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Top-k Spatio-Textual Similarity Join
Huiqi Hu Guoliang Li Zhifeng Bao Jianhua Feng Yongwei Wu Zhiguo Gong Yaoqiang Xu

Abstract—With the development of location-based services (LBS), LBS users are generating more and more spatio-textual

data, e.g., checkins and attraction reviews. Since a spatio-textual entity may have different representations, possibly due to GPS

deviations or typographical errors, it calls for effective methods to integrate the spatio-textual data from different data sources.

In this paper, we study the problem of top-k spatio-textual similarity join (TOPK-STJOIN), which identifies the k most similar

pairs from two spatio-textual data sets. One big challenge in TOPK-STJOIN is to efficiently identify the top-k similar pairs by

considering both textual relevancy and spatial proximity. Traditional join algorithms that consider only one dimension (textual

or spatial) are inefficient because they cannot utilize the pruning ability on the other dimension. To address this challenge, we

propose a signature-based top-k join framework. We first generate a spatio-textual signature set for each object such that if

two objects are in the top-k similar pairs, their signature sets must overlap. With this property we can prune large numbers of

dissimilar pairs without common signatures. We find that the order of accessing the signatures has a significant effect on the

performance. So we compute an upper bound for each signature and propose a best-first accessing method that preferentially

accesses signatures with large upper bounds while those pairs with small upper bounds can be pruned. We prove the optimality

of our best-first accessing method. Next we optimize the spatio-textual signatures and propose progressive signatures to further

improve the pruning power. Experimental results on real-world datasets show that our algorithm achieves high performance and

good scalability, and significantly outperforms baseline approaches.

✦

1 INTRODUCTION

With the rapid development of mobile Internet tech-
nology, Internet users are shifting from desktop to
mobile devices. Modern mobile devices (e.g., smart-
phones and tablets) are equipped with GPS, which
can help users to easily obtain their locations, and
location-based services (LBS) have been widely de-
ployed and well accepted, e.g. Foursquare and Google
Map Search. LBS users are generating more and
more spatio-textual data which contains both textual
descriptions and geographical locations, e.g., check-
ins and attraction reviews. In user-generated data, a
spatio-textual entity may have different representa-
tions, possibly due to GPS deviations or typographical
errors [18], [3], and it calls for effective methods to
integrate the spatio-textual data from different data
sources. A spatio-textual similarity join is an im-
portant operation in spatio-textual data integration,
which, given two sets of spatio-textual objects, finds
all similar pairs from the two sets, where the similarity
can be quantified by combining spatial proximity and
textual relevancy (see Section 2.1). There are many
applications in spatio-textual similarity joins, e.g., user
recommendation in location-based social networks,
image duplication detection using spatio-textual tags,
spatio-textual advertising, and location-based market
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analysis [18], [3]. For example, a house rental agency
(e.g., rent.com) wants to perform a similarity join on
the spatio-textual data of house requirements from
renters and the data of house properties from owners.
For another example, a startup company, e.g., Factual
(factual.com), crawls spatio-textual records to gener-
ate points of interest (POIs). As the records are from
multiple sources and may contain many duplicates, It
needs to run similarity joins to remove the duplicates.

Bouros et al. [3] studied the threshold-based spatio-
textual similarity join, which asks users to input a
textual threshold and a spatial threshold and identifies
the pairs whose textual similarity exceeds the textual
threshold and spatial distance is within the spatial
threshold. However, in some application, it is rather
hard to obtain appropriate thresholds, because a loose
threshold involves a large number of answers while
a tight threshold generates few results. To address
this problem, we study the top-k spatio-textual sim-
ilarity join (TOPK-STJOIN) to identify the k most
similar pairs, which avoids the process of tuning the
thresholds. In the house rental example, the agency
has overhead to take renters to show their interested
houses. Given a budget (e.g., a limited number of
agents who show houses to renters), to maximize the
profit, the agency aims to find top-k pairs where the
renters in these pairs have large possibilities to rent
the corresponding houses. In the duplicate detection
example, to remove duplicated POIs, the machine-
only algorithms may introduce incorrect results, and a
widely-adopted method is to ask the human to check
these pairs [13]. However, since the crowd is not free,
it is expensive to ask every pair, and thus it aims to
select the top-k most similar pairs under a budget.

One big challenge in TOPK-STJOIN is to efficiently
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identify the top-k similar pairs by considering both
textual relevancy and spatial proximity. Traditional al-
gorithms that consider only one dimension are rather
inefficient because they have no pruning power on
the other dimension. To address this challenge, we
propose a signature-based top-k similarity join frame-
work. We first extend the prefix-filtering technique
for string similarity joins [4], [2] to generate a spatio-
textual signature set for each record and utilize them
to prune a large number of dissimilar pairs without
common signatures. Furthermore, we find that the or-
der of accessing the signatures has a significant effect
on the performance. So we study how to access the
signatures to achieve high performance. In particular,
we make the following contributions.
(1) We propose a signature-based top-k similarity join
framework. To the best of our knowledge, this is the
first study on top-k spatio-textual similarity join.
(2) We compute an upper bound for each spatio-
textual signature, propose a best-first method that
preferentially accesses signatures with large upper
bounds and prunes those pairs with small bounds,
and prove the optimality of our best-first method.
(3) We optimize spatio-textual signatures and propose
progressive signatures to improve the pruning power.
(4) Experimental results on two real datasets show
that our method significantly outperforms baseline
approaches, even by 1-2 orders of magnitude.

The rest of this paper is structured as follows.
We define the problem and review related works in
Section 2. A signature-based framework is proposed
in Section 3. Section 4 discusses accessing orders of
signatures. We optimize the signatures in Section 5
and make discussions in Section 6. We report results
in Section 7 and conclude in Section 8.

2 PRELIMINARIES

2.1 Problem Formulation

Each spatio-textual record r = 〈r.T, r.L〉 includes a
spatial location r.L with latitude and longitude and
a textual description r.T = {t1, t2 . . . t|r.T|} with a
set of terms. For simplicity, we interchangeably use
r, r.T, r.L to denote the record, its term set and its
location if the context is clear.

Given two sets of spatio-textual records, a spatio-
textual join returns all similar records from the two
sets. To quantify the similarity between two spatio-
textual records, existing methods usually employ a
similarity-based metric [18], [3]. First, to measure the
textual similarity, we can adopt any textual similarity
function, e.g., Jaccard and Cosine. Here we take the
well-known Jaccard function as an example and our
method can support other textual similarity functions.

Definition 1 (Textual Similarity): The textual similar-
ity between records r and s is defined as SIMT(r, s) =
|r.T∩s.T|
|r.T∪s.T| , where |r.T ∩ s.T| is the size of set r.T ∩ s.T.

The spatial similarity is evaluated by the spatial
distance between two records and is defined as below.
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Fig. 1. A Running Example (k = 1, α = 0.5).

Definition 2 (Spatial Similarity): The spatial similar-
ity between r and s is defined as SIMS(r, s) =

max
(
0, 1 − DIST(r.L,s.L)

DISTmax

)
, where DIST(r.L, s.L) is the

distance between r.L and s.L, and DISTmax is a user-
tolerant distance, which can be set as the maximal
distance between any two records.

Then, we combine the textual similarity and spatial
similarity to quantify the spatio-textual similarity.

Definition 3 (Spatio-Textual Similarity): The spatio-
textual similarity between r and s is defined as

SIMST(r, s) = α · SIMT(r, s) + (1− α) · SIMS(r, s),

where α is a tuning parameter to leverage the textual
relevancy and spatial similarity.

The larger α is, the textual similarity is more im-
portant and vice versa. How to select an appropriate
value for α has been widely studied [16], [11]. We can
utilize existing techniques to set an appropriate value.
In this paper we assume α is given. Next, we formally
define the top-k spatio-textual similarity join problem.

Definition 4 (Top-k Spatio-Textual Similarity Join):
Given two sets of spatio-textual records
R={r1, . . . , r|R|}, S={s1, · · · , s|S|}, top-k similarity
join returns a set A of k pairs from the two
sets with the largest spatio-textual similarities, i.e.,
A={(r ∈ R, s ∈ S)} such that SIMST(r, s)≥SIMST(r

′, s′)
for (r, s)∈A and (r′, s′) ∈ R×S−A, and |A|=k.

We first focus on the self-join problem, i.e. R = S
and the case of R 6= S is discussed in Section 6.

