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1. INTRODUCTION

The top quark, when it was finally discovered at Fermilab in 1995 [1, 2, 3], completed the three-
generation structure of the Standard Model (SM) and opened up the new field of top quark physics.
Viewed as just another SM quark, the top quark appears to be a rather uninteresting species. Produced
predominantly, in hadron-hadron collisions, through strong interactions, it decays rapidly without form-
ing hadrons, and almost exclusively through the single mode ¢— Wb. The relevant CKM coupling V4 is
already determined by the (three-generation) unitarity of the CKM matrix. Rare decays and CP violation
are unmeasurably small in the SM.

Yet the top quark is distinguished by its large mass, about 35 times larger than the mass of the
next heavy quark, and intriguingly close to the scale of electroweak (EW) symmetry breaking. This
unique property raises a number of interesting questions. Is the top quark mass generated by the Higgs
mechanism as the SM predicts and is its mass related to the top-Higgs- Yukawa coupling? Or does it play
an even more fundamental role in the EW symmetry breaking mechanism? If there are new particles
lighter than the top quark, does the top quark decay into them? Could non-SM physics first manifest
itself in non-standard couplings of the top quark which show up as anomalies in top quark production
and decays? Top quark physics tries to answer these questions.
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Several properties of the top quark have already been examined at the Tevatron. These include
studies of the kinematical properties of top production [4], the measurements of the top mass [5, 6], of the
top production cross-section [7, 8], the reconstruction of ¢ pairs in the fully hadronic final states [9, 10],
the study of 7 decays of the top quark [11], the reconstruction of hadronic decays of the W boson from
top decays [12], the search for flavour changing neutral current decays [13], the measurement of the
W helicity in top decays [14], and bounds on ¢¢ spin correlations [15]. Most of these measurements are
limited by the small sample of top quarks collected at the Tevatron up to now. The LHC is, in comparison,
a top factory, producing about 8 million ¢£ pairs per experiment per year at low luminosity (10 fb™ 1 /year),
and another few million (anti-)tops in EW single (anti-)top quark production. We therefore expect that
top quark properties can be examined with significant precision at the LHC. Entirely new measurements
can be contemplated on the basis of the large available statistics. ‘

In this chapter we summarize the top physics potential of the LHC experiments. An important
aspect of this chapter is to document SM model properties of the top quark against which anomalous
behaviour has to be compared. In each section (with the exception of the one devoted to anomalous
couplings) we begin by summarizing SM expectations and review the current theoretical status on a
particular topic. This is followed by a detailed description of experimental analysis strategies in the
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context of the ATLAS and CMS experiments. Particular emphasis is given to new simulations carried
out in the course of this workshop. In detail, the outline of this chapter is as follows:

In Section 2. we summarize SM precision calculations of the top quark mass relations and of the
total top quark width. We then recall the importance of the top quark mass in EW precision measure-
ments. We discuss, in particular, the role of EW precision measurements under the assumption that a SM
Higgs boson has been discovered.

Section 3. deals with the it production process: expectations for and measurements of the total
cross section, the transverse momentum and ¢ invariant mass distribution are discussed. A separate
subsection is devoted to EW radiative corrections to ¢ production, and to radiative corrections in the
Minimal Supersymmetric SM (MSSM).

The prospects for an accurate top quark mass measurement are detailed in Section 4. Next to
“standard” measurements in the lepton+jets and di-lepton channels, two mass measurements are dis-
cussed that make use of the large number of top quarks available at the LHC: the selection of top quarks
with large transverse momentum in the lepton+jets channel and the measurement of £J/ correlations
in t—4J /% X decays. This decay mode appears to be particularly promising and the systematic uncer-
tainties are analyzed in considerable detail.

Single top quark production through EW interactions provides the only known way to directly
measure the CKM matrix element V;;, at hadron colliders. It also probes the nature of the top quark
charged current. In Section 5. the SM expectations for the three basic single top production mechanisms
and their detection are documented, including the possibility to measure the high degree of polarisation
in the SM.

The issue of top quark spin is pursued in Section 6. Here we summarize expectations on spin
correlations in tt production, the construction of observables sensitive to such correlations and the results
of a simulation study of di-lepton angular correlations sensitive to spin correlations. Possible non-SM
CP violating couplings of the top quark can be revealed through anomalous spin-momentum correlations
and are also discussed here.

As mentioned above, the search for anomalous (i.e. non-SM) interactions is one of the main moti-
vations for top quark physics. In Section 7. the sensitivity of the LHC experiments to the following cou-
plings is investigated: gtf couplings and anomalous Wb couplings in top production, flavour-changing
neutral currents (FCNCs) in top production and decay. N

Section 8. is devoted to rare top decays. The SM expectations for radiative top decays and FCNC
decays are documented. Decay rates large enough to be of interest require physics beyond the SM.
The two Higgs Doublet Models, the MSSM and generic anomalous couplings are considered explicitly
followed by ATLAS and CMS studies on the expected sensitivity in particular decay channels.

Finally, the measurement of the fop quark Yukawa coupling in tt H production is considered (Sec-
tion 9.). The SM cross sections are tabulated in the various production channels at the LHC. For the case
of a low mass Higgs boson, the results of a realistic study using a simulation of the ATLAS detector are
discussed. :

The following topics are collected in the appendices: b-quark tagging and the calibration of the
jet energy scale in top events; the direct measurement of the top quark spin (as opposed to that of a top
squark) and and of top quark electric charge; the total cross section for production of a fourth genera-
tion heavy quark; a compendium of Monte Carlo event generators available for top production and its
backgrounds.

The internal ATLAS and CMS notes quoted in the bibliography can be obtained from the collab-

orations’ web pages [16, 17]. Updated versions of this document, as well as a list of addenda and errata,
will be available on the web page of the LHC Workshop top working group [18].
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2. TOP QUARK PROPERTIES AND ELECTROWEAK PRECISION MEASUREMENTS!

The top quark is, according to the Standard Model (SM), a spin-1/2 and charge-2/3 fermion, transform-
ing as a colour triplet under the group SU(3) of the strong interactions and as the weak-isospin partner
of the bottom quark. None of these quantum numbers has been directly measured so far, although a
large amount of indirect evidence supports these assignments. The analysis of EW observables in Z°
decays [19] requires the existence of a T3 = 1/2, charge-2/3 fermion, with a mass in the range of
170 GeV, consistent with the direct Tevatron measurements. The measurement of the total cross section
at the Tevatron, and its comparison with the theoretical estimates, are consistent with the production of
a spin-1/2 and colour-triplet particle. The LHC should provide a direct measurement of the top quantum
numbers. We present the results of some studies in this direction in Appendix B.

2.1 Top quark mass and width

In addition to its quantum numbers, the two most fundamental properties of the top quark are its mass m;
and width Iy, defined through the position of the single particle pole m} = m;—iI';/2 in the perturbative
top quark propagator. In the SM m; is related to the top Yukawa coupling:

ye(4) = 224G P ms (14 6:(w)), )

where &; (1) accounts for radiative corrections. Besides the top quark pole mass, the top quark MS mass
i (p) is often used. The definition of 7: () including EW corrections is subtle (see the discussion in
[20]). As usually done in the literature, we define the MS mass by including only pure QCD corrections:

() = ms (1 +8qop () ™" - 2

The conversion factor dqcp (1) is very well known [21]. Defining 7; = () and a, = als‘TS(mt) /7,
we have

dqop(M:) = g as -+ 8.2366 a2 + 73.638 a3 + . ..
= (4.6340.99+0.31+0.115311% = (6.053311)%. 3)

This assumes five massless flavours besides the top quark and we use a; = 0.03475 which corresponds
to &M5(mz) = 0.119 and 73 = 165 GeV. The error estimate translates into an absolute uncertainty
of +180 MeV in m; — 7; and uses an estimate of the four-loop contribution. Note that the difference
between the two mass definitions, m; — 7, is about 10 GeV. This means that any observable that is
supposed to measure a top quark mass with an accuracy of 1-2 GeV and which is known only at leading
order (LO) must come with an explanation for why higher order corrections are small when the observ-
able is expressed in terms of that top quark mass definition that it is supposed to determine accurately.
We will return to this point in Section 4.

The on-shell decay width I'; is less well known, but the theoretical accuracy (< 1%) is more than
sufficient compared to the accuracy of foreseeable measurements. The decay through t—bW is by far
dominant and we restrict the discussion to this decay mode. It is useful to quantify the decay width in
units of the lowest order decay width with My and m; set to zero and | V| set to 1:

_ Gpm}
°= 87/2
Incorporating M the leading order result reads

r = 1.76 GeV. @)

4 6
TLo(t—bW)/|Vas|® =To (1 - 3%&1 + 2M—‘g') = 0.885 = 1.56 GeV. )
t

t

'Section coordinators: M. Beneke, G. Weiglein.




Table 1: Corrections to the top quark width Ty (Mw = 0, lowest order) in units of I'g. The best estimate of T'(£-6W)/|Vis|?
is obtained by adding all corrections together. Parameters: a, = 0.03475, Mw = 80.4 GeV and m, = 175 GeV.

My # 0 correction at lowest order, see (5) || —11.5%
a, correction, My = 0 -9.5%

o, correction, My # 0 correction +1.8%

a? correction, My = 0 [22, 23] -2.0%

o? correction, My # 0 correction [23] +0.1%
EW correction [24] +1.7%

The correction for non-vanishing bottom quark mass is about —0.2% in units of I'g. Likewise corrections
to treating the W boson as a stable particle are negligible. Radiative corrections are known to second
order in QCD and to first order in the EW theory. Table 1 summarises the known corrections to the
limiting case (4). Putting all effects together we obtain:

T(t—bW)/|Vis|* ~ 0.807 g = 1.42 GeV. (6)

The top quark lifetime is small compared to the time scale for hadronisation [25]. For this reason, top-
hadron spectroscopy is not expected to be the subject of LHC measurements.

2.2 Role of m; in EW precision physics

The EW precision observables serve as an important tool for testing the theory, as they provide an impor-
tant consistency test for every model under consideration. By comparing the EW precision data with the
predictions (incorporating quantum corrections) within the SM or its extensions, most notably the mini-
mal supersymmetric extension of the Standard Model (MSSM) [26], it is in principle possible to derive
indirect constraints on all parameters of the model. The information obtained in this way, for instance, on
the mass of the Higgs boson in the SM or on the masses of supersymmetric particles is complementary
to the information gained from the direct production of these particles.

In order to derive precise theoretical predictions, two kinds of theoretical uncertainties have to
be kept under control: the uncertainties from unknown higher-order corrections, as the predictions are
derived only up to a finite order in perturbation theory, and the parametric uncertainties caused by the
experimental errors of the input parameters. The top quark mass enters the EW precision observables as
an input parameter via quantum effects, i.e. loop corrections. As a distinctive feature, the large numerical
value of m; gives rise to sizable corrections that behave as powers of m;. This is in contrast to the
corrections associated with all other particles of the SM. In particular, the dependence on the mass of the
Higgs boson is only logarithmic in leading order and therefore much weaker than the dependence on m..
In the MSSM large corrections from SUSY particles are only possible for large splittings in the SUSY
spectrum, while the SUSY particles in general decouple for large masses.

The most important m.-dependent contribution to the EW precision observables in the SM and
the MSSM enters via the universal parameter Ap which is proportional to m? [27],

£Z(0) =W(0) a m? '
Ap= - = Nog—a 4 7
’ ( MZ ~ Mg ), Cl6msy,ch, M M

where the limit m;—0 has been taken, sy (cw) is the sin (cos) of the weak mixing angle, and £Z(0)
and % (0) indicate the transverse parts of the gauge-boson self-energies at zero momentum transfer.

The theoretical prediction for M is obtained from the relation between the vector-boson masses




and the Fermi constant,

2
My, (1— %V) = \/ggF (1+Ar), @®)
where the quantity Ar [28] is derived from muon decay and contains the radiative corrections. At one-
loop order, Ar can be written as Ar = Aa — %Ap + (Ar)n1, where Aa contains the large logarithmic
contributions from the light fermions, and the non-leading terms are collected in (Ar)y).

The leptonic effective weak mixing angle is determined from the effective couplings of the neu-

1/2
tral current at the Z-boson resonance to charged leptons, J5© = (\/§G M %) / lovre — 947,75
according to

s 2 plept 1 ( Re (gV))
sin2 gl = = (1 - SV ) ©)
74 Re (g94)
In sin? 9F® the leading m;-dependent contributions enter via §sin? 6:F° = —(cZ,s3,)/(c&, — s%)Ap.

The precision observables My and sin? 0};}"‘ are currently known with experimental accuracies of

0.05% and 0.07%, respectively [19]. The accuracy in My will be further improved at the LHC by about
a factor of three (see the EW chapter of this Yellow Report). Besides the universal correction Ap, there is
also a non-universal correction proportional to m? in the Zbb coupling, which however is less accurately
measured experimentally compared to My and sin? 9};}?‘. The strong dependence of the SM radiative
corrections to the precision observables on the input value of m; made it possible to predict the value of
m; from the precision measurements prior to its actual experimental discovery, and the predicted value

turned out to be in remarkable agreement with the experimental result [5, 6].

Within the MSSM, the mass of the lightest CP-even Higgs boson, my, is a further observable
whose theoretical prediction strongly depends on m;. While in the SM the Higgs-boson mass is a free
parameter, ™y, is calculable from the other SUSY parameters in the MSSM and is bounded to be lighter
than Mz at the tree level. The dominant one-loop corrections arise from the top and scalar-top sector via
terms of the form Grm{ In(m;z my, /m?) [29]. As a rule of thumb, a variation of m; by 1 GeV, keeping
all other parameters fixed, roughly translates into a shift of the predicted value of mp by 1 GeV. If the
lightest CP-even Higgs boson of the MSSM will be detected at the LHC, its mass will be measurable
with an accuracy of about Amy = 0.2 GeV [30].

Due to the sensitive dependence of the EW precision observables on the numerical value of m;,
a high accuracy in the input value of m; is very important for stringent consistency tests of a model,
for constraints on the model’s parameters (e.g. the Higgs boson mass within the SM), and for a high
sensitivity to possible effects of new physics. It should be noted that this calls not only for a high
precision in the experimental measurement of the top quark mass, but also for a detailed investigation
of how the quantity that is actually determined experimentally is related to the parameter m; used as
input in higher-order calculations. While these quantities are the same in the simplest approximation,
their relation is non-trivial in general due to higher-order contributions and hadronisation effects. A
further discussion of this problem, which can be regarded as a systematic uncertainty in the experimental
determination of m;, is given in Section 4.

2.3 Physics gain from improving Am, from Am; = 2 GeV to Am; = 1 GeV

During this workshop the question was investigated of how much information one could gain from the
EW precision observables by improving the experimental precision in m, from Am; = 2 GeV, reachable
within the first year of LHC running (see Section 4.2), to Am; = 1 GeV, possibly attainable on a longer
time scale (see Section 4.6).

In order to analyse this question quantitatively, we have considered the case of the SM and the
MSSM and assumed that the Higgs boson has been found at the LHC. For the uncertainty in Aapag (the
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Table 2: Comparison of the current theoretical uncertainty from unknown higher-order corrections (Atneo) in Mw and
sin? 657" with the parametric uncertainties from the error in Aahaq and m..

| Atheo | 6(Aahad) = 0.00016 | Am; =2GeV | Amy =1GeV

AMy /MeV 6 3.0 12 6.1
Asin? P x 10° | 4 5.6 6.1 3.1

hadronic contribution to the electromagnetic coupling at the scale Mz) we have adopted §{Aahad) =
0.00016, which corresponds to the “theory driven” analyses of [31].

Concerning the current theoretical prediction for My and sin? 0:{-” in the SM, the theoretical un-
certainty from unknown higher-order corrections has been estimated to be about AMy = 6 MeV and
A sin? Hief?t = 4 % 1075 [32]. In Table 2 the theoretical uncertainties for My and sin? Hle‘;{ft from un-
known higher-order corrections are compared with the parametric uncertainty from the input parameters
Aopag and m; for Am; = 2 GeV as well as Am; = 1 GeV. The parametric uncertainties from the other
parameters, supposing that the SM Higgs boson has been found at the LHC in the currently preferred
range, are negligible compared to the uncertainties from Aayaq and m;. The resulting uncertainties in
My and sin? Gi‘;f’t have been obtained using the parameterisation of the results for these quantities given
in [33]. As can be seen in the table, for Am; = 2 GeV the parametric uncertainty in m; gives rise to the
largest theoretical uncertainty in both precision observables. While for sin? 02‘3’“» the uncertainty induced
from the error in m; is comparable to the one from the error in Aaya.g, for My the uncertainty from
the error in m; is twice as big as the one from unknown higher-order corrections and four times as big
as the one from the error in Aay.g. A reduction of the error from Am; = 2 GeV to Am; = 1 GeV
will thus mainly improve the precision in the prediction for Myy. The uncertainty induced in My by
Am; = 1 GeV is about the same as the current uncertainty from unknown higher-order corrections.
The latter uncertainty can of course be improved by going beyond the present level in the perturbative

evaluation of Ar.

In Fig. 1 the theoretical predictions for My and sin? 6P (see [34] and references therein) are

compared with the expected accuracies for these observables at LEP2/Tevatron and at the LHC (for the
central values, the current experimental values are taken). The parametric uncertainties corresponding to
0(Aopad) = 0.00016 and Am; = 2 GeV, Am; = 1 GeV are shown for two values of the Higgs boson
mass, myg = 120 GeV and myg = 200 GeV, and the present theoretical uncertainty is also indicated
(here my is varied within 100 GeV< mpy < 400 GeV and Am; = 5.1 GeV). The figure shows that,
assuming that the Higgs boson will be discovered at the LHC, the improved accuracy in m; and My at
the LHC will allow a stringent consistency test of the theory. A reduction of the experimental error in m;
from Am; = 2 GeV to Am; = 1 GeV leads to a sizable improvement in the accuracy of the theoretical
prediction. In view of the precision tests of the theory a further reduction of the experimental error in
My and sin? 6%P* would clearly be very desirable.

While within the MSSM the improved accuracy in m; and My at the LHC will have a similar
impact on the analysis of the precision observables as in the SM, the detection of the mass of the lightest
CP-even Higgs boson will provide a further stringent test of the model. The prediction for m, within
the MSSM is particularly sensitive to the parameters in the t—¢ sector, while in the region of large M4
and large tan 3 (giving rise to Higgs masses beyond the reach of LEP2) the dependence on the latter two
parameters is relatively mild. A precise measurement of my can thus be used to constrain the parameters
in the t—£ sector of the MSSM.

In Fig. 2 it is assumed that the mass of the lightest scalar top quark, m; , is known with high
precision, while the mass of the heavier scalar top quark, m;,, and the mixing angle 8; are treated as free
parameters. The Higgs boson mass is assumed to be known with an experimental precision of 0.5 GeV
and the impact of Am; = 2 GeV and Am; = 1 GeV is shown (the theoretical uncertainty in the Higgs-
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mass prediction from unknown higher-order contributions and the parametric uncertainties besides the
ones induced by m; , 8; and m; have been neglected here). The two bands represent the values of m; , 8;
which are compatible with a Higgs-mass prediction of mp, = 120.5+0.5 GeV, where the two-loop result
of [35] has been used (the bands corresponding to smaller and larger values of my, are related to smaller
and larger values of the off-diagonal entry in the scalar top mixing matrix, respectively). Combining the
constraints on the parameters in the scalar top sector obtained in this way with the results of the direct
search for the scalar top quarks will allow a sensitive test of the MSSM. As can be seen in the figure, a
reduction of Am; from Am; = 2 GeV to Am; = 1 GeV will lead to a considerable reduction of the
allowed parameter space in the m; —0; plane.

3. tt PRODUCTION AT THE LHC?

The determination of the top production characteristics will be one of the first measurements to be carried
out with the large statistics available at the LHC. The large top quark mass ensures that top production
is a short-distance process, and that the perturbative expansion, given by a series in powers of the small
parameter ag(m;) ~ 0.1, converges rapidly. Because of the large statistics (of the order of 107 top quark
pairs produced per year), the measurements and their interpretation will be dominated by experimen-
tal and theoretical systematic errors. Statistical uncertainties will be below the percent level for most
observables. It will therefore be a severe challenge to reduce experimental and theoretical systematic
uncertainties to a comparable level. In addition to providing interesting tests of QCD, accurate studies of
the top production and decay mechanisms will be the basis for the evaluation of the intrinsic properties
of the top quark and of its EW interactions. An accurate determination of the production cross section,
for example, provides an independent indirect determination of m;. Asymmetries in the rapidity distri-
butions of top and antitop quarks [36] are sensitive to the light-quark parton distribution functions of the
proton. Anomalies in the total ¢ rate would indicate the presence of non-QCD production channels, to be
confirmed by precise studies of the top quark distributions (e.g. pr and ¢f invariant mass spectra). These
would be distorted by the presence of anomalous couplings or s-channel resonances expected in several
beyond-the-SM (BSM) scenarios. Parity-violating asymmetries (for example in the rapidity distributions
of right and left handed top quarks) are sensitive to the top EW couplings, and can be affected by the
presence of BSM processes, such as the exchange of supersymmetric particles. As already observed at
the Tevatron [5, 6], the structure of the ¢ final state affects the direct determination of ;. Initial and
final-state gluon radiation do in fact contribute to the amount of energy carried by the jets produced in
the decay of top quarks, and therefore need to be taken into proper account when jets are combined to
extract m;. The details of the structure of these jets (e.g. their fragmentation function and their shapes),
will also influence the experimental determination of the jet energy scales (important for the extraction
of m;), as well as the determination of the efficiency with which b-jets will be tagged (important for the
measurement of the production cross section).

It is therefore clear that an accurate understanding of the QCD dynamics is required to make full
use of the rich statistics of ¢t final states in the study of the SM properties of top quarks, as well as to
explore the presence of possible deviations from the SM. In this section we review the current state of the
art in predicting the production properties for top quark pairs (for a more detailed review of the theory of
heavy quark production, see [37]). The study of single top production will be presented in Section 5.

3.1 Tools for QCD calculations

Full next-to-leading-order (NLO, O(a3)) calculations are available for the following quantities:
1. Total cross sections [38]
2. Single-inclusive pr and y spectra [39]
3. Double-differential spectra (m,z, azimuthal correlations A®, etc.) [40]

2Section coordinators: M.L. Mangano, D. Wackeroth, M. Cobal (ATLAS), J. Parsons (ATLAS).
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All of the above calculations are available in the form of Fortran programs [40, 41], so that kinematical
distributions can be evaluated at NLO [42] even in the presence of analysis cuts.

Theoretical progress over the last few years has led to the resummation of Sudakov-type loga-
rithms [43] which appear at all orders in the perturbative expansion for the total cross sections [44, 45].
More recently, the accuracy of these resummations has been extended to the next-to-leading logarithmic
(NLL) level [46, 47). For a review of the theoretical aspects of Sudakov resummation, see the QCD
chapter of this report. As will be shown later, while the inclusion of these higher-order terms does not
affect significantly the total production rate, it stabilises the theoretical predictions under changes in the
renormalisation and factorisation scales, hence improving the predictive power.

Unfortunately, the results of these resurnmed calculations are not available in a form suitable to
implement selection cuts, as they only provide results for total cross-sections, fully integrated over all
of phase space. The formalism has been generalised to the case of one-particle inclusive distributions
in [48], although no complete numerical analyses have been performed yet.

The corrections of O(a3) to the full production and decay should include the effect of gluon
radiation off the quarks produced in the top decay. Interference effects are expected to take place between
soft gluons emitted before and after the decay, at least for gluon energies not much larger than the top
decay width. While these correlations are not expected to affect the measurement of generic distributions,
even small soft-gluon corrections can have an impact on the determination of the top mass. Matrix
elements for hard-gluon emission in ¢ production and decay (pp—W+bW ~bg, with ¢ and £ intermediate
states) are implemented in a parton-level generator [49]. The one-gluon emission off the light quarks
from the W decays was implemented, in the soft-gluon approximation, in the parton-level calculation
of [50].

The above results refer to the production of top quarks treated as free, stable partons. Parton-
shower Monte Carlo programs are available (HERWIG [51], PYTHIA [52], ISAJET [53]) for a complete
description of the final state, including the full development of the perturbative gluon shower from both
initial and final states, the decay of the top quarks, and the hadronisation of the final-state partons. These
will be reviewed in Appendix D. Recently, O(as) matrix element corrections to the decay of the top
quark (¢—Wbg) have been included in the HERWIG Monte Carlo [54]. The impact of these corrections
will be reviewed in Sections 3.3 and 4.62.

