri (~Ri.d) is updated with the tuples in
~Rj .d (line 18). The tuples (term id, term impact) in ~Rj .d that are

not present in ~Ri.d are added into ~Ri.d, and the highest impact of a

term that appears in both vectors is maintained in ~Ri.d. The border
vertices Ri.V are updated (line 19). The border vertices in Rj .V
that are not inRi.V are added intoRi.V , and the border vertices in
Ri.V whose the adjacent vertices are assigned to Ri are removed
from Ri.V , since they are no longer a border vertex of Ri (they
are in the middle of the region). The number of objects in Ri is
updated to include the objects in Rj (line 20), and Ri is added into
H to be further expanded (line 21).

Third part. The regions that cannot be expanded (line 15) are
persistently stored in the adjacency and mapping components (lines
23-41). The algorithm accesses the border vertices v ofRi (line 23)
and gets the current adjacent vertices U of v (line 24). The current
adjacent vertices of v are the vertex stored in layer immediately
bellow the layer that is being constructed. Then, for each adjacent
vertex u ∈ U , the region Rj associated with u is obtained (line
27). The intermediary vertex vRj is created if not in the new set of
adjacent vertices T (line 29), and u is set as children of vRj (line
31). The direct connections from v to the other border vertices
w in Rj .V are computed and the vertex w is added into T (lines
32-36). Finally, T is stored persistently in the adjacency compo-
nent (line 38). Although not explicitly shown in the algorithm, the
borders of each region are also stored. This information is require
on the construction of the sub-sequent layer.

One important parameter of the algorithm is the number of seed
regions (starting regions) that should be used during the creation
of each layer. We employ the following equation to compute the
number of seed regions used at each layer l: ⌈|P |/bl⌉, where b
is the average number of items (objects or sub-regions) that are

stored at each region. The maximum number of layers lmax =
⌊logb(|P |)⌋. The layer l is a number in the range [1, lmax]. For
example, assuming a dataset with 1M objects (|P | = 1M) and an
average of 100 items per region. Thus, lmax = log100(1M) = 3,
and the number of regions at layer l = 1 is ⌈1M/1001⌉ = 10K and
for l = 2 the number of regions is 100.

6.4.2 Index Maintenance

For most applications that can benefit from top-k spatial key-
word queries on road network, updates in the textual description of
the objects are, in general, more frequent than updates in the road
network and spatial location of the objects. Due to lack of space,
we focus on updates in the textual description of the objects.

Given an object p whose previous text p.d is to be updated with
the new text p.d−. The update procedure starts locating the edge
e in which p lies accessing the Network R-tree. Then, the id of e

is used to obtain the vector ~e.d (or e.d) in the mapping component.
Next, for terms ti that are in p.d but not in p.d−, p is removed
from the inverted list of ti. For terms tj that are in p.d− but not
in p.d, p is inserted into the inverted list of tj . For terms t that
are in both p.d and p.d−, the impact of t in p.d (λt,p.d) is updated
receiving λt,p.d− . The impact of t in e.d is also updated to the
impact of λt,p.d− when λt,p.d− > λt,e.d. The impact of t in e.d is
recomputed using the inverted list of t, when λt,e.d = λt,p.d and p
was removed from the inverted list of t or λtj,p.d

− < λtj,p.d.
In case of multi-layer overlay networks, the updates in the im-

pact of the vector ~e.d are propagated to the regions that encloses e.

Therefore, the same procedure to update the vector ~e.d of the edge
is performed and the changes in λt,e.d are propagated to the regions
that enclose e. The regions that enclose e are obtained through the
region mapping B-tree.

7. EXPERIMENTAL EVALUATION
In this section, we compare the three approaches proposed Ba-

sic (Section 4), Enhanced (Section 5), and Overlay (Section 6).
The three approaches return the same set of top-k objects for a
given query. We employed real and synthetic datasets in the exper-
imental evaluation. All approaches were implemented in Java. We
employ the R∗-tree and B-tree from XXL1 and JDBM2 libraries
respectively. The nodes of the Network R-tree employ a block
size of 4kB. Each node stores between 34 and 102 entries (poly-
line MBRs). We employ the spatio-textual index S2I [18] in the
basic approach. The nodes of the aggregated R-tree [15], that store
the objects containing frequent terms, employ a block size of 4kB.
Each node stores between 42 and 85 entries. The blocks that store
the objects containing non-frequent terms employ a block size of
4kB. Each block stores up to 146 entries.

