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PROCESSING-IN-MEMORY? HUMAN BRAIN MAPPING?



|   Throughput-oriented programmable processing in memory | 25 JUNE 2014  3

$

Shared $

$ $

GPU
CPU
Core

CPU
Core

DRAM

1

10

100

1000

10000

1 2 3 4 5 6

E
n

e
rg

y
 (

p
J)

COMPUTE IS CHEAP, DATA MOVEMENT IS NOT

Source: ITRS, S. Keckler et al. [IEEE Micro, Sep-Oct. 2011], 

T. Vogelsang [MICRO 2010], T. Farrell [Salishan 2014]



|   Throughput-oriented programmable processing in memory | 25 JUNE 2014  4

EXASCALE COMPUTING CHALLENGES

 Energy is the key limiter

‒ Exascale system

‒ At 4TB/s, vast majority of node energy could be 

consumed by the memory system

‒ 10x reduction in memory energy

‒ 25x improvement in system energy efficiency

‒ While improving performance

 Need to rethink compute and memory 

organization

‒ Move computation closer to data

‒ Specialized support for bandwidth-intensive 

applications

 Potential solution: processing-in-memory?

Today: ORNL Titan (node: AMD Opteron+Nvidia Tesla K20X)
2020: DOE FastForward RFP (issued May, 2012)

Source: ORNL, Nvidia, top500.org, LLNL
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OUTLINE

 Background

‒ PIM prior work

‒ Die-stacking

 PIM architecture and memory organization

 Applications 

‒ Graph apps, HPC apps, GPGPU benchmark

 PIM performance and energy model 

 Evaluation of the PIM design choices

 Conclusion and further research 
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PIM RESEARCH – IN THE PAST

 Prior PIM research constrained by

‒ Implementation technology

‒ Non-traditional programming models

 Examples of prior work:

‒ Integration of caches and computation

‒ “A logic-in-memory computer” (1970)
‒ Logic in DRAM processes

‒ In-memory processors with reduced performance or highly specialized

‒ Reduced DRAM due to presence of logic unit 

‒ Embedded DRAM in logic processes

‒ Not cost-effective to have sufficient memory capacity, reduced DRAM density

 Recent work:

‒ Micron’s Automata Processor
‒ 3D stacked processor for accelerating 3D ultrasound beamformation

‒ Specialized in-stack processor to accelerate MapReduce workloads
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3D INTEGRATION

Gabe Loh, 3D-Stacked Memory 

Architectures for Multi-Core 

Processors, ISCA 2008

www.cadence.com/Community/blogs
/ii/archive/2013/01/22/cadence-
imec-test-methodology-enables-3d-
ic-memory-on-logic.aspx

http://www.engadget.com/2013/04/03/hybrid-
memory-cube-receives-its-finished-spec/

 Logic die under DRAM using TSVs

‒ Higher bandwidth, lower access power

 Significant industry momentum

‒ Recent JEDEC standards (HBM, Wide I/O 2)

‒ Hybrid Memory Cube (HMC) consortjum

‒ Micron, Samsung, IBM, ARM, Xilinx, Altera etc.

http://www.cadence.com/Community/blogs/ii/archive/2013/01/22/cadence-imec-test-methodology-enables-3d-ic-memory-on-logic.aspx
http://www.engadget.com/2013/04/03/hybrid-memory-cube-receives-its-finished-spec/
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Initial focus: PIM under 

DRAM stack

DRAM

PIM RESEARCH – NEW PERSPECTIVE

 New opportunity: logic die stacked with memory

‒ Logic die needed anyway for signal redistribution and integrity

‒ Potential for non-trivial compute

 Key benefits:

‒ Reduce bandwidth bottlenecks

‒ Improve energy efficiency

‒ Increase compute for a fixed interposer area

‒ Processor can be optimized for high BW/compute ratio

 Challenges:

‒ Programming models and interfaces

‒ Architectural tradeoffs

‒ Application refactoring
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GUIDING PRINCIPLES OF AMD’S PIM RESEARCH

 Our focus

‒ 3D die stacking

‒ Use base logic die(s) in memory stack

‒ General-purpose processors

‒ Support familiar programming models

 Ease of use

‒ Support familiar programming models

‒ Build on HSA fundamentals

‒ Any processor (host or PIM) can access all memory on node

‒ No significant application change for host and PIM. 

 Broad applicability

‒ Across a broad range of applications

‒ Viable across multiple market segments

Logic die with PIM

Memory 

stack
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 An in-memory processor incorporated on the base die of each memory stack

 No DRAM die stacked on host processor 

BASELINE PIM ARCHITECTURE
AN OVERVIEW
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 GPU CUs provide compute throughput

 CPU cores provide control and flexibility

 Optional fixed-function accelerators

BASELINE PIM ARCHITECTURE
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EXPLORE BREADTH OF APPLICABILITY OF PIM

 Broad set of kernels from HPC apps, graph algorithms, GPGPU benchmarks etc.

 Analyzed using PIM GPU performance and energy models

BFS
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WHY A NEW SIMULATOR?