3.2 Total tt production rates
In this section we collect the current theoretical predictions for cross sections and distributions, pro-
viding our best estimates of the systematic uncertainties. The theoretical uncertainties we shall consider
include renormalisation (1) and factorisation (i ») scale variations, and the choice of parton distribution
functions (PDF’s);
We shall explore the first two by varying the scales over the range uo/2 < p < 2ug, where

B = pr = pir and

e 1o = my for the total cross sections

o po = \/m? + p? for single inclusive distributions

o Lp= \/ m? + pT ¢t pT 7)/2 for double inclusive distributions
In the case of PDF’s, we shall consider the latest fits of the CTEQ [55] and of the MRST [56, 57] groups:

MRST (as(Mz) = 0.1175, (kr) = 0.4 GeV) (default)
MRST(g }) (@5 = 0.1175, (kr) = 0.64 GeV)
MRST(g 1) (as = 0.1175, (k7) = 0)

MRST(as }}) (as = 0.1125, (kr) = 0.4 GeV)
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Fig. 3: tf production rates. Left: scale dependence at fixed order (NLO, dashed lines in the lower inset), and at NLO+NLL
(solid lines). Right: PDF dependence. See the text for details.

MRST(ars 1) (a5 = 0.1225, (kr) = 0.4 GeV)
¢ CTEQ5M (as = 0.118)
e CTEQSHIJ (s = 0.118, enhanced weight for Tevatron high-E jets)

e CTEQS5SHQ (as = 0.118, using the ACOT heavy flavour scheme [58].)

All our numerical results relative to the MRST sets refer to the updated fits provided in [57]. These give
total rates which are on average 5% larger than the fits in [56]. The total ¢f production cross section is
given in Fig. 3, as a function of the top mass. As a reference set of parameters, we adopt yo = m; and
MRST. Full NLO+NLL corrections are included. The upper inset shows the dependence of the cross
section on the top mass. A fit to the distribution shows that Ao /o ~ 5Am;/m;. As aresult, a 5% mea-
surement of the total cross section is equivalent to a 1% determination of m; (approximately 2 GeV).
As will be shown later on, 2 GeV is a rather safe estimate of the expected experimental accuracy in the
determination of m; (1 GeV being the optimistic ultimate limit). It follows that 5% should be a minimal
goal in the overall precision for the measurement of o (¢¢). The scale uncertainty of the theoretical pre-
dictions is shown in the lower inset of Fig. 3. The dashed lines refer to the NLO scale dependence, which
is of the order of +:12%. The dotted lines refer to the inclusion of the NLL corrections, according to the
results of [47]. The solid lines include the resummation of NLL effects, but assume a different structure
of yet higher order (NNLL) corrections, relative to those contained in the reference NLL results (this is
indicated by the value of the A parameter equal to 2, see [47] for the details). The scale uncertainty, after
inclusion of NLL corrections, is significantly reduced. In the most conservative case of A = 2, we have a
+6% variation. A detailed breakdown of the NLO O(a? + o2) and higher-order O(a3*) contributions,
as a function of the scale and of the value of the parameter A, is given in Table 3. A recent study [59]
of resummation effects on the total cross section for photo- and hadro-production of quarkonium states
~ indicates that allowing ur # ur increases the scale dependence of the NLL resummed cross-sections
to almost match the scale dependence of the NLO results [60]. Preliminary results of this study also
suggest a similar increase of scale dependence in the case of ¢ production, if 45 and i are varied inde-
pendently. This dependence can however be reduced by replacing pp with s as the argument of o in
the sub-leading coefficients of the resummed exponent [61].

The PDF dependence is shown on the right hand side of Fig. 3, and given in detail for m; =
175 GeV in Table 4. The current uncertainty is at the level of :10%. Notice that the largest deviations
from the default set occur for sets using different input values of as(M7z). The difference between the
reference sets of the two groups (MRST and CTEQ5M) is at the level of 3%. It is interesting to explore
potential correlations between the PDF dependence of top production, and the PDF dependence of other




Table 3: Resummation contributions to the total ¢f cross-sections (m, = 175 GeV) in pb. PDF set MRST.
NLL resummed, A=2 | NLL resummed, A=0
pur = pr | NLO (’)(a%‘) NLO+NLL (’)(a%‘) NLO+NLL

my/2 890 =7 883 -12 878
my 796 29 825 63 859
2my 705 71 782 148 853

Table 4; Total ¢ cross-sections (m¢ = 175 GeV) in pb. NLO+NLL (A = 0).

| PDF lp=my/2 p=my p=2m,|
MRST 877 859 853
MRST g1 | 881 862 857
MRSTg | | 876 858 852
MRST as | | 796 781 777
MRST a5 1 | 964 942 934
CTEQSM | 904 886 881
CTEQ5HJ | 905 886 881

processes induced by initial states with similar parton composition and range in z. One such example is
given by inclusive jet production. Fig. 4 shows the initial-state fraction of inclusive jet final states (with
|n] < 2.5) as a function of the jet-E threshold. For values of E ~ 200 GeV, 90% of the jets come
from processes with at least one gluon in the initial state. This fraction is similar to that present in ¢
production, where 90% of the rate is due to gg collisions. On the right side of Fig. 4 we show the double

ratios: .
[o(t8)/o(jet, Exr > EF™)]ppp
[o(t)/o(jet, Ex > EF™)]\rer
As the plot shows, there is a strong correlation between the PDF dependences of the two processes. The
correlation is maximal for E%’i“ ~ 200 GeV, as expected, since for this value the flavour composition of
the initial states and the range of partonic momentum fractions probed in the two production processes are
similar. In the range 180 < ERi < 260 GeV the PDF dependence of the ratio o (tf) /o (jet, Ex > EFin)
is reduced to a level of :1%, even for those sets for which the absolute top cross-section varies by +10%.

(10)

The jet cross-sections were calculated [62] using a scale pet = Ep = u{;et. If we vary the scales for ¢t
and jet production in a correlated way (i.e. selecting ¢t /ul® = utf/uth), no significant scale depen-

dence is observed. There is however no a-priori guarantee that the scales should be correlated. Unless
this correlation can be proved to exist, use of the inclusive-jet cross section to normalise the ¢Z cross sec-
tion will therefore leave a residual systematic uncertainty which is no smaller than the scale dependence
of the jet cross section. We do not expect this to become any smaller than the PDF dependence in the
near future.

Combining in quadrature the scale and PDF dependence of the total ¢f cross section, we are left |
with an overall 12% theoretical systematic uncertainty, corresponding to a 4 GeV uncertainty on the
determination of the top mass from the total cross section.

3.3 Kinematical properties of tt production

We start from the most inclusive quantity, the top pr spectrum. The NLO predictions are shown in Fig. 5.
Here we also explore the dependence on scale variations and on the choice of PDFE. The uncertainties are
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Fig. 4: Left: initial state composition in inclusive jet events, as a function of the jet Ex (Jn| < 2.5). Right: PDF dependence of
the top-to-jet cross-section ratio, as a function of the minimum jet E'r.
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Fig. 5: Inclusive top pr spectrum. Left: scale and PDF dependence at NLO. Right: event rates above a given pr threshold.

+15% and +10%, respectively. The reconstruction of top quarks and their momenta, as well as the
determination of the reconstruction efficiencies and of the possible biases induced by the experimental
selection cuts, depend on the detailed structure of the final state. It is important to verify that inclusive
distributions as predicted by the most accurate NLO calculations are faithfully reproduced by the shower
Monte Carlo calculations, used for all experimental studies. This is done in Fig. 6, where the NLO
calculation is compared to the result of the HERWIG Monte Carlo, after a proper rescaling by an overall
constant K -factor. The bin-by-bin agreement between the two calculations is at the level of 10%, which
should be adequate for a determination of acceptances and efficiencies at the percent level.

Similar results are obtained for the invariant mass distribution of top quark pairs, shown in the
plot of Fig. 6. The scale and PDF dependence of the NLO calculation are similar to those found for the
inclusive pr spectrum, and are not reported in the figure.

Contrary to the case of inclusive p; and M,; spectra, other kinematical distributions show large
differences when comparing NL.O and Monte Carlo results [42]. This is the case of distributions which
are trivial at LO, and which are sensitive to Sudakov-like effects, such as the azimuthal correlations or the
spectrum of the ¢ pair transverse momentum p4. These two distributions are shown in the two plots of
Fig. 7. Notice that the scale uncertainty at NLO is larger for these distributions than for previous inclusive
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quantities. These kinematical quantities are in fact trivial at O(a?) (proportional to §-functions), and
their evaluation at O(a2) is therefore not a true NLO prediction. The regions p;—0 and A¢— 7 are
sensitive to multiple soft-gluon emission, and the differences between the NLO calculation (which only
accounts for the emission of one gluon) and the Monte Carlo prediction (which includes the multi-gluon
emission) is large. The region p!f 3> m, is vice-versa sensitive to the emission of individual hard gluons,
a process which is more accurately accounted for by the full O(a2) matrix elements included in the
NLO calculation than by the Monte Carlo approach. Notice that the average value of p¥ is quite large,
above 50 GeV. This is reasonable, as it is of the order of as times the average value of the hardness of
the process ({M,;) ~ 540 GeV). It is found that this large transverse momentum is compensated by the -
emission of a jet recoiling against the top pair, with a smaller fraction of events where the p% comes
from emission of hard gluons from the final state top quarks. The large-p¥ discrepancy observed in
Fig. 7 should be eliminated once the matrix element corrections to top production will be incorporated
in HERWIG, along the lines of the work done for Drell-Yan production in [63].

Emission of extra jets is also expected from the evolution of the decay products of the top quarks
(b’s, as well as the jets from the hadronic W decays). Gluon radiation off the decay products is included
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in the shower Monte Carlo calculations. In the case of the latest version of HERWIG (v6.1) [51], the
emission of the hardest gluon from the b quarks is evaluated using the exact matrix elements [54]. This
improvement, in addition to a few bug fixes, resolve the discrepancies uncovered in [49] between an
exact parton level calculation and previous versions of HERWIG. The matrix-element corrections do not
alter significantly most of the inclusive jet observables. As examples, we show in Fig. 8 the AR and the
jet multiplicity distributions for events where both W’s decay leptonically. More details can be found
in [64]. Jets are defined using the kr algorithm [65], with radius parameter X = 1. As can be seen,
the impact of the exact matrix element corrections is limited, mostly because the extra-jet emission is
dominated by initial-state radiation.

The impact on quantities which more directly affect the determination of the top mass remains
to be fully evaluated. Given the large rate of high-F, jet emissions, their proper description will be a
fundamental ingredient in the accurate reconstruction of the top quarks from the final state jets, and in the
determination of the top quark mass. A complete analysis will only be possible once the matrix element
corrections to the ¢ production will be incorporated in the Monte Carlos. Work in this direction is in
progress (G. Corcella and M.H. Seymour).

3.4 Non-QCD radiative corrections to tt production

The production and decay of top quarks at hadron colliders is a promising environment for the detection
and study of loop induced SUSY effects: at the parton level there is a large center of mass energy $
available and owing to its large mass, the top quark strongly couples to the (virtual) Higgs bosons, a
coupling which is additionally enhanced in SUSY models. Moreover, it might turn out that SUSY loop
effects in connection with top and Higgs boson interactions less rapidly decouple than the ones to gauge
boson observables.

To fully explore the potential of precision top physics at the LHC and at the Tevatron [66] to detect,
discriminate and constrain new physics, the theoretical predictions for top quark observables need to be
calculated beyond leading order (LO) in perturbation theory. Here we will concentrate on the effects of
non-QCD radiative corrections to the production processes gg—tt and ¢g§—tt, including supersymmetric
corrections. When searching for quantum signatures of new physics also the SM loop effects have to be
under control. The present SM prediction for t# observables includes the QCD corrections as discussed
above and the EW one-loop contributions to the QCD ¢ production processes [67, 68, 69]. The latter
modify the gtf(qgg) vertex by the virtual presence of the EW gauge bosons and the SM Higgs boson.
At the parton level, the EW radiative corrections can enhance the LO cross sections by up to ~ 30%
close to the threshold v/3 R 2m; when the SM Higgs boson is light and reduce the LO cross sections
with increasing § by up to the same order of magnitude. After convoluting with the parton distribution




functions (PDF’s), however, they only reduce the LO production cross section o (pp—ttX) at the LHC
by a few percent [67]: up to 2.5(1.8)% for the following cuts on the transverse momentum pr and the
pseudo rapidity 7 of the top quark: p7 > 100(20) GeV and |n| < 2.5.

So far, the studies of loop induced effects of BSM physics in ¢ production at hadron colliders
include the following calculations:

The O(a) corrections within a general two Higgs doublet model (G2ZHDM) (=SM with two Higgs
doublets but without imposing SUSY constraints) to ¢gg—¢t [70, 71] and gg—tt [71]. In addition to the
contribution of the W and Z, the gt#(ggg) vertex is modified by the virtual presence of five physical
Higgs bosons which appear in any G2HDM after spontaneous symmetry breaking: H®, h°, A°, HZ,
Thus, the G2HDM predictions for ¢ observables depend on their masses and on two mixing angles, 3
and . The G2HDM radiative corrections are especially large for light Higgs bosons and for very small
(< 1) and very large values of tan 3 due to the enhanced Yukawa-like couplings of the top quark to
the (virtual) Higgs bosons. Moreover, there is a possible source for large corrections due to a threshold
effect in the renormalised top quark self-energy, i.e. when m; &~ Mg+ + my. In [71] the s-channel
Higgs exchange diagrams in the gluon fusion subprocess, gg—h®, H°—ti, had been included. For
this workshop we also considered the gg— A%—it contribution [72]. A study of the s-channel Higgs
exchange diagrams alone, can be found in [73] (H°) and [74, 75] (H° and A®). They are of particular
interest, since they can cause a peak-dip structure in the invariant ¢ mass distribution for heavy Higgs
bosons, Mpo g0 > 2m;, when interfered with the LO QCD ¢# production processes.

The SUSY EW O(«) corrections within the MSSM to g§—tt [71, 76, 77, 78] and gg—tt [71,
79]. In [71] also the squark loop contribution to the gg—h®, H® production process in the s channel
Higgs exchange diagrams has been taken into account. The SUSY EW corrections comprise the con-
tributions of the supersymmetric Higgs sector, and the genuine SUSY contributions due to the virtual
presence of two charginos ¥<, four neutralinos ¥°, two top squarks ¢, L,r and two bottom squarks b L,R-
The MSSM input parameters can be fixed in such a way that the ¢ observables including MSSM loop
corrections depend on a relatively small set of parameters [71]: tan 8, M 40, mz,, ™y, ®;, 1, M, where
LR mixing is considered only in the top squark sector, parametrized by the mixing angle ®;. m; and
mg, = Mg, denote the mass of the lighter top squark and the bottom squark, respectively. The effects
of the supersymmetric Higgs sector tend to be less pronounced than the ones of the G2ZHDM: since su-
persymmetry tightly correlates the parameters of the Higgs potential, the freedom to choose that set of
parameters which yield the maximum effect is rather limited. On the other hand, they can be enhanced
by the genuine SUSY contribution depending on the choice of the MSSM input parameters. The SUSY
EW corrections can become large close to the threshold for the top quark decay ¢t + ¥°. They are
enhanced for very small (< 1) and very large values of tan § and when there exists a light top squark
(m;, = 100 GeV).

The SUSY QCD O(as) corrections to ¢§—tt [78, 80, 81, 82, 83] and gg—stt [84]. So far,
there are only results available separately for the g§—tt (Tevatron) and the gg—tt (LHC) production
processes. The combination of both is work in progress and will be presented in [85]. The SUSY QCD
contribution describes the modification of the gt#(ggg) vertex and the gluon vacuum polarisation due to
the virtual presence of gluinos and squarks. Thus, additionally to the dependence on squarks masses (and
on mixing angles if LR mixing is considered) the SUSY QCD corrections introduce a sensitivity of ¢
observables on the gluino mass mj;. As expected, the effects are the largest the lighter the gluino and/or
the squarks. Again, there are possible enhancements due to threshold effects, for instance close to the
anomalous threshold m? = m? + ms .

The tf observables under investigation so far comprise the total ¢f production cross section oz,
the invariant ¢f mass distribution do/dM;; and parity violating asymmetries Azp in the production
of left and right handed top quark pairs. At present, the numerical discussion is concentrated on the
impact of BSM quantum effects on ¢¢ observables in p(ﬁ) —ttX. A parton level Monte Carlo program
for p’p T+ W+W=bb— (f; F)( f1f;)bb is presently under construction [72]. This will allow a more
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Table 5: The relative corrections to pp—t£X at the LHC when only including SUSY QCD one-loop corrections [84] (with
pr >20GeV, || < 2.5) or only the EW one-loop corrections within the G2HDM and the MSSM [71] (pr > 100 GeV). For
comparison the SM prediction is also listed.

| SM (My = 100 GeV) | G2HDM | SUSY EW [ SUSY QCD
|oNLO — gL0} /L0 2.5% <4% | <10% | <4%

realistic study of the sensitivity of a variety of kinematical distributions to SUSY quantum signatures in
the t¢ production processes, for instance by taking into account detector effects.

In the following we give an overview of the present status of BSM quantum effects in ¢t observ-
ables at the LHC:

o : In Table 5 we provide the relative corrections for o at the LHC for different BSM physics
scenarios. They reflect the typical maximum size of the radiative corrections within the models under
consideration. As already mentioned there are possible enhancements due to threshold effects, which
can yield much larger relative corrections. However, they only arise for very specific choices of the
MSSM input parameters. The SUSY EW one-loop corrections always reduce the LO production cross
sections and range from SM values, to up to & —5% for heavy squarks and up to ~ —20% close to
my = m; + mgo. The SUSY QCD one-loop corrections, however, can either reduce or enhance ;.
The relative corrections are negative for small m; and increase with decreasing gluino and/or squark
masses. They change sign when approaching the threshold for real sparticle production and reach a
maximum at mz & 200 GeV of about +2% [84]. Again, very large corrections arise in the vicinity of a
threshold for real sparticle production, m; = mg + m;, . The SUSY EW and QCD one-loop corrections,
so far, have only been combined for the gg—¢t production process and numerical results are provided
for the Tevatron pp collider in [78, 83]. To summarise, apart from exceptional regions in the MSSM
parameter space, it will be difficult to detect SUSY through loop contributions to the tf production
rate. If light sparticles exist, they are most likely directly observed first. Then, the comparison of the
precisely measured top production rate with the MSSM predictions will test the consistency of the model
under consideration at quantum level and might yield additional information on the parameter space, for
instance constraints on tan 3 and ®;.

do/dM; : More promising are the distributions of kinematic variables. Here we will concen-
trate on the impact of SUSY quantum signatures on the invariant ¢¢ mass distribution. Results for the
effects of EW one-loop corrections within the G2HDM and the MSSM on do/dM;; at the LHC are
provided in [71]. So far, the impact of the SUSY QCD one-loop contribution on do/M;; has only
been discussed for the Tevatron pp collider [81], where it turned out that they can significantly change
the normalisation and distort the shape of do/dM,;. As already mentioned, there is the possibility for
an interesting peak-dip structure due to a heavy neutral Higgs resonance in gg—tt within two Higgs
doublet models. The potential of the LHC for the observation of such resonances has been studied
in [74, 86]. In Section 3.5 the results of an ATLAS analysis of the observability of the H/A—tt chan-
nel for different luminosities are presented. In Fig. 9 we show preliminary results for the invariant t£
mass distribution to pp—tt—W+ W~ bb— (v.et)(da)bb at the LHC when including MSSM EW one-
loop corrections [72]. When M 40 > 2m; the gg—H 0. A%t contributions can cause an excess of it
events at M,z slightly below M 40, when the Higgs bosons are not too heavy, and a dip in the distribution
slightly above M;; = M 40. For the choice of MSSM parameters used in Fig. 9 the peak vanishes for
M0 > 400 GeV and only a deficiency of events survives which decreases rapidly for increasing M 4o0.
These effects can be enhanced when the SUSY QCD contributions are taken into account.

Apnr : Parity violating asymmetries in the distribution of left and right-handed top quark pairs
at hadron colliders directly probe the parity non-conserving parts of the non-QCD one-loop corrections
to the t¢ production processes within the model under consideration and have been studied at the Teva-
tron {77, 82, 87, 68, 81, 83] and at the LHC [88]. In Fig. 10 we show the left-right asymmetries AR in
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PDF’s is used and m; = 174 GeV.
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Fig. 10: The left-right asymmetry ALg in the invariant £ mass distribution to pp—t£X at the LHC with pr > 100 GeV
for different values of ®; and my, and for two extreme choices of tan 3: tan 8 = 0.7 (left) and tan 8 = 50 (right) (with
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the invariant mass distribution of (longitudinally) polarised top quark pairs in pp—tz, gtz r X, induced
by SM and MSSM EW one-loop corrections [88]. The parity violating asymmetry within the MSSM
results from the interplay of the supersymmetric Higgs sector (Mg+) and the genuine SUSY contribu-
tions (x*, x%). The contribution from the charged Higgs boson can either be enhanced or diminished
depending on the values of m; and ®;. Within the GZHDM the loop-induced asymmetries are most
pronounced for a light charged Higgs boson and very small and very large values of tan 3. At the LHC,
the G2HDM and MSSM EW one-loop corrections induce asymmetries in the total production rate of left
and right-handed top quark pairs of up to about 2.5% and 3.2%, respectively, and thus can be consider-
ably larger than the SM expectation (SM: 1.2%). When the squarks are non-degenerate in mass also the
SUSY QCD one-loop corrections induce parity violating asymmetries in strong t¢ production. So far,
there exist only studies for the Tevatron [82, 81, 83].

3.5 Measurement of tt production properties

According to the SM, the top quark decays almost exclusively via t — Wbh. The final state topology
of tt events then depends on the decay modes of the W bosons. In approximately 65.5% of tf events,




both W bosons decay hadronically via W — 77, or at least one W decays via W — Tv. These events
are difficult to extract cleanly above the large QCD multi-jet background, and are for the most part
not considered further. Instead, the analyses presented here concentrate on leptonic ¢ events, where at
least one of the W bosons decays via W — £v (£ = e, u). The lepton plus large E7***, due to the
escaping neutrino(s), provide a large suppression against multi-jet backgrounds. The leptonic events,
which account for approximately 34.5% of all ¢f events, can be subdivided into a “single lepton plus
jets” sample and a “di-lepton” sample, depending on whether one or both W bosons decay leptonically.
As discussed below, the selection cuts and background issues are quite different for the various final state
topologies.

An important experimental tool for selecting clean top quark samples is the ability to identify b-
jets. Techniques for b-tagging, using secondary vertices, semi-leptonic b-decays, and other characteristics
of b-jets, have been extensively studied. Both ATLAS and CMS expect to achieve, for a b-tagging
efficiency of 60%, a rejection of at least 100 against prompt jets (i.e. jets containing no long-lived
particles) at low luminosity. At high luminosity, a rejection factor of around 100 can be obtained with a
somewhat reduced b-tagging efficiency of typically 50%.

All the results presented in this section are obtained using for the signal the PYTHIA Monte Carlo
program. Most background processes have also been generated with PYTHIA, with the exception of Wbb,
which has been produced using the HERWIG implementation [89] of the exact massive matrix-element
calculation.

3.51 Single lepton plus jets sample

The single lepton plus jets topology, tf — WWbb — (fv)(5)bb arises in 2 x 2/9 x 6/9 ~ 29.6% of
all tt events. One expects, therefore, production of almost 2.5 million single lepton plus jet events for
an integrated luminosity of 10 fb~1, corresponding to one year of LHC running at 1033 cm™2 s™!. The -
presence of a high pr isolated lepton provides an efficient trigger. The lepton and the high value of E7+**
give a large suppression of backgrounds from QCD multi-jets and bb production.

For the single lepton plus jets sample, it is possible to fully reconstruct the final state. The four-
momentum of the missing neutrino can be reconstructed by setting M* = 0, assigning E% = E7***, and
calculating p¥, with a quadratic ambiguity, by applying the constraint that M* = Myy.

An analysis by ATLAS [30] examined a typical set of selection cuts. First, the presence of an
isolated electron or muon with pr > 20 GeV and || < 2.5 was required, along with a value of EZ*** >
20 GeV. At least four jets with pr > 20 GeV were required, where the jets were reconstructed using a
fixed cone algorithm with cone size of AR = 0.7. After cuts, the major sources of backgrounds were
W +jet production with W — £v decay, and Z+jet events with Z — £1£~. Potential backgrounds
from WW, WZ, and ZZ gauge boson pair production have also been considered, but are reduced to a
negligible level after cuts.

