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(Extended Abstract)

Abstract. In this paper we present SPrank, a novel hybrid recommen-
dation algorithm able to compute top-N item recommendations from
implicit feedback exploiting the information available in the so called
Web of Data. We leverage DBpedia, a well-known knowledge base in the
LOD (Linked Open Data) compass, to extract semantic path-based fea-
tures and to eventually compute recommendations using a learning to
rank algorithm.
Experiments with datasets on two different domains show that the pro-
posed approach outperforms in terms of prediction accuracy several state-
of-the-art top-N recommendation algorithms for implicit feedback in sit-
uations affected by different degrees of data sparsity.

1 Introduction

We propose SPrank (Semantic Path-based ranking), a hybrid recommendation
algorithm [1] to compute top-N item recommendations from implicit feedback.
SPrank effectively incorporates ontological knowledge belonging to the Web of
Data with collaborative user preferences in a graph-based setting. In SPrank,
the ontological knowledge describing the items is extracted from DBpedia1, a
well-known encyclopedic knowledge base belonging to the LOD2 (Linked Open

Data) cloud. From the analysis of the DBpedia semantic graph we extract path-
based features and use a learning to rank algorithm for computing the top-N
recommendations as a ranking problem. SPrank is able to compute accurate rec-
ommendations in scenarios where collaborative filtering algorithms notoriously
are not very effective, such as the ones affected by data sparsity. To the best of
our knowledge, this is the first work proposed to address the top-N recommen-
dation task as a ranking problem from implicit feedback by leveraging the Web
Of Data. Main contributions of this work are:
– combination of semantic item descriptions from the Web of Data and implicit

feedback for the top-N recommendation task;

? The full version of this paper, with complete experimental evaluation and related
work, has been published in [8].

1 http://dbpedia.org
2 http://linkeddata.org
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– formulation of a hybrid recommendation problem in a learning to rank setting;
– mining of the semantic graph of LOD datasets through path-based features to

capture complex and not trivial relationships between items.

2 SPrank: Semantic Path-based Ranking

The common graph-based nature of the data models for both content-based
recommender systems exploiting LOD and collaborative filtering recommender
systems, suggests interesting ways to model a hybrid recommendation engine.
We can merge these two graphs obtaining a new graph G = (V,R) as shown in
Fig. 1, where V denotes the set of vertices and R the set of relationships. Due
to the nature of the problem we identify three relevant subsets of V : U , I and
E representing users, items and entities, respectively. Moreover, in our model
the two following relations hold: I ⊆ E and V = U ∪ E. Similarly, R contains
two categories of relationships. In fact, we have R = S ∪ P where S = U × I
and P ⊆ E × E. More precisely, an edge s ∈ S links a user u ∈ U to his/her
relevant items i ∈ I while an edge p ∈ P connects either an item i to another
entity e ∈ E in the graph or an entity ej ∈ E \I to another entity ek ∈ E. In the
rest of the paper we will use u, i, e and v to represent a node belonging to U , I,
E and V , respectively. Analogously, we will denote with s, p and r the edges in
S, P and R. Thanks to this graph-based formulation of the problem we consider
both collaborative and content aspects in a unified representation and hence a
unified feature space. The purpose is recommending relevant items i to users u
leveraging the knowledge encoded in the graph G. In the rest of the paper, in
our data model we will always consider G as undirected.

Let Ŝ be the matrix of implicit feedback, where ŝui = 1 if item i is relevant
for user u (i.e., there is an edge of type s between u and i), 0 otherwise. Looking
at the graph in Fig. 1, for user u1 we have ŝu1i1 = 1, ŝu1i2 = 1 while ŝu1i3 = 0,
ŝu1i4 = 0.
Starting from Ŝ we define I+u = {i ∈ I|ŝui = 1} as the set of relevant items for
u and I−u = {i ∈ I|ŝui = 0} as the set of unknown items for u. We call I+u the
user profile of u. In Fig. 1, with reference to user u1, we have I+u1