Setup. The experiments were executed on a PC with a 2.6GHz
AMD processor and 32GB RAM. During the query processing, we
fixed the java maximum memory parameter in 4GB (-Xmx4G). In
the query processing experiments, we execute 100 queries in or-
der to warm-up the buffers, and collect the average results of the
next 400 queries. The queries are randomly generated. The query
location is a random coordinate on a random edge (polyline) of
the road network; while the query keywords are random terms ex-
tracted from the vocabulary of the dataset. We employed a fixed
buffer of 8MB in all approaches. In the experiments, we measured
1) response time (total execution time); 2) edges expanded, i.e., the
number of edges expanded by the query processing algorithm be-
fore finding the top-k results (includes also the number of regions

1http://dbs.mathematik.uni-marburg.de/Home/Research/Projects
2http://jdbm.sourceforge.net

Table 1: Parameters evaluated in the experiments. The default

values are presented in bold.

Parameter Values

Number of results (k) 10, 20, 30, 40, 50
Number of keywords 1, 2, 3, 4, 5
Query parameter α 0.01, 0.1, 1, 10, 100
Construction parameter β 0.01, 0.1, 1, 10, 100
Average region cardinality 10, 20, 30, 40, 50
Number of layers 1, 2, 3
Real datasets London, Australia, British Isles
Synthetic datasets K1, K2, K3, K4, C1, C2, C3, C4

Table 2: Characteristics of the datasets.

Attribute London Australia British Isles

Total size 51MB 560MB 1.3GB
Total no. of vertices 203,383 1,181,142 3,556,460
Total no. of edges 274,947 1,631,421 4,618,215
Avg. no. of lines per edge 5.79 13.65 10.00
Avg. edge length (m) 105.12 740.47 227.3
Total no. of objects 34,162 69,884 298,368
Avg. no. of objects per edge 0.12 0.04 0.06
Total no. of words 121,049 225,865 1,035,857
Total no. of distinct words 12,551 18,875 60,154
Avg. no. of distinct words
per object

3.35 3.04 3.26

expanded in case of overlay approach); 3) edges processed, i.e., the
number of edges whose objects (lying on the edge) are retrieved
for identifying their relevance to the query; 4) index construction

time (time to build the index); and 5) index size. Table 1 shows
the main parameters and values used through the experiments. The
default values are presented in bold.

Real datasets. We employ three real datasets extracted from
OpenStreetMap3. The datasets are London, Australia, and British
Isles. Each dataset was extracted using a rectangle enclosing the
region of interest. For the London dataset, we employ the rectangle
[(-0.449,51.342),(0.206, 51.649)], where the first coordinate (lati-
tude, longitude) represents the bottom-left corner, and the second
coordinate represents the up-right corner. The rectangles used to
extract Australia and British Isles datasets are respectively
[(112.2, -44.2),(154.8, -9.4)] and [(-11.1, 49.6),(2.1,62.5)]. The
datasets extracted from OpenStreetMap have several partitions;
most of them are regions in the map describing a building or a spa-
tial area. For simplicity, we consider only the road network formed
by the largest partition of each dataset. Furthermore, we allocate
the objects that do not lie on a edge to the nearest edge in the road
network. Table 2 presents some characteristics of each dataset4.

Synthetic datasets. The synthetic datasets were obtained com-
bining the Australia dataset with Twitter5 messages (tweets). We
created two sets of synthetic datasets. The first set was obtained re-
placing the text of the objects in Australia dataset with tweets from
Twitter6. We preserved the road network and the location of the
objects in the Australia dataset to create four datasets named K1,
K2, K3, and K4. The description of the objects in K1, K2, K3, and
K4 datasets is composed by 1, 2, 3, and 4 tweets respectively. The
average number of distinct words per object in K1, K2, K3, and
K4 datasets is respectively 12.3, 23.6, 33.7 and 42.5. The second

3http://www.openstreetmap.org/
4The real datasets employed in the experiments are available in:
http://www.idi.ntnu.no/~joao/publications/EDBT2012/
5http://twitter.com
6http://snap.stanford.edu/data/twitter7.html

 1

 10

 100

 10 20 30 40 50

T
im

e
 (

s
e
c
o
n
d
s
)

Number of results (k)

Basic
Enhanced

Overlay

(a) Response time.

 1

 10

 100

1K

10K

100K

1M

10M

100M

10 20 30 40 50

E
d
g
e
s
 e

x
p
a
n
d
e
d

Number of results (k)

Basic
Enhanced

Overlay

(b) Edges expanded.

Figure 9: Response time and number of edges expanded vary-

ing the number of results (k).