A clean sample of t¢ events was obtained using b-tagging. Requiring that at least one of the jets be
tagged as a b-jet yielded a selection efficiency (not counting branching ratios) of 33.3%. For an integrated
luminosity of 10 fb~1, this would correspond to a signal of 820,000 ¢¢ events. The total background,
dominated by W +jet production, leads to a signal-to-background ratio (S/B) of 18.6. Tighter cuts can be
used to select a particularly clean sample. Examples of this will be given in Section 4.

3.52 Di-lepton sample

Di-lepton events, where each W decays leptonically, provide a particularly clean sample of t¢ events,
although the product of branching ratios is small, 2/9 x 2/9 ~ 4.9%. With this branching ratio, one
expects the production of over 400,000 di-lepton events for an integrated luminosity of 10 fo-l.

The presence of two high pr isolated leptons allows these events to be triggered efficiently. Back-
grounds arise from Drell-Yan processes associated with jets, Z — v+ 7~ associated with jets, W W +jets,
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and bb production. Typical selection criteria [30, 90] require two opposite-sign leptons within [5| < 2.5,
with pr > 35 and 25 GeV respectively, and with E7*** > 40 GeV. For the case of like-flavour leptons
(ete~ and ptp™), an additional cut [M* — MZ| > 10 GeV was made on the di-lepton mass to remove
Z candidates. Requiring, in addition, at least two jets with p7 > 25 GeV produced a signal of 80,000
events for 10 fb™!, with S/B around 10. Introducing the requirement that at least one jet be tagged as a
b-jet reduced the signal to about 58,000 events while improving the purity to S/B &~ 50.

3.53 Multi-jet sample

The largest sample of ¢ events consists of the topology tf — WWbb — (j)(j7)bb. The product of
branching ratios of 6 /9x 6/9 ~ 44.4% implies production of 3.7 million multi-jet events for an integrated
luminosity of 10 fb~!. However, these events suffer from a very large background from QCD multi-jet
events. In addition, the all-jet final state poses difficulties for triggering. For example, the trigger menus
examined so far by ATLAS [30] consider multi-jet trigger thresholds only up to four jets, for which a jet
E7 threshold of 55 GeV is applied at low luminosity. Further study is required to determine appropriate
thresholds for a six-jet topology.

At the Fermilab Tevatron Collider, both the CDF and DO collaborations have shown that it is pos-
sible to isolate a ¢f signal in this channel. The CDF collaboration has obtained a signal significance over
background of better than three standard deviations [9] by applying simple selection cuts and relying on
the high b-tagging efficiency (>~ 46%). To compensate for the less efficient b-tagging, the DO collab-
oration has developed a more sophisticated event selection technique [10]. Ten kinematic variables to
separate signal and background were used in a neural network, and the output was combined in a second
network together with three additional variables designed to best characterise the ¢t events.

ATLAS has made a very preliminary investigation {30, 91] of a simple selection and reconstruction
algorithm for attempting to extract the multi-jet ¢ signal from the background. Events were selected by
requiring six or more jets with pr > 15 GeV, and with at least two of them tagged as b-jets. Jets were
required to satisfy |n] < 3 (|n] < 2.5 for b-jet candidates). In addition, the scalar sum of the transverse
momenta of the jets was required to be greater than 200 GeV. The ¢t signal efficiency for these cuts was
19.3%, while only 0.29% of the QCD multi-jet events survived. With this selection, and assuming a
QCD multi-jet cross-section of 1.4 x10~3 mb for py(hard process) > 100 GeV, one obtains a signal-to-
background ratio S/B =~ 1/57.

Reconstruction of the tt final state proceeded by first selecting di-jet pairs, from among those jets
not tagged as b-jets, to form W — jj candidates. A x%, was calculated from the deviations of the two
M;; values from the known value of My,. The combination which minimised the value of x%, was
selected, and events with x%, > 3.5 were rejected. For accepted events, the two W candidates were then
combined with b-tagged jets to form top and anti-top quark candidates, and a x? was calculated as the
deviation from the condition that the top and anti-top masses are equal. Again, the combination with the
lowest x? was selected, and events with x2 > 7 were rejected. After this reconstruction procedure and
cuts, the value of S/B improved to 1/8 within the mass window 130-200 GeV. Increasing the pr threshold
for jets led to some further improvement; for example, requiring pJ- > 25 GeV yielded S/B = 1/6.

The isolation of a top signal can be further improved in a number of ways, such as using a multi-
variate discriminant based on kinematic variables like aplanarity, sphericity or A E(jet-jet), or restricting
the analysis to a sample of high ptz?p events. These techniques are undergoing further investigation, but -
it will be very difficult to reliably extract the signal from the background in this channel. In particular,

the multi-jet rates and topologies suffer from very large uncertainties.

3.54 Measurement of the tt invariant mass spectrum

As discussed previously, properties of ¢¢ events provide important probes of both SM and BSM physics.
For example, a heavy resonance decaying to t might enhance the cross-section, and might produce a
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peak in the M,; invariant mass spectrum. Deviations from the SM top quark branching ratios, due for
example to a large rate of ¢t — Hb, could lead to an apparent deficit in the ¢f cross-section measured
with the assumption that BR(t — Wb) =~ 1.

Due to the very large samples of top quarks which will be produced at the LHC, measurements of
the total cross-section o (¢f) will be limited by the uncertainty of the integrated luminosity determination,
which is currently estimated to be 5%-10%. The cross-section relative to some other hard process, such
as Z production, should be measured more precisely.

Concerning differential cross-sections, particular attention has thus far been paid by ATLAS {30]
to measurement of the M,; invariant mass spectrum. A number of theoretical models predict the existence
of heavy resonances which decay to t£. An example within the SM is the Higgs boson, which will decay
to ¢ provided the decay is kinematically allowed. However, the strong coupling of the SM Higgs boson
to the W and Z implies that the branching ratio to ¢t is never very large. For example, for Mg = 500
GeV, the SM Higgs natural width would be 63 GeV, and BR(H — tt) &~ 17%. The resulting value of
oxBR for H — tt in the SM is not sufficiently large to see a Higgs peak above the large background
from continuum ¢¢ production. In the case of MSSM, however, if Mg 4 > 2m;, then BR(H/A — tt)
= 100% for tan 8 ~ 1. For the case of scalar or pseudo-scalar Higgs resonances, it has been pointed
out [73, 74] that interference can occur between the amplitude for the production of the resonance via
g9 — H/A — tt and the usual gluon fusion process gg — t£. The interference effects become stronger
as the Higgs’ mass and width increase, severely complicating attempts to extract a resonance signal.

The possible existence of heavy resonances decaying to tf arises in technicolor models [92] as well
as other models of strong EW symmetry breaking [93]. Recent variants of technicolor theories, such as
Topcolor [94], posit new interactions which are specifically associated with the top quark, and could give
rise to heavy particles deca§ing to tt. Since ¢ production at the LHC is dominated by gg fusion, colour
octet resonances (“colourons”) could also be produced [95].

Because of the large variety of models and their parameters, ATLAS performed a study [30, 96]
of the sensitivity to a “generic” narrow resonance decaying to tt. Events of the single lepton plus jets
topology tf — WWbb — (£v)(j7)bb were selected by requiring Ep*** > 20 GeV, and the presence
of an isolated electron or muon with py > 20 GeV and || < 2.5. In addition, it was required that
there were between four and ten jets, each with pr > 20 GeV and |5| < 3.2. At least one of the jets
was required to be tagged as a b-jet. After these cuts, the background to the tf resonance search was
dominated by continuum ¢¢ production.

The momentum of the neutrino was reconstructed, as described previously, by setting M, =0,
assigning E% = E7***, and calculating p? (with a quadratic ambiguity) by applying the constraint that
My, = Mw. The hadronic W — jj decay was reconstructed by selecting pairs of jets from among
those not tagged as b-jets. In cases where there were at least two b-tagged jets, candidates for t — Wb
were formed by combining the W candidates with each b-jet. In events with only a single b-tagged jet,
this was assigned as one of the b-quarks and each of the still unassigned jets was then considered as a
candidate for the other b-quark.

Among the many different possible jet-parton assignments, the combination was chosen that min-
imised the following x?2:

X2 = (Mjjo — me)? /0¥ (Mjn) + (Mas — m4)2/0* (M) + (Mj; — Mw)?[a*(M;;)

Events were rejected if either My,; or Mj;; disagreed with the known value of m; by more than 30 GeV.

For events passing the reconstruction procedure, the measured energies were rescaled, according
to their resolution, to give the correct values of My, and m; for the appropriate combinations. This
procedure improved the resolution of the mass reconstruction of the ¢ pair to o (Myz) /M;z = 6.6%. As
an example, Fig. 11 shows the reconstructed M,; distribution for a narrow resonance of mass 1600 GeV.
The width of the Gaussian core is well described by the resolution function described above. The size
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for an integrated luminosity of either 30 or 300 fb~1.

of the tails, which are dominated by incorrect jet-parton a551gnments is such that approximately 65% of
the events are contained within +2¢ of the peak.

The reconstruction efficiency, not including branching ratios, for t£ — WWbb — (£v)(57)bb was
about 20% for a resonance of mass 400 GeV, decreasing gradually to about 15% for M;; =2 TeV.

For a narrow resonance X decaying to ¢Z, Fig. 12 shows the required ox BR(X — tt) for dis-
covery of the resonance. The criterion used to define the discovery potential was observation within a
+20 mass window of a signal above the tf continuum background, where the required signal must have
a statistical significance of at least So and must contain at least ten events. Results are shown versus Mx
for integrated luminosities of 30 fb—! and 300 fb—!. For example, with 30 fb~!, a 500 GeV resonance
could be discovered provided its ox BR is at least 2560 fb. This value decreases to 830 fb for Mx =
1 TeV, and to 160 fb for Mx =2 TeV. The corresponding values for an integrated luminosity of 300 fb~!
are 835 fb, 265 fb, and 50 b for resonances masses My = 500 GeV, 1 TeV, and 2 TeV, respectively.

Once predictions from models exist for the mass, natural width, and o x BR for a specific reso-
nance, the results in Fig. 12 can be used to determine the sensitivity and discovery potential for those
models. As discussed above, for the case of scalar or pseudo-scalar Higgs resonances, extra care must be
taken due to possible interference effects. While such effects are small for the case of a narrow resonance,
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Fig. 13: For various integrated luminosities, So discovery contours in the MSSM (M, tan 3) plane for the channel H, A — tf.

they can be significant once the finite widths of heavy resonances are taken into account. For example,
ATLAS has performed an analysis [30, 97] of the decays H/A — tf in MSSM with tan 8 = 1.5 and
Mg, 4 > 2m;. Assuming the t¢ continuum background is well known, a combined H + A signal would
be visible for Higgs masses in the range of about 370 - 450 GeV. However, the interference effects pro-
duce an effective suppression of the combined H + A production rates of about 30% for My 4 = 370
GeV, increasing to 70% for masses of 450 GeV, essentially eliminating the possibility to extract a sig-
nal for higher Higgs masses, and thereby severely limiting the MSSM parameter space for which this
channel has discovery potential (see Fig. 13).

4. TOP QUARK MASS?

As discussed in Section 2.2 one of the main motivations for top physics at the LHC is an accurate
measurement of the top mass. Currently the best Tevatron single-experiment results on m, are obtained
with the lepton plus jets final states. These yield: m,= 175.9 + 4.8 (stat.) =+ 5.3 (syst.) (CDF) [6]
and 173.3 & 5.6 (stat.) = 5.5 (syst.) (DD) [S]. The systematic errors in both measurements are largely
dominated by the uncertainty on the jet energy scale which amounts to 4.4 GeV and 4 GeV for CDF
and D@, respectively. On the other hand, the systematic errors in the di-lepton channels are somewhat
less, but the statistical errors are significantly larger, by a factor of > 2, as compared to the lepton
plus jets final states. Future runs of the Tevatron with an about 20-fold increase in statistics promise a
measurement of the top mass with an accuracy of up to ~ 3 GeV [98]; in the lepton plus jets channel
the error is dominated by the systematics while in the di-lepton channels the limiting factor is still the

statistics.

Several studies of the accuracy which can be expected with the LHC experiments have been per-
formed in the past [99]. It is interesting to see whether one can use the large statistics available after a
few years of high-luminosity running to push the precision further. In particular, it is interesting to study
the ultimate accuracy achievable at a hadronic collider, and the factors that limit this accuracy.

In the following subsections, we begin with general remarks on the top quark mass and a very
brief review of the present status of the theoretical understanding of top quark mass measurement in the
threshold scan at a future e*e™ collider. We then present the results of a recent studies of top mass
reconstruction at the LHC. The techniques used include the study of the lepton plus jets final states
(inclusive, as well as limited to high-p; top quarks), di-lepton final states (using the di-leptons from the
leptonic decay of both W’s, as well as samples where the isolated W lepton is paired with a non-isolated

3Section coordinators: M. Beneke, M.L. Mangano, . Efthymiopoulos (ATLAS), P. Grenier (ATLAS), A. Kharchilava
(CMS). !
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lepton from the decay of the companion b hadron). A very promising analysis using the J /v from the
b hadron decay paired with the lepton from the leptonic decay of the W is discussed at the end. The
conclusions of these studies indicate that an accuracy of 2 GeV should be achievable with the statistics
available after only 1 year of running at low luminosity. An accuracy of 1 GeV accuracy could be
achieved after the high luminosity phase.

4.1 General remarks and the top mass measurement in ete™ annihilation

Although one speaks of “the” top quark mass, one should keep in mind that the concept of quark mass
is convention-dependent. The top quark pole mass definition is often implicit, but in a confining theory
it can be useful to choose another convention. This is true even for top quarks when one discusses mass
measurements with an accuracy of order of or below the strong interaction scale. Since different mass
conventions can differ by 10 GeV (see Section 2.1), the question arises which mass is actually determined
to an accuracy of 1-2 GeV by a particular measurement.

The simple answer is that a particular measurement determines those mass parameters accurately
in terms of which uncalculated higher order corrections to the matrix elements of the process are small.
This in turn may depend on the accuracy one aims at and the order to which the process has already
been calculated. To clarify these statements we briefly discuss the top quark mass measurement at a high
energy et e collider.

“The” top quark mass can be measured in eTe™ collisions by recontructing top quark decay prod-
ucts in much the same way as at the LHC. In addition, there exists the unique possibility of determining
the mass in pair production near threshold. This is considered to be the most accurate method [100] and
it appears that an uncertainty of 6777; ~ 0.15 GeV can be achieved for the top quark M S mass with the
presently available theoretical input [101]. This is a factor two improvement compared to the accuracy
that could be achieved with the same theoretical input if the cross section were parametrised in terms
of the top quark pole mass. The fundamental reason for this difference is the fact that the concept of
a quark pole mass is intriniscally ambiguous by an amount of order Aqop [102] and this conclusion
remains valid even if the quark decays on average before hadronisation [103]. In the context of pertur-
bation theory this ambiguity translates into sizeable higher order corrections to the matrix elements of a
given process renormalized in the pole mass scheme. This makes it preferable to choose another mass
convention if large corrections disappear in this way as is the case for the total cross section in e*e™ an-
nihilation, because the total cross section is less affected by non-perturbative effects than the pole mass
itself. Note, however, that despite this preference the position of the threshold is closer to twice the pole
mass than twice the MS mass, hence a leading order calculation determines the pole mass more naturally.
It is possible to introduce intermediate mass renormalizations that are better defined than the pole mass
and yet adequate to physical processes in which top quarks are close to mass shell [101, 104]. The con-
clusion that the top quark pole mass is disfavoured is based on the existence of such mass redefinitions
and the existence of accurate theoretical calculations.

The situation with mass determinations at the LHC appears much more complicated, since the
mass reconstruction is to a large extent an experimental procedure based on leading order theoretical
calculations, which are not sensitive to mass renormalization at all. Furthermore the concept of invari-
ant mass of a top quark decay system is prone to “large” non-perturbative corrections of relative order
Aqcp/my, because the loss or gain of a soft particle changes the invariant mass squared by an amount
of order m;Aqcp. The parametric magnitude of non-perturbative corrections is of the same order of
magnitude as for the top quark pole mass itself and cannot be decreased by choosing another mass renor-
malization prescription. For this reason, top mass measurements based on reconstructing m; from the
invariant mass of the decay products of a single top quark should be considered as measurements of the
top quark pole mass. From the remarks above it follows that there is a limitation of principle on the ac-
curacy of such measurements. However, under LHC conditions the experimental systematic uncertainty
discussed later in this section is the limiting factor in practice. A potential exception is the measure-
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Table 6: Efficiencies (in percent) for the inclusive ¢ single lepton plus jets signal and for background processes, as a function
of the selection cuts applied. No branching ratios are included in the numbers. The last column gives the equivalent number of
eveats for an integrated luminosity of 10 fb™", and the signal-to-background ratio.

pL > 20 GeV as before, as before, events,
Process E7 > 20GeV  plus Nj; >4 plus Ny_jee > 2 per10fb~!
tt signal 64.7 21.2 5.0 126000
W + jets ' 479 0.1 0.002 1658
Z + jets 15.0 0.05 0.002 232
Ww 53.6 0.5 0.006 10
wz 53.8 0.5 0.02 8
YA 2.8 0.04 0.008 14
Total background 1922
S/B &5

ment of m; in the decay mode £.J /%X discussed at the end of this section, since the systematic error
is estimated to be below 1 GeV and since the systematic error is to a large extent theoretical. It would

- be interesting to investigate non-perturbative power corrections and principle obstructions to an accurate
mass measurement for this process. This analysis has however not yet been carried out in any detail,
comparable to the threshold scan in et e~ annihilation.

4.2 m, in the lepton plus jets channel. Inclusive sample

The inclusive lepton plus jets channel provides a large and clean sample of top quarks for mass recon-
struction. Considering only electrons and muons, the branching ratio of this channel is 29.6%. Therefore,
one can expect more than 2 millions events for one year of running at low luminosity. ATLAS performed
an analysis in that channel using events generated using PYTHIA [52] and the ATLAS detector fast simu-
lation package ATLFAST [105]. The top mass is determined using the hadronic part of the decay, as the
invariant mass of the three jets coming from the same top: m;= mj;;. The leptonic top decay is used to
tag the event with the presence of a high pr lepton and large E7+*** . For the background processes, the
HERWIG [51, 89] generator was used for the background process W bb.

The following background processes have been considered: bb, W + jets with W — v, Z + jets
with Z — £¥¢~, WW with one W — £v and the other W — ¢q, WZ with W — fv and Z — ¢,
ZZ with one Z — £+4~ and Z — ¢§, and Wbb with W — £v. Events are selected by requiring an
isolated lepton with pr> 20 GeV and |n|< 2.5, EF** > 20 GeV, and four jets with pr> 40 GeV and
[nl< 2.5, of which two of them were required to be tagged as b-jets. Jets were reconstructed using a
fixed cone algorithm with AR= 0.4. Although at production level the signal over background is very
unfavourable, after the selection cuts and for an integrated luminosity of 10 fb~1, 126000 signal events
and 1922 background events were kept, yielding a value of S/B = 65 (see Table 6).

The reconstruction of the decay W — jj is first performed. The invariant mass m;; of all the
. combinations of jets (with pr> 40 GeV and |n|< 2.5) that were not tagged as b-jets is computed and
the jet pair with an invariant mass closest to my is selected as the W candidate. Fig. 14 represents the
invariant mass distribution of the selected jet pairs. The reconstructed W mass is consistent with the
generated value, the mass resolution being 7.8 GeV. Within a window of 420 GeV around the W mass,
the purity (P) and the overall efficiency (E) of the W reconstruction are respectively P=67% and E=1.7%.
Additional pair association criteria, such as requiring the leading jet to be part of the combination, did
not improve significantly the purity and have not been considered further in the analysis. W candidates,
retained if |m;; — Mw| < 20 GeV, have then to be associated with one b-tagged jet to reconstruct the
decay t — Wh. To reconstruct the right combination, some association criteria have been tried, such as
choosing the b-jet furthest from the isolated lepton, the b-jet closest to the reconstructed I, and choosing
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Fig. 15: Left: dependence of the reconstructed top mass on the generated value. Right: dependence of the reconstructed top
mass on the transverse momentum(pz) of the reconstructed top.

the j7b combination having the highest p, for the reconstructed top. These various methods gave similar
results. Fig. 14 presents the invariant mass distribution of the reconstructed top when the jjb combi-
nation having the highest p; has been used as association criteria. No My constraint is applied for the
light quark jets. For an integrated luminosity of 10fb~!, the total number of reconstructed top is 32000
events, of which 30000 are within a window of +35 GeV around the generated top mass m;= 175 GeV.
The total number of combinatorial events is 34000, of which 14000 are within the mass window. The
number of background events coming from other processes is negligible. The m;;;, distribution fitted
by a Gaussian plus a third order polynomial yields a top mass consistent with the generated value of
175 GeV and a top mass resolution of 11.9 GeV. The resulting statistical uncertainty for an integrated
luminosity of 10fb~! is §m;= 0.070 GeV.

The dependence of the top reconstruction algorithm on the top mass has been checked usingA
several samples of ¢f events generated with different values of m, ranging from 160 to 190 GeV. The
results, shown in Fig. 15, demonstrate a linear dependence of the reconstructed top mass on the generated
value: the data points are fitted to a linear function with x?/ndf = 6.7/8. The stability of the mass value
as a function of the transverse momentum of the reconstructed top (pr(top)) was also checked. As shown
in Fig. 15, no significant p,(top) dependence is observed: the data points are fitted to a constant with
x?%/ndf = 6.25/5. For more details of this analysis, see [106].
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Fig. 16: Invariant 77b mass distributions. Left: from fast simulation. Right: from full simulation.

The results presented above, obtained with a fast simulation package, have been cross-checked
with 30000 events passed through the ATLAS GEANT-based full simulation package [107]. In full
simulation, in order to save computing time, events have been generated under restrictive conditions at
the generator level. The comparison is done by using the same generated events which have been passed
through both the fast and full simulation packages. The results, in terms of putrity, efficiency and mass
resolutions show a reasonable agreement between fast and full simulation. In addition, as it is shown in
Fig. 16, the shape and amount of the combinatorial background for the m;;; distributions are in good
agreement between the two types of simulations.

It has to be noted that for this analysis as well as for the other top mass reconstruction studies
performed within ATLAS, the jets were calibrated using the ratio pr(parton)/pr(jet) obtained from Monte
Carlo samples of di-jet events or H — bb with my = 100 GeV. In that aspect this calibration does not
include all possible detector effects and corrections. More details can be found in Chapter 20 of [30] and
in Appendix A. .

4.3 my; in the lepton plus jets channel. High pt sample

An interesting possibility at the LHC, thanks to the large ¢f production rate, is the use of special sub-
samples, such as events where the top and anti-top quarks have high p. In this case, they are produced
back-to-back in the lab-frame, and the daughters from the two top decays will appear in distinct “hemi-
spheres” of the detector. This topology would greatly reduce the combinatorial background as well as the
backgrounds from other processes. Furthermore, the higher average energy of the jets to be reconstructed
should reduce the sensitivity to systematic effects due to the jet energy calibration and to effects of gluon
radiation. However, in this case a competing effect appears which can limit the resulting precision: as the
top pr increases, the jet overlapping probability increases as well, which again affects the jet calibration.
ATLAS performed a preliminary study of this possibility using two different reconstruction methods:

e in the first one an analysis similar to the inclusive case is done, with m; bemg reconstructed from
the three jets in the one hemisphere (m;=m;;;);

e in the second one, m; is reconstructed summing up the energies in the calorimeter towers in a large
cone around the top direction. '

In the following paragraphs, highlights of these analyses are discussed.

4.31 Jet Analysis

High py tt events were generated using PYTHIA 5.7 [52] with a p; cut on the hard scattering process
above 200 GeV. The expected cross-section in this case is about 120 pb, or about 14.5% of the total
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tt production cross-section. The selection cuts required the presence of an isolated lepton with py>
30 GeV and ||< 2.5, and EF*** > 30 GeV. The total transverse energy of the event was required to be
greater than 450 GeV. Jets were reconstructed using a cone algorithm with radius A R=0.4. The plane
perpendicular to the direction of the isolated lepton was used to divide the detector into two hemispheres.
Considering only jets with p;> 40 GeV and |5|< 2.5, the cuts required one b-tagged jet in the same
hemisphere as the lepton, and three jets, one of which was b-tagged, in the opposite hemisphere. Di-jet
- candidates for the W — jj decay were selected among the non-b-tagged jets in the hemisphere opposite
to the lepton. The resultant 2;; invariant mass distribution is shown in Fig. 17 (left). Fitting the six bins
around the peak of the mass distribution with a Gaussian, yielded a W mass consistent with the generated
value, and a m;; resolution of 7 GeV, in good agreement with that obtained for the inclusive sample.
Di-jets with 40 GeV<m;;<120 GeV were then combined with the b-tagged jet from the hemisphere
opposite to the lepton to form ¢ — j b candidates. Finally, the high p,(top) requirement was imposed by
requiring p(570)> 250 GeV. With these cuts, the overall signal efficiency was 1.7%, and the background -
from sources other than ¢¢ was reduced to a negligible level. The invariant mass distribution of the
accepted jjb combinations is shown in Fig. 17 (right). Fitting the six bins around the peak of the mass
distribution with a Gaussian, yielded a top mass consistent with the generated value of 175 GeV, and a
mjj» mass resolution of 11.8 GeV. For an integrated luminosity of 10 fb=*, a sample of 6300 events
would be collected in ATLAS, leading to a statistical error of §m.(stat.) = £0.25 GeV, which remains
well below the systematic uncertainty. As in the case of the inclusive sample, no strong p dependence
was observed and the reconstructed mass depends linearly on the Monte Carlo input value.