= {i1, i2} and
I−u1

= {i3, i4}. The unobserved items I−u are exactly the items that have to be
ranked. The ultimate goal of the system is to rank in the top-N positions items
likely to be relevant for the user.
We formulate the problem of computing the top-N recommendations in a learn-
ing to rank fashion similar to the document ranking problem adopted in Web
search [6]. In particular we adopt a regression based point-wise method.
For each user-item pair (u, i) , we encode the features able to characterize the
interaction between user u and item i in the vector xui ∈ RD where D is the
dimension of the feature space. Each component in xui represents the relevance
score between user u and item i with respect to a specific feature. For each user
u we assume to have information on the set of relevant items I+u , the set of
unknown items I−u , the implicit binary feedback ŝui and the feature vector xui.
Finally, we introduce I−∗u ⊆ I−u computed by sampling, with a uniform probabil-
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Fig. 1. Graph-based representation of the data model.

ity distribution, a fixed number of unobserved items from I−u equal to K times
the size of I+u , being K a constant. In other words, I−∗u is the set of the K· | I+u |
uniformly sampled items from I−u .
Now we have all the elements to formally define the training set TR as:

TR =
⋃
u

{〈xui, ŝui〉|i ∈ (I+u ∪ I−∗u )}

Given the training set TR, computing the top-N recommendations for user u
can be formulated as the task of generating a ranking function f : RD → R such
that f(xui) ≈ ŝui. Eventually, we use f(·) to rank the items in I−u and getting
the top-N recommendation list for u. Given a graph G as the one represented in
Fig. 1, we want to extract features able to characterize the interactions between
users, items and entities capturing the complex relationships between them. The
basic idea is to consider all the paths that connect the user to an item in order
to have a relevance score for that item. The more paths between user and item,
the more the item is relevant for the user. However, in this formulation of the
problem there are several types of paths and not all of them have the same
relevance. Moreover, some paths that involve useless properties can be noisy
for the purpose of recommendation. Based on these assumptions, we leverage a
supervised approach and we delegate to the learning to rank algorithm the task
of finding what paths are most relevant for computing top-N recommendations.
Given an undirected graph G as previously defined, we define a path as the acylic
sequence of edges of the form (s, . . . , rl, . . . , rL) where s = (u, i) and rL = (v, i′)
with i 6= i′. We also define the length of a path as the number of edges contained
within such path. We consider paths having length greater than 1 and less than
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or equal than a given L. We collect all the possible paths in G to build a Path
index. Path(j) represents the j-th component in the index and it corresponds
to a specific sequence of edge labels (i.e., to a path disregarding the actual
nodes). Considering a user-item pair (u, i), we denote #pathui(j) as the number
of paths between u and i corresponding to the specific Path(j) entry in the
index. In other words, it represents how many paths of type Path(j) connect u
and i. This aggregate information corresponds to the frequency of Path(j) in the
sub-graph composed by all paths between u and i. We are now ready to define
the path-based features. We define the j-th component in the feature vector xui

as:

xui(j) =
#pathui(j)∑D
d=1 #pathui(d)

(1)

Equation (1) represents the importance of the specific sequence of edge labels
Path(j) between u and i in the sub-graph constituted by all the associations
between these two nodes. Specifically, it is the frequency of the specific path
Path(j) normalized with respect to the frequencies of all the existing paths
between u and i.
Depending on the type of links composing a path there are different types of
paths. In particular, such paths can be: (I) collaborative if only links in S are
involved as for (s, s, s); (II) content-based if there are only rl 6∈ S with l =
2, . . . , L as for (s, p1, p2) or (s, p4, p2, p1); (III) hybrid if there is more than one
link in S and at least one link in P as for (s, p4, s, s) or (s, s, s, p4).
In order to predict the ranking and form the top-N recommendation lists we deal
with the learning to rank problem by adopting a point-wise approach. Point-wise
methods have shown to be very effective in Web search ranking [6]. There are two
point-wise algorithms that have proven particularly successful: Random Forests
and Gradient Boosted Regression Trees (GBRT) [5]. We formulate the learning
to rank problem as a combination of both Random Forest and GBRT following
the idea of BagBoo introduced by [9]. BagBoo combines the high accuracy of
gradient boosting with resistance to overfitting and variance reduction of random
forests. The basic idea is replacing simple tree models that are at the base of
random forests with powerful and accurate gradient boosted trees.