Example 1: Figure 1 shows 9 spatio-textual records,
where terms are sorted by document frequen-
cies in an ascending order, i.e., t1, · · · , t8. Sup-
pose DISTmax=40, α=0.5, k=1. Given a record
pair 〈r1, r9〉 with r1.T = {t1, t3, t5, t7, t8}, r1.L =
[17, 17] and r9.T = {t1, t5, t7, t8}, r9.L = [22, 22],
SIMT(r1, r9)=

|{t1,t5,t7,t8}|
|{t1,t3,t5,t7,t8}|

=0.8, SIMS(r1, r9) = 1 −√
(17−22)2+(17−22)2

40 = 0.823 and SIMST(r1, r9) = 0.812.
The top-1 answer is 〈r1, r9〉.

2.2 Related Works

Spatio-Textual Similarity Join. To the best of our
knowledge, this is the first study on top-k spatio-
textual similarity join. There are two works on
threshold-based spatio-textual similarity joins [3], [19].
Both require users to input two thresholds, one for
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textual similarity and the other for spatial similar-
ity, and identify the similar pairs satisfying the two
threshold-based constraints. Bouros et al. [3] com-
bined existing string similarity join techniques with
grid partitions, and we extend this method to support
our problem (see Section 7). However, their method
uses seperate textual and spatial thresholds and it is
hard to find approximate thresholds for the top-k sim-
ilarity join problem. Liu et al. [19], [18] utilized spatial
regions as the spatial part and evaluated the spatial
similarity based on the overlap of two spatial regions.
This problem is different from ours and cannot be
used to address our problem.

Top-k Spatio-Textual Search. Spatial keyword
search [17], [6], [22], [31], [30], [5], [26], [9], [29], [15]
has been widely studied and some works focused on
top-k spatio-textual search [17], [6], [22], [31], [30].
Cong et al. [6] combined inverted lists with R-trees to
compute top-k answers. Zhang et al. [30] combined
inverted index and Quadtree. We utlize them to
support our problem by maintaining the current
top-k answers, deducing a bound based on the top-k
answers, and pruning dissimilar pairs based on the
bound. The method is rather inefficient as it had to
find top-k answers for every record.

Top-k Spatial Join. There are some works on top-k
spatial join [7], [10], [24], [21], [20]. Corral et al. [7]
computed top-k closest pairs in a spatial database.
Shin et al. [10] recursively pushed R-tree nodes into
a priority queue from root to leaf based on an up-
per bound of the minimum distance between two
nodes/records. We extend the top-k spatial join algo-
rithms by assuming the maximum textual similarity
as one, replacing the upper bound by combining the
minimum distance and the maximum textual similar-
ity and utilizing this bound to prune dissimilar pairs.

Top-k Textual Join. Xiao et al. [27] proposed top-k
string similarity join which finds the k most similar
records using the Jaccard function. They utilized the
upper bound of terms to determine the join order. We
can also extend this method to support our problem
by computing real textual similarity and using one as
the spatial bound, and utilizing their sum as an upper
bound to prune dissimilar pairs.

Both top-k spatial join and top-k textual join
method only filter dissimilar records from one (spatial
or textual) dimension, but do not take full adavantage
of the pruning ability on both dimensions.

Set Similarity Join. There are many works [1], [4], [2],
[28], [25], [14], [12] on the set similarity join problem,
which finds similar pairs from two sets within a
given threshold. Prefix filtering is a widely-adopted
technique to address this problem, which computes a
prefix for each object such that if two objects are sim-
ilar, their prefix sets share common signatures [4], [2].
However, prefix filtering only considers the textual
dimension. We extend it to support spatio-textual data

and devise signature-accessing strategies to support
top-k similarity joins. Adaptive prefix filtering [25]
was proposed to improve prefix filtering by using
multiple signatures. However adaptive prefix filtering
is inefficient for top-k joins, and we propose pro-
gressive signatures which can address this problem
efficiently (see Section 5).

3 A SIGNATURE-BASED FRAMEWORK

In this section, we propose a signature-based frame-
work to address the top-k spatio-textual join problem.
We first introduce the framework (Section 3.1) and
then propose spatio-textual signatures (Section 3.2).
Finally we devise a signature-based join algorithm
(Section 3.3).

3.1 Framework

To answer top-k queries, we first initialize a priority
queue Q with k randomly selected pairs. Let τk denote
the smallest similarity of pairs in Q. Obviously we
can prune the dissimilar pairs whose similarities are
smaller than τk. Thus we only need to access each pair
whose similarity is larger than τk, and use such pair
to update Q and τk. If the similarities of remaining
pairs are smaller than τk, we can terminate and the
k pairs in Q are the answers. An important step in
this method is to efficiently prune dissimilar pairs
and identify the pairs with similarity larger than τk.
To address this issue, we propose a filter-verification
framework. The filter step generates a signature set
for each record such that if the similarity of two
records is larger than τk, their signature sets must
share at least one common signature. Based on this
property, if two records have no common signature,
we prune such pair; otherwise we take the pair as a
candidate. The verification step computes the spatio-
textual similarity of each candidate. If the similarity is
larger than τk, we use this candidate pair to update Q
and τk. There are two challenges in this framework.
The first is to devise effective signatures which will be
discussed in Section 3.2. The second is to identify the
candidates with common signatures and we propose
an efficient algorithm in Section 3.3.

3.2 Spatio-Textual Signatures
Given a threshold τk, for each record r, we generate
a signature set SIG(r|τk) = {〈t, n〉}, where t is a term
in r and n is a spatial region containing r. Obviously
the number of terms contained in r is limited, but the
number of regions containing r is infinite. To this end,
we utilize hierarchical spatial indices, e.g., Quadtree
and R-tree, to control the number of regions contain-
ing r. We use Quadtree for illustration purpose and
other spatial indexes will be discussed in Section 6.
We restrict regions to be tree nodes and the number
of nodes containing r can be controlled.

Our objective is to guarantee that if two records
r′ and r are similar with respect to a threshold τk,
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Fig. 2. Example of Signatures.

then SIG(r|τk) ∩ SIG(r′|τk) 6= φ. In other words, if
SIG(r|τk)∩SIG(r′|τk) = φ, 〈r, r′〉 will not be in the top-
k answers and we can prune the pair. For example,
suppose τk=SIMST(r1, r2) = 0.697. Figure 2 shows the
signatures, e.g., SIG(r8|τk) ={〈t2, n4〉, 〈t4, n4〉, 〈t5, n4〉,
〈t6, n4〉, 〈t2, n0〉, 〈t4, n0〉}, SIG(r9|τk)={〈t1, n1〉, 〈t5, n1〉,
〈t7, n1〉, 〈t1, n0〉, 〈t5, n0〉, 〈t7, n0〉}. As SIG(r8|τk) ∩
SIG(r9|τk)=φ, 〈r8, r9〉 cannot be the top 1 answer.
Obviously the smaller the signature set is, the higher
the pruning power is. Next we discuss how to
generate an effective signature set with the smallest
size for a spatio-textual record r.

For any node n containing r, we consider two cases.

(1) n is a leaf node. In this case we only need to
consider the records in the leaf node n because if
a record r′ is outside of n, any signature of r′ will
not contain node n and thus r and r′ cannot share
a signature with the same node n. It is worth noting
that if r′ outside n is actually similar to r, they should
share a signature 〈t, n′〉 where n′ is an ancestor of
n (see the second case). Thus here we only consider
record r′ in n. Since r and r′ are within this “small”
leaf node, their spatial similarity should be large.
We can estimate the upper bound of their spatial
similarity as 1 and thus we get a lower bound of their
textual similarity,

LBT(r|n, τk) =
τk − (1− α)

α
. (n is a leaf) (1)

First, consider LBT(r|n, τk) > 0. Based on Jaccard
definition, if r′ is similar to r, |r′ ∩ r| ≥ LBT(r|n, τk) ·
|r′ ∪ r| ≥ LBT(r|n, τk) · |r|. Suppose we sort the terms
in all records based on a global order, e.g., their
document frequency in ascending order. Based on
such order, we define pivot terms as below.

Definition 5 (Pivot Term): Given a threshold τk and
a record r in a node n, we define r’s pivot terms as
SIG(r|n, τk)={t1, t2, · · · , tp(r|n,τk)}, where

p(r|n, τk) = ⌊|r.T| · (1− LBT(r|n, τk))⌋+ 1. (2)

For any record r′ in node n, if r′ does not contain
any pivot term of r, they cannot be similar. The main
reason [4], [2] is that there are only LBT(r|n, τk)|r|−1

non-pivot terms and |r′∩r|
|r′∪r| ≤ LBT(r|n,τk)·|r|−1

|r′∪r| <

LBT(r|n, τk). Thus for a leaf node n, 〈ti, n〉 is a sig-
nature for i ≤ p(r|n, τk).