 Why spend time building a new simulator when we could have used:

‒ SimNow, TSIM, gem5, Multi2Sim, MARSSx86, PTLsim, Zesto, FeS2, RSIM, ZSIM, 

Graphite, Flexus, SESC, SST, GPGPUSim, MacSim, Simics+GEMS, SimpleScalar……

 Because they don’t answer the question we want to ask

‒ Runtime overhead too high

‒ Changes take too long to implement

‒ Memory overheads preclude large working sets

 As a result: they can’t test the PIM design space on applications that matter

 PIM Simulator trades off some accuracy for major performance improvements
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CHALLENGES OF MODELING FUTURE SYSTEMS
LARGE DESIGN SPACE TO EXPLORE

Heterogeneous Cores

Composition? Size? Speed?

Stacked Memories

Useful? Compute/BW Ratio? Latency? 
Capacity? Non-Volatile?

Thermal Constraints

Power Sharing? Heat dissipation? 
Sprinting?

Software Co-Design

New algorithms? Data placement? 
Programming models?

Ref: J. Greathouse et al. Simulation of Exascale Nodes through Runtime Hardware Monitoring, ModSim, 2013
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CHALLENGES OF MODELING FUTURE SYSTEMS

 Need to run long enough to trigger interesting memory phenomena

‒ Working sets >> stacked memories of 100s of MB to multiple GB

 Run long enough to observe power and thermal effects

‒ Example measured on a real heterogeneous processor

‒ ~2.5 trillion CPU instructions, ~60 trillion GPU operations

 Applications of interest can be large

‒ Scaled studies can be challenging and misleading for complex applications

WHY DOES SIMULATOR PERFORMANCE MATTER?
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PIM SIMULATOR OVERVIEW
MULTI-STAGE PERFORMANCE ESTIMATION PROCESS
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ML-BASED PERFORMANCE MODEL

 Execution time  <--- F (architecture, application)

‒ Kernel time (and power) depends on:

‒ Underlying HW configuration

‒ Algorithms and data structures of the application

 PIM GPU Architecture is represented by:

‒ Number of CUs            (8, 16, 32)

‒ Processor frequency   (500 – 100 – 1000 MHz)

‒ Memory Bandwidth    (500 – 100 – 1300 MHz)

 Application kernel is represented by feature vectors

‒ Dynamic CodeXL/Sprofile data, derived from HW counters.

 Goals:  

‒ Learn scaling pattern in offline training

‒ Estimate runtime and power for online prediction

162 design points
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1.75x Perf Gain

1.5x Perf Gain

PERFORMANCE MODEL – OFFLINE LEARNING
 Gathering data

‒ 70 OpenCL kernels

‒ Each kernel: 162 hw configurations  162 pairs of execution time & 

performance counter feature vector
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Feature vector: VALUUtilization, VALUBusy, SALUBusy, MemUnitBusy, MemUnitStalled, CacheHit, …

PERFORMANCE MODEL
 Offline learning – clustering of the scaling pattern

 Online classification and prediction

‒ Classify the feature vector of the new kernel 

‒ Performance projection with the scaling pattern of 

this cluster
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PERFORMANCE MODEL VALIDATION

 69 training kernels; leave one kernel out  prediction  validation

‒ relative error between the prediction and real processing: accuracy verification

 Make predictions for all other HW design points from each design point

‒ Variation of #CUs, bandwidth, engine frequency -> 162 operating points -> 162*161 (26K) 

data points on the 3D grid for each kernel! 

Individual benchmark prediction errors

16.1%

Average prediction error - subset



|   Throughput-oriented programmable processing in memory | 25 JUNE 2014  21

TECHNOLOGY AND CONFIGURATIONS

 Evaluated for 22nm and 16nm

‒ Explore viability prior to Exascale timeframe

‒ Identify tech transfer opportunities

 Design points and technology scaling

‒ PIM: limited by DRAM footprint and 10W/PIM

‒ Host: extrapolate current trends (assumes HMC-like DRAM interface)

Baseline 22nm 16nm

dGPU Host PIM Host PIM

Freq 1GHz 1GHz 650MHz 1GHz 650MHz

Number of CUs 32 32 8 64 12

Number of memory stacks 2 4

DRAM BW (GB/s) 160 640 160 640

Dynamic power scaling 1.00 0.61 0.25 0.41 0.17

Memory Energy (pJ/64b) 522 159 520 155
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PIM CAN BE PERFORMANCE-COMPETITIVE WITH HOST

PF = ParticleFilter

SP = ShortestPath
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SIGNIFICANT PERF/W IMPROVEMENTS
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CONCLUSIONS AND FURTHER RESEARCH

 “Computing” is increasingly about data and data movement
‒ Exploit locality to reduce wasteful data movement

‒ Specialization to improve efficiency

‒ PIM potentially provides significant reductions in off-chip traffic. 

 TOP-PIM implemented using 3D die-stacking feasible in near future. 

‒ Efficiently utilize the high bandwidth available in local stack

‒ Programmability -> Support a broad range of applications

‒ Performance and energy efficiency of PIM vs Host

‒ At 22nm, 27% performance degradation, 76% reduction in EDP

‒ At 16nm, 7% performance gain, 85% reduction in EDP. 

 Future Work:

‒ High level programming models to express data-compute affinity. 

‒ Data movement management and task scheduling for host and PIMs. 

‒ Evaluation of alternative PIM organizations and design options. 
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