4.32  Using a large calorimeter cluster

For sufficiently high pr(top) values, the jets from the top decay are close to each other with a large
possibility of overlap. In such a case it might be possible to reconstruct the top mass by collecting all the
energy deposited in the calorimeter in a large cone around the top quark direction. Such a technique has
the potential to reduce the systematic errors, since it is less sensitive to the calibration of jets and to the
intrinsic complexities of effects due to leakage outside the smaller cones, energy sharing between jets,
etc. Some results from a preliminary investigation of the potential of this technique are discussed here.
More details of the analysis can be found in [30, 108].

Similar event selection criteria as in the previous case were used: an isolated lepton with p>
20 GeV and |7|< 2.5, Ex*** > 20 GeV, one b-tagged jet (with A R=0.4 and pr> 20 GeV) in the lepton
hemisphere, and at least 3 jets in the hemisphere opposite to the lepton (AR=0.2, pr> 20 GeV) with
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one of them b-tagged. For the accepted events, the two highest pr non-b-tagged jets were combined
with the highest pr b-jet candidate in the hemisphere opposite to the lepton to form candidates for the
77b hadronic top decay. The selected 7 b combination was required to have p;> 150 GeV and ||< 2.5.
With these selection criteria, about 13000 events would be expected in the mass window from 145 to
200 GeV, with a purigy of 90%, for an integrated luminosity of 10fb~1, The reconstructed invariant mass
of the 77b combination is shown in Fig. 18 (left). The direction of the top quark was then determined
from the jet momenta. Figure 18 (right) shows the distance A R in (7, ¢) space between the reconstructed
and the true top direction at the parton level, demonstrating good agreement.

v A large cone of radius AR was then drawn around the top quark direction, and the top mass was
determined by adding the energies of all calorimeter “towers” within the cone. A calorimeter tower
has a size of 67 x 6¢=0.1x0.1, combining the information of both the EM and hadronic calorimeters.
The invariant mass spectrum is shown in Fig. 19 (left) for a cone size A R= 1.3, and exhibits a clean
peak at the top quark mass. The fitted value of the reconstructed top mass is shown in Fig. 19 (right),
where it displays a strong dependence on the cone size. If initial (ISR) and final (FSR) state radiation in
PYTHIA are turned off, the fitted mass remains constant (to within 2%), independently of cone size.

The large dependence of the reconstructed top mass on the cone size can be attributed to the
underlying event (UE) contribution. A method was developed to evaluate and subtract the underlying
event contribution using the calorimeter towers not associated with the products of the top quark decay.
The UE contribution was calculated as the average Er deposited per calorimeter tower, averaged over
those towers which were far away from the reconstructed jets of the event. As expected, the average
E'r per calorimeter tower increases as more activity is added, especially in the case of ISR. However,
only a rather small dependence is observed on the radius AR used to isolate the towers associated with
the hard scattering process. The resulting value of the reconstructed mass (m...), With and without
UE subtraction, is also shown in Fig. 19 (right) as a function of the cone radius. As can be seen, after
the UE subtraction, the reconstructed top mass is independent of the cone size used. As a cross-check,
the mean E; per cell subtracted was varied by £:10% and the top mass recalculated in each case. As
shown superimposed on Fig. 19 (right), these “miscalibrations” lead to a re-emergence of a dependence
of m; on the cone size. While the prescription for the UE subtraction does lead to a top mass which is
independent of the cone size, it should be noted that the reconstructed mass is about 15 GeV (or 8.6%)
below the nominal value, m;= 175 GeV, implying that a rather large correction is needed.
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To investigate if this correction can be extracted from the data without relying on Monte Carlo
simulations, the same procedure was applied to a sample of W4 jet events generated with a range of
pr comparable to that of the top sample. The W was forced to decay hadronically into jets. The UE
contribution was estimated with the same algorithm as described above. The results agreed within 1%
with the values determined for the high p(top) sample. As in the case of the top events, the reconstructed
W mass after UE subtraction is independent of the cone size. The average value of m;; after the UE
subtraction is about 8.5 GeV (or 10.6%) below the nominal value of myy. The fractional error on m;;,
as measured with the W +jet sample, was used as a correction factor to m .. in the high p+(top) sample.
For a cone of radius A R= 1.3, the top mass after UE subtraction increases from 159.9 GeV to 176.0 GeV
after rescaling. The rescaled values of m,,,. are about 1% higher than the generated top mass. This
over-correction of m; using the value of my measured with the same method, is mainly due to ISR
contributions. If ISR is switched off, the rescaling procedure works to better than 1%.

4.4 Systematic uncertainties on the measurement of m; in the single lepton plus jets channel

For the analyses presented above within ATLAS, a number of sources of systematic error have been
studied using samples of events generated with PYTHIA and simulated mainly with the fast detector
package ATLFAST, but also using a relatively large number of fully simulated events in order to cross-
check some of the results. The results of these studies are summarised in Fig. 20 and discussed below.
Jet energy scale: The measurement of m, via reconstruction of t — jjb relies on a precise knowl-

edge of the energy calibration for both light quark jets and b-jets. The jet energy scale depends on a
sariety of dgtectar and pbusice affacts. includine nna-linearities ip the ealosimater mensras rnarsw-lnst.
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Fig. 20: Summary of systematic errors in the m. measurement. Left: the observed mass shifts for different effects studied. The
dashed lines indicates a 1% mass window. Right: the quoted error in the m. measurement.

different “miscalibration” coefficients were applied to the measured jet energies. A linear dependence
was observed.

b-quark fragmentation: The fraction of the original b-quark momentum which will appear as vis-
ible energy in the reconstruction cone of the corresponding b-jet depends on the fragmentation function
of the b-quark. This function is usually parametrised in PYTHIA in terms of one variable, €, using the
Peterson fragmentation function [109]. To estimate the systematic error in m;, the “default” value for
€, (=-0.006) was varied within its experimental uncertainty (0.0025) [110, 19] and the difference in the
reconstructed m; was taken as the systematic error dm;.

Initial and final state radiation: The presence of ISR or FSR can impact the measurement of m;.
To estimate the systematic error due to these, data samples were generated where ISR or FSR in the
PYTHIA generator were switched off. In the case of FSR, a large mass shift was observed for a jet cone of
AR=0.4. This is reduced as expected when a larger cone is used. Clearly this case is rather pessimistic
since the knowledge in both ISR and FSR is typically at the level of 10%. Therefore as a conservative
estimate of the resultant systematic errors in m., 20% of the mass shifts were used.

An alternative approach uses the measured jet multiplicity to search, event-by-event, for the pres-
ence of hard gluon radiation. Following the convention for this approach adopted at the Tevatron [5, 6],
the mass shift would be defined not by comparing events with radiation switched on and events with
radiation switched off, but by the difference, Am,, between the value of m; determined from events
with exactly four jets and that determined from events with more than four jets. The systematic error
due to effects of initial and final radiation would then be considered as m,= Am,/+/12. Such a calcu-
lation would yield systematic errors of approximately 0.4-1.1 GeV, smaller than the more conservative
approach adopted here.

Background: Uncertainties in the size and shape of the background, which is dominated by “wrong
combinations” in ¢ events, can affect the top mass reconstruction. The resultant systematic uncertainty
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Fig. 22: Schematics of the top decay to leptonic final states with J/.

yielding a statistical uncertainty on the measurement of m, of approximately +1 GeV. This technique
is insensitive to the jet energy scale. The dominant uncertainties arise from effects of ISR and FSR and
from the b-quark fragmentation, which sum up to about 1.5 GeV.

4.6 mgfromt—1+ J/¢ + X decays

An interesting proposal [111] by CMS, explored in detail during the workshop [112], is to take advantage
of the large top production rates and exploit the correlation between the top mass and the invariant mass
distribution of the system composed of a J /% (from the decay of a b hadron) and of the lepton (¢ = e, p)
from the associated W decay (see Fig. 22).

The advantage of using a J /1 compared to the other studies involving leptons as presented above
is twofold: first, the large mass of the J/4 induces a stronger correlation with the top mass (as will be
shown later). Second, the identification of the J/1 provides a much cleaner signal. In order to uniquely
determine the top decay topology one can tag the charge of the b decaying to J/+ by requiring the
other b-jet to contain a muon as well. The overall branching ratio is 5.3 x 1075, taking into account the
charge conjugate reaction and W — ev decays. In spite of this strong suppression, we stress that these
final states are experimentally very clean and can be exploited even at the highest LHC luminosities.
Furthermore, one can also explore other ways to associate the .J/v with the corresponding isolated
lepton — for example by measuring the jet charge of identified b’s. One should say that all these methods
of top mass determination essentially rely on the Monte-Carlo description of its production and decay.
Nonetheless the model, to a large extent, can be verified and tuned to the data.

4.61 Analysis

In the following we assume a t¢ production cross-section of 800 pb for m; = 175 GeV. Events are sim-
ulated with the PYTHIAS.7 [52] or HERWIG 5.9 [51] event generators. Particle momenta are smeared
according to parameterisations obtained from detailed simulation of the CMS detector performance.
Four-lepton events are selected by requiring an isolated lepton with p>15 GeV and |7]|<2.4, and three
non-isolated, centrally produced muons of p; >4 GeV and ||<2.4, with the invariant mass of the two
of them being consistent with the J /1 mass. These cuts significantly reduce the external (non-¢t) back-
ground, mainly Wbb production,* which can be further reduced by employing, in addition, two central
jets from another W. The resulting kinematical acceptance of the selection criteria is 30%; this rather
small value is largely due to soft muons from J/v and b. In one year high luminosity running of LHC,
corresponding to an integrated luminosity of 100 fb~!, and assuming trigger plus reconstruction effi-
ciency of 0.8, we expect about 10° x 800 x 5.3 - 10~° x 0.3 x 0.8 = 1000 events.

An example of the £J /1 mass distribution with the expected background is shown in Fig. 23. The

background is internal (from the ¢ production) and is due to the wrong assignment of the J/¢ to the
corresponding isolated lepton. These tagging muons of wrong sign are predominantly originating from

‘PYTHIA results indicate that with the above cuts this source of the background can be kept at a per cent level.




B° /FO oscillations, b—c—u transitions, W(—c¢, 7)—u decays, 7/K decays in flight and amount to
~ 30% of the signal combinations. The shape of the signal £J/¢ events (those with the correct sign
of the tagging muon) is consistent with a Gaussian distribution over the entire mass interval up to its
kinematical limit of ~ 175 GeV. The background shape is approximated by a cubic polynomial. The
parameters of this polynomial are determined with “data” made of the wrong combinations of £J /1 with
an admixture of signal. In such a way the shape of the background is determined more precisely and in
situ. Thus, when the signal distribution is fitted, only the background normalisation factor is left as a free
parameter along with the three parameters of a Gaussian. The result of the fit is shown in Fig. 23. We
point -out that this procedure allows to absorb also the remaining external background (if any) into the
background fit function,
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Fig. 23: Example of the £J/¢ invariant mass spectrum in Fig. 24: Correlation between M™% and the top quark mass
four-lepton final states. The number of events corresponds to in isolated lepton plus J/+ (solid line) and isolated lepton
four years running at LHC high luminosity. plus p-in-jet (dashed line) final states.

As a measure of the top quark mass we use the mean value (position of the maximum of the
distribution) of the Gaussian, MZ}‘?Z In four years running at LHC with high luminosity the typical
errors on this variable, including the uncertainty on the background, are about 0.5 GeV. It is composed
of < 0.5 GeV statistical error and < 0.15 GeV systematics contribution due to the uncertainty on the

measurement of the background shape.’

The measurement of the Z‘,ﬁ can then be related to the generated top quark mass. An example
of the correlation between the M™% and m; is shown in Fig. 24 along with the parameters of a linear
fit. For comparison, we also show the corresponding dependence in a more traditional isolated lepton
plus p-in-jet channel. Not surprisingly, the stronger correlation, and thus a better sensitivity to the top
mass, is expected in the £J /4 final states as compared to the isolated lepton plus u-in-jet channel. This
is because, in the former case, we pickup a heavy object (the J/1) which carries a larger fraction of the
b-jet momentum. The MZ‘,“:Z measurement error, statistical and systematic, scales as the inverse slope
value of the fit, which is a factor of 2 in our case. Hence the statistical error on the top mass in this
particular example is ~ 1 GeV. .

It is appropriate to comment on the ways to obtain a larger event sample. Encouraging results
have been obtained in [113] to reconstruct the b—J/1—ete™ decays for low luminosity runs. The
extension of these studies for a high luminosity environment is very desirable. Another possibility would
be to relax the kinematical requirements. The choice of pr cut on soft muons is not dictated by the

5The statistical power of the sample can be further improved by exploiting full spectrum, rather than its Gaussian part.




background considerations but by the trigger rates, and is set here to 4 GeV rather arbitrarily. For
example, the di-muon trigger with 7-dependent thresholds which is available in CMS for low luminosity
runs [114] allows to significantly increase the kinematical acceptance, practically to the limit determined
by muon penetration up to the muon chambers. Therefore, the assessment of the trigger rates at high
luminosity with lower pr thresholds and in multi-lepton events clearly deserves a dedicated study.

An even larger event sample can be obtained in three lepton final states, using instead the jet-charge
technique to determine the ¢t decay topology instead of the tagging muon. The jet charge is defined as
a pr-weighted charge of particles collected in a cone around the J/+ direction. Obviously, this kind
of analysis requires detailed simulations with full pattern recognition which are under way. However,
particle level simulations performed with PYTHIA and with realistic assumptions on track reconstruc-
tion efficiency give event samples comparable to the muon-tag performance, with about 10 times less
integrated luminosity. In any case, through the LHC lifetime, one can collect enough events so that the
overall top mass measurement accuracy would not be hampered by the lack of statistics; it would rather
be limited by the systematic uncertainties which are tightly linked with the Monte-Carlo tools in use, as.
will be argued in the following section.

4.62 Systematics

An essential aspect of the current analysis is to understand limitations which would arise from the Monte-
Carlo description of the top production and decay. It is important to realize that the observable used in
this study enjoys two properties: it is Lorentz invariant an it does not depend on the detailed structure of
the jets, but only on the momentum spectrum of the b-hadron and of the J /% from its decay.

As a result, were it not for distortions of the £.J /1 mass distribution induced by acceptance effects
and by the presence of an underlying background, the measurement would be entirely insensitive with
respect to changes in the top production dynamics, and in the structure of the underlying event. As a
result, typical systematics such as those induced by higher-order corrections to the production process,
or by the ISR and by the structure of the minimum bias event, are strongly reduced relative to other
measurements of m;. This expectation will be shown to be true in the following of this section.

The main limitations to an accurate extraction of the top mass using this technique are expected
to come from: i) the knowledge of the fragmentation function of the b hadrons contained in the b-jet
and, ii) the size of the non-perturbative corrections to the relation between the top quark mass and the
£J /% mass distribution. The J/% spectrum in the decay of the 4-hadrons will be measured with high
accuracy in the next generation of B-factory experiments. It should be pointed out, however, that the
composition of b-hadrons measured at the T(45) and in the top decays will not be the same. In this
second case, one expects a non-negligible contribution from baryons and from B, states. The size of the
relevant corrections to the inclusive J /1 spectrum in top decays is not known, and, although expected to
be small, it needs to be studied. Additional effects, such as QED corrections to the W leptonic decay, W
polarisation and spin correlation effects can all be controlled and included in the theoretical simulations.

The rest of this section presents the results of a detailed study [112] of the systematics, mostly
based on PYTHIA.

Detector resolution: Here we have considered only Gaussian smearing of particle momenta and the effect
on the M, Z}ﬁ measurement uncertainty is negligible. A possible nonlinearity of the detector response
can be well controlled with the huge sample of J/, T and Z leptonic decays that will be available.

Background: The uncertainty would be mainly due to an inaccurate measurement of the background
shape and the systematics contribution of < 0.15 GeV quoted in previous section would scale down with
increasing statistics. For example, already with ~ 10* events the induced uncertainty is < 0.1 GeV.

PDEF: Depending on the relative fraction of gluon/quarks versus z in various PDF’s the top produc-

tion kinematics might be different. No straightforward procedure is available for the moment to evalu-
ate uncertainties due to a particular choice of PDFE. We compared results obtained with the default set




CTEQ(ZI; {115] and a more recent CTEQ4L [116] parameterisations of PDF’s. The observed change in the
Z}% value is well within 0.1 GeV.

Top pr spectrum. As shown in Section 3.3, one does not expect significant uncertainties in the prediction
of the top pr spectrum. However, to see an effect we have artificially altered the top pr spectrum by
applying a cut at the generator level. We found that even requiring all top quarks to have pr > 100 GeV
gives rise to only a 1o change (£0.7 GeV) in the fitted value of m;.

Initial state radiation: The M Z}?jz value is unchanged even switching off completely the ISR.

Top and W widths: Kinematical cuts that are usually applied affect the observed Breit-Wigner shape
(tails) of decaying particles. Conversely, poor knowledge of the widths may alter the generated IJ /v
mass spectrum depending on the cuts. In our case, only a small change in the MZ}% value is seen
relative to the zero-width approximation.

W polarisation: A significant shift is found for the isotropic decays of W when compared to the SM
expectation of its ~ 70% longitudinal polarisation. In future runs of the Tevatron the W polarisation
will be measured with a ~ 2% accuracy [98], and at the LHC this would be further improved, so that it
should not introduce additional uncertainties in simulations.

tt spin correlations: A “cross-talk” between ¢ and ¢ decay products is possible due to experimental cuts.
To examine this effect in detail the 2—6 matrix elements have been implemented in PYTHIA preserving
the spin correlations [117]. No sizeable difference in the Z}% value is seen compared to the default
2—2 matrix elements.

QED bremsstrahlung: Only a small effect is observed when it is switched off. Furthermore, QED radia-
tion is well understood and can be properly simulated.

Final State Radiation: A large shift of ~ 7 GeV is observed when the FSR is switched off. This is due
to the absence of evolution for the b quark, whose fragmentation function will be unphysically hard.
To evaluate the uncertainty we varied the parton virtuality scale 17, the invariant mass cut-off below
which the showering is terminated. A £+50% variation of it around the default (tuned to data) value of
1 GeV induces an uncertainty of 131, GeV.

b fragmentation, except FSR: As a default, in PYTHIA we have used the Peterson form for the b-quark
fragmentation function with £, = 0.005. Variation of this value by +=10% [118] leads to an uncertainty
of ;8:‘;’5 GeV. (The £10% uncertainty on ¢y is inferred from LEP/SLD precision of ~ 1% on the average
scaled energy of B-hadrons.) It should be pointed out that recent accurate measurements of the b-quark
fragmentation function [119] are not well fitted by the Peterson form.

The last two items of this list deserve some additional comments. While the separation between
the FSR and the non-perturbative fragmentation phases seems unnecessary, and liable to lead to an over-
estimate of the uncertainty, it is important to remark that our knowledge of the non-perturbative hadroni-
sation comes entirely from the production of b-hadrons in Z° decays at LEP and SLC. It is important to
ensure that the accuracy of both perturbative and non-perturbative effects is known, since the perturbative
evolution of b quarks from Z° and top decays are not the same owing to the different scales involved. An
agreement between data and Monte Carlo calculations for the b-hadron fragmentation function at the Z°
does not guarantee a correct estimate of the b-hadron fragmentation function in top decays.

To be specific, we shall consider here the effects induced by the higher-order matrix element
corrections to the radiative top decays t—bWg [54]. These effects cannot be simulated by a change
in the virtuality scale m,,;, as explored above in the study based on PYTHIA, as they have a different
physical origin. The extended phase-space available for gluon emission after inclusion of the matrix-
element corrections leads to a softening of the b-quark, and, as a result, of the £J/% spectrum. For
simplicity, we study here the invariant mass of the system B¥{. The resulting invariant mass distributions,
for m;= 175 GeV, with (HERWIG 6.1) and without (HERWIG 6.0) matrix element corrections are shown
in Fig. 25. The averages of the two distributions, as a function of the top mass, are given on the right
of the figure, and the difference of the averages are given in Table 7. Given the slopes of the correlation
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Fig. 25: Left: invariant mass of the B-lepton system for m; = 175 GeV, according to HERWIG 6.0 (dotted) and 6.1 (with
matrix element corrections, solid). Right: linear fits to the average invariant mass {(m 5.} as a function of m;.

Table 7: Negative shift in the average invariant mass (m p¢} after inclusion of matrix element corrections for the top decay in
HERWIG. Left: average over all values of m p,. Right: average over the sample with m g, > 50 GeV.

my (mp) — () @Impy) | (mph) — (M) (mpe > 50 GeV)
171GeV | (0.801 < 0.038) GeV (0.479 + 0.036) GeV
173GeV | (0.844 £ 0.038) GeV (0.479 % 0.034) GeV
175GeV | (0.843 + 0.039) GV (0.510 £ 0.035) GeV
177GevV | (0.855 % 0.039) GeV (0.466 = 0.035) GeV
179 GeV (0.792 £ 0.040) GeV (0.427 £ 0.036) GeV

between (mp,) and m,, we see that the corrections due to inclusion of the exact matrix elements are
between 1 GeV (for mpg, > 50 GeV) and 1.5 GeV (for the full sample).

More details of the analysis will be found in [64]. It is also found there that the dependence of
{mpg) on the hadronic center of mass energy, or on the partonic initial state producing the ¢t pair, is no
larger than 100 MeV. We take this as an indication that the effects of non-factorisable non-perturbative
corrections (such as those induced by the neutralisation of the colour of the top quark decay products)
are much smaller than the 1 GeV accuracy goal on the mass.

A summary of these studies is given in Fig. 26. One sees an impressive stability of the re-
sults for reasonable choices of parameters. The expected systematic error in the M, Z}‘/‘idetermination

+0-3 GeV which translates into a systematic error on the top mass of dm; < 19:3 GeV.

In addition to the above studies, we also compared directly the results of HERWIG (v5.9) and
PYTHIA. With HERWIG we have tried various tunings from LEP experiments as well as its default
settings [51]. They all yield comparable results to each other and to PYTHIA resuits, and are within
< 0.5 GeV. This corresponds to a systematic uncertainty dm; <1 GeV.

is

4.7 Conclusions for the top mass measurement at the LHC

The very large samples of top quark events which will be accumulated at the LHC lead to a precision .
measurement of the top quark mass. Different statistically independent channels have been investigated
and from the studies so far a precision of better than 2 GeV in each case can be obtained. In particular
for the lepton plus jets channel where the m; is measured directly reconstructing the invariant mass of
the m;; candidates, such a precision can be achieved within a year or running at low luminosity. For
the channels involving two or more leptons, data from several years have to be combined to limit the
statistical error in the measurement beyond the expected systematic errors.




A

o

%
B>

PYTHIA 5.7
by
Y
8
g
2

Defoult w|
S SO PSR

* HERWIG 5.9
3

3 e e 72 n 76
M (GeV)

Fig. 26: Observed m. shifts for the various systematic effects studied for the £ + J/4 channel.

With the statistical error not being a problem, the emphasis of the work was devoted to estimate
the systematic error involved in each method. For each sample, the contributing systematic errors are
different, a fact which will allow important cross-checks to be made. The results indicate that a total
error below 2 GeV should be feasible. In the case of the lepton plus jet channel the major contribution
to the uncertainty is identified in the jet energy scale (in particular for the b-jets) and in the knowledge
of FSR. When a special sub-sample of high p, top events is used and the m; is reconstructed using a
large calorimeter cluster the FSR sensitivity is reduced, but further work is required to validate it. For
the channels using two or more leptons for the top decay, the major contribution in the systematic error
comes from the Monte Carlo and from how well the kinematic observable used for the mass measurement
is related to the mass of the top quark.

In £J /4 final states the top mass can be determined with a systematic uncertainty of < 1 GeV.
These final states are experimentally very clean and can be exploited even at highest LHC luminosities.
The precision would be limited by the theoretical uncertainties which is basically reduced to the one
associated with the t— B meson transition. This method of top mass determination looks very promising,
and a final definition of its ultimate reach will rely on a better understanding of theoretical issues, and on
the possibility to minimise the model dependence using the LHC data themselves.