3 Evaluation

The experiments to evaluate the effectiveness of SPrank in terms of accuracy
for top-N recommendations have been carried out on two datasets belonging to
two different domains: MovieLens (movies) and Last.fm (musical artists). The
datasets that have been used are available at: http://sisinflab.poliba.it/
semanticweb/lod/recsys/datasets/.

From the original matrix Ŝ, we built two new matrices: Ŝtrain and Ŝtest. We
used the former for producing the sets I+u , I−u and TR (used for training the
model), the latter for evaluating the trained model. To create Ŝtest we randomly
selected ten positive feedback for each user from the initial matrix Ŝ. In order to
assess the performance of SPrank in situations affected by different level of data
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sparsity, we evaluated our algorithm considering different sizes of user profiles.
Specifically, for each user we randomly considered at most m positive feedback
from the original matrix Ŝ (denoted with “given m” in Tables 1 and 2) to form
Ŝtrain, and we discarded all the others. We say at most m because some users
can actually have less than m positive feedback. Different values of m correspond
to different matrices Ŝtrain, different sets I+u , I−u and then different training sets
TR. For different sizes of the user profile, we learned the model on the training
set TR and we applied the learned model to predict the unknown values (0-
entries) in Ŝtrain. We got the full recommendation lists by sorting the predicted
values for each user and then we evaluated the accuracy for the top-N items.
We repeated the procedure 5 times for each condition by randomly drawing
new training/test sets in each round and at the end we averaged the results.
To evaluate the accuracy of the system we measured the recall@N , widely used
for evaluating top-N recommender systems [2, 7]. The computation of recall@N
goes through a procedure similar to the one introduced in [2], as detailed in the
following.
For each ŝui in Ŝtest, from the full recommendation list computed for u, we
randomly selected 100 items appearing neither in the test set related to that
user nor in the user profile. We got a ranked list consisting of these 101 items.
The top-N recommendation list is obtained by considering just the first N items
(N = 5, 10, 20) in this ranked list. Being pos the position of the test item i within
the ranked list, we have a hit if pos ≤ N , otherwise we have a miss. We note
that for any single test case, we have just one relevant item (i.e., the tested item
i). The recall for a single test case is either 0 (in case of a miss) or 1 (in case of
a hit). The overall recall on all users is defined by averaging over all test cases:

recall@N =
#hits

| Ŝtest |
(2)

The formula for precision@N differs from Equation 2 just by a multiplicative
term N appearing at the denominator [2]. For this reason, in our results we do
not report it.

Effectiveness of the learning to rank algorithm. To understand whether
the chosen learning to rank algorithm is effective, we compared BagBoo, the
learning to rank algorithm used in SPrank, with two other algorithms: Sum and
GBRT . In Sum, the ranking function f(xui) is the arithmetic sum of all the
path-based feature values. On the one side, the comparison with Sum gives us
a baseline for semantic-based recommendation algorithm where all associations
are equally considered. This allows us to evaluate our learning to rank algorithm
against a basic not ranking-oriented semantic recommender. On the other side,
the comparison with GBRT is useful to prove the effectiveness of combining
bagging and boosting. We recall that BagBoo is an extension of GBRT as it is
an ensemble of gradient boosting regression trees.
Table 1 summarizes the accuracy results obtained on the two datasets. For the
MovieLens dataset we observe that BagBoo outperforms both GBRT and Sum
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in all the different conditions of sparsity degree, even when there are few positive
examples for each user. For example, if we analyze the recall@5, the improve-
ment of BagBoo over Sum goes from +6.6% to +11% respectively for the two
limit conditions (given 5 and given All). We also see that for the condition
given 5 the improvement with respect to GBRT is very marked (+15.8%), but
it decreases with the increasing of positive examples (+2% for given 30 and
+3.2% for given All). For this dataset we observe that when there are only
a few positive training examples for each user, GBRT is not able to learn an
effective ranking function. This is not the case for the bagging of several GBRT s.
Looking at the results for Last.fm we observe again BagBoo outperforms the
other algorithms but for the condition given 5.
From the results on the two datasets we can draw the following conclusions:
SPrank benefits from learning to rank, both GBRT and BagBoo show substan-
tial improvements with respect to the Sum baseline, particularly when the num-
ber of positive examples, and then the training data, increases; due to bagging,
BagBoo outperforms GBRT in all the analyzed situations. Hence, BagBoo is a
valid candidate for learning the ranking function in SPrank.