Second, consider LBT(r|n, τk)≤0. Two records may
be similar even if they do not share any common term.

Algorithm 1: A Signature-Based Algorithm

Input: R: A spatio-textual dataset; k: top-k
Output: Q: Top-k answers
begin1

Build a hierarchical tree index on R;2

Initialize queue Q with k results;3

Sort terms by df in an ascending order;4

for each record r do5

for each identified node n do6

Compute pivot terms set SIG(r|n, τk);7

for each pivot term t ∈ SIG(r|n, τk) do
Retrieve L(〈t, n〉);8

for each r′ on L(〈t, n〉) do9

if SIMST(r, r
′)≥τk then10

Update Q/τk;11

L(〈t, n〉).APPEND(r);12

return Q;13

end14

In this case, we can add a virtual pivot term ∗ and
〈∗, n〉 is a signature.

For example, in Figure 2, consider the
records {r1, r2, r3} in the leaf node n5. For r1,
LBT(r1|n5, τk)=

0.697−0.5
0.5 =0.394, p(r1|n5, τk)=⌊5× (1−

0.394)⌋+1=4, SIG(r1|n5, τk)={t1, t3, t5, t7}. Similarly,
SIG(r2|n5, τk)={t2, t3, t5} and SIG(r3|n5, τk)={t1, t4, t6
, t7}. As SIG(r2|n5, τk) ∩ SIG(r3|n5, τk)=∅, 〈r2, r3〉
cannot be the top-1 answer.

(2) n is a non-leaf node. Suppose node n has c

children n1, n2, · · · , nc and r is in node ni. Since we
have already considered the record pairs in ni, here
we only need to consider the records in n − ni =
{n1, n2, · · · , ni−1, ni+1, · · · , nc}. We first compute the
maximal spatial similarity from r to its sibling nj for
j 6= i, denoted by MAXSIMS(r, nj), and

MAXSIMS(r, nj) = 1− MINDIST(r, nj)

DISTmax

, (3)

where MINDIST(r, nj) is the minimal distance from r

to the boundary of nj which can be computed in O(1)
time. Then we estimate an upper bound of the spatial
similarity between r and records in n-ni as below.

MAXSIMS(r, n− ni) = max
j 6=i

MAXSIMS(r, nj) (4)

We get a lower bound of the textual similarity of r,

LBT(r|n, τk) =
τk-(1-α)MAXSIMS(r, n-ni)

α
. (n is a non-leaf)

(5)
Similarly, we define pivot terms of r for node n, i.e.,

the first p(r|n, τk) = ⌊|r.T|·(1−LBT(r|n, τk))⌋+1 terms.
If (r, r′) is in top-k answers, r and r′ share common
pivot terms.

For example, consider record r4 from n7 which is a
child of n3. We calculate the spatial upper bound of
r4 for n3 as max{MAXSIMS(r4, n5), MAXSIMS(r4, n6),
MAXSIMS(r4, n8)}=MAXSIMS(r4, n6)=1− 10−8

40 =0.95.
We infer the textual lower bound as LBT(r4|n3, τk)=
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0.697−0.5×0.95
0.5 =0.444. As p(r4|n3, τk)=⌊5×(1−0.444)⌋+

1=3, SIG(r4|n3, τk)={t3, t6, t7}. Similarly, we can
generate the signatures for r5 from another child
n8. As p(r5|n3, τk)=3, SIG(r5|n3, τk)={t1, t2, t4}. As
SIG(r4|n3, τk) ∩ SIG(r5|n3, τk)=∅, 〈r4, r5〉 is pruned.

Next we define the spatio-textual signature of r.

Definition 6 (Spatio-textual Signature): Given a
threshold τk, the signature set of r is SIG(r|τk)=
{〈t, n〉}, where 〈t, n〉 is a signature of r, node n

contains r, and t is a pivot term of r w.r.t. n and τk.

Then, we propose the filtering technique: if a pair
(r, r′) is in the top-k answers, their signature sets must
overlap. We also prove the minimality of our signature
set: if the signature set is smaller, it misses answers.

Lemma 1: Our signature set SIG(r|τk) is minimal: if
the set is smaller, it misses answers.

Proof: Given a threshold τk, a node n and a record
r, suppose its minimum pivot term set is Φ, we prove
Φ=SIG(r|n, τk). We first prove (1) Φ ⊆ SIG(r|n, τk): for
any term ti ∈ Φ, we can prove ti ∈ Sig(r|n, k) no mat-
ter n is a leaf node or non-leaf node based on the def-
inition of pivot term. We then prove (2) SIG(r|n, τk) ⊆
Φ: for any term ti ∈ SIG(r|n, τk), suppose there exists
a record r′ such that r′.T = {ti, tp+1, · · · , t|r.T|}, where
p = p(r|n, τk) and DIST(r, r′) = 0, then we have
SIMST(r, r

′) ≥ τk and 〈r, r′〉 is an answer. To avoid
missing answer, ti should be a pivot term and ti ∈ Φ.
Combining (1) and (2), we complete the proof.

3.3 Signature-Based Algorithm

We devise a signature-based algorithm that utilizes
spatio-textual signatures to identify top-k answers.
To facilitate identifying the pairs with common sig-
natures (i.e., SIG(r|τk) ∩ SIG(r′|τk) 6= φ), we build
an inverted index where entries are signatures and
each signature is associated with a list of records that
contain this signature. We use L(〈t, n〉) to denote the
inverted list of signature 〈t, n〉. Then if r and r′ have a
common signature 〈t, n〉, they both appear in L(〈t, n〉).

The pseudo-code of the signature-based algorithm
is illustrated in Algorithm 1. The algorithm first builds
a spatial index using the spatial information of each
record (line 2), randomly selects k record pairs in a
same leaf node and puts them into a priority queue
Q and gets a threshold τk (line 3), and sorts the
terms in each record by their document frequencies
in an ascending order (line 4). Next for each record
r, it identifies the nodes that contain r by locating
its corresponding leaf node (line 6). Then, for each
ancestor node n, it computes the corresponding pivot
terms based on Equation 2. For each pivot term t,
it retrieves the corresponding inverted list L(〈t, n〉)
(line 8). For each record r′ on list L(〈t, n〉), it computes
the similarity between r′ and r.1 If their similarity is

1. If n is a non-leaf node, we only verify r′ on list L(〈t, n〉) that is not in
the same child of n with r. We can easily achieve this by keeping the child
to which r′ belongs in L(〈t, n〉) and thus can avoid verifying the records
from the same children.

larger than τk, it uses the pair 〈r, r′〉 to update Q and
τk (line 11). Finally, it appends r on L(〈t, n〉) (line 12).
Complexity. Each record r has at most |r| pivot terms
and is contained in D tree nodes, where D is the depth
of the spatial index, thus the signature size of each
record is |r|D. Each signature is inserted into at most
one inverted list. Thus the total space complexity is
O(

∑
r∈R |r|D). The time complexity of accessing the

signature is O(
∑

r∈R |r|D). The complexity to verify
candidates is O(

∑
〈t,n〉 cv|L(〈t, n〉)|2), where |L(〈t, n〉)|

is the size of L(〈t, n〉) and cv is the maximum verifica-
tion cost (i.e., the maximal term number in a record).

4 ACCESSING ORDER
The order of accessing the records has a significant
effect on the performance. If we can first access the
highly similar record pairs, we can increase the thresh-
old τk quickly and prune more dissimilar pairs. For
example, consider τk=SIMST(r1, r2)=0.697. For r5 and
r6 from a leaf node n8, SIG(r5|n8, τk)={t1, t2, t4, t6}
and SIG(r6|n8, τk)={t3, t4, t6}. 〈r5, r6〉 should be a can-
didate pair as SIG(r5|n8, τk) ∩ SIG(r6|n8, τk)={t4, t6}.
On the other hand, if we first access 〈r1, r9〉 and
τk=SIMST(r1, r9)=0.82, we can avoid verifying 〈r5, r6〉
as SIG(r5|n8, τk)={t1, t2}, SIG(r6|n8, τk)={t3, t4}, and
SIG(r5|n8, τk) ∩ SIG(r6|n8, τk)=∅.