5. SINGLE TOP PRODUCTION?®

At the LHC, top quarks are mostly produced in pairs, via the strong process gg—t¢ (and, to a lesser
extent, gg—tt). However, there are a significant number of top quarks that are produced singly, via the
weak interaction. There are three separate single-top quark production processes of interest at the LHC,
which may be characterised by the virtuality of the W boson (of four-momentum g¢) in the process:
e t-channel: The dominant process involves a space-like W boson (¢? < 0), as shown in Fig. 27(a)
[120]. The virtual W boson strikes a & quark in the proton sea, promoting it to a top quark. This

$Section coordinators: S. Willenbrock, D. O’Neil (ATLAS), J. Womersley (CMS).
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Fig. 27: Feynman diagrams for single-top quark production in hadron collisions: (a) ¢-channel process; (b) s-channel process;
(c) associated production (only one of the two diagrams for this process is shown).

Table 8: Total cross sections (pb) for single-top quark production and top quark pair production at the LHC, for m.=175
+2 GeV. The NLO t-channel cross section is from [125]. The NLO s-channel cross section is from [126]. The cross section
for the Wt process is from [124]; it is leading order, with a subset of the NLO corrections included. The uncertainties are due
to variation of the factorisation and renormalisation scales; uncertainty in the parton distribution functions; and uncertainty in
the top quark mass (2 GeV).

| process: | t-channel s-channel Wit tt |
[o(b): | 245227 102507 5190 ~800]

process is also referred to as W-gluon fusion, because the & quark ultimately arises from a gluon
splitting to bb.

e s-channel: If one rotates the ¢-channel diagram such that the virtual W boson becomes time-like,
as shown in Fig. 27(b), one has another process that produces a single top quark [121, 122]. The
virtuality of the W boson is ¢ > (m; + ms)2.

e Associated production: A single top quark may also be produced via the weak interaction in
association with a real W boson (¢% = M‘?V), as shown in Fig. 27(c) [123, 124]. One of the initial
partons is a b quark in the proton sea, as in the -channel process.

The total cross sections for these three single-top quark production processes are listed in Table 8,
along with the cross section for the strong production of top quark pairs. The {-channel process has
the largest cross section; it is nearly one third as large as the cross section for top quark pairs. The s-
channel process has the smallest cross section, more than an order of magnitude less than the ¢-channel
process. The Wt process has a cross section intermediate between these two. We will argue that all three
processes are observable at the LHC. The t-channel and s-channel processes will first be observed at the
Fermilab Tevatron [127]; the W't process will first be seen at the LHC.

There are several reasons for studying the production of single top quarks at the LHC:

e The cross sections for single-top quark processes are proportional to |Vy|%. These processes pro-
vide the only known way to directly measure V;; at hadron colliders.

o Single-top quark events are backgrounds to other signals. For example, single-top quark events
are backgrounds to some signals for the Higgs boson [128].
~ o Single top quarks are produced with nearly 100% polarisation, due to the weak interaction [123,
129, 130, 131]. This polarisation serves as a test of the V' — A structure of the top quark charged-
current weak interaction.

e New physics may be discernible in single-top quark events. New physics can influence single-top
quark production by inducing non-SM weak interactions [129, 132, 133, 134, 135], via loop effects -
[136, 137, 138, 139, 140}, or by providing new sources of single-top quark events [133, 137, 141,
142].

In the next three subsections we separately consider the three single-top quark production pro-
cesses. The subsection after these discusses the polarisation of single top quarks. In the concluding
section, we discuss the accuracy with which V}, can be measured in single-top quark events at the LHC.
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5.1 t-channel single-top production
5.11 Theory

The largest source of single top quarks at the LHC is via the t-channel process, shown in Fig. 27(a)
[120, 123, 125, 129, 143, 144, 145]. A space-like (¢°> < 0) W boson strikes a b quark in the proton sea,
promoting it to a top quark. As shown in Table 8, the cross section for this process is about one third that
of the strong production of top quark pairs. Thus there will be an enormous number of single top quarks
produced via the ¢-channel process at the LHC.

It is perhaps surprising that the cross section for the weak production of a single top quark, of
order oy, is comparable to that of the strong production of top quark pairs, of order 2. There are
several enhancements to the ¢-channel production of a single top quark that are responsible for this:

e The differential cross section for the ¢-channel process is proportional to do /dg? ~ 1/(¢*—M%,)?,
due to the W-boson propagator. The total cross section is therefore dominated by the region
|¢?| < MZ%,, and is proportional to 1/MZ,. In contrast, the total cross section for the strong
production of top quark pairs is proportional to 1/s, where s > 4m? is the parton center-of-mass
energy.

e Since only a single top quark is produced, the typical value of the parton momentum fraction z is
half that of top quark pair production. Since parton distribution functions scale roughly like 1/z
at small values of z, and there are two parton distribution functions, this leads to an enhancement
factor of roughly four.

The fact that the total cross section is dominated by the region |¢%| < M3, also has the implication that
the final-state light quark tends to be emitted at small angles, i.e., high rapidities. This characteristic
feature of the signal proves to be useful when isolating it from backgrounds.

The b distribution function in the proton sea arises from the splitting of virtual gluons into nearly-
collinear bb pairs. Thus it is implicit that there is a b in the final state, which accompanies the top quark
and the light quark. The final-state b tends to reside at small pr, so it is usually unobservable.

The total cross section for the ¢-channel production of single top quarks has been calculated at
NLO [125, 143]; the result is given in Table 8. A subset of the NLO corrections is shown in Fig. 28(a).
This correction arises from an initial gluon which splits into a bb pair. If the bb pair is nearly collinear,
then this process contributes to the generation of the b distribution function, which is already present at
leading order; hence, one does not include this kinematic region as a contribution to the NLO correction.
This is indicated schematically in Fig. 28(b). Only the contribution where the b pair is non-collinear is'‘a
proper NLO correction to the total cross section.” The other corrections to this process, due to final-state
and virtual gluons, as well as corrections associated with the light quark, are also included in the cross
section given in Table 8.

The central value for the cross section is obtained by setting the factorisation scale® of the b distri-
bution function equal to u? = —¢? 4+ m?. The uncertainty in the NLO cross section due to the variation
of the factorisation scale between one half and twice its central value is 4%. Due to the similarity with
deep-inelastic scattering, the factorisation scale of the light quark is ,u2 = —¢?, and is not varied [125].

Since the b tends to reside at low pr, the dominant final state is b4, where the Wb are the decay
products of the top quark, and the jet is at high rapidity. However, the b is at pr > 20 GeV in roughly 40%
of the events, in which case the final state is 1Wbbj. From a theoretical perspective, the optimal strategy
is to isolate both final states and thereby measure the total cross section, which has an uncertainty of
only 4% from varying the factorisation scale, as mentioned above. However, the Whbbj final state has a
large background from #£, and it has not yet been established by ATLAS or CMS that this signal can be
isolated, although the analysis of [145] gives cause for optimism. Thus we focus on the Wbj final state,

"The formalism for separating the nearly-collinear and non-collinear regions, and for generating the b distribution function,
was developed in Refs. [146, 58).
3The factorisation and renormalisation scales are set equal.
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Fig. 28: (a) Initial-gluon correction to single-top quark production via the ¢-channel process (the diagram with the W and

gluon lines crossed is not shown); (b) the kinematic region in which the gluon splits to a nearly-collinear bb pair (the double
line through the b propagator indicates that it is nearly on shell) is subtracted from the correction, as it is already included at
leading order.

demanding that the b have PT < Preut. FOr preys = 20 GeV,? the cross section for this semi-inclusive
process is 164 pb, with an uncertainty of 10% from varying the factorisation scale [144], about twice
the uncertainty of the total cross section. Work is in progress to calculate the differential cross section
do [dpry at NLO with the goal of reducing this uncertainty [147]. It would also be desirable to calculate
the total cross section at next-to-next-to-leading order (NNLO).

Additional theoretical uncertainties stem from the top quark mass and the parton distribution func-
tions. An uncertainty in the top quark mass of 2 GeV yields an uncertainty of only 2% in the cross section,
which is negligible. This is due to the fact that the cross section scales like 1/M, rather than 1/s. The
uncertainty in the cross section due to the parton distribution functions is estimated in [148] to be 10%.
That analysis suggests that the uncertainty can be reduced below this value. Combining all uncertainties
in quadrature, we conclude that the total theoretical uncertainty is presently 15% in the Wbj cross sec-
tion (11% in the total cross section). The discussion above suggests that this can be significantly reduced
with further effort.

5.12 Phenomenology

Studies of the ¢-channel process have been carried out by both ATLAS and CMS. We will first describe
the CMS study, and then that of ATLAS.

In order to reject the large ¢ background in this channel, it is necessary to impose a cut on jet
multiplicity. Accurate modelling of jet response and resolution is therefore desirable, and so CMS [149]
used a full GEANT calorimeter simulation of the detector. The GEANT simulation also allows a more
realistic modelling of the missing-pr response of the detector, which is important in understanding the
mass resolution which can be obtained on the reconstructed ¢ quark. The detailed calorimeter simulation
was combined with a parameterised b-tagging efficiency.

Signal events were generated using PYTHIA 5.72 [52], with m; = 175 GeV and the CTEQ2L
parton distribution functions. Events were preselected at the generator level to have one and only one
charged lepton (with pr > 25 GeV and |7| < 2.5) and one or two jets (generator-level jets were found
using the LUCELL clustering algorithm, which is part of PYTHIA). Generated events were then passed
through the parameterised b-tagging and the GEANT detector simulation. The CMS b-tagging perfor-
mance is taken from a study which used a detailed detector simulation combined with existing CDF data
on impact-parameter resolutions. The tagging efficiency for pr > 50 GeV is typically 50% for b-jets,
10% for c-jets, and 1-2% for light quarks and gluons. These efficiencies fall quite rapidly for lower
transverse momenta, and it was assumed no tagging could be performed for pr < 20 GeV or || > 2.4.
The generated luminosity corresponded to about 100 pb~! — only 30 hours of running at 1033cm 257!,

The tf and W Z backgrounds were also generated using PYTHIA 5.72. The same pre-selections
were applied at the generator level. The W+ jets backgrounds were generated using the VECBOS

9The CMS analysis presented below uses preu: = 20 GeV; the ATLAS analysis uses prey: = 15 GeV.
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Fig. 29: Reconstructed top mass for signal plus backgrounds (open histogram) and backgrounds only (shaded). The back-
grounds considered are tf, W + 2 jets and W + 3 jets. The vertical scale is events per 6 GeV mass bin per pb~! of luminosity.

generator [150], combined with HERWIG 5.6 [51] to fragment the outgoing partons.1® W + 2 jets and
W 43 jets processes were generated separately. Again, events were preselected to have a charged lepton
with pr > 25 GeV and |7| < 2.5, and to have a (parton-level) pr > 15 GeV for the final-state jets.

Events were then selected which passed the following requirements:

¢ One and only one isolated lepton (£ = e or p) with pr > 20 GeV and |77| < 2.5. This allows the
events to pass a reasonable lepton trigger.

e Missing pr > 20 GeV, and transverse mass (of the lepton and missing pr) 50 < m7 < 100 GeV.
These two requirements select W— £y candidates.

e Exactly two jets with pr > 20 GeV and |5| < 4. Requiring at least two jets reduces the W+ jets
background, while requiring no more than two jets rejects the ¢ background which naively would
produce four jets in the final state. B

e One jet with pr > 20 GeV and |n| < 2.5, the other jet with pr > 50 GeV and 2.5 < |n| < 4.0.
The requirement that the second jet be at forward rapidities tends to select the desired ¢-chamnel
process. :

e Leading jet pr < 100 GeV. This helps to reduce the ¢ background.

e Exactly one b-tagged jet (given the b-tagging acceptance, this is always the central jet). This
requirement again reduces ¢Z, and of course rejects W+ jets processes with light-quark or gluon
jets.

e Invariant mass of the two jets in the 80 — 100 GeV range. This rejects W Z events with Z —bb.

The single-top signal is then searched for in the invariant mass of the W and the b-tagged jet (which
should peak at the top quark mass). The mass was reconstructed assuming the solution for the W
kinematics which yields the lower |p%|. (It is possible to use other choices, for example the solution
~ which gives'the Wb mass closest to 7m;. This would result in an apparently better top mass resolution
but would also severely bias the background shape; the statistical significance of the signal would not be
improved.)

Figure 29 shows the reconstructed mass distribution for signal and background combined. The
signal is apparent as an excess over the background (the shaded histogram) around 160 GeV. (Since jet

!0The version of VECBOS used here, and its interface to HERWIG, were developed for use in CDF [151], and were adapted
for CMS by R. Vidal.




energy scale corrections have not been applied to the simulated events, the top mass reconstructs to less
than its true value.) The signal-to-background ratio in a window of 160+ 20 GeV is 3.5 with a clear peak
visible in the Wb invariant-mass distribution. The number of signal events is 66 in 100 pb™~!, giving a
signal efficiency of 1.2% (after the W —£i branching ratio). We then find that 10 fb~! would yield 6600
signal events (.S) and 1900 background (B), sufficient for a statistical accuracy on the number of signal
events of /S + B/S = 1.4%.

The largest background comes from Wecj with the charm jet mistagged as a b-jet. It would be
worthwhile to develop a b-tagging algorithm having greater rejection against such mistags, even at the
cost of some signal efficiency. The Wbb background was found to be a small contribution to the W + 2
jets background at the parton level for the selection cuts employed here, and was therefore not explicitly
included in the analysis.

The use of the forward jet tag substantially improves the signal-to-background ratio, and allows
a clear reconstructed top-mass peak to be seen. However, it does not significantly improve /S + B/S
[144]. One could therefore imagine omitting the forward jet requirement if the systematic uncertainty
could thereby be reduced.

Compared with earlier studies (for example [144]), this analysis uses more realistic jet and mis-
sing-pr resolutions, and includes initial- and final-state gluon radiation. As a result, the top-mass res-
olution is worsened; but the resolution found here compares well with the result of a full simulation of
single-top production in CDE

A study of the cross-section measurement for the £-channel process was also carried out by ATLAS
[152]. Signal events were generated using the ONETOP parton-level Monte Carlo [153] with fragmen-
tation, radiation, and underlying event simulated by PYTHIA 5.72. Backgrounds containing top quarks
(¢f and other single-top production) were also generated using ONETOP, while W4 jets and 1 bb back-
grounds were generated by HERWIG 5.6.11 These events were processed by the ATLAS parameterised
detector simulation assuming a 60% b-tagging efficiency for b-jets, 10% for c-jets, and 1% for light
quarks and gluons. The events were then analysed with a view towards separating ¢-channel single top
from background and measuring its cross section.

Event selection criteria were divided into two types: pre-selection and selection cuts. The pre-
selection criteria were as follows:
e at least one isolated lepton with pr > 20 GeV;
e at least one b-tagged jet with pr > 50 GeV;
e at least one other jet with p7 > 30 GeV.
These were followed by the selection cuts:
e two and only two jets in the event (a jet has pr > 15 GeV);
e one jet is a central b-tagged jet;
e the other jet is a forward (|| > 2.5) untagged jet with p7 > 50 GeV.

The application of these cuts, and also the requirement of a reconstructed top mass between 150
and 200 GeV, yields the number of events shown in Table 9. The final signal efficiency is 3% and the
signal-to-backgroundratio is 2.4. This implies a statistical precision on the cross-section measurement of
VS + B/S = 0.9% with 10 fb~! of data. Introducing other event selection variables (see [30, 154, 155])

it is possible to improve the signal-to-background ratio to nearly 5, but this does not improve the cross--
section measurement due to the small remaining signal efficiency.

Both the CMS and ATLAS studies indicate that it will be possible to observe ¢-channel single-top
production with a good signal-to-background ratio and a statistical uncertainty in the cross section of
less than 2% with 10 fb~1. Thus the uncertainty in the extracted value of V}; will almost certainly be
dominated by systematic uncertainties, as discussed in the conclusions.

"The Wbb background was generated using the matrix element from [89] interfaced to HERWIG 5.6.
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Table 9: Cumulative effect of cuts on ¢-channel signal and backgrounds. The first four rows of this table refer to cumulative
efficiencies of various cuts. The last two rows refer to the number of events for 10 fb™. Only events in which W — ev or uv
are considered in this table. Uncertainties quoted in this table are due entirely to Monte Carlo statistics.

cut t-channel tt Wbb W+ jets
eff(%) eff(%) eff(%) eff(%)
pre-selection 185 44 4 253 0.66
njets=2 12.1 0.996 1.55 0291
fwd jet
In| > 2.5 4.15 0.035 0.064 0.043
pr >50 GeV
1 50_154(‘)-’6"‘36\,4 3.00 0.017 0.023 0.016
—1
e(v;:ftz :‘lﬁ’s) 5.43 x 105 | 2.40 x 10 | 6.67 x 105 | 4.00 x 107
-1
ev(e;fz/r lgui:) 16515449 | 455+74 | 155+17 | 63394265

5.2 s-channel single-top production
5.21 Theory

The s-channel production of single top quarks is shown in Fig. 27(b) [121, 122, 123, 126, 144, 145]. The
cross section is much less than that of the t-channel process because it scales like 1/s rather than 1/M3,.
However, the s-channel process has the advantage that the quark and antiquark distribution functions are
relatively well known, so the uncertainty from the parton distribution functions is small. Furthermore,
the parton luminosity can be constrained by measuring the Drell-Yan process ¢gg—W*—£#, which has
the identical initial state {122, 156].12

The total cross section for the s-channel process has been calculated at NLO [126]; the result is
given in Table 8. The factorisation and renormalisation scales are set equal to u? = ¢?; varying each,
independently, between one-half and twice its central value yields uncertainties in the cross section of 2%
from each source. The uncertainty in the cross section from the parton distribution functions is estimated
to be 4%. The largest single source of uncertainty is the top quark mass; an uncertainty of 2 GeV yields
an uncertainty in the cross section of 5%. The relatively large sensitivity of the cross section to the top
quark mass is a manifestation of the 1/s scaling. Combining all theoretical uncertainties in quadrature
yields a total uncertainty in the cross section of 7%. This is much less than the present theoretical
uncertainty in the ¢-channel cross section.

The Yukawa correction to this process, of order awm;" /M{f’v, is less than one percent [126].
However, this correction could be significant in a two-Higgs-doublet model for low values of tan 3,
in which the Yukawa coupling is enhanced [138].

5.22 Phenomenology

In order to evaluate the potential to separate the s-channel signal from its backgrounds, Monte Carlo
events have been processed by a fast (parameterised) simulation of an LHC detector. At parton level the
signal and the ¢ background were generated by the ONETOP Monte Carlo [153]. Radiation, showering,
and the underlying event were added by PYTHIA 5.72 [52]. The W+ jets and W bb backgrounds were
generated using HERWIG 5.6 [51]."* Table 8 presents the cross sections assumed for the processes

2The parton luminosity can only be constrained, not directly measured, with this process. Since the neutrino longitudinal
momentum is unknown, the g% of the virtual W cannot be reconstructed.
3The Wb background was generated using the matrix element from [89] interfaced to HERWIG 5.6.
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Table 10: Cumulative effect of cuts on s-channel signal and backgrounds. The first five rows of this table refer to cumulative
efficiencies of various cuts. The last two rows refer to the number of events for 30 fb~!. Only events in which W— ev or uv
are considered in this table. Uncertainties quoted in this table are due entirely to Monte Carlo statistics.

cut s-channel | t-channel Wt tt Wbb W+ jets
j
eff(%) eff(%) | eff(%) | eff(%) | eff(%) | eff (%)
pre-selection 270 18.5 25.5 444 2.53 0.667
njets=2 184 12.1 4.03 0.996 155 0291
nbjet=2
or > 75 GoV 2.10 0.035 0018 | 0023 | 0034 | 00005
Y pr
175 oy 1.92 0.031 0016 | 0021 | 0028 | 0.0005
. so-gd(fsbeev 136 0.023 0006 | 0012 | 00097 | 0.00014
-1
e:g:ftggclﬁs) 6.66 x 10¢ | 1.63 x 106 | 4.5 105 | 6.9 x 105 | 2.0 x 106 |'1.2 x 108
-1
ev(ea’gzlffuf:) 008435 | 375413 | 27+ 15 | 853+ 175 | 194+34 | 169+ 76

containing top quarks. The cross section for the W+ jets background is normalised to that predicted
by the VECBOS Monte Carlo [150] and is taken to be 18000 pb.!* The Wbb cross section is taken
from [144] to be 300 pb.

From a phenomenological standpoint the most important distinction between the s-channel and
t-channel sources of single top is the presence of a second high-pr b-jet in the s-channel process. As
mentioned previously, in t-channel events the second b-jet tends to be at low pr and is often not seen.
Therefore, requiring two b-jets above 75 GeV pr will eliminate most of the ¢-channel background. Re-
quiring two high-pr b-jets in the event also suppresses the W+ jets background relative to the signal.

In addition to suppressing the t-channel background it is also necessary, as in other single-top
signals, to design cuts to reduce the W+ jets and t¢ backgrounds. In order to reduce contamination by
W+ jets events, the reconstructed top mass in each event must fall within a window about the known top
mass (150-200 GeV), and the events must have a total transverse jet momentum!> above 175 GeV. Only
events containing exactly two jets (both tagged as ’s) are kept in order to reduce the t background.

Table 10 presents the cumulative effect of all cuts on the s-channel signal and on the backgrounds.
Events from ¢-channel single-top production are included in this table as a background to the s-channel
process. From this table the predicted signal-to-background ratio for the s-channel signal is calculated
to be 0.56. The results also imply a signal statistical significance (S/v/B) of 23 with an integrated
luminosity of 30 fb~!. The statistical precision on the cross section, calculated from /S + B/S, is
5.5% with 30 fb~1,

This study indicates that, despite the large anticipated background rate, it should be possible to
perform a good statistical measurement of the s-channel single-top cross section. The accuracy with
which V;; can be measured is discussed in the conclusions.

5.3 Associated production
5.31 Theory

Single top quarks may also be produced in association with a W boson, as shown in Fig. 27(c) [123, 124,
145]. Like the t-channel process, one of the initial partons is a b quark. However, unlike the ¢-channel

"This cross section is defined for events containing at least two jets, each with pr > 15 GeV and |n| < 5.
15Scalar sum of the transverse momentum of all jets in the event.




process, this process scales like 1/s. This, combined with the higher values of z needed to produce both
a top quark and a W boson, leads to a cross section for associated production which is about a factor of
five less than that of the the t-channel process, despite the fact that it is of order o, rather than a,.

The total cross section for associated production has been calculated at leading order, with a subset
of the NLO corrections included [124, 145]; the result is given in Table 8. This subset is analogous to the
initial-gluon correction to the ¢-channel process, discussed previously. The other corrections have not
yet been evaluated.!% The initial-gluon correction contains an interesting feature which has no analogue
in the t-channel process. One of the contributing diagrams to the initial-gluon correction (gg—Wtb)
corresponds to gg—tt, followed by £—Wb. This should not be considered as a correction to associated
production, but rather as a background (it is in fact the dominant background, as discussed below). Thus,
when evaluating the initial-gluon correction, it is necessary to subtract the contribution in which the # is
on shell. This is done properly in [124].

The cross section is evaluated with the common factorisation and renormalisation scales set equal
to 42 = s. The uncertainty in the cross section due to varying these scales between one half and twice
their central value is 15%. This uncertainty would presumably be reduced with a full NLO calculation.
The uncertainty in the cross section from the parton distribution functions is estimated to be 10% [148],17
although this could be improved with further study. The uncertainty in the cross section due to an
uncertainty in the top quark mass of 2 GeV is 4%, relatively large due to the 1/s scaling of the cross
section. Combining all theoretical uncertainties in quadrature yields a total uncertainty at present of 18%,
the largest of the three single-top processes.

5.32 Phenomenology

The strategy for measuring the cross section for associated production (Wt mode) is similar to that for
the t-channel process, as they share the same backgrounds. However, the nature of associated production
makes it relatively easy to separate from W+ jets and difficult to separate from ¢t events. This difficulty
in removing the ¢¢ background does not preclude obtaining a precise cross-section measurement in this
channel, assuming the rate for ¢f can be well measured at the LHC.

Two studies designed to separate signal from background have been performed using two different
final states. The first is a study by ATLAS [30] which attempts to isolate W signal events in which one
W decays to jets and the other decays to leptons. The second study, which is presented in [124], attempts
to isolate signal events in which both W’s decay leptonically.

