PHYSICAL REVIEW D

VOLUME 44, NUMBER 5

1 SEPTEMBER 1991

Top-quark-mass prediction from supersymmetric grand unified theories
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We consider a supersymmetric grand-unified-theory (GUT) framework motivated by SO(10) or Eg
unification in which the parameter tanf( =v, /v, ) of the minimal supersymmetric standard model is con-
strained by the condition that the Yukawa couplings 4,,h,, and h, are all equal at the GUT scale. With
a,(M;)=0.10610.006, the estimate for the b-quark mass, which depends on tanp, lies in the “observed”
range m,(m;)=4.25+0.10 GeV, provided that the top-quark mass is 14213 GeV.

The minimal supersymmetric extension of the standard
model (MSSM) introduces an important new parameter
tanS=v, /v,, the ratio of the vacuum expectation values
that provide masses for u-type and d-type quarks (plus
the charged leptons) [1]. Phenomenological considera-
tions require that 1 <tanf<m,/m, [2]. Embedding the
MSSM in supersymmetric (SUSY) SU(5) [3-5] leaves tanf
undetermined, which means that the SU(5) prediction for
m,, depends on an additional free parameter [6].

In this Brief Report we consider a supersymmetric
grand unified framework, based on groups such as SO(10)
and Eg, in which tanf3 is constrained by the condition
that the Yukawa couplings h,, h;, and h_ are all equal at
the grand-unified-theory (GUT) breaking scale My. For
<My, tanf differs from m, /m, by a (small) calculable
amount. With a,(M,)=0.106£0.006, the estimated b-
quark mass lies within the ‘“measured” range
[my(m,)=4.251+0.10 GeV)] [7] provided that the top-
quark mass is 142135 GeV.

Our starting point is the assumption that the third-
generation fermions acquire mass from the coupling
16X 16X 10, where the 10-plet contains the two Higgs
doublets that develop vacuum expectation values (VEV’s)
v, and v, in an SO(10) theory, or from the coupling 27°
in an E¢ theory. This implies that the Yukawa couplings
h,, hy, and h_ are all equal at My (see Table I for an esti-
mate of My to one loop). For Mg <u <My [Mg=1 TeV
denotes the SUSY-breaking scale and

TABLE I. One-loop predictions for sin?0,(M;) and My
with SUSY SO(10) or E¢ GUT broken directly to the minimal
supersymmetric extension of the standard model.

a,(Myz) Mg (TeV) My (GeV) sin®Q,(Mz)
0.100 1.0 0.42X10'¢ 0.235
0.106 1.0 0.71 X 10'¢ 0.233
0.112 1.0 1.02 X 106 0.231
4“4

t=Inu(GeV)/167?] the evolution equations for the
gauge and Yukawa couplings to one loop are [6,8] (with
a;,=g}/4m, i =1,2 and a, =g} /4m)

dg,/dt=(2n,+3)g3i ,
dg,/dt=(—6+2n,+1)g3 ,
dgy/dt=(—9+2n,)g3 ,

dh./dt=h_(3h}—3g}—2g}) .
For M, <u <Mjg, the equations are

dg,/dt=(4n,+ 2)g7 ,
dg,/dt=(—2+%n,+1)g},
dgy/dt=(—11+%n,)g3 ,

dh, /dt=h,(9h*+h2—8g2 —2g2 —11g2)
dhy /dt=h,(h2+9h}—8g3—3g3—3g1),
dh,/dt=h_(6h}—2g2—2g?) .

At the tree level the Yukawa couplings are given by

_ m,V'1+tan’g
7 174tanB
m,V 1+tan’8
=Y 1ttand 3)
174
= m_V 1+tan’8
T 174 ’

where v} +v} =174 GeV.
In Fig. 1 we plot tanf vs m,(m,), where tanf3 is deter-
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FIG. 1. Plot of tanf3 vs m,(m,) with a;=0.106 and Ms=1
TeV.

mined by the requirement that for a given m,(m,), the
three Yukawa couplings A,, h;,, and k. meet at the GUT
scale My. In Fig. 2 an example of the evolution of the
Yukawa couplings as functions of the momentum scale is
shown. It may be noticed that h, /h, is of order 1 in the
entire range and asymptotically reaches 1 from above. In
Fig. 3 we plot m,(physical)=m,(m,)[1+4a,(m,)/ 3]
vs my(m;,). Note that between M, and m, the QCD
corrections are included to two loops. For a (M), fol-
lowing the first paper in Ref. [9], we take the range
0.106£0.006. Our conclusion from this is that the top-
quark mass is 142135 GeV. A larger value for a (M),
say 0.12, leads to a top-quark mass in the range 171-182
GeV.

Independent of the constraint from m,(m,), one can
approximately bound 4, by setting the right-hand side of
the evolution equation for its logarithm to zero. It turns
out that, for 4, $1.05, the system of equations lies in the

as=0.106, Ms=1 TeV, mi(physical)=142 GeV
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FIG. 2. Plot of Yukawa couplings vs log;ou(GeV) for the
case a; =0.106, Mg=1 TeV and m,(physical) =142 GeV.

BRIEF REPORTS 44

perturbative domain [6,10]. In the first paper of Ref. [6],
tanf3 was set to unity which gives an approximate bound
on the top-quark mass of (1.05)(1/V2)(174 GeV)=130
GeV. Our study involves large values of tanf and as a
consequence, we end up with an approximate upper

as=0.1, Mg=1 TeV
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FIG. 3. Plots of m,(m,) vs m,(physical) for typical choices
of parameters.
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bound on m, of (1.05)(174 GeV)=183 GeV, which is
similar to the second paper of Ref. [6].

In conclusion, some recent investigations [9] suggest
that supersymmetric grand unified theories directly bro-
ken to the MSSM are in striking agreement with data.
For instance, the predicted value for sin*0,, is in excel-
lent agreement with recent results. Moreover, the ob-
served gauge couplings when extrapolated to high ener-
gies appear to meet at a common scale close to 10'® GeV
(with Mg=1 TeV). Our results on the top-quark mass

take us a step further in this direction. We have shown
that certain supersymmetric GUT’s also predict a heavy
top quark.
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