To evaluate different accessing orders, we model
the records and their signatures as triples 〈r, t, n〉,
where r is a record and 〈t, n〉 is a signature of r.
Our objective is to determine the accessing orders
of triples to achieve high performance. Based on the
cost complexity in Section 3.3, an optimal accessing
order is to minimize the total cost. Intuitively, we
have three accessing strategies. (1) Textual-first: We
access the triples by sorting on term t. Obviously,
the term with the smallest frequency has the least
probability to match. If two records share infrequent
terms, they have large textual similarity. Following
this intuition, we access the triples sorted on terms
by document frequency (df) in an ascending order.
(2) Spatial-first: We access the triples by sorting on
node n. Obviously the records in the same deep-level
node (e.g., leaf nodes) have large spatial similarity.
Thus we want to first access the triples in the deep-
level nodes. Following this observation, we access the
triples by sorting on nodes in a bottom-up manner.
(3) Best-first: The aforementioned two methods sort
the triples on one dimension but cannot utilize the
other dimension. To achieve high performance, we
first access the record with high possibility to be
in the top-k answers. Thus we compute a score for
each triple by considering both spatial proximity and
textual relevancy, and access the triples by sorting on
the score. We discuss the details and prove that the
best-first accessing order is optimal in Section 4.1.

4.1 Best-First Accessing Order
Given a triple 〈r, t, n〉, we want to estimate the upper
bound of the similarities between r and other records.
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We first estimate a textual upper bound. For any other
record r′, we only need to consider the case that r and
r′ first match on t, because if they match on another
term t′ before t, we can use the triple 〈r, t′, n〉 to find
the pair. Let POS(t, r) denote the order of t among all
terms in r. So there are POS(t, r)− 1 terms before t in
r. The maximal overlap between r and r′ given that
they first match on t is |r.T|− (POS(t, r)−1). Thus we

have SIMT(r, r
′) = |r.T∩r′.T|

|r.T∪r′.T| ≤
|r.T|−(POS(t,r)−1)

|r.T| and can
get a textual upper bound.

UBT(〈r, t, n〉) = |r.T| − (POS(t, r)− 1)

|r.T| . (6)

Obviously for i < j, UBT(〈r, ti, n〉) > UBT(〈r, tj , n〉),
i.e., the upper bounds for terms in the front are larger
than those in the rear. Thus for each record r, 〈r, ti, n〉
should be accessed before 〈r, tj , n〉 for i < j.

Next we estimate a spatial upper bound. We con-
sider two cases. (1) If n is a leaf node, UBS(〈r, t, n〉)=1.
(2) If n is a non-leaf node: (2.1) If the siblings of n

have no spatial overlap with n, e.g., Quadtree and
R+-tree, the minimal distance from r to the four
boundaries of n, denoted by MINDIST(r, n), must be
smaller than the distance from r to any record outside
of r, thus we can get an upper bound UBS(〈r, t, n〉) =
1 − MINDIST(r,n)

DISTmax
; (2.2) If the siblings of n have spatial

overlap with n, e.g. R-tree, we find the nearest descen-
dants of n without overlap with n’s siblings, denoted

by n′, and compute UBS(〈r, t, n〉) = 1− MINDIST(r,n′)
DISTmax

; if

there is no such descendant, UBS(〈r, t, n〉) = 1.
Next we combine the spatial and textual upper

bounds to estimate a spatio-texutal upper bound.

UBST(〈r, t, n〉) = α ·UBT(〈r, t, n〉)+(1-α) ·UBS(〈r, t, n〉).
(7)

The best-first method accesses the triples 〈r, t, n〉
sorted by UBST(〈r, t, n〉) in a descending order. Since
there are large numbers of triples, it is expensive to
directly sort them. To efficiently retrieve the triples
in order, we build a 2-layer winner tree [23]. At the
bottom level, for each record r, we maintain a winner
tree Tr which is utilized to compute the triple with
the largest upper bound for r.2 At the top level, we

2. To facilitate finding the triple with the largest bound in Tr , we group
the triples for r by nodes. We keep a sorted triple list for each node where
triples are sorted by the upper bounds in a descending order (i.e., the term
order from front to rear). Using the first triple of each list, we can get the
triple with the largest bound of the record.

build a winner tree T on top of the record winner
trees (using their top triples) to identify the triple with
the largest upper bound. The top triple in T has the
largest bound. When popping a triple from T , e.g.,
〈r, t, n〉, we get the next triple from the corresponding
bottom-level winner tree, e.g., Tr, and insert this triple
into T . Then we adjust T and compute the next triple
with the largest upper bound. Iteratively, we retrieve
triples sorted by the score in order.

Example 2: Consider the winner tree in Figure 3
and records r1, r2, r3 in a leaf node n5. For the first
term t1 of r1, we can deduce its textual bound as
UBT(〈r1, t1, n5〉) = 5−1+1

5 = 1 and its spatial bound

is UBS(〈r1, t1, n5〉) = 1 as n5 is a leaf node. Thus
UBST(〈r1, t1, n5〉) = 1. The top winner tree T will
pop 〈r1, t1, n5〉 as the first triple because it has the
largest spatio-textual bound. As 〈r1, t1, n5〉 is from the
bottom level winner tree Tr1 , its next triple 〈r1, t3, n5〉
is added into Tr1 . As 〈r1, t3, n3〉 has the largest bound
in Tr1 , it is popped from Tr1 and pushed into T .
Next the winner tree continues to pop the triples
〈r2, t2, n5〉 and 〈r3, t1, n5〉. When accessing 〈r3, t1, n5〉,
L(〈t1, n5〉) = {r1}. 〈r1, r3〉 is verified and τk is updated
as τk = SIMST(r1, r3) = 0.651. For the non-leaf node
n0, the spatial bound UBS(〈r1, t1, n0〉)=1− 3

40=0.925.

Thus UBST(〈r1, t1, n0〉)=0.5×1+0.5×0.925=0.963. As
UBST(〈r9, t1, n0〉)=0.975>UBST(〈r1, t1, n0〉), 〈r9, t1, n0〉
will be accessed before 〈r1, t1, n0〉. When accessing
〈r1, t1, n0〉, L(t1, n0) = {r5, r9}. 〈r1, r9〉 will be verified
and τk will be updated as τk = SIMST(r1, r9) = 0.812.

Algorithm 2 shows the pseudo code of the best-
first algorithm. In line with Algorithm 1, it still builds
a spatial index, initializes Q and gets a term order
(line 2). Then it groups the triples for each record
based on nodes, builds a bottom winner tree for each
record, and uses the top triples in bottom winner trees
to build a top winner tree (line 3). Next it pops the
top triple 〈r, t, n〉 from the top winner tree (line 5).
If UBST(〈r, t, n〉) ≤ τk, the algorithm terminates as
the upper bound is already smaller than τk (line 6).
Otherwise, it identifies the inverted list (line 7) and
for each record r′ on the inverted list, it computes the
similarity of r and r′. If their similarity is larger than
τk, it uses the pair 〈r, r′〉 to update Q and τk (line 9)
and appends the record r on L(〈t, n〉) (line 10). Next it
identifies the triple with the largest upper bound from
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Tr (line 11) and inserts it into T (line 12). Iteratively,
the algorithm finds the top-k answers.

For example, Figure 4 illustrates the accessing order
of the best-first method for computing top-1 answer,
where the numbers in square brackets denote the
accessing order. 〈r1, r3〉 in L(t1, n5) is the first can-
didate pair to be verified. 〈r1, r9〉 is verified before
some candidates in its child, e.g, 〈r2, r5〉, because
the algorithm selects the triples with higher upper
bounds first. The algorithm terminates after accessing
the 45th triple because there is no triple with the
upper bound larger than τk (the next triple popped
out from the winner tree will be 〈r1, t5, n5〉 with
UBST(〈r1, t5, n5〉)=0.8<τk) while Algorithm 1 accesses
67 signatures. Thus the best-first method can prune
many unnecessary signatures.

Next we show that the best-first accessing order is
the optimal order in the signature-based framework.

Theorem 1: The best-first accessing order is the op-
timal order under the signature-based framework.

Proof: According to the complexity analysis in
Section 3.3, the cost on a signature list(L(〈t, n〉)) is
determined by (1) the number of generated (accessed)
signatures, i.e. the number of inserted records, c =
|L(〈t, n〉)|. (2) The number of verifications between
records on the list, c·(c−1)

2 . Next we prove that our
method yields the smallest c. We can devise infinite
score functions as upper bounds of 〈r, t, n〉. Let f0
denote our function (Equation 7) and f1, f2, · · · denote
other functions. Apparently, different functions gen-
erate different accessing orders. Let c0, c1, · · · denote
the number of corresponding inserted records for
f0, f1, · · · . Next we prove c0 < ci.