The first study presented here was done by ATLAS using the same event sample described in
Section 5.1. Since the presence of a single isolated high-pr lepton is one of the preconditions of this
study, the second W must decay to two jets to be accepted by the event pre-selection. Therefore requiring
a two-jet invariant mass within a window around the W mass will serve to eliminate most events that .
do not contain a second W. The two-jet invariant-mass distribution is shown in Fig. 30 and clearly
demonstrates the presence of a sharp peak in the associated-production signal and the ¢ background.
This effectively leaves t¢ as the only background to Wt events.

In addition to these special distinguishing features of the Wt signal, there are several simple
kinematic requirements which can be employed to reduce the ¢ background. By choosing events with
exactly three jets and with exactly one of them tagged as a b-jet, some rejection of the ¢ background is
possible. Some further rejection is obtained by limiting the selection to events with invariant mass less
than 300 GeV, where the invariant mass of an event is defined as the invariant mass obtained by adding
the four-vectors of all reconstructed jets and charged leptons (e and p). However, even with these cuts
the ¢¢ background is significantly larger than the Wt signal.

Table 11 presents the cumulative effect of all cuts on the Wt signal and on the tf and W+ jets

'$The analogous calculation for We production has been performed in [157).
"This is the uncertainty in the gluon-gluon luminosity at /7 = (m; + Mw)/v/S = 0.02, where V'S = 14 TeV.




Norm. Events2 GeY

0.02

0.01

. » 1\‘%—;'&!&Rh- ; FI"; ﬂ---'-li.z-:" - _‘.‘:; ' ’ :2 -‘i:"”-""::- -
0 25 50 75 100 125 130 175 200 225 250
2 Jet Whass (GeV)

Fig. 30: The normalised two-jet invariant-mass distribution. For each event the two-jet combination with mass closest to the

W mass is plotted. This clearly shows a peak in the distribution for Wt and ¢£ which is not present for the other backgrounds.

backgrounds. The Wbb and t-channel single-top backgrounds are virtually eliminated by the cuts and
so are not included in the table. From this table the predicted signal-to-background ratio for the Wt
signal is calculated to be 0.24. After three years of running at low luminosity (30 fb~1), this implies a
signal statistical significance (S/+/B) of 25 and a statistical error on the Wt cross section (/S + B/.S)
of 4.4%.

The second study [124] was done at parton level and involved the separation of signal from back-
ground in the mode in which both W’s decay to leptons. This signal contains two high pr leptons and
only one jet (the b-jet produced from the top decay). In this decay channel it was found that, after apply-
ing detector acceptance cuts, requiring precisely one b-tagged jet with pr > 15 GeV is enough to yield
a signal-to-background ratio of nearly unity. Also, the signal efficiency is significantly higher than in the
ATLAS analysis, allowing more total signal events to pass the cuts despite the lower branching ratio for
this decay mode. The statistical precision on the cross section measured in this analysis is 1.3% with
an integrated luminosity of 30 fb~!. The accuracy with which Vj, can be extracted is discussed in the
conclusions.

5.4 Polarisation in single-top production
5.41 Theory

Because single top quarks are produced through the weak interaction, they are highly polarised [123,
129, 130, 131, 144]. In the ultra-relativistic limit, the top quarks are produced in helicity eigenstates
with helicity —1/2 (the top antiquarks have helicity +1/2), because the V — A structure of the weak
interaction selects quarks of a definite chirality. However, if the top quarks are not ultra-relativistic,
chirality is not the same as helicity. Nevertheless, it was shown in [130] that there is a basis in which
the top quark is 100% polarised, regardless of its energy. The top quark spin points along the direction
of the d-type or d-type quark in the event, in the top quark rest frame (the £ spin points opposite this
direction). In ¢-channel production, this is the direction of the final-state light quark (ub—dt) or the
beam direction (db—%t). In s-channel production, this is the beam direction (ud—tb). In associated
production (gb—W?t), this is the direction of the d quark (or charged lepton) from the I decay.

We focus our attention on the ¢-channel single-top process for the remainder of this section. The
top quark polarisation in the t-channel process has been calculated at NLO [131]; the results below are
taken from this study. In the case of ¢ production, 80% of the events have the d-type quark in the final
state. This suggests using the direction of the light-quark jet, as observed in the top quark rest frame, to
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Table 11: Cumulative effect of cuts on Wt signal and backgrounds. Pre-selection cuts are defined in the same way as for the
ATLAS t-channel analysis described earlier in this report. The first five rows of this table refer to cumulative efficiencies of
various cuts. The last two rows refer to the number of events for 30 fb~". Only events in which W— e or uv are considered
in this table. Uncertainties quoted in this table are due entirely to Monte Carlo statistics.

cut Wt tt W+ jets
eff(%) eff(%) eff(%)
pre-selection 255 444 0.66
njets=3
pr > 50 GeV 3.41 4.4 0.030
nbjet=1
pr > 50 GeV 3.32 3.24 0.028
Invariant Mass
< 300 GeV 0.55 0.36 0.00051
65 < M;; < 95 0.49 0.14 0.000085
|
events/30 fb 53x10° | 7.2x106 | 1.2x108
(before cuts)
=i
events/30 fo 2608 & 166 | 10616 + 625 | 102 + 59
(after cuts)

measure the spin. This has been dubbed the “spectator basis” [130]. The polarisation of the top quark
in this basis (defined as P = (N3 — N})/(Nt + Ny)) is 0.89. However, the polarisation is increased to
nearly 100% when the cuts used in the ¢-channel analysis are imposed. This is because the polarisation is
diluted by events in which the b is produced at high pr; but such events are eliminated by the requirement
of only two jets. .

In the case of ¢ production, 69% of the events have the d-type quark in the initial state. This
suggests using the beam direction to measure the ¢ spin. However, it turns out that the spectator basis
again yields the largest polarisation, P = —0.87. This polarisation is increased to P = —0.96 when cuts
are applied.!®

Since the top quark decays via the weak interaction, its spin is analysed by the angular distribution
of its decay products. The most sensitive spin analyser in top decay is the charged lepton, which has a
(leading order) angular distribution with respect to the top quark spin of

1 dI 1
— == 12
I'dcosf, 2 (14 cos ;) (12)

in the top quark rest frame [158]. Hence the charged lepton tends to point along the direction of the
spectator jet.

5.42 Phenomenoclogy

The goal of this analysis is to estimate the sensitivity of ATLAS and CMS to the measurement of the
polarisation of the top quarks produced by the ¢-channel single-top process. The ¢-channel process was
chosen due to the large statistics available in this channel and the relative ease with which it is separated
from its backgrounds. The t-channel events produced by the ONETOP generator and passed through
PYTHIA and a parameterised detector simulation are analysed to attempt to recover the predicted SM
top polarisation in the presence of background and detector effects. Details of the study are presented
in [152, 154].

'%With cuts applied, the polarisation in the so-called “n-beamline basis” is slightly higher, P = —0.97.
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The experimental measurement of the polarisation of the top quark is essentially a measurement
of the angular distribution of its decay products in the top quark rest frame. As explained above, the
most sensitive angle is between the charged lepton from top decay and the direction of the spectator jet,
in the top quark rest frame. In the absence of background or detector effects the angular distribution of
the charged lepton is given by

flcos8y) = %(1 + Pcosb;) (13)

where P is the polarisation of the sample and can range from —1 to 1.

Experimentally, in order to measure the angular distribution of the charged lepton in the top quark
rest frame, it is necessary to first reconstruct the four-momentum of the top quark. However, the recon-
struction of the top four-momentum suffers from an ambiguity due to the unknown longitudinal momen-
tum of the neutrino produced in the top decay. Using the W and top masses as constraints,!® one can
reconstruct the top four-momentum, but the quality of the reconstruction is degraded by this ambiguity.
Once the top four-momentum has been reconstructed, one can determine the direction of the spectator
jet and the charged lepton in the top quark rest frame. The angle between these two directions is 8.

In order to extract the value of the top polarisation from the angular distribution, reference event
samples were created with 100% alignment with the polarisation axis (spin up, P = +1) and with
100% anti-alignment with the polarisation axis (spin down, P = —1). These reference distributions
were compared to a statistically-independent data set with the predicted SM top quark polarisation. This
comparison was done by minimising

fh COSH[ ¢ — Jd COSB( M 2
X2= Z (t( 02)1 +f2( )) (14)
(cos8); th; adi
where the subscript d represents quantities calculated for the data distribution and the subscript th refers
to the generated reference distribution. The theoretical value fi1, (cos 6;) is calculated via

fth(cosﬁg) = -;—((1 - P)fD(COS Be) + (1 + P)fU(COSGe)) (15)

where fp and fi refer to the value of the generated theoretical distribution for the 100% spin-down and
the 100% spin-up tops, respectively, and P is the polarisation of the top sample. The procedure returns
an estimate of the top polarisation and an error on that estimate. In this way the sensitivity to changes in
top polarisation can be quantified.

Moving from the parton-level simulation to a simulation which includes both hadronisation and
detector effects is certain to complicate the measurement of the polarisation of the top quark. In ad-
dition, the signal could be biased by an event selection designed to eliminate background and will be
contaminated by residual background events.

The first histogram in Fig. 31 shows the angular distribution for signal only, at parton-level. The
second histogram in Fig. 31 shows the angular distribution of the charged lepton after detector effects
have been simulated. In addition to effects associated with detector energy smearing, jet and cluster
definitions, etc., this distribution includes the effects of ambiguities in reconstructing the top quark due to
the absence of information about the neutrino longitudinal momentum. It does not, however, contain the
effects of any event selection in order to separate signal from background. This histogram demonstrates -
that the effect of hadronisation and detector resolution changes the shape of the angular distribution but
still produces a highly asymmetric distribution.

In addition to the effects introduced by the detector resolution, the effect of applying the event-
selection criteria can be evaluated by applying them one at a time and observing the change in shape of

olarisation analysis the event-selection criteria are:
19The W mass can be used to calculate the neutrino longitudinal momentum to within a two-fold ambiguity. Of these two
solutions the one which produces the best top mass is chosen. ’
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Fig. 31: Angular distribution of charged lepton in top rest frame for various data samples. The histograms progress from left-
to-right, top-to-bottom. The first histogram shows the parton-level distribution. The second histogram is after the simulation of
detector and reconstruction effects. The final four histograms illustrate the influence of event selection criteria on the angular
distribution. The effects of the cuts are cumulative and are the result of adding pre-selection cuts, a jet-multiplicity requirement,
a forward jet tag, and a top mass window, respectively.

o Pre-selection (trigger) cuts as in ATLAS ¢-channel analysis described previously;
e number of jets = 2;

o forward jet (|n| > 2.5) with pr > 50 GeV;

e reconstructed top mass in the range 150200 GeV.

This set of criteria leads to a signal efficiency of 3.0%, corresponding to more than 16000 events in
10 fb~! of integrated luminosity. Fig. 31 demonstrates the effect of applying these cuts in a cumulative
manner. Again the asymmetry of the ¢-channel angular distribution is preserved, though more degrada-
tion is clearly evident, in particular near cos §; = 1. The degradation is worse at these values of cos 6,
because the leptons from these events are emitted in the direction opposite to the top boost. This reduces
the momentum of the leptons causing more of them to fail py-based selection criteria.

Since W+ jet events dominate the background remaining after cuts, they are taken as the only
background in this analysis. Fig. 32 shows the cumulative effect of cuts on the angular distribution of
the charged lepton from W+ jets events. A peculiar feature of these events is evident in all of these
distributions. This is the tendency for events to be grouped near cos 8, = 1. The events which populate
this region tend to be the highest pr events. This shows that even basic jet and isolated-lepton definitions
and pre-selection cuts bias the angular distribution of W+ jets events. :

When the event-selection criteria described in the previous sections are applied, the signal-to-
background ratio (treating W+ jets as the only background) is found to be 2.6. Using the methods
described earlier it is possible to estimate the polarisation of a mixed sample of ¢t-channel signal and
W+ jets background. The reference distributions for 100% spin-down and 100% spin-up top quarks
mixed with background in a ratio of 2.6 are shown in Fig. 33. Also shown is the angular distribution
corresponding to a statistically-independent data sample with SM polarisation mixed with background
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Fig. 32: The effect of event selection cuts on the angular distribution of the charged lepton in W35 events. The effects of the
cuts are cumnulative. The first distribution is the result of applying the pre-selection (trigger) cuts only. Further cuts are applied
cumulatively from left-to-right, top-to-bottom.

in the ratio 2.6. The x? function presented in (14) is minimised to obtain an estimate of the polarisation
of the top. To estimate the precision for one year of data-taking, the fit was done with 3456 signal events
and 1345 background events, corresponding to 2 fb~! of integrated luminosity (~ 1/5 of a year). For
this integrated luminosity the error on the polarisation measurement is 4.0%. Then, assuming the statis-
tics on the reference distributions, fp(cos8,) and fyr(cos ), will lead to a negligible source of error,
this precision improves to 3.5%. Projecting these results to one year of data-taking at low luminosity
(10 fb~1), assuming that the errors scale as the square root of the number of events, yields a predicted
statistical precision of 1.6% on the measurement of the top polarisation.

5.5 Conclusions on single top production

As mentioned in the introduction, single-top quark production is the only known way to directly measure
Vi at a hadron collider. In this section we estimate the accuracy with which V;;, can be extracted at the
LHC, and discuss what will be required to achieve that accuracy.

There are four sources of uncertainty in the extraction of |V;3|? from the single-top cross section:
theoretical, experimental, statistical, and machine luminosity. As we have seen, the statistical uncertainty
with 30 fb~! of integrated luminosity is less than 2% for both the ¢-channel process® and associated
production, and is 5.5% for the s-channel process (3% with 100 fb—!). It will be a challenge to reduce
the other sources of uncertainty to 5%, so we regard the statistical accuracy as being sufficient in all three
processes.

The traditional uncertainty in the machine luminosity is about 5% [159]. It may be possible to

reduce the uncertainty below this value using Drell-Yan data, but this relies on accurate knowledge of
the quark distribution functions. However, the process ¢g—W™*— ¢ involves the identical combination

P0nly 10 fb~! are required to achieve this accuracy in the ¢-channel process.
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Fig. 33: The first histogram shows the reference distribution for 100% spin-up top quarks after detector effects and event-
selection criteria have been applied and the appropriate level of background has been mixed in. The second histogram shows
the reference distribution for 100% spin-down top quarks. The third histogram represents the expected SM distribution for a
statistically-independent sample of signal and background.

of parton distribution functions as the s-channel process, so it can be used to almost directly measure the
relevant parton luminosity, thereby avoiding the need to measure the machine luminosity [156].

The theoretical uncertainty is under the best control in the s-channel process. The theoretical
uncertainty is dominated by the uncertainty in the top quark mass; an uncertainty of 2 GeV yields an
uncertainty of 5%. This is cut in half if the uncertainty in the top mass is reduced to 1 GeV. The small
uncertainty due to variation of the factorisation and renormalisation scales can be reduced to a negligible
amount by calculating the cross section at NNLO order, which should be possible in the near future.
The small uncertainty from the parton distribution functions can be further reduced as described in the
previous paragraph; this also obviates the need for a measurement of the machine luminosity.

The theoretical uncertainty in the ¢-channel process is presently dominated by the factorisation-
scale dependence and the parton luminosity. Although the scale dependence of the total cross section
is small (4%), the uncertainty in the semi-inclusive cross section (o (py;) < 20 GeV) is about 10%.
This can be reduced by calculating the pr spectrum of the b at NLO. It may also prove possible to
measure the total cross section, although this has yet to be demonstrated. It is therefore plausible that
the factorisation-scale dependence will be about 5% once the LHC is operating. It is also likely that the
uncertainty from the parton distribution functions will be reduced below its present value of 10%. The
parton luminosity could be directly measured using W ; production, which is dominated by gg—Wg,
and therefore involves the identical combination of parton distribution functions as the ¢-channel process.
Again, this has the desirable feature of eliminating the need to measure the machine luminosity.

The theoretical uncertainty in the associated-production cross section can be reduced far below
its present value of 18%. A full NLO calculation should reduce the factorisation-scale dependence to
roughly 5%. It is likely that the uncertainty from the parton distribution functions will also be reduced.
Unless it is possible to measure the gg luminosity directly, the uncertainty from the parton distribution
functions will be augmented by the uncertainty in the machine luminosity.

As far as experimental systematic uncertainties are concerned, the extraction of a signal cross
section requires knowledge of the backgrounds and of the efficiency and acceptance for the signal. These




analyses require hard cuts on both signal and background, and so the processes need to be modelled and
understood very well.

For all of these processes, the major backgrounds are ¢ and W+ jets. The largest background
for the s-channel process (where a double b-tag is employed) and associated production is tf. The tf
process can be isolated in other decay modes and in principle well measured. In the £-channel process
the biggest background comes from W ¢j with the charm jet mistagged as a b-jet. Obviously it would be
worthwhile to develop a b-tagging algorithm having greater rejection against such mistags, even at the
cost of some signal efficiency, given that the signal rate is large. It may be possible to understand the
W +jets backgrounds by comparing with a sample of Z+ jets events after applying similar selections to
those used to select the single-top sample in W+ jets. The Z+ charm rate will be suppressed compared
to the W+ charm rate since the latter is mostly produced from the strange sea, which is bigger than the
charm sea; nonetheless, the cross section, kinematics, jet multiplicities and so on can all be compared to

“our simulations using the Z+ jets sample.

The forward jet tag is very effective in enhancing the signal-to-background ratio in the ¢{-channel
process. This means that jets need to be found with good efficiency up to large rapidities, at least || ~ 4
in the calorimeter. Unfortunately these observations also imply that the background estimate is very
sensitive to the Monte Carlo predicting the correct mix of jet flavours and jet rapidities in the W+ jets
events. (We note that VECBOS generates very few jets in the tagging region, and so far there is no
collider data on forward jets in vector-boson events which could verify whether this is correct.) Of
course, effort applied to understanding W+ heavy-flavour jets backgrounds will pay off in many other
searches besides this one, and will be a very worthwhile investment. We also look forward to the results
of ongoing efforts to improve the Monte Carlo simulation of vector-boson plus jet production [160].
Requiring exactly two jets (as was done here to reject the tf background) also means that we will be very
sensitive to our knowledge of jet efficiencies, QCD radiation, efc. The cross-section measurement also
requires knowledge of the b-tagging efficiency. This should be measurable at the few-percent level using
control samples of ¢ events selected with kinematic cuts alone.

As mentioned above, the purely statistical uncertainty in the cross-section measurement will be
less than 5%, as will most of the theoretical uncertainties. It will be a considerable challenge to reduce
the experimental systematic uncertainty to this level. At the present time, the experimental systematic
uncertainty in the tf cross section at the Tevatron (which is a similar challenge in many respects, in- .
volving jets, b-tagging, and background subtraction) is about 19% [10]. This total is made up of many
components which are each at the 5% level, so while it will be a lot of work to reduce them, there is no
obvious “brick wall” that would prevent this.

Many of these systematic issues can also be addressed by comparing the ¢-channel and s-channel
single-top processes. It will be a powerful tool to be able to measure V;; in two channels which have
different dominant backgrounds, different selection cuts, and a different balance between theoretical and
experimental systematic uncertainties.

‘We are only just now entering the era of precision top physics with Run 11 at the Tevatron. Single-
top production has not yet even been observed. We will learn a great deal over the next few years about
how to model top events and their backgrounds, and how to understand the systematic uncertainties. The
LHC will undoubtedly benefit from all this experience.

If all sources of uncertainty are kept to the 5% level or less, it should be possible to measure
|Vis|? to 10% or less. We therefore regard the measurement of V3, with an accuracy of 5% or less as an
ambitious but attainable goal at the LHC. We have also seen that a measurement of the polarisation of
single top quarks produced via the ¢-channel process will be possible with a statistical accuracy of 1.6%
with 10 fb~1. We have not attempted to estimate the systematic uncertainty in this measurement.




6. tt SPIN CORRELATIONS AND CP VIOLATION?!

For t¢ production at the LHC quantities associated with the spins of the top and antitop quark will
be “good” observables as well. The reason for this -is well known. Because of its extremely short
lifetime 7; (see Section 2.1) the top quark decays before it can form hadronic bound states. Thus the
information on the spin of the top quark does not get diluted. As the spin-flip time is much larger
than 7; it is, moreover, very unlikely that the top quark changes its spin-state by emitting gluon(s) via a
chromomagnetic dipole transition before it decays. In any case this amplitude is calculable with QCD
perturbation theory. Hence by measuring the angular distributions and correlations of the decay products
of t and t the spin-polarisations and the spin-spin correlations that were imprinted upon the ¢ sample by
the production mechanism can be determined and compared with predictions made within the SM or its
extensions. Therefore these spin phenomena are an additional important means to study the fundamental
interactions involving the top quark.

In this section we are concerned with the production and decay of top-antitop pairs. At the LHC
the main ¢¢ production process is gluon-gluon fusion, ¢4 annihilation being sub-dominant. As the main
SM decay mode is t— W * b we shall consider here the parton reactions

99,95 > tE+ X = bb+4f + X, (16)

where f denotes either a quark, a charged lepton or a neutrino. If the final state in (16) contains two,
one, or no high pr charged lepton(s) then we call these reactions, as usual, the di-lepton, single lepton,
and non-leptonic t¢ decay channels, respectively. To lowest order QCD the matrix elements for (16),
including the complete ¢ spin correlations and the effects of the finite top and W widths, were given in
[161, 162]. Spin correlation effects in t¢ production in hadron collisions were studied within the SM in
[162, 163, 164, 165, 166, 167, 168].

In order to discuss the top spin-polarisation and correlation phenomena that are to be expected
at the LHC it is useful to employ the narrow-width approximation for the ¢ and ¢ quarks. Because
I':/m; < 1 one can write, to good approximation, the squares of the exact Born matnx elements M),
A = gg, g4, in the form

N MO o Tr [pRVF] = pura R pprfors: a7

The complete spin information is contained in the (unnormalised) spin density matrices R®™ for the
production of on-shell t£ pairs and in the density matrices p, p for the decay of polarised ¢ and ¢ quarks
into the above final states. The trace in (17) is to be taken in the ¢ and ¢ spin spaces The decay density
matrices will be discussed below. The matrix structure of R(Y is

B, 550 = AN8, 850 + BV (0 aatbp + BV Suar (65 + CH (0 aer (09)er,  (18)

; . . . . . . « . 11 5(A
where o* are the Pauli matrices. Using rotational invariance the “structure functions B,(’\), Bz( ) and
CZ(J’\ ) can be further decomposed. A general discussion of the symmetry properties of these functions is

given in [169). The function A(*), which determines the ¢ cross section, is known in QCD at NLO [38].
Because of parity (P) invariance the vectors B(), B() can have, within QCD, only a component normal
to the scattering plane. This component, which amounts to a normal polarisation of the ¢ quark, Pt is
induced by the absorptive part of the respective scattering amplitude and was computed for the above
LHC processes to order o2 [170]. (P} = ’Pi if CP invariance holds.) The size of the normal polarisation
depends on the top quark scattering angle and on the c.m. energy. In the gluon-gluon fusion process P}
reaches peak values of about 1.5%. In ¢t production at the LHC the polarisation of the top quark within
the partonic scattering plane, which is P-violating, is small as well within the SM. Therefore the ¢ and ¢
polarisations in the scattering plane are good observables to search for P-violating non-SM interactions
in the reactions (16) — see Section 3.4

ZSection coordinators: W. Bernreuther, A. Brandenburg, V. Simak (ATLAS), L. Sonnenschein (CMS).




The ¢t production by the strong interactions leads, on the other hand, to a significant correlation

between the ¢ and f spins. This correlation is encoded in the functions C’fj’\ ) Using P- and charge-
conjugation (C) invariance they have, in the case of a t{ final state, the structure

CQ(;\ )= cg'\)&j + c&”ﬁ;ﬁj + Vi + M (keip; + Dikes), (19)

where p and k; are the directions of flight of the initial quark or gluon and of the ¢ quark, respectively, in
the parton c.m. frame. So far the functions c,(-’\) are known to lowest-order QCD only (see, e.g., [164]).