 1

 10

 100

 1 2 3 4 5

T
im

e
 (

s
e
c
o
n
d
s
)

Number of keywords

Basic
Enhanced

Overlay

(a) Response time.

 1

 10

 100

1K

10K

100K

1M

10M

100M

 1 2 3 4 5

E
d
g
e
s
 e

x
p
a
n
d
e
d

Number of keywords

Basic
Enhanced

Overlay

(b) Edges expanded.

Figure 10: Response time and number of edges expanded vary-

ing the number of keywords.

set of synthetic datasets was obtained populating the Australia net-
work with objects. The description of the objects is obtained from
Twitter, one tweet per object. Each object is randomly positioned
on a random edge of the network. We created four datasets named
C1, C2, C3, and C4. The cardinality (number of objects) in C1,
C2, C3, and C4 datasets is respectively 250k, 500k, 750k, and 1M.
We employed distinct tweets to construct the datasets.

7.1 Experiments on Real Datasets
In this section, we evaluate the query processing performance of

basic (Section 4), enhanced (Section 5), and overlay (Section 6)
approaches on real datasets. The y-axis is in logarithmic scale,
except in Figure 12(a).

Varying the number of results (k). Figure 9 depicts the re-
sponse time and the number of edges expanded, while varying k.
Both enhanced and overlay have better response time than the ba-
sic approach (Figure 9(a)). The enhanced and basic approaches
expand the same number of edges (Figure 9(b)), since they do not
have a global view of the network. However, the number of edges
processed by the enhanced approach is much smaller than the num-
ber of edges processed by the basic approach. The mark on the bar
indicates the number of edges processed that is a percentage of the
total number of edges expanded. In Figure 9(b), for example, the
number of edges processed for k = 10 is approximately 15 for the
enhanced and 70K for the basic approach. The enhanced approach
only processes edges that have objects that can be in the top-k;
while the basic processes all the edges that have objects, even if the
objects are not relevant for the query. The overlay approach, on the
other hand, expands much fewer edges than basic and enhanced
approaches. The number of edges processed by overlay and en-
hanced approaches is similar. Consequently, the overlay approach
is more than one order of magnitude better than the basic approach
in response time, edges expanded, and edges processed.

Varying the number of keywords. Figure 10 presents the re-
sponse time and number of edges expanded, while varying the num-

 1

 10

 100

 0.01 0.1 1 10 100

T
im

e
 (

s
e
c
o
n
d
s
)

Query preference parameter (α)

Basic
Enhanced

Overlay

(a) Response time.

 1

 10

 100

1K

10K

100K

1M

10M

100M

0.01 0.1 1 10 100

E
d
g
e
s
 e

x
p
a
n
d
e
d

Query preference parameter (α)

Basic
Enhanced

Overlay

(b) Edges expanded.

Figure 11: Response time and number of edges expanded vary-

ing the query preference parameter (α).

 0

 500

 1000

 1500

 2000

 2500

London Australia British

In
d
e
x
 s

iz
e
 (

M
B

)

Datasets

Basic
Enhanced

Overlay

(a) Index size.

 0.1

 1

 10

 100

1K

10K

London Australia British

T
im

e
 (

s
e
c
o
n
d
s
)

Datasets

Basic
Enhanced

Overlay

(b) Response time.

Figure 12: Index size and response time varying the datasets.

ber of keywords in the query. The larger the number of keywords
in the query, the larger the number of objects that may be relevant
for the query. Again, the overlay approach is around one order of
magnitude better in response time than enhanced and basic (Fig-
ure 10(a)). Figure 10(b) depicts the number of edges expanded and
the number of edges processed (mark on the bar). The number of
edges processed by overlay and enhanced is very small for queries
with few keywords, and increases for queries with more keywords.
However, it is much smaller than the number of edges processed by
the basic approach. Note that one single edge of the road network
may contain several objects.

Varying the query preference parameter (α). In this experi-
ment, we evaluate the impact of the query preference parameter as
illustrated in Figure 11. A small value of α gives more preference
to the textual description of the objects, while a high value of α
gives more preference to the network proximity. The query pref-
erence parameter does not present a significant impact on response
time (Figure 11(a)) and number of edges expanded (Figure 11(b)).
All approaches are slight better for higher values of α, which means
more preference to network proximity.