First, we have three facts. (1) The total number of
records that can be inserted into the list of 〈t, n〉 is
same, which is independent of any functions and
only determined by the dataset, i.e., the document
frequency of t among all the records in node n. We
denote the total number as C. (2) The real top-k
result and τk are also independent of the function and
〈t, n〉, since its depends on the dataset. (3) f0(r, t, n) ≤
fi(r, t, n) (i ≥ 1), i.e., our method gives the tightest
upper bound for every 〈t, n〉. This can be proved by
the fact we may miss correct top-k answers if we
utilize another function which returns a smaller value.

Then, with these three facts, we can conclude that
the accessing process with f0 must terminate earlier
than other functions. Consider f0 and any function
fi. Let X denote the rest records that are not inserted
into the list with function f0, i.e., for any record
r ∈ X , f0(r, t, n) < τk. Similarly we denote Y as
the rest records of utilizing function fi. Now consider
any arbitrary record r ∈ Y , we have fi(r, t, n) < τk.
According to Fact (3), we have f0(r, t, n) ≤ fi(r, t, n) <
τk. Therefore, if r ∈ Y , we have r ∈ X . Thus,
we have Y ⊆ X . According to fact (1), all the lists
have the same total number C, and thus we have
c0 = C − |X| < ci = C − |Y |.

Algorithm 2: The Best-First Algorithm

Input: R: A spatio-textual dataset; k: top-k
Output: Q: Top-k Answers
begin1

Same to Lines 2-4 in Algorithm 1;2

Build winner tree Tr and top winner tree T ;3

while T is not empty do4

〈r, t, n〉 = T .PEEKTOP();5

if UBST(〈r, t, n〉) < τk then break;6

Retrieve L(〈t, n〉);7

for r′∈L(〈t, n〉), r′, r in different children do8

if SIMST(r, r
′) ≥ τk then Update Q/τk;9

L(〈t, n〉).APPEND(r);10

〈r, t′, n′〉 = Tr.PEEKTOP();11

T .INSERT(〈r, t′, n′〉);12

return Q;13

end14

Algorithm 3: Order-Aware Pruning

// replace line 10 in Algorithm 2

Compute UBST
O (〈r, t, n〉) based on Equation 8;1

if UBST

O (〈r, t, n〉)≥τk then L(〈t, n〉).APPEND(r);2

4.2 Order-Aware Pruning
The best-first method has a good property that the
upper bound of triples keeps non-increasing, i.e., the
latter triples’ upper bounds will not exceed the former
triples’ bounds. Based on this property, considering
the current triple 〈r, t, n〉 and any triple 〈r′, t, n〉 ac-
cessed after 〈r, t, n〉, we can estimate an upper bound
of the similarities between 〈r, t, n〉 and records ac-
cessed after 〈r, t, n〉, denoted as UBST

O (〈r, t, n〉). Obvi-
ously if UBST

O (〈r, t, n〉) ≤ τk, we do not insert r into
L(〈t, r〉), because the later records will not be similar
to r. Thus we can prune many dissimilar pairs. Next
we introduce how to compute UBST

O (〈r, t, n〉). If n is a
non-leaf node, there are two cases.
Case (1). UBS(〈r, t, n〉) ≥ UBS(〈r′, t, n〉). We have

SIMS(r, r
′) ≤ 1-

MINDIST(r, n)+MINDIST(r′, n)

DISTmax

,

= UBS(〈r, t, n〉) + UBS(〈r′, t, n〉)− 1,

≤ 2 · UBS(〈r, t, n〉)− 1.

SIMST(r, r
′)≤αUBT(〈r, t, n〉)+(1−α)(2UBS(〈r, t, n〉)−1).

Case (2). UBS(〈r, t, n〉) < UBS(〈r′, t, n〉). Since
〈r, t, n〉 is accessed before 〈r′, t, n〉, UBST(〈r, t, n〉) ≥
UBST(〈r′, t, n〉). So UBT(〈r, t, n〉) > UBT(〈r′, t, n〉).

If |r.T|·UBT(〈r, t, n〉) ≤ |r′.T|·UBT(〈r′, t, n〉), we have

SIMT(r, r
′) =

|r.T ∩ r′.T|
|r.T ∪ r′.T|

≤ |r.T| · UBT(〈r, t, n〉)
|r.T|+ |r.T| · UBT(〈r,t,n〉)

UBT(〈r′,t,n〉)
− |r.T| · UBT(〈r, t, n〉)

=
UBT(〈r, t, n〉)

1 + UBT(〈r,t,n〉)
UBT(〈r′,t,n〉)

− UBT(〈r, t, n〉)
≤ UBT(〈r, t, n〉)

2− UBT(〈r, t, n〉)
.
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Similarly if |r.T| ·UBT(〈r, t, n〉)>|r′.T| ·UBT(〈r′, t, n〉),
we also have SIMT(r, r

′)≤ UBT(〈r,t,n〉)
2−UBT(〈r,t,n〉)

. Thus ,

SIMST(r, r
′) ≤ α · UBT(〈r, t, n〉)

2-UBT(〈r, t, n〉)
+ (1-α) · UBS(〈r, t, n〉).

Finally, we can compute UBST
O (〈r, t, n〉) as below.

UBST
O (〈r, t, n〉) =

max





α · UBT(〈r, t, n〉) + (1-α) · (2 · UBS(〈r, t, n〉)-1)

α · UBT(〈r, t, n〉)
2− UBT(〈r, t, n〉)

+ (1-α) · UBS(〈r, t, n〉)
(8)

Next we design a pruning technique: for each triple
〈r, t, n〉 where n is a non-leaf node, if UBST

O (〈r, t, n〉) ≤ τk,
we do not insert r into L(〈t, n〉).

The pseudo code is shown in Algorithm 3.
It replaces line 10 in Algorithm 2 with: com-
puting UBST

O (〈r, t, n〉) by Equation 8 (line 1); if
UBST

O (〈r, t, n〉)≥τk, appending r into the list (line 2).
For example, considering the 39th triple 〈r3, t4, n0〉,

we have UBS(〈r3, t4, n0〉)=1− 4
40=0.9, UBT(〈r3, t4, n0〉)

=0.8, thus UBST
O (〈r3, t4, n0〉)=max

(
0.5×0.8+0.5×(1.8−

1)=0.8, 0.5× 0.8
2−0.8 + 0.5×0.9=0.783

)
=0.8 < τk=0.812.

As shown in Figure 4 with blue marks, 〈r3, t4, n0〉
(39th) will not be inserted into L(〈t4, n0〉). Thus, al-
though the triple 〈r8, t4, n0〉 (42th) contains 〈t4, n0〉,
〈r8, r3〉 will not be verified.

5 PROGRESSIVE SIGNATURE
Given a triple 〈r, t, n〉, for each record r′ on L(〈t, n〉),
the signature-based method has to verify 〈r, r′〉. If
there are many records on L(〈t, n〉), the verification
cost will be high. If we can reduce the size of L(〈t, n〉),
we can further improve the performance. To address
this issue, we design a progressive signature to im-
prove the pruning power. We first introduce the basic
idea (Section 5.1) and discuss how to incorporate pro-
gressive signatures into our framework (Section 5.2).
Then we devise an efficient algorithm (Section 5.3).

5.1 Basic Idea

Given a record r, a node n, and a threshold τk,
the signature set of r w.r.t. n and τk includes
〈t1, n〉, 〈t2, n〉, · · · 〈tp, n〉 where p = p(r|n, τk). Inspired
by adaptive prefix filtering [25], if we select q−1 more
terms from r, i.e., tp+1, tp+2,· · · , tp+q−1, called quasi
pivot terms, then if r′ is similar to r, they must share
at least q pivot terms or quasi pivot terms, as proved
in [25]. The basic idea is similar to prefix filtering: even
if r′ contains all terms after tp+q−1 of r, they are still
dissimilar. However, adaptive signatures in [25], [11]
cannot effectively address our top-k problem, because
(1) it aims to reduce the candidate sizes based on a
given textual threshold while we focus on top-k join
which has no static threshold, and (2) it generates a
(p+q−1)-length prefix such that two records are simi-
lar if their prefixes share at least q common signatures.

Then it adopts a count-based method, which scans the
inverted list of signatures in the (p+q−1)-length prefix
of r, counts the occurrence numbers of strings on the
inverted lists, and reports the strings with occurrence
number exceeding q as candidates. In other words, for
each record, it inserts all pivot terms into inverted lists
to identify the candidates. However, to incorporate
it into our best-first method, we need to assign a
spatio-textual bound for each signature. To this end, it
has to enumerate

(
p+q−1

q

)
possible cases (requiring to

share q common signatures from p+ q−1 signatures),
computes a bound for each case and inserts signatures
based on the bounds. Since there are

(
p+q−1

q

)
cases,

this method is obviously rather expensive. To address
this issue, we propose progressive signatures.