For a tt X final state a decomposition similar to (19) can be made.
From (19) one may read off the following set of spin-correlation observables [164]:

(k: - s4) (ks - s9), (20)

(P -st)(P - s7), (21)

St * Sg, (22)

(B - se) (ke sz) + (B - s7) (ke - s2), (23)

where s;, 7 are the ¢ and ¢ spin operators, respectively. The observables (20), (21), and (23) determine
the correlations of different ¢, spin projections. Eq. (20) corresponds to a correlation of the ¢ and ¢
spins in the helicity basis, while (21) correlates the spins projected along the beam line. We note that the
“beam-line basis” defined in [166] refers to spin axes being parallel to the left- and right-moving beams
in the ¢ and ¥ rest frames, respectively. The ¢f spin correlation in this basis is a linear combination of
(20), (21), and (23). _

A natural question is: what is — assuming only SM interactions — the best spin basis or, equiva-
lently, the best observable for investigating the ¢f spin correlations? For quark-antiquark annihilation,
which is the dominant production process at the Tevatron, it turns out that the spin correlation (21)
[164, 168] and the correlation in the beam-line basis [166] is stronger than the correlation in the helicity
basis. In fact, for §¢ annihilation a spin-quantisation axis was constructed in [167] with respect to which
the ¢ and 7 spins are 100% correlated. At the LHC the situation is different. For gg—#¢ at threshold
conservation of total angular momentum dictates that the ¢Z is in a 1S, state. Choosing spin axes parallel
to the right- and left-moving beams this means that we have 17, and tgtp states at threshold. On the
other hand at very high energies helicity conservation leads to the dominant production of unlike helicity
pairs tptz, and tzfg. One can show that no spin quantisation axis exists for gg—stt with respect to which
the ¢ and Z spins are 100% correlated. The helicity basis is a good choice, but one can do better. This
is reflected in the above observables. Computing their expectation values and statistical fluctuations one
finds [164] that (22) has a higher statistical significance than the helicity correlation (20) which in turn is
more sensitive than (21) or the correlation in the beam-line basis.

The spins of the ¢ and ¢ quarks are to be inferred from their P-violating weak decays, i.e., from
t—bW+ b€t v, or bgg’ and likewise for % if only SM interactions are relevant. As already mentioned
and used in previous sections, in this case the charged lepton from W decay is the best analyser of the top
spin. This is seen by considering the decay distribution of an ensemble of polarised ¢t quarks decaying
into a particle f (plus anything) with respect to the angle between the polarisation vector &; of the top .
quark and the direction of flight § of the particle f in the ¢ rest frame. This distribution has the generic
form 1 dr

T dcoséy

= %(1 + Ks& - ay), o2

where the magnitude of the coefficient x signifies the spin-analyser quality of f. The SM values for
some f, collected from [171, 172, 173, 174], are given in Table 12. The corresponding ¢ decay density
matrix in the ¢ rest frame is read off from (24) to be pyiq = (1 + K5 o - @f)atq. The distributions for




¢ .

Table 12: Correlation coefficient x ¢ for V — A charged current. In the last column Le.j. stands for least energetic jet in the ¢
rest frame.

f | £5,d,5 | ve,u,c| b W+ | le,j. from ¢7’
Kf 1 -031 | —0.41 | 041 0.51

the decay of polarised antitop quarks are obtained by replacing ky— — k¢ in (24). The order a; QCD
corrections to the decays {—bfv and t— Wb of polarised ¢ quarks were computed in [171] and [175],
respectively. For ¢, ¢ polarisation observables these corrections are small.

From the above table it is clear that the best way to analyse the ¢f spin correlations is through
angular correlations among the two charged leptons £14'~ in the di-lepton final state. Using the produc-
tion and decay density matrices in (17), neglecting the 1-loop induced QCD normal polarisation, and
integrating over the azimuthal angles of the charged leptons one obtains the following normalised double
distribution, e.g. in the helicity basis

1 d*c _ 14+ Ckp+Ky—cosf cosb_ @5)
odcosfpdcosf_ 4 '
where K4+ Ky~ = —1 and 6, (6_) is the angle between the ¢(Z) direction in the t¢ c.m. frame and the

£+ (£~) direction of flight in the £(£) rest frame. The coefficient C, which is the degree of the spin
correlation in the helicity basis, results from the c{* in (19) and it is related to [165]:

_ N(tLt—L + th_R) — N(thR + th_L)

- N(triL +trtr) + N(trtr +trin)
For partonic final states and to lowest order in o one gets C' = 0.332 for the LHC. (The number
depends somewhat on the parton distributions used. Here and below the set CTEQ4L [116] was used.)
The optimum would be to find a spin axis with respect to which |C| = 1. But, as stated above, this is not
possible for gg fusion. In addition to (25), analogous correlations among £* from ¢ and jets from ¢ decay
(and vice-versa) in the single lepton channels, and jet-jet correlations in the non-leptonic decay channels
should, of course, also be studied. While the spin-analysing power is lower in these cases, one gains in
statistics.

(26)

From the above example is quite obvious that, for a given ¢f decay channel, the ¢ spin correlation
will be most visible when the angular correlations among the ¢ and ¢ decay products are exhibited in
terms of variables defined in the ¢ and ¢ rest frames. An important question is therefore how well the
4-momenta of the ¢ and ¢ quarks can be reconstructed experimentally? We briefly discuss the results of
a simulation of the single lepton and di-lepton channels [176] which includes hadronisation and detector
effects using PYTHIA [52] and the ATLFAST [105] software packages. The transverse momentum of
every reconstructed object like a jet, a charged lepton, or the missing transverse energy of an event has to
exceed a certain minimum value p?**. The detector acceptances impose further restrictions on the phase
space of the detected objects in pseudo-rapidity.

In the case of the single lepton ¢ decay channels one isolated lepton (e* or p¥) is required. From
the missing transverse energy of the event and the ¥ mass constraint the longitudinal momentum p,
of the neutrino can be determined up to a twofold ambiguity. It turns out that in most cases the lower
solution of p, is the correct one. To complete the event topology, four jets are demanded. Two of them
have to be identified as b-jets coming from top decay.

The two non-tagged jets are often misidentified due to additional activity in the detector from
initial and final state radiation. To suppress the QCD background the invariant mass of the two jets has to
lie in a narrow mass window around the known mass of the W boson. After this cut the two-jet system
is rescaled to the W mass. Finally there is a twofold ambiguity when the b-jets are combined with the
reconstructed W bosons. The combination which yields the lower reconstructed top mass turns out to be
the correct one most of the time.




Fig. 34: Joint distribution d> N/d cos 8, dcos_ generated Fig. 35: Same distribution as in the figure to the left, but
with default PYTHIA. The detector response was simulated including the SM tZ spin correlations. The detector response
with CMSJET. was simulated with CMSJET.

In the case of the di-lepton decay channels two isolated oppositely charged leptons are requested.
Moreover two jets have to be detected and tagged as b-jets. With the known top and W masses and with
the missing transverse energy of the event the unknown 3-momenta of the neutrino and anti-neutrino can
be computed using the kinematic constraints of the event. These result in a system of two linear and
four quadratic equations. The equations can be solved numerically and usually several solutions arise.
Since the experimentally determined momenta do not coincide with the corresponding variables at the
parton level the kinematic constraints have to be relaxed somewhat in order to improve the reconstruction
efficiency. The algorithm set up in [176] was used to solve these equations. The best solution can be
obtained by computing weights from known distributions. Following [176] the highest efficiency was
obtained using the weight given by the product of the energy distributions of v; and 7, and the cos 6}
distribution in the #f c.m. frame.

For the LHC running at low luminosity (£ = 1033 cm~2s~1), about 4 x 10° ¢f events per year
are expected in the di-lepton decay channels (£ = e, u). A further simulation of these channels was
performed in order to study the joint distribution (25). PYTHIA 5.7 [52] was used for the event generation,
CMSIET [177] for the detector response and the algorithm of [176] for the reconstruction of the ¢,
momenta. The transverse momenta of the two isolated, oppositely charged leptons and of the two jets
were required to exceed 20 GeV. The minimal missing transverse energy of the event was chosen to be
40 GeV. A further selection criterion was that each jet provides at least two tracks with a significance
of the transverse impact parameter above 3.0 to be tagged as b-jet. The processes were simulated in
two different ways. First the SM matrix elements of [75] for the reactions (16), which contain the ¢t
spin correlations, were implemented into PYTHIA. For comparison these channels were also simulated
with the PYTHIA default matrix elements for gg, ¢qG—tt which do not contain spin correlations. In both
simulations initial and final state radiation, multiple interactions, and the detector response was included. -
In Figs. 34, 35 we have plotted the resulting double distributions d2N/d cos 8..d cosé_. They have been
corrected for the distortions of the phase space due to the cuts. A fit to the distribution Fig. 35 according
to (25) yields the correlation coefficient C' = 0.331 £ 0.023, in agreement with the value C' = 0.332
obtained at the parton level without cuts. A fit to Fig. 34 leads to C' = —0.021 % 0.022 consistent with
C = 0. Systematic errors, for instance due to background processes, e.g., Z*—¢+ £~ accompanied by
two b-jets, remain to be investigated.




From these double distributions one may form one- or zero-dimensional projections, for instance
asymmetries as considered in [166, 165, 168]. Another approach is to study distributions and expectation
values of angular correlation observables which would be zero in the absence of the tf spin correlations.
A suitable set of observables is obtained by transcribing, for instance, the spin observables given above
into correlations involving the directions of flight of those final state particles that are used to analyse
the ¢ and £ spins. As an example we discuss the case of the single lepton channels t—bqq’, t—b¢~ 7.
One may choose to analyse the ¢ spin by the direction of flight §; of the b-jet in the rest frame of the ¢
quark and the ¢ spin by the momentum direction §_. of the £~ in the laboratory frame. The latter is rather
conservative in that no reconstruction of the ¢ momentum is necessary. Then (20)-(22) are translated into
the observables

O = (EIZ : f’p)(fl— : f’p), @27
02 = (G; -ke)(@- - k), (28)
O3 = &-4-, : 29

where p, refers to the beam direction. The pattern of statistical sensitivities of the spin observables
(20)-(22) stated above is present also in these angular correlations. Computing the expectation values
(O;) and the statistical fluctuations AQ; and those of the observables for the corresponding charge
conjugated channels, one gets for the statistical significances of these observables at the parton level
[164]: 81 ~ 0.007+/Ny—, S2 & 0.0254/Ny~, and S5 ~ 0.055./Ny,—, where Ny, is the number of
reconstructed events in the specific single lepton channel. The linear combination

0s4=03-0; 30

has a still higher sensitivity than O, namely S3 & 0.073/N;,—. Even with 10* reconstructed b4~ and
be*t events each one would get a 7.3¢ spin-correlation signal with this observable. The significance of
these observables after the inclusion of hadronisation and detector effects remains to be studied.

The results of the above simulations are very encouraging for the prospect of ¢,  spin physics. On
the theoretical side the NLO QCD corrections to the helicity amplitudes, and to the spin density matrices
should be computed in order to improve the precision of the predictions and simulation tools.

If ¢ production and/or decay is affected by non-SM interactions then the correlations above will
be changed. One interesting possibility would be the existence of a heavy spin-zero resonance Xy (for
instance a heavy (pseudo)scalar Higgs boson as predicted, e.g., by SUSY models or some composite
object) that couples strongly to top quarks. For a certain range of masses and couplings to ¢ such an
object would be visible in the ¢ invariant mass spectrum [74, 75]. Suppose one will be fortunate and
discover such a resonance at the LHC. Then the parity of this state may be inferred from an investigation
of tt spin correlations. This is illustrated by the following example. As already mentioned above, close
to threshold gluon-gluon fusion produces a ¢ pair in a 1Sy state. On the other hand if the pair is produced
by the X, resonance, gg—Xo—tf, then for a scalar (pseudo-scalar) X, the tf pair is in a 3Py (XSp)
state and has therefore characteristic spin correlations. Let us evaluate, for instance, the observable
(22). Its expectation value at threshold is (s;-s;) = 1/4 (—3/4) if t¢ is produced by a (pseudo)scalar
spin-zero boson, ignoring the gg—t¢ background. An analysis which includes the interference with the
QCD tf amplitude shows characteristic differences also away from threshold. By investigating several
correlation observables (i.e., employing different spin bases) one can pin down the scalar/pseudo-scalar
nature of such a resonance for a range of Xy masses and couplings to top quarks [75].

Another effect of new physics might be the generation of an anomalously large chromomagnetic
form factor & (see Section 7.1) in the ¢ production amplitude which would change the spin correlations
with respect to the SM predictions [178, 179] (see also [180, 181]). For the LHC with 100 fb~! integrated
luminosity one obtains from a study of asymmetries (that were also used in [179]) at the parton level a
statistical sensitivity of §x ~ 0.02.




The top quark decay modes t—b£* vy, bgq’ might also be affected by non-SM interactions, for
instance by right-handed currents or by charged Higgs-boson exchange, and this would alter the angular
correlations discussed above as well. A Michel-parameter type analysis of the sensitivity to such effects
at the LHC remains to be done.

The large ¢ samples to be collected at the LHC offer, in particular, an excellent opportunity to
search for CP-violating interactions beyond the SM in high energy reactions. (The Kobayashi-Maskawa
phase induces only tiny effects in £ production and decay.) We mention in passing that such interactions
are of great interest for attempts to understand the baryon asymmetry of the universe. Many proposals
and phenomenological studies of CP symmetry tests in #Z production and decay at hadron colliders have
been made. The following general statements apply [169]: A P- and CP-violating interaction affecting
tf production induces additional terms in the production density matrices R(*) which generate two types
of CP-odd spin-momentum correlations, namely

ke (s —sp) (€3))

and R
k¢ - (s¢ X s7) 32)

and two analogous correlations where k; is replaced by p. The longitudinal polarisation asymmetry (31) ..
requires a non-zero CP-violating absorptive part in the respective scattering amplitude. In analogy to the
SM spin correlations above, (31) and (32) can also be transcribed into angular correlations among the ¢
and ¢ decay products, which may serve as basic CP observables (see below).

As to the modelling of non-SM CP violation two different approaches have been pursued. One is to
parameterise the unknown dynamics with form factors or, neglecting possible dependences on kinematic
variables, with couplings representing the strength of effective interactions [180, 182, 173, 183, 178, 179,
184, 185], and compute the effects on suitable observables. This yields estimates of the sensitivities to
the respective couplings. For instance if ¢ production is affected by a new CP-violating interaction with
a characteristic energy scale Agp > +/3 then this interaction may effectively generate a chromoelectric
dipole moment (CEDM) d; of the top quark (see Section 7.1). Assuming 107 non-leptonic, 6 x 10° single
lepton, and 10° ¢ di-lepton events, the analysis of [185], using optimal CP observables, comes to the
conclusion that a 1o sensitivity of §(Re d;) ~ 5x1072%g, cm may be reached at the LHC. A detector-
level study of CP violation in ¢f decays with di-lepton final states was performed in [186].

Alternatively one may consider specific extensions of the SM where new CP-violating interac-
tions involving the top quark appear and compute the induced effects in ¢¢ production and decay, in
particular for the reactions (16). We mention two examples. In supersymmetric extensions of the SM,
in particular in the minimal one (MSSM), the fermion-sfermion-neutralino interactions contain in gen-
eral CP-violating phases which originate from SUSY-breaking terms. These phases are unrelated to the
Kobayashi-Maskawa phase. The interaction Lagrangian for the top quark coupling to a scalar top £; ;
and a gluino G reads in the mass basis

Lo =iV2gs D (eI TIG T + e ErIGT*T) + hec., (33)
i=1,2

where g, is the QCD coupling. A priori the phase ¢; is unrelated to the analogous phases in the light -
quark sector which are constrained by the experimental upper bound on the electric dipole moment of
the neutron. The CP-violating one-loop contributions of (33) to gg, §g—tt were computed in [187, 185].
A non-zero CP effect requires, apart from a non-zero phase ¢, also non-degeneracy of the masses of
t1,2. For fixed phase and £; — ¢, mass difference the effect decreases with increasing gluino and scalar
top masses. Assuming the same data samples as in the CEDM analysis above, [185] concludes from
a computation of optimal CP observables that a sensitivity |¢;| > 0.1 can be reached at the LHC if the
gluino and squark masses do not exceed 400 GeV.
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Fig. 36: Right: differential expectation value of Q; as a function of the ¢f invariant mass at /s = 14 TeV for reduced Yukawa
couplings a; = 1, @; = —1, and a Higgs boson mass m, = 400 GeV. The dashed line represents the resonant and the solid

line the sum of the resonant and non-resonant ¢ contributions. Left: same as figure to the left, but for the observable Q2 [86].

Another striking possibility would be CP violation by an extended scalar sector manifesting itself
through the existence of non-degenerate neutral Higgs bosons with undefined CP parity. Higgs sector CP
violation can occur already in extensions of the SM by an extra Higgs doublet (see, for instance [188]). It
may also be sizable in the MSSM within a certain parameter range [189]. The coupling of such a neutral
Higgs boson ¢ with undefined CP parity to top quarks reads

Ly = —(ﬁGF)l/zmt(att_t + &tfi'yg,t) @, (34)

where a; and & denote the reduced scalar and pseudo-scalar Yukawa couplings, respectively (in the
SM a; = 1 and @ = 0). The CP-violating effects of (34) on gg, jg—tf were investigated for light
¢ in [190] and for ¢ bosons of arbitrary mass in [191, 169] (see also [185, 86]). The exchange of ¢
bosons induces, at the level of the ¢t states, both types of correlations (32), (31) (the CP asymmetry
ANLR = [N(trt1r) — N(trtr)]/(all tt) considered in [190] corresponds to the longitudinal polarisation
asymmetry (k; - (s; — s¢))). If the mass of ¢ lies in the vicinity or above 2m, the s-channel ¢-exchange
diagram gg——tt becomes resonant and is by far the most important ¢ contribution.

Simple and highly sensitive observables and asymmetries were investigated for the different ¢
decay channels in [86]. For the di-lepton channels the following transcriptions of (31) and (32) may be .
used:

Q=k-a+ —ki-§-, (35)
Q2 = (k: — kg) - (8- x d4)/2, | (36)

where ﬁt, fcz are here the ¢, { momentum directions in the ¢ c.m. frame and §,,§- are the ¢+, ¢~
momentum directions in the ¢ and ¢ quark rest frames, respectively. Note that QQ; = cosf; — cosé_
where 64 are defined after (25). When taking expectation values of these observables the channels
£+, - with ¢,¢' = e, u are summed over. The sensitivity to the CP-violating product of couplings
Ycp = —a:a; of heavy Higgs bosons is significantly increased when expectation values of (35), (36) are
taken with respect to bins of the ¢¢ invariant mass M;;. Two examples of these “differential expectation
values” are shown in Fig. 36. In order to estimate the measurement errors we have used a sample of di-
lepton events, obtained from a simulation at the detector level using the same selection criteria as in the
simulation described above, and determined the resulting error on the expectation value of (J;, choosing
M, bins with a width of 10 GeV. With 2 x 10° reconstructed di-lepton events in the whole M,; range




¢ .

we find that the error on (@) M,; is slightly below 1% for a bin at, say, M,; = 400 GeV. In addition one
may employ the following asymmetries which are experimentally more robust than (Q;):

Nee(Q; > 0) — Nee(Qi < 0)
Nee ’

where ¢ = 1,2 and Ny is the number of di-lepton events. From an analysis of these observables and
asymmetries and analogous ones for the single lepton channels at the level of partonic final states the
conclusion can be drawn [86] that one will be sensitive to |ycp| 2 0.1 at the LHC. This will constitute
rather unique CP tests.

AQ:) =

(37

7. TOP QUARK ANOMALOUS INTERACTIONS?

In the SM the gauge couplings of the top quark are uniquely fixed by the gauge principle, the structure
of generations and the requirement of a lowest dimension interaction Lagrangian. Due to the large top
mass, top quark physics looks simple in this renormalisable and unitary quantum field theory. Indeed,
e the top quark production cross section is known with a rather good accuracy (~ (10 — 15) %),
o there are no top hadrons (mmesons or baryons),
e the top quark decay is described by pure (V' — A) weak interactions,
e only one significant decay channel is present: t—bW* (other decay channels are very suppressed
by small mixing angles).
This simplicity makes the top quark a unique place to search for new physics beyond the SM. If anoma-
lous top quark couplings exist, they will affect top production and decay at high energies, as well as
precisely measured quantities with virtual top quark contributions.
We do not know which type of new physics will be responsible for a future deviation from the SM
predictions. However, top quark couplings can be parametrized in a model independent way by an effec-
tive Lagrangian. The top quark interactions of dimension 4 can be written (in standard notation [192]):

Ly = ——gst—'y”T“tGZ————g Z ty* ('th arq/'ys)qW:
ﬁq:d,sb
2 _
—ZefyHtA, — —2— L(vE — aZ~vs)qZ 38
3et7 t4, 2 cos Oy qz:ctt‘y (vig — @iq75)a 2, (38

plus the hermitian conjugate operators for the flavour changing terms. 7* are the Gell-Mann matrices
satisfying Tr (T°T?) = 62 /2. Gauge invariance ﬁxes the strong and electromagnetic interactions in (38)

and hemiticity implies real diagonal couplmgs vZ, aZ, whereas the non-diagonal ones vtv: Z af;’ Z can

be complex in general. Within the SM 'vtq = afg = 2 , with V3, the Cabbibo-Kobayashi-Maskawa

(CKM) matrix elements, v = 3 — $sin? 6w, aZ = 1, and the non-diagonal Z couplings are equal
to zero. Typically modifications of the SM couplings can be traced back to dimension 6 operators in
the effective Lagrangian description valid above the EW symmetry breaking scale [193, 194, 195] (see
also [196, 132, 197]). Hence, they are in principle of the same order as the other dimension 5 and
6 couplings below the EW scale. However, in specific models the new couplings in Eq. (38) can be
large [198]. Moreover, the present experimental limits are relatively weak and these couplings can show

up in simple processes and can be measured with much better precision at the LHC.

The dimension 5 couplings to one on-shell gauge boson, after gauge symmetry breaking, have the
genenc form: [199] :

Ls = —g, z tha“"T“(ftq+zh 15)4GS, - Z tqt ‘“’(ftq +zhtq75)qW,j;,

g=u,c,t q—d s,b

23ection coordinators: F. del Aguila, S. Slabospitsky, M. Cobal (ATLAS), E. Boos (CMS).
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—e Z qto“" ﬁ +zhtq75) Ay — m Z thauu(ftf-i—ihtzq'm)qzu,, 39)

q=u,c,t g=u,c,t

plus the hermitian conjugate operators for the flavour changing terms. G3,, is 8,G}, — 8,G, (see, how-
ever, below) and similarly for the other gauge bosons. We normalise the couplings by taking A = 1 TeV.
k is real and positive and f, h are complex numbers satisfying for each term |f|? + |A|? = 1. Asin
the dimension 4 case these dimension 5 terms typically result from dimension 6 operators after the EW
breaking. They could be large, although they are absent at tree level and receive small corrections in
renormalizable theories. At any rate the LHC will improve appreciably their present limits.

There are also dimension 5 terms with two gauge bosons. However, the only ones required by
the unbroken gauge symmetry SU(3)¢ X U(1)q, and taken into account here, are the strong couplings
with two gluons and the EW couplings with a photon and a W boson. They are obtained including
also the bilinear term g, f**°G%,G¢, with f*° the SU (3)c structure constants, in the field strength G4,
in (39) and the bilinear term —ze(A Wr—-A W‘*’) inW ;w’ respectively. We do not consider any other
dimension 5 term with two gauge bosons for thelr size is not constrained by SU(3)¢ X U(1)g and/or
they only affect to top quark processes with more complicated final states than those discussed here. We
will not elaborate on operators of dimension 6, although the first ¢> corrections to dimension 4 terms
could be eventually observed at large hadron colliders [134]. In this section we are not concerned with
the effective top couplings to Higgs bosons either.

In what follows we study the LHC potential for measuring or putting bounds on the top quark
anomalous interactions in (38), (39) through production processes. Results from top quark decays are
presented is Section 8. The tf couplings to gluons are considered first, since they are responsible for
tt production. Secondly we discuss the top quark couplings £6W. In the SM this coupling is not only
responsible for almost 100% of the top decays but it also leads to an EW single top production mode,
as reviewed in Section 5.. Finally we deal with the ¢ flavour changing neutral currents (FCNC). The vt
and Ztt vertices have not been considered here because ete™ and u*p~ colliders can give a cleaner
environment for their study.

With the exception of the summary Table 23, we will quote limits from the literature without
attempting to compare them. In Table 13 we illustrate statistics frequently used and which we will refer
to in the text when presenting the bounds. As can be observed, the number of signal events, and the limit
estimates, vary appreciably with the choice of statistics. We do correct for the different normalizations
of the couplings used in the literature.