Varying the datasets. In this experiment, we study the index
size and response time for different real datasets, as shown in Fig-
ure 12. Figure 12(a) presents the index size for the different ap-
proaches. The index sizes of the enhanced and basic approaches are
similar, with a small advantage for the basic approach. However,
the index size of the overlay approach is larger. The additional size
required by the overlay approach comes from the additional num-
ber of vertices (border vertices), edges (direct connections), and the
pseudo-document of the regions. The additional size required by
the overlay approach is compensated by a significant improvement
in response time (Figure 12(b)).

7.2 Experiments on Synthetic Datasets
In this section, we employ synthetic datasets to evaluate the im-

pact of increasing the number of keywords per object and the num-
ber of objects (cardinality) on the road network.

Varying the number of keywords per object. Figure 13 shows

 1

 10

 100

K1 K2 K3 K4

T
im

e
 (

s
e
c
o
n
d
s
)

Datasets

Basic
Enhanced

Overlay

Figure 13: Response time

keyword datasets.

 1

 10

 100

1K

10K

100K

1M

10M

100M

C1 C2 C3 C4

E
d
g
e
s
 e

x
p
a
n
d
e
d

Datasets

Basic
Enhanced

Overlay

Figure 14: Edges expanded

for cardinality datasets.

 110

 112

 114

 116

 118

 120

 0.01 0.1 1 10 100

In
d
e
x
 s

iz
e
 (

M
B

)

Overlay construction parameter (β)

Overlay

(a) Index size.

 400

 420

 440

 460

 480

 500

 0.01 0.1 1 10 100

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Overlay construction parameter (β)

Overlay

(b) Response time.

Figure 15: Index size and response time varying the overlay

construction parameter (β).

the response time for varying the number of keywords in the de-
scription of the objects (textual description length). The basic ap-
proach is not affected by increasing the description of the objects.
The high cost of the basic approach is in the processing of the
edges. Since the number of objects in the datasets does not vary,
the number of edges processed is the same for all datasets. How-
ever, increasing the description of the objects has an impact on the
response time of the enhanced and overlay approaches. The main
reason is that it becomes more costly to identify the edges that have
relevant objects, since more objects can be textually relevant for
the query. Consequently, more edges are processed. Despite this,
the response time of the overlay approach is more than one order
of magnitude better.

Cardinality. Figure 14 shows the number of edges expanded
and processed (mark on the bar) for varying the cardinality of the
datasets. Increasing the number of objects has a significant impact
on the basic approach, since it increases the number of populated
edges. All expanded populated edges are processed by the basic
approach. In the case of enhanced and overlay approaches, only
the expanded populated edges that have objects that can be in the
top-k are processed.

7.3 Overlay Network
In this section we evaluate the trade-off between the overlay con-

struction cost and the gain in query performance for different se-
tups. The evaluation is performed employing the London dataset.

Varying overlay construction parameter (β). In this experi-
ment, we study the advantage of employing text similarity in the
overlay construction. Figure 15 shows the index size and the re-
sponse time while varying β. The higher the value of β, the higher
the impact of textual similarity in the grouping of regions during the
overlay index construction. Figure 15(a) shows the overlay index
size for varying β. The index is small for small and high values of
β. It means that incorporating textual similarity or distance reduces
the index size because the regions created have smaller number of
borders. However, only the textual similarity has a positive impact
on the response time (Figure 15(b)). For small values of β, the in-

 0

 10

 20

 30

 40

 10 20 30 40 50

T
im

e
 (

m
in

u
te

s
)

Average number of entries per region

Overlay

(a) Overlay construction time.

2K

4K

6K

8K

10K

12K

 10 20 30 40 50

E
d
g
e
s
 e

x
p
a
n
d
e
d

Average number of entries per region

Overlay

(b) Edges expanded.

Figure 16: Overlay construction time and number of edges ex-

panded during the query processing while varying the average

number of entries per region.

 0

 50

 100

 150

 200

 0 1 2 3

In
d
e
x
 s

iz
e
 (

M
B

)

Number of layers

Overlay

(a) Overlay index size.

100

1K

10K

100K

1M

 0 1 2 3

E
d
g
e
s
 e

x
p
a
n
d
e
d

Number of layers

Overlay

(b) Edges expanded.

Figure 17: Overlay store cost and the number of edges ex-

panded varying the average number of layers.

dex construction gives more priority to network proximity instead
of the textual similarity among the objects. Therefore, the regions
created when β is small contain objects whose text description is
dissimilar, which impacts on the response time. This experiments
demonstrates the advantage of incorporating text similarity during
the index construction.