Definition 7 (Progressive Signature): Given a thresh-
old τk, the q-length progressive signature set of r is
SIG

q(r|τk) = {〈T q, n〉}, where 〈T q, n〉 is a q-length
progressive signature of r, n contains r, and T q is a
q-size subset of {t1, t2, · · · , tp+q−1}.

Then we devise a pruning technique: if two strings
are similar, they must share a common q-length progres-
sive signature. Notice that we will judiciously select
several subsets of {t1, · · · , tp+q−1} as signatures. It
is different from the adaptive prefix which equally
considers

(
p+q−1

q

)
cases. For example, assume τk =

SIMST(r1, r9) = 0.812 and q = 2. For 〈r6, t3, n3〉 and
〈r1, t3, n3〉, p(r6|n3, τk)=2 and p(r1|n3, τk)=2. Their
(quasi) pivot terms are {t3, t4, t6} and {t1, t3, t5} re-
spectively. We cannot prune 〈r1, r6〉 using the 1-length
progressive signature as they share a common sig-
nature 〈t3, n3〉. Our method only needs to generate
their 2-length progressive signatures for term t3, i.e.,
{〈(t3, t4), n3〉,〈(t3, t6), n3〉} and {〈(t3, t5), n3〉} and can
ignore other terms, i.e., {t1, t4, t5, t6}, because their 1-
length progressive signatures only share t3 and their
2-length signatures must contain this term. As there
is no common 2-length signature, we prune 〈r1, r6〉.

There are two challenges to support progressive
signatures. The first is to incorporate progressive sig-
natures into our framework. The second is how to
select signatures and decide q. We prefer to select
the terms with long lists into signatures in order to
improve the pruning ability. To determine q, if q is
small, the pruning power is limited (e.g. q=1); if q is
large, it involves large cost to generate the signatures.
To make a tradeoff, we propose effective techniques
to judiciously generate signatures.

5.2 Supporting Progressive Signatures

For each triple 〈r, t, n〉 popped from the top-level
winner tree, we first verify 〈r, r′〉 for each record r′

on L(〈t, n〉) and then check whether 〈t, n〉 is valid
(we will discuss the details later). If yes, we still use
〈t, n〉 and insert r into L(〈t, n〉); otherwise, we use the
2-length progressive signatures of 〈t, n〉: 〈(t, ti+1), n〉,
〈(t, ti+2), n〉, · · · , 〈(t, tp+1), n〉, where t = ti. It is worth
noting that for all records that contain the signature
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〈t, n〉, including the records in the current list L(〈t, n〉)
and those accessed after 〈r, t, n〉, we also need to use
their 2-length progressive signatures because 〈t, n〉 is
not a valid signature. Thus we split the existing list
L(〈t, n〉) and insert records in L(〈t, n〉) into inverted
lists of 2-length progressive signatures of 〈t, n〉. Then
we use these inverted lists L(〈(t, tj), n〉) for j ∈ [i +
1, p+ 1] (instead of L(〈t, n〉)) to identify candidates
(i.e., the pairs on these inverted lists).

There are two challenges in the framework. First,
how to decide whether 〈t, n〉 is valid and whether we
should use progressive signatures? We propose a cost-
based method. We should compare the cost of two
methods: (1) still using 〈t, n〉 to identify candidates
for records accessed after r; and (2) using 〈(t, ti+1), n〉,
〈(t, ti+2), n〉, · · · , 〈(t, tp+1), n〉 to identify candidates for
records accessed after r.

The first method needs to verify (1) the candidate
pairs between the records in the current list L(〈t, n〉)
and the records after r and (2) the candidate pairs
between records after r. Suppose N (〈t, n〉) is the
number of records in n having 〈t, n〉 as a signature.3

The number of candidate pairs is

|CANDq=1| =
N (〈t, n〉)(N (〈t, n〉)-1)

2
-
|L(〈t, n〉)|(|L(〈t, n〉)|-1)

2
.

(9)
The verification cost for verifying r and r′ is |r|+ |r′|
which can be estimated by the average term number,
denoted by Avgt. Thus the total cost is

COSTq=1(〈t, n〉) = 2Avgt|CANDq=1|. (10)

The second method generates 2-length progressive
signatures for every record with 〈t, n〉 as a signature,
uses the 2-length progressive signatures to identify
candidate pairs for each record after r, and verifies the
candidate pairs. The total cost is computed as below.

COSTq=2(〈t, n〉) = ̂|〈t, T 2, n〉|N (〈t, n〉) + 2Avgt|CANDq=2|.
(11)

where ̂|〈r, T 2, n〉| is the average number of 2-length
progressive signatures of each record generated from
〈t, n〉 and |CANDq=2| is the number of candidates

using the 2-length progressive signatures. ̂|〈r, T 2, n〉|
can be estimated based on records in L(〈t, n〉), i.e.,

|〈r, T 2, n〉| ≈
∑

r∈L(〈t,n〉) p(r|n, τk)− POS(t, r) + 1

|L(〈t, n〉)| ,

which can be easily computed and materialized when
verifying the pairs in L(〈t, n〉). CANDq=2 is a sub-
set of CANDq=1 which contains the pairs of records
with more than two (quasi) pivot terms. Suppose
|L≥2(〈t, n〉)| denotes the number of record pairs with
more than two (quasi) pivot terms in L(〈t, n〉), which
can be computed and materialized when verifying

3. N (〈t, n〉) is hard to compute. We can utilize the number of records
containing t in node n, i.e.,df(t, n), to estimate N (〈t, n〉).

the pairs in L(〈t, n〉). As there are |L(〈t,n〉)|·(|L(〈t,n〉)−1|)
2

candidates in the current list L(〈t, n〉) and among
them |L≥2(〈t, n〉)| pairs have more than two common
(quasi) pivot terms, we can get a ratio. As there are to-
tally |CANDq=1| candidates using 1-length signatures,
with the above ratio we estimate |CANDq=2|:

|CANDq=2| =
|L≥2(〈t, n〉)|

|L(〈t,n〉)|·(|L(〈t,n〉)−1|)
2

· |CANDq=1|. (12)

If COSTq=1(〈t, n〉))>COSTq=2(〈t, n〉), 〈t, n〉 is not
valid anymore. We use the 2-length progressive sig-
natures of 〈t, n〉; otherwise we still use 1-length signa-
tures. Generally, for an arbitrary signature 〈T q, n〉(q ≥
2), we can also compute the cost for q and q + 1,

COSTq(〈T q, n〉) = 2Avgt|CANDq|,
COSTq+1(〈T q, n〉) = ̂|〈t, T q+1, n〉|N (〈T q, n〉)+2Avgt|CANDq+1|

(13)
Both |CANDq| and |CANDq+1| can be similarly com-

puted as Equations 10 and 11. The only difference is
that we need to estimate N (〈T q, n〉) ≈ N (〈T q−1, n〉 ·
|L(T q,n)|

|L(T q−1,n)| , where T q−1 is the subset of T q by deleting

the last term. If COSTq(〈T q, n〉) > COSTq+1(〈T q+1, n〉),
we continue to split the inverted lists of 〈T q, n〉 and
use 〈T q+1, n〉 as signatures. Otherwise we still use
〈T q, n〉 as progressive signatures.

Example 3: Consider L(t3, n3) in Figure 5. We
assume 〈r4, t3, n3〉 and 〈r6, t3, n3〉 have been
accessed and 〈r1, t3, n3〉 is the next triple (37th).
It accesses L(〈t3, n3〉) and verifies 〈r4, r1〉 and
〈r6, r1〉. Next we estimate the cost of the two
methods with Equations 10 and 11. N (t3, n3)=4,
Avgt=4.5 and |L(t3, n3)| = 3. Using Equation 9,
|CANDq=1|= 4×3

2 − 3×2
2 = 3. The cost of the first

method is COSTq=1=2×4.5×3=27. For the second

method, ̂|〈r, T 2, n3〉|= 2+2+1
3 =1.67. |CANDq=2|=

2·|L≥2(t3,n3)|
|L(t3,n3)|·(|L(t3,n3)−1|) · |CANDq=1|= 2×1

3×2 × 3=1.
COSTq=2 = 1.67 × 4 + 9 = 15.68. As
COSTq=1 > COSTq=2, we use 2-length progressive
signatures. As τk=SIMST(r1, r9)=0.812, p(r4|n3, τk)=2
and the 2-length progressive signatures of r4
generated from 〈t3, n3〉 are 〈(t3, t6), n3〉, 〈(t3, t7), n3〉.