MovieLens LastFM
Alg. r@5 r@10 r@20 r@5 r@10 r@20

given 5
BagBoo 0.420 0.578 0.745 0.349 0.457 0.551
GBRT 0.262 0.405 0.572 0.323 0.442 0.572
Sum 0.354 0.560 0.541 0.319 0.482 0.593

given 10
BagBoo 0.462 0.623 0.786 0.423 0.541 0.636
GBRT 0.427 0.603 0.771 0.371 0.510 0.615
Sum 0.382 0.581 0.565 0.349 0.517 0.668

given 20
BagBoo 0.496 0.661 0.816 0.496 0.618 0.721
GBRT 0.475 0.653 0.810 0.452 0.592 0.689
Sum 0.396 0.599 0.587 0.385 0.533 0.693

given 30
BagBoo 0.515 0.679 0.831 - - -
GBRT 0.495 0.669 0.824 - - -
Sum 0.417 0.610 0.595 - - -

given 50
BagBoo 0.524 0.691 0.841 - - -
GBRT 0.497 0.668 0.825 - - -
Sum 0.423 0.618 0.613 - - -

given All
BagBoo 0.539 0.699 0.846 0.543 0.657 0.752
GBRT 0.507 0.679 0.837 0.448 0.587 0.708
Sum 0.429 0.633 0.632 0.399 0.546 0.702

Table 1. Results for BagBoo, GBRT and Sum given different user profile size.

Comparison with other Algorithms. In order to evaluate SPrank we com-
pared it both with a hybrid algorithm proposed to address cold-start scenarios
and with ranking oriented collaborative filtering algorithms. All of these ap-
proaches are state-of-the-art methods for positive implicit feedback scenarios.
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BPRLinearMap (BPRLin) [10] adopts a Bayesian Personalized Ranking (BPR)
criterion for optimizing a ranking loss. For BPRLinearMap we built the item-
attribute matrix using the same content data used for SPrank. BPRMF [3] is a
hybrid extension of BPR that learns a linear mapping on the user/item features
from the factorization and auxiliary user/item-attribute matrix. This extension
is able to compute useful recommendations in cold-start scenarios. SLIM [7]
adopts a Sparse Linear method for learning a sparse aggregation coefficient ma-
trix that is used for computing top-N recommendations. SoftMarginRankingMF
(SMRMF ) is a matrix factorization model for item prediction optimized for a
soft margin ranking loss using stochastic gradient descent inspired by [10]. The
computation of the recommendations for all these comparative algorithms has
been done with the publicly available software library MyMediaLite [4].
Results discussion. Table 2 shows the results obtained for SPrank and all the
other comparative methods on both MovieLens and Last.fm. We observe that
on the MovieLens dataset our algorithm outperforms the others under all the
different user profile conditions but given All where BPRMF achieves the best
recall values, and SPrank gets the second best place. We can note that SPrank

outperforms significantly the other methods when Ŝ is very sparse. Referring
to the SLIM method, for the conditions given 5 and given 10, the improve-
ments in terms of recall@5 are respectively +20.2% and +23.3%.
For the Last.fm dataset, which is slightly sparser than MovieLens, SPrank is
always the best performing algorithm. In this case, BPRLin – the most suited
approach for dealing with data sparsity – is the second best performing. Also in
this case the improvements are substantial especially for the conditions of higher
sparseness.
From these experimental results, we can conclude that SPrank is able to com-
pute accurate top-N recommendations even when there are few positive feedback
where instead collaborative filtering algorithms have showed lower accuracy. On
both datasets SPrank has also outperformed BPRLin, the other hybrid recom-
mendation method proposed to address cold start and sparsity problems.
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