Varying the number of entries per region. Figure 16 shows
the overlay index construction time and the response time when
varying the number of entries (edges or other regions) per region.
If the average number of entries per region is 10, it means that each
region at level one has approximately 10 edges; and each region at
level two has approximately 10 other regions (around 100 edges);
and so on. Figure 16(a) shows that increasing the number of entries
per region has a high impact on the index construction time. When
the number of entries increases, the number of border vertices also
increases. The number of border vertices has a direct impact on
the index construction, because more border vertices require stor-
ing and processing more direct edges. Figure 16(b) presents the
impact of the number of entries per region in the number of edges
expanded during the query processing. The smaller the number of
entries, the smaller the number of edges expanded during the query
processing. This experiment shows the efficiency of the overlay
approach. Smaller number of entries indicates that the query pro-
cessing finds faster an intermediary vertex that permits pruning a
large number of irrelevant regions reducing the response time.

Varying the number of layers. In this experiment, we study
the impact of the number of layers on the index size and number
of edges expanded, Figure 17. The number of layers equals zero
indicates that no overlay index is employed (enhanced index). The
larger the number of layers, the larger the index size, Figure 17(a).
The experiment shows that employing a single layer is sufficient to
reduce the number of edges expanded significantly, Figure 17(b).

8. CONCLUSION
In this paper, we introduced top-k spatial keyword queries on

road networks. Given a spatial location and a set of query key-
words; a top-k spatial keyword query on road networks returns the
k best spatio-textual objects ranked in terms of both textual simi-
larity to the query keywords and shortest path to the query location.
We presented a straight-forward approach (basic approach) to pro-
cess these queries combining state-of-the-art techniques. Then, we
presented an enhanced approach that indexes the edges of the road
network, and permits identifying and retrieving the objects relevant
to the query efficiently. Finally, we proposed an overlay approach
that groups objects in regions, taking in account the textual simi-
larity among the objects, and permits computing an upper-bound
score for all objects in the region. Consequently, regions whose the
upper-bound score is smaller or equal the score of the k-th object
already found can be pruned, improving the performance. Finally,
we demonstrated the efficiency of our approach through an exten-
sive experimental evaluation.

9. REFERENCES
[1] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with

effective early termination. In SIGIR, 2001.

[2] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial
keyword querying. In SIGMOD, 2011.

[3] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k
most relevant spatial web objects. In VLDB, 2009.

[4] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword search on
external memory data graphs. In VLDB, 2008.

[5] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1), 1959.

[6] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDE, 2008.

[7] N. Jing, Y. Huang, and E. A. Rundensteiner. Hierarchical encoded
path views for path query processing: An optimal model and its
performance evaluation. IEEE Trans. on Knowledge and Data

Engineering, 10(3), 1998.

[8] K. C. Lee, W. Lee, B. Zheng, and Y. Tian. ROAD: a new spatial
object search framework for road networks. IEEE Trans. on

Knowledge and Data Engineering, to appear.

[9] K. C. K. Lee, W. Lee, and B. Zheng. Fast object search on road
networks. In EDBT, 2009.

[10] J. J. Levandoski, M. E. Khalefa, and M. F. Mokbel. An overview of
the caredb context and preference-aware database system. IEEE Data

Eng. Bull., 34(2), 2011.

[11] J. J. Levandoski, M. F. Mokbel, and M. E. Khalefa. Flexpref: A
framework for extensible preference evaluation in database systems.
In ICDE, 2010.

[12] Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. Lee, and X. Wang. IR-tree:
An efficient index for geographic document search. IEEE Trans. on

Knowledge and Data Engineering, 99(4), 2010.

[13] C. Manning, P. Raghavan, and H. Schütze. Introduction to

Information Retrieval. Cambridge University Press, 2008.

[14] K. Mouratidis, Y. Lin, and M. L. Yiu. Preference queries in large
multi-cost transportation networks. In ICDE, 2010.

[15] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP
operations in spatial data warehouses. In SSTD, 2001.

[16] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in
spatial network databases. In VLDB, 2003.

[17] J. Park and S. Lee. Keyword search in relational databases.
Knowledge and Information Systems, 26(2), 2010.

[18] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg.
Efficient processing of top-k spatial keyword queries. In SSTD, 2011.

[19] G. Salton and C. Buckley. Term-weighting approaches in automatic
text retrieval. Information Processing and Management, 24(5), 1988.

[20] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient continuously
moving top-k spatial keyword query processing. In ICDE, 2011.

[21] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and
M. Kitsuregawa. Keyword search in spatial databases: Towards
searching by document. In ICDE, 2009.

[22] J. Zobel and A. Moffat. Inverted files for text search engines. ACM
Computing Surveys, 38(2), 2006.