Next we show the pruning power of progressive
signatures using the next triple 〈r2, t3, n3〉 (43th). The
first method accesses L(〈t3, n3〉) and gets two candi-
date pairs 〈r4, r2〉 and 〈r6, r2〉 (r1 is not a candidate
as r1 and r2 are from the same child of n3, i.e.,
n5). Thus the first method verifies two candidates
and checks 7 + 7 terms. The second method gener-
ates a progressive signature for r2, 〈(t3, t5), n3〉. As
L(〈(t3, t5), n3〉) = {r1}, 〈r4, r2〉 and 〈r6, r2〉 are pruned.
The second method creates progressive signatures for
r4, r6, r1, r2 by scanning 2 + 2 + 1 + 1 terms and its
verification cost is 0 (no candidate). Thus the second
method (using progressive signatures) is much better.

The second challenge is how to use the progressive
signatures to identify candidates (if is not valid) for a
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r4, n7

r6, n8

r6, n8 r4, n7
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Method 1
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[11]

[20]
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<r2,T

2
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Ø 
q=1
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Results
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L((t3,t6),n3)

r1, n5[37]

r1, n5

L((t3,t5),n3)

L((t3,t5),n3)={r1,n5}

Fig. 5. Example of Using Progressive Signatures.

new triple 〈r, t, n〉. To address this issue, we can use
a hash table ϕ to keep the invalid signature. If 〈t, n〉
is not in ϕ, 〈t, n〉 is still valid and we retrieve the
list of 〈t, n〉; otherwise, we use q-length progressive
signatures where q = ϕ(〈t, n〉). We use an iterative
method to generate q-length signatures for r: first generat-
ing 2-length signatures 〈(ti, ti+1), n〉, 〈〈ti, ti+2〉, n〉, · · · ,
〈(ti, tp+1), n〉 for q = 2, ti = t and then using (q − 1)-
length signatures to generate q-length signatures. If
〈(ti, ti+j), n〉 exists in ϕ (i.e, a previous record has gen-
erated this signature), we use 〈(ti, ti+j), n〉 to generate
〈(ti, ti+j , ti+j+1), n〉, · · · , 〈(ti, ti+j , tp+2), n〉 for q = 3;
otherwise, we do not need to extend it and retrieve
the inverted lists to identify candidates.

5.3 Progressive-Signature-Based Algorithm

We devise a progressive signature based algorithm
similar to Algorithm 2. We first initialize a spatial
index, priority queue Q, and the winner trees. Then
we peek the triple from the top winner tree. If 〈t, n〉
is in ϕ, this signature is not valid and we generate q-
length signatures; otherwise, 〈t, n〉 is valid, and we
still use 〈t, n〉. For each signature, we retrieve the
inverted list, and for each record r′ on the list, we
verify the pair. Next we compute UBST

O (〈r, T q, n〉)
based on Equation 15 and if UBST

O (〈r, T q, n〉) ≥ τk, we
compute COSTq and COSTq+1. If COSTq > COSTq+1,
we split the existing list L(〈T q, n〉, generate the (q+1)-
length signatures and insert them into inverted lists;
otherwise we append the record into current inverted
list. Finally we update the winner tree.

Estimate Upper Bound UBST
O (〈r, T q, n〉). Suppose the

last term in T q is tj . If r′ shares a signature 〈T q, n〉
with r, they share q terms among the first j terms of
r. As there are |r.T|−j terms after tj , the textual upper
bound is

UBT(〈r, T q, n〉) = q + (|r.T| − j)

|r.T| . (14)

The spatial bound for each term in T q is the same
and thus UBS(〈r, T q, n〉) = UBS(〈r, tj , n〉). So we can
get the overall spatio-textual upper bound as below.

UBST
O (〈r, T q, n〉) =

max





αUBT(〈r, T q, n〉)+(1-α)(2 · UBS(〈r, T q, n〉)-1)

α
UBT(〈r, T q, n〉)
2-UBT(〈r, T q, n〉)

+ (1-α) · UBS(〈r, T q, n〉)
(15)

6 DISCUSSION
Spatial Index Selection. To evaluate the spatial ability
of an index, we sum up the average spatial upper
bounds of all the records as the following function.

SpatialBound =
∑

r∈R

∑
n|r∈n MAXSIMS(r, n− ni)

|n| , (16)

where n is an ancestor of r and |n| is the number of
r’ ancestors. We aim to select the spatial index with
the minimum SpatialBound. As we use hierarchical
spatial indexes, we only compare two well-known
hierarchical indexes, Quadtree and R-tree. Quadtree
will be better in our method, because there exist lots
of nodes with overlaps in the R-tree index, and for
these overlapped nodes, MAXSIMS(r, n− ni) is equal
to the largest value 1. Therefore, the bound of R-tree
is looser than that of Quadtree, and accordingly R-tree
has larger cost than Quadtree. We also verify this ob-
servation by experiments as discussed in Section 7.4.

R 6= S . We generate the spatio-textual signatures for
each dataset. For each 〈t, n〉, we maintain LR(〈t, n〉)
for R and LS(〈t, n〉) for S . The pairs on the two
inverted lists (LR(〈t, n〉)×LS(〈t, n〉)) are candidates.

Out-of-Core Setting. A common approach for the
case that the dataset cannot be loaded into memory is
to partition the dataset into small partitions, use our
algorithms to compute the answers on the small parti-
tions, and then combine these answers to generate the
final results. Based on this idea, we can devise disk-
based or MapReduce-based algorithms [8]. However,
in this paper we focus on the in-memory setting
and leave devising disk-based or MapReduce-based
algorithms as a future work.

7 EXPERIMENT

We have conducted extensive experiments to evaluate
the efficiency and scalability of our methods.

7.1 Experimental Setup

Datasets. We used two real datasets: Twitter and
POI, as shown in Table 1. The Twitter dataset was
collected from twitter.com, which had 1 million tweets
with locations. The POI dataset was crawled from
factual.com, where the average term number was 5.
We merged ten POIs into one record and generated 1
million records.
Baselines. We extended five methods to support our
problem. (1) Threshold-based spatio-textual join algo-
rithm PPJ-C [3]. As PPJ-C only supported separate
spatial and textual thresholds, we extended it with
two different strategies. (i) PPJ-C-A: we extended
it by decreasing the thresholds with step 0.05 and
terminated until getting top-k answers. (ii) PPJ-C-

B: we used a priority queue to keep the current top-
k answers and deduced a bound. Then we built a
hierarchical grid index. For each grid level, we used
PPJ-C [3] to compute the results, which joined the
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Fig. 6. Evaluation on Accessing Orders (Default values: k=10000, α=0.5 and |R|=1M ).

eight neighbor grids for each grid. We accessed the
grids in a bottom-up manner. Notice that we needed
to infer a textual threshold for each grid, which was

computed as τt = τk−(1−α)·UBs(g)
α

, where UBs(g) is
the spatial upper bound of the grid: UBs(g) = 1 if the

grid is a leaf grid; otherwise UBs(g) = 1 − LENSIDE(g)
DISTmax

where LENSIDE(g) is the length of the side of g’s child
grid4 and DISTmax is a user-tolerant distance (see Sec-
tion 2.1). (2) Top-k spatio-textual search ILQ [30](see
Section 2.2). (3) Spatial-first methods, we accessed
close records in two manners, (i) SpatialFirst: the
bottom-up manner (see Section 4). (ii) SpatialFirst-

II: the top-down manner [10] (see Section 2.2)) (4)
Textual-first method TextualFirst [27] (see Section 4).
As TextualFirst was better than similarity join meth-
ods [27], we only compared with TextualFirst.
Setting. All the algorithms were implemented in C++.
We used Quadtree for spatial index and inverted
lists for textual index for all methods. We terminated
to split a Quadtree node if it contained less than
50K records. We used the in-memory setting. All the
experiments were run on a computer with 40GB RAM,
Intel Xeon CPU 2.93GHz, running Ubuntu.

7.2 Evaluation on Accessing Orders

First, we evaluated the effect of different accessing or-
ders of signatures. We compared four methods, Spa-

tialFirst, TextualFirst, BestFirst and BestFirst+, where
BestFirst+ enabled order-aware pruning in BestFirst

(Section 4.2). We were aware of three parameters that

4. Given a grid, PPJ-C computes its results from its eight neighbour grids.
As we have computed results from its child level, the minimal spatial distance
is the length of side of a grid in its child level.

TABLE 1

Datasets.
Datasets # Records Avg # terms # Distinct terms
Twitter 1M 17.1 400K
POI 1M 52 556K

had impact on the efficiency, i.e., k, α, and the size |R|
of a dataset. When we varied one parameter, others
were set as default values: k = 10000, α = 0.5 and
|R| = 1M . We reported the numbers of candidate
pairs in and elapsed time in Figure 6, where the
candidates referred to record pairs verified.

We had the following observations. (1) Among
all the parameters, BestFirst always outperformed
TextualFirst and SpatialFirst because TextualFirst and
SpatialFirst accessed signatures with priority on only
one dimension, which leaded to many more candi-
dates than BestFirst. For example, for Twitter in
Figure 6(i), when |R|=1M , BestFirst verified 761M
candidate pairs while TextualFirst and SpatialFirst

involved 4000M candidates. BestFirst also improved
the elapsed time from 600 seconds to 130 seconds as
shown in Figure 6(k). (2) BestFirst+ further reduced
the candidate number by skipping unnecessary sig-
natures. BestFirst+ outperformed BestFirst by 30%-
50%. (3) With the increase of parameter k, all of
these methods generated more candidates and took
more time, because a larger k involved more answer
pairs which leaded to a small τk and thus many
pairs cannot be pruned. (4) Parameter α can affect
the efficiency of TextualFirst and SpatialFirst. When
α = 0.9, SpatialFirst took more than 1000 seconds on
POI. This is because SpatialFirst preferred to access
pairs with close distance, and a large α indicated
the spatial proximity was rather small (even neg-
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Fig. 7. Efficiency Evaluation on Progressive Signatures (Default values: k=10000, α=0.5 and |R|=1M ).
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Fig. 8. Comparison of Quadtree and Rtree (Default values: k=10000, α=0.5).

ligible) compared to the textual relevancy. On the
contrary, TextualFirst had worse performance when
α was small. BestFirst kept stable performance be-
cause it considered both the spatial and the textual
factors. (5) With the increase of numbers of records,
the cost increased because more candidate pairs were
generated. However, BestFirst got the slowest growth
rate compared to SpatialFirst and TextualFirst. This is
attributed to the tighter bounds of BestFirst, which
can prune many more dissimilar pairs.

7.3 Evaluation on Progressive Signature

We evaluated our progressive signature Progressive

(the method utilizing progressive signatures in Sec-
tion 5), and compared it with BestFirst+ and Adaptive

(extending [25] by enumerating its signature combi-
nations and accessing the combination in order as
discussed in Section 5). Figure 7 shows the efficiency
and the candidate number with signature number,
where the white (shaded) bars are the number of gen-
erated signatures (candidates). We had the following
observations. First, Progressive always outperformed
BestFirst+ and Adaptive, because progressive signa-
tures can significantly improve the pruning power
and generate fewer signatures. For example, when
|R| = 1M , BestFirst+ verified 495 millions of pairs

on Twitter while Progressive reduced the number
to 186 millions. Progressive also reduced the time to
45 seconds from 78 seconds of BestFirst+. Second,
although Adaptive can also reduce the number of
candidates, it generated large numbers of signatures5

and it was rather expensive to access large numbers
of signatures. For example, when |R| = 1M , Adaptive

generated 1045 millions signatures on POI and got
259 millions of candidates while Progressive used
190 millions of signatures and got 495 millions of
candidates. Third, with the increase of k, the candi-
date number and elapsed time of Progressive grew
slowly than BestFirst+ and Adaptive. Fourth, differ-
ent α’s have influences on Progressive. Progressive

performed better and had larger pruning power for a
larger α, because if α was large, the textual similarity
was more important and the progressive signatures
played a significant role. Fifth, with the increase of
dataset sizes, the growth rates of efficiency and the
candidate number of Progressive were smaller than
BestFirst+ and Adaptive, due to the better pruning
power of progressive signatures, which utilized more
(quasi) pivot terms to prune dissimilar pairs.

5. The cost of generating signtures for Adaptive included retrieving signa-
tures with largest bounds from the winner tree.
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Fig. 9. Comparison with Baselines (Default values: k=10000, α=0.5 and |R|=1M ).

7.4 Comparison of Quadtree and R-tree

We compared different spatial indexes, Quadtree and
R-tree. We used the progressive signature based
method, varied the numbers of records, and set k and
α as default values. The elapsed time and the spatial
bounds (see Equation 16) are shown in in Figure 8. We
can see that Quadtree was twice better than R-tree.
This is because Quadtree had much tighter spatial
upper bounds with Equation 16, which resulted in
less candidates. For example, when |R| = 1M , the
average SpatialBound of Quadtree on Twitter was
0.773 (i.e., the average spatial upper bound for each
record was 0.773), while the corresponding spatial
upper bound for the R-tree index was 0.881. The
smaller the value is, the tighter the upper bound is.
Thus Quadtree was better than R-tree. Since Quadtree
had tighter bounds than R-tree, Quadtree generated
fewer signatures and achieved higher performance.
For example, Quadtree generated 196 millions candi-
dates and took 45 seconds while R-tree generated 360
millions candidates and took 82 seconds.

7.5 Comparison with Baselines

We compared our method SigJoin (enabling pro-
gressive signatures in BestFirst+) with six baselines
ILQ, PPJ-C-A, PPJ-C-B, TextualFirst, SpatialFirst and
SpatialFirst-II. Figure 9 showed the results. We had the
following observations. (1) ILQ had the worst perfor-
mance because ILQ was a search-based method, which
needed to scan each record to find top-k answers.
(2) PPJ-C-B, TextualFirst and SpatialFirst, SpatialFirst-

II and BestFirst+ were better than PPJ-C-A, because
it was rather hard for PPJ-C-A to determine ap-
propriate thresholds and PPJ-C-A had to perform
multiple similarity join operations for different thresh-
olds and involved many duplicated computations.
(3) SpatialFirst, SpatialFirst-II and PPJ-C-B achieved
similar performance as all of them verfied record pairs
based on the priority of spatial distance and PPJ-

C-B computed the results in a bottom-up manner
using the hierarchical grid index, which was a variant

TABLE 2

Index Size.
Datasets ILQ PPJ-C-A PPJ-C-B TextualFirst SpatialFirst SigJoin

Twitter 1.6GB 0.9GB 0.92GB 0.75GB 1.3GB 1.18GB
POI 4.5GB 1.49GB 1.52GB 1.47GB 3.8GB 3.52GB

of the spatial-first based method. (4) SigJoin signifi-
cantly outperformed other methods with 1-2 orders
of magnitude, because (a) SpatialFirst,SpatialFirst-II

and PPJ-C-B did not optimize the textual pruning
and TextualFirst did not optimize the spatial pruning,
and they utilized loose upper bounds to find top-k
answers, which would verify many pairs of records
with large spatial similarities but small textual sim-
ilarities or with large textual similarities but small
spatial similarities. On the other hand, SigJoin chose
the verification order by considering both the textual
and spatial dimensions, which made τk increase most
quickly and pruned most dissimilar pairs; (b) SigJoin

utilized progressive signatures to enhance the pruning
power. (5) When varying parameter α, SigJoin kept a
more stable performance than other methods, because
SigJoin could progressively estimate a tighter bound
to prune dissimilar pairs. (6) With the increase of
number of records, SigJoin scaled much better than
other methods, because SigJoin estimated a tighter
bound and had more powerful pruning.

Index Size. Lastly, we evaluated the space cost of
different methods. As illustrated in Table 2, PPJ-C-

A and TextualFirst had the least space cost because
they did not use any spatial index and this was also
why they had poor performance. PPJ-C-B also had
small space cost because we cleared up unnecessary
indexes of lower-level girds once we moved to the
upper levels. SigJoin involved less space than ILQ

because ILQ utilized all the terms to create the index
while SigJoin used a subset of terms, i.e., pivot terms.
SigJoin was better than SpatialFirst because SigJoin

accessed smaller numbers of signatures than Spatial-

First, which can save much space cost. The index sizes
on POI were larger than those on Twitter for all the
methods because POI contained more terms in each
record (see Table 1).
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8 CONCLUSION

We proposed a signature-based framework for top-k
spatio-textual similarity join. We discussed different
accessing orders of signatures proposed a best-first
method, and proved the best-first accessing order
is optimal. We proposed progressive signatures to
improve pruning power. Experimental results showed
that our method significantly outperformed baselines.
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