Table 13: Limits on the number of signal events S obtained with differcnt statistics. B is the number of background events. In
the other columns we gather S for (1): 99% CL (3 o) measurement, 7+— > 3; (3): 99% CL (3 o) limit, 755 > 3; and (5):
99% CL for the Feldman-Cousins (FC) statistics {200]; and similarly for (2), (4), and (6), for the 95% CL. (1.96 ), respectively.
1Bl O [ A [@] G | ® |
0 9 3.84 0 0 474 | 3.09
5112571671 671 | 438 | 875 | 6.26
10 15 841 | 949 | 6.20 | 10.83 | 7.82
1516961 9.75 | 11.62 | 7.59 | 12.81 | 9.31

7.1 Probes of anomalous gtt couplings

The combination 4—’:‘&% fi (see (39)) can be identified with the anomalous chromomagnetic dipole mo-
ment of the top quark, which, as is the case of QED, receives one-loop contributions in QCD. Therefore,
its natural size is of the order of o, /7. As we observed above, when this coupling is non-zero a direct
ggtt four-point vertex is induced as a result of gauge invariance.




Table 14: Attainable lo limits on Re(d:) and I'm(d:), through T33, Az and Qs3 for one year of the LHC running at low
luminosity (10 fb™!) [204].

Observable Attainable 1o limits
T3 |Re(d;)] = 0.899 x 10~T7g,cm
Ap [Im(d;)| = 0.858 x 10~ 18¢g,cm
Q33 [Im(d;)| = 0.205 x 10~ Y7 g,em

On the other hand the combination é—"ﬂng R, can be identified as the anomalous chromoelectric
dipole moment of the top quark. Within the SM thlS can arise only beyond two loops [201]. On the
other hand it can be much larger in many models of CP violation such as multi-Higgs-doublet models and
SUSY [202]. Therefore, such a non-vanishing coupling would be a strong indication of BSM physics.

Considering the gluonic terms in (38), (39) for the process of light quark annihilation into #¢ one
obtains [181, 203]

dog; _ 2mas 8 oo | 32
_%Z_q_= 5;.?2 {2_'82(1—22) Rl e (f + i)+ mt( tt) Ifttlz tt)2ﬂ2(1—z )]
(40)

§ being the incoming parton total energy squared, z being the cosine of the scattering angle * in the cms
of the incoming partons, and 8 = /1 — 4m2/s.

The squared matrix element for g¢ annihilation is a more complicated expression; we refer to [181,
204] for exact formulas. If the (anomalous) couplings are assumed to be functions (form-factors) of ¢2
and then corrected by operators of dimension higher than 5, the gg annihilation amplitude would be eval-
uated at different scales (for the £(4) and § channels), and an additional violation of the SU(3)¢ gauge
invariance could be made apparent. For a detailed discussion of this problem see, for example, [181] and
references therein.

The effects associated with <7, f5, were examined in [181, 205, 206]. As shown in [134] they will
be easily distinguishable from the effects of g2 corrections to the strong coupling due to operators of
dimension 6, which are relatively straightforward to analyse [195] in ¢¢ production since the effective
coupling would be a simple rescaling of the strength of the ordinary QCD coupling by an additional ¢2-
dependent amount. It was shown in [206] that the high-end tail of the top quark pr and M,; distributions
are the observables most sensitive to non-zero values of %, fi;, with a reach for £ = 4—’{{‘%& f3; as small
as ~ 0.03. For these values of s, only a minor change in the total ¢ rate is expected (see Fig. 37).
The effect of a non-zero xj,h{, was analysed, in particular, in [204, 207, 172]. It was shown in [204]
that information on x7,hJ, could be obtained by studying the following correlation observables between
£* ¢~ lepton pairs produced in ¢£ in di-lepton decays:

Tzz = 2(pg— pe)3(ps X P)s,
2
AE = Ej—E;, Q% =2(ps+p)s(ps—pe)s - 5} - p}).

Table 14 shows the 1 ¢ sensitivities of these correlations to Re(d;) and Im(d;) (where, d; = g, £xJ,hJ,).
Quantitatively, T3 and Q33 enable us to probe Re(d;) and I'm(d;) of the order of 10~'7g,cm, respec- .
tively, and Ag allows us to probe Im(d;) down to the order of 10~8g,cm (see [204] for details).

7.2 Search for anomalous Wtb couplings

The Wb vertex structure can be probed and measured using either top pair or single top production
processes. The total tf rate depends very weakly on the Wtb vertex structure, as top quarks are dom-
inantly produced on-shell [208]. However, more sensitive observables, like C' and P asymmetries, top
polarisation and spin correlations provide interesting information, as discussed in Section 6. The single
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Fig. 37: Cross section for ¢f production (solid) at the LHC as a function of x. The part of the cross section arising from the
g9(qq) annihilation is shown by the dash-dotted (dotted) curve (see [206] for details).

top production rate is directly proportional to the square of the Wtb coupling, and therefore it is poten-
tially very sensitive to the Wtb structure. In single top events the study of the top polarisation properties
potentially provides a way to probe a Wtb coupling structure [209]. The potential to measure anomalous
Wb couplings at LHC via single top from the production rate and from kmematlcal distributions has
been studied in several papers [195, 210, 135, 30]. -

In the model independent effective Lagrangian approach [193, 194, 195] there are four indepen-
dent form factors describing the Wtb vertex (see [195] for details). The effective Lagrangian in the
unitary gauge [211, 208, 135] is given in (38), (39). As already mentioned the (V — A) coupling in the
SM carries the CKM matrix element V;; which is very close to unity. The value of a (V + A) coupling
is already bounded by the CLEO b — s+ data [212, 213] at a level [195, 213] such that it will be out
of reach even at the high energy -ye colliders. Since we are looking for small deviations from the SM,
in the following v}}’ and a/ will be set to v = af},’ = } and an analysis is presented only for the two
’magnetic’ anomalous couplings Fr, = M 2w (W (— f* — ihW*), Fpo = —M‘Zntb (== +inY
Natural values for the couplings | F7,(r)2| are in the region of @ 0.1 [196] and do not exceed the
unitarity violation bounds for | Ff,g)| ~ 0.6 [194].

Calculations of the complete set of diagrams for the two main processes pp — bbW and pp —
bbW + jet have been performed [135] for the effective Lagrangian in (38), (39), using the package Com-
pHEP [214]. The calculation includes the single-top signal and the irreducible backgrounds. Appropriate
observables and optimal cuts to enhance the single-top signal have been identified through an analysis of
singularities of Feynman diagrams and explicit calculations. The known NLO corrections to the single
top rate [126, 125] have been included, as well as a simple jet energy smearing. The upper part of Fig. 38
presents the resulting 2 ¢ exclusion contour for an integrated luminosity of 100 fb~1, assuming e, ;2 and
7—{ decays of the W-boson. The combined selection efficiency in the kinematical region of interest,
including the double b-tagging, is assumed to be 50%. Figure 38 demonstrates that it will be essential to
measure both processes pp — bbW and pp — bW + jet at the LHC. The allowed region for each single
process is a rather large annuli, but the overlapping region is much smaller and allows an improvement
of the sensitivity on anomalous couplings of an order of magnitude with respect to the Tevatron. Since
the production rate is large, even after strong cuts, expected statistical errors are rather small, and the
systematic uncertainties (from luminosity measurements, parton distribution functions, QCD scales, m.,
...) will play an important role. As it is not possible to predict them accurately before the LHC startup,
we show here how the results depend on the assumed combined systematic uncertainty. Figure 38 (lower
part) shows how the exclusion contours deteriorate when systematic errors of 1% and 5% are included.
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Fig. 38: Limits on anomalous couplings after optimised cuts from two processes pp — bbW and pp — bbW + jet (upper
plot). Dependence of the combined limits on the values of systematic uncertainties (lower plot).

Note that a systematic error of 10% at the LHC will diminish the sensitivity significantly and the allowed
regions will be comparable to those expected at the upgraded Tevatron.

The rate of single top production at LHC is different from the rate of single anti-top production.
This asymmetry provides an additional observable at LHC that is not available at the Tevatron and which
allows to reduce systematic uncertainties.

The potential of the hadron colliders can be compared to the potential of a next generation ete”
linear collider (LC) where the best sensitivity could be obtained in high energy ye-collisions [208, 215].
The results of this comparison are shown in Table 15. From the table we see that the upgraded Tevatron
will be able to perform the first direct measurements of the structure of the Wtb coupling. The LHC -
with 5% systematic uncertainties will improve the Tevatron limits considerably, rivalling with the reach
of a high-luminosity (500 fb~1) 500 GeV LC option. The very high energy LC with 500 fb~! luminosity
will eventually improve the LHC limits by a factor of three to eight, depending on the coupling under
consideration.




Table 15: Uncorrelated limits on anomalous couplings from measurements at different machines.

[ | Fr; | Fgy
Tevatron (Agys, = 10%) | ~0.18 ... +0.55 -0.24 ... +0.25
LHC (Agys. = 5%) -0.052 ... 40.097 | -0.12 ... +0.13
ve(Sorem =05TeV) | 0.1 ... +0.1 |-01 ... +0.1
e (\/Sete—- =2.0TeV) | —0.008 ... +40.035 | —0.016 ... +0.016

7.3 FCNCin top quark physics

In the previous subsections, we analysed top quark anomalous couplings as small deviations from the
ordinary SM interactions (gt and tWb vertices). Here we consider new processes which are absent at
tree-level and highly suppressed in the SM, namely the FCNC couplings tVc and tVu (V = g¢,7, 2).
The SM predicts very small rates for such processes [216] (see Table 16). The top quark plays therefore
a unique r6le compared to the other quarks, for which the expected FCNC transitions are much larger:
the observation of a top quark FCNC interaction would signal the existence of new physics. As an
illustration, Table 16 shows predictions for the top quark decay branching ratios evaluated in the two-
Higgs doublet model [217], the SUSY models [218], and the SM extension with exotic (vector-like)
quarks [198].

Table 16: Branching ratios for FCNC top quark decays as predicted within the SM and in three SM extensions.

| SM two-Higgs [217] | SUSY [218] | Exotic quarks [198]
B(t—qg) | 5x 107! ~ 1073 ~ 1073 ~5x107%
B(t—qy) | 5 x 10713 ~ 1077 ~ 10~5 ~ 10~5
B(t—¢Z) | ~ 10713 ~ 10~6 ~107* ~ 1072

In the effective Lagrangian description of (38), (39) it is straightforward to calculate the top quark
decay rates as a function of the top quark FCNC couplings:

I‘é‘g 28 H-ty 2
tom) = (B) Jomt . reom) = () samt an
1 Mmz\? M2
i)y = (P +1eEP) ot e (1- ) (1422 ), @
xZ\? 1 M2\ 2 M2 '
T(t—¢Z), = (f) am?m (1—# 2+E§Z_ : (43)

For comparison, Table 17 collects the rare top decay rates normalised to x§, = &, = [vZ|* + laZ|? =
k2 = 1, and for the SM. We assume m; = 175 GeV, A = 1 TeV, @ = 135, @, = 0.1 and sum the
decays into ¢ = u, ¢. In this ’extreme’ case with the anomalous couplings equal to one the top can decay
into a gluon or a Z boson plus a light quark ¢ = w, ¢ and into the SM mode bW at similar rates.

7.31 Current Constraints on FCNC in top quark physics

Present constraints on top anomalous couplings are derived from low-energy data, direct searches of top
rare decays, deviations from the SM prediction for £ production and searches for single top production
at LEP2.

Indirect constraints: The top anomalous couplings are constrained by the experimental upper

bounds on the induced FCNC couplings between light fermions. For example, the 4# term in the Ztq




Table 17: Top quark decay widths and corresponding branching ratios for the anomalous couplings equal to one and for the
SM. In the fourth line we gather the values of the corresponding anomalous couplings giving the same decay rates as in the SM.

Top decay mode

W*h (c+u)g (c+u)y (c+u)Zy (c+u)Z,
FCNC coupling 1 1 1 1
['(GeV) 1.56 2.86 0.17 291 0.14
B 0.20 0.37 0.022 0.38 0.018
FCNC coupling 8x10¢ [ 3x10°° | 4x1077
Fsm(GeV) 1.56 | 8x10~H [ 8x 10712 | 2.2x 10713
Bsm 1 [5x1071 [5x10713]1.5x 1075

vertex generates an effective interaction of the form [219]

75
Eeff = (‘,080 tjfz fJZ + h. C.y 44)

where f; ; are two different light down-type quarks. The one-loop estimate of the vertex gives:

2

1 m? N A
o Va0h + al)Vas + Va0l + a)Vi | In 5, (@5)

@iy = 1672 v2

where V;; are the CKM matrix elements. Then, using the results of [219] and the experimental constraints
from [192] on K, —utu~, the K1-Ks mass difference, B® — B° mixing, B—£¢7 £~ X and b—sy, one
obtains:

asg < 2X107% apg <4 x107%, ap, < 1.4 x 1073, (46)
and, taking v = 250 GeV, m; = 175 GeVand A = 1 TeV:

[vZ +aZ| < 0.04, |vZ + aZ| < 0.11. ¢%))
thq atq do not contribute to a;; for massless external fermions. However, both chiralities of the Ziq
vertex contribute, for instance, to the vacuum polarization tensor IT#¥(¢2). Thus, using the recent value

for the p parameter, p = 0.9998 =+ 0.0008 (+0.0014) [192], the following 20 limit is obtained:

,/|vg|2 + laZ|? < 0.15. (48)

CDF results: The CDF collaboration has searched for the decays t—yc(u) and t—Ze¢(u) in the
reaction pp — £t X at /s = 1.8 TeV, obtaining the following 95% CL limits [13]:

BR(t—cv) + BR(t—uy) < 3.2%, BR(t—cZ)+ BR(t—uZ) < 33% . (49)

These translate into the bounds on the top anomalous couplings

K, < 0.78, /|vZ|? +|aZ|? < 0.73. (50)

tt production via FCNC: Constraints on the vertex gtq can be derived form the study of the -

pair production cross-section. Imposing that the ¢-pair production cross-section, including the possible

effect of anomalous couplings, should not differ from the observed one (assumed in this study to be
o3 = 6.7+ 1.3 pb [6]) by more than 2 pb, leads to the constraint [220]:

g

K
-f < 0.47 TeV~!. (51




Table 18: Short summary of the LEP 2 results for ete™ — t§. The theoretical value g+ is evaluated assuming the limit on
the corresponding anomalous coupling in (50).

Collab. V5 (GeV) | L(pb~ 1) | 0exp(95%CL) | oum

DELPHI | 183 GeV [222] | 47.7 <0.55pb | <0.15pb
ALEPH | 189GeV [221] | 174 <0.60pb | <0.30pb
DELPHI | 189 GeV [223] | 158 <0.22pb | <0.30pb

DELPHI upper limit (preliminary)
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Fig. 39: Upper limit on branching fraction of t— Zgq resulted from LEP 2 data. Dashed curve corresponds to n;’q = 0, while
solid one corresponds to x;, < 0.78.

FCNC at LEP 2: Since 1997, LEP2 has run at cms energies in excess of 180 GeV, making the
production of single top quark kinematically possible through the reaction:

et e = y*(Z*) - §. (52)

Two LEP experiments [221, 222, 223] have presented the results of their search for this process. A short
summary of these data is given in Table 18. The production cross section is very sensitive to the top
quark mass, g, ~ (1 — %2)2 (see [224] for details). Therefore, the upper limit on the corresponding
branching ratio depends from the exact value of m; as well, as shown in Fig.39. The current constraints
on the top quark FCNC processes are summarised in Table 19. Note that the LEP2 limit is slightly
better then that given by CDF (49). These constraints should further improve once the data from the
highest-energy runs are analysed. '

74 Search for FCNC in top quark production processes

FCNC interactions of top quarks will be probed through anomalous top decays (as discussed in Sec-
tion 8.), and through anomalous production rates or channels, as discussed in the remainder of this




Table 19: Current constraints on top quark FCNC interactions.

t—gq | BR< 1% ntq < 0.47 (other FCNC couplings zero)
t—v¢q | BR<C 3.2% 5 < 0.78 (other FCNC couplings zero)

t—Z q | BR< 22% ,/Ivtql2 + |atq|2 < 0.55 (other FCNC couplings zero)

Table 20: Upper bounds on the anomalous couplings x5, and 7, from single top production processes. The symbols 21
and 2—2 correspond to the reactions quark-gluon fusion, and single top production, respectively [225, 142].

Tevatron LHC

Runl Run2 Run3
Vs (TeV) 1.8 2.0 2.0 14.0
L1 0.1 2 30 10
kJ,(2—1) | 0.058 0.019 0.0092 | 0.0033
kg,(2—2) | 0082 0.026 0.013 | 0.0061
k3.(2—1) 022 0.062 0.030 { 0.0084
k7. (2—2) 031 0092 0046 | 0013

section.

7.41 Deviations from SM expectations for tt production

As shown in the previous subsection, the FCNC tgg-vertex contributes to gg—t¢ transitions, and to a
possible enhancement of the top quark production at large E; and M,;. A recent study [220] shows that
at the LHC the sensitivity to these couplings is equivalent to that found with the data of Run 1 at the

Tevatron: g g
(f‘f) ~ (’XQ) ~ 0.5 TeV~L. (53)
LHC FNAL

7.42 ‘Direct’ top quark production (2—1)

The ‘quark—gluon’ fusion process [225] g + u(c)—t is characterised by the largest cross-section for top
quark production through FCNC-interactions assuming equal anomalous couplings. At the LHC, using

the CTEQ2L structure functions [115], these cross sections for —‘1 = 1TeV~! are equal to:
o(ug—t) ~4x10*pb , o(Gg—t) ~1x10*pb , o(cg—t) ~ 6 x 10% pb. (54

Note that o (ug—t) is about 50 times larger than the SM ¢Z cross section. The major source of background
to this is the W+ jet production. The additional background due to single top production, when the
associated jets are not observed, should not exceed 20% of the total background and was therefore
ignored. To reproduce the experimental conditions, a Gaussian smearing of the energy of the final leptons
and quarks was applied (see [225] for details). Cuts on the transverse momentum (pr > 25 GeV),
pseudo-rapidity (|n;] < 2.0, |7¢ < 3.0), and lepton-jet separation (AR > 0.4) were applied. A b-
tagging efficiency of 60% and a mistagging probability of 1% were assumed.

The criterion S//S + B > 3 was used to determine the minimum values of anomalous couplings.

The couplings tgu and tgc have been considered separately. The resulting constraints on «J, and «j, are
given in Table 20, which also contains the results of an analysis done for the Tevatron.
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< Fig. 41: s-channel diagrams for tV (V = Z, %) production

Fig. 40: 2—2 single top quark production.
7.43 Single top quark production (2—2)

Single top quark productioh in 2—2 processes has been studied as well [142]. There are four different
subprocesses, which lead to one top quark in the final state together with one associated jet (see Fig. 40
and [142] for detailed considerations):

qq—tq, g99—tq, qq—itq, qg—tg (55)

The major background comes from W + 2 jets and W + bb production, as well as from single top
production. In addition to the cuts and tagging rates used in the above analysis of "direct’ top production,
additional cuts on the reconstructed top mass (145 GeV < Mpw < 205 GeV), on prp > 35 GeV,
and on jet-jet and lepton-jet separation (A R;; > 1.5, A B;; > 1.0) were applied here to improve
the signal/background separation. The corresponding limits on anomalous couplings in the top-gluon
interaction with ¢ or u quarks are given in Table 20.

744 tZ and ty production

All the anomalous couplings may contribute to the processes ¢ ¢ —¢ Z(7), and were considered in [226,
227]. The left diagram in Fig. 41 corresponds to the Z(+y)tq coupling, while the right one shows the top-
gluon anomalous coupling (the corresponding ¢-channel diagrams are not shown). For all the calculations
presented here, the MRSA PDF set [228] with Q? = § was used. The resulting total cross sections for

K3y = /IVE|? + |aZ|? = 1 are [227]:

o(ug—yt) = T73pb, o(cg—yt) = 10pb,
oc(ug—Zt) = T46pb, o(cg—Zt) = 1l4pb.

Different background sources (W + jets, Z+ jets, ZW + jets, Wbb+ jets, tf, and Wt production) were
considered. The experimental conditions were simulated by a Gaussian smearing of the lepton, photon
and jet energies (see [227] for details). Cuts on the transverse momenta, pr (¢, j, v) > (15, 20, 40) GeV,
on pseudo-rapidities, |7; ¢ v| < 2.5, and on lepton-jet-photon separation (AR > 0.4) were applied. A b-
tagging efficiency of 60% and a mistagging probability of 1% were assumed. It was found that b-tagging
plays an essential role in tracing the top quark and reducing backgrounds.

It has been shown that the best limits on the top quark FCNC couplings can be obtained from the
decay channels Zt—£% £~ fvb and yt—y £vb (see [226] and [227] for details). Upper bounds at 95%
CL are derived using the FC statistics [200]. Table 21 collects the corresponding limits on eight top
anomalous couplings. Like in previous cases the bounds on » and ¢ couplings were obtained under the
assumption that only one anomalous coupling at a time is non-zero. The analysis was done for both
Tevatron and LHC but with different optimized cuts.




Table 21:  Upper bounds on top anomalous couplings (see (38,39)) from Zt and ¢ production. We have corrected for the
different normalizations used in [226, 227].

Tevatron LHC
Runl Run2
Vs (TeV) 1.8 20| 140 140
L (fb1) 0.1 2 10 100
K7, 031 0.057 | 0.0097 0.0052
k3, - -] 0020 o0.011
Ky, 0.86 0.18 | 0.013 0.0060
Ky, - -1 0037 0018
lZ|2+|aZ|2 | 049 0.13| 0016 0.0078
VIvZI?2 + |aZ)? ~ -| 0032 0016
kZ, 171 043 0040 0018
kZ - - | 0097 0.046
q . Fa > t
g+vy+272
q > 0, > t

Fig. 42: Diagram describing like-sign top quark pair production
7.45  Like-sign tt (tt) pair production
Additional evidenée for a FCNC gtq coupling can be sought through the production of like-sign top pairs
(see Fig. 42).
pp—ttX, pp—ttX (56)

The ATLAS collaboration performed a detailed investigation of this reaction for the case of high lumi-
nosity, Lins = 100 b~ (see [30] and [220] for details). All the three anomalous couplings contribute to
this process and the kinematics of the ¢-pair is almost the same as for the conventional ¢¢-pair production.

An experimentally clean signature of ¢t (£f) production is the production of like-sign high pr
leptons plus two hard b-jets. The main sources of background are ¢7'—tfW and qg—W*g'W*¢'. The
expected cross sections for the signal (with «, = &7, = [vZ|® + |aZ|® = 1) and background processes
are equal to:

a(tt) = 1920 pb, o(tt) = 64 pb,
o(Wtt) = 0.5 pb, o(W~tt) = 0.24 pb,
ag(WtW+tgq) = 0.5pb, c(W-W-qq) = 0.23 pb.

CTEQ2L structure functions [115] were used with the evolution parameter Q% = m? for the signal
and Q% = m%; for the background calculations. PYTHIA 5.7 [52] was used for the fragmentation and
all events were passed through the ATLFAST detector simulation. An additional reducible like-sign
di-lepton background is due to tf events with a b semi-leptonic decay. The initial selection required
therefore two like-sign isolated leptons with pr > 15 GeV and |n| < 2.5 as well as at least two jets with
pr > 20 GeV and |n| < 2.5. In order to get a better signal/background separation jets with p > 40 GeV
(with at least one tagged as a b-jet) were required (see [30, 220] for other cuts). The potential reach of
this study, using the S/+/S + B > 3 criterion, is given in Table 22.




Table 22: The limits on anomalous couplings from an improved ATLAS analysis [30, 220] of like-sign top-pair production at
the LHC for the case of high luminosity, Line = 100 fb™. The contribution from the ¢*” term in the Ztg vertex is ignored.

IZ? + |22 | \/IvEJ? + aZ)?
0.27 [ 0.85 |

g g 24 24
Kty Kic Ky Kic

[0.078 ] 0.25 ] 0.14 | 0.32 |

Table 23: Summary of the LHC sensitivity to the top quark anomalous couplings £, , k7, and 1/|vZ, |2 + |aZ, |2. The resulting
constraints are presented in terms of ‘branching ratio’, I'(¢ 3¢V} /T sas(= 1.56 GeV). The results for the Tevatron option are
also given (see text for explanation). 21, 2—2, tV, and ¢ ¢ stand for quark-gluon fusion, single top production, ¢ + ¥(Z)
production, and like-sign top-pair final states, respectively. The ‘decay’, ‘ATLAS’, and ‘CMS’ labels denote the results obtained
from the study of top decay channels, documented in Section 8.

Tevatron LHC
V/s(TeV) 1.8 2 2 14 14
L) 0.1 2 30 10 100
tug 31x1073[33x107*[78x10"°[1.0x10"°]3.2x10°%[ 21 [225]
6.2x 1073 | 62x107% | 1.5x10~% | 3.4x 107% | 1.1 x107% | 22 [142]
1.8x10~t | 6.0 x 1073 -1 17x107% | 5.0x107% | tV [226, 227]
-119%x1072 | 27x10"3 - - | decay [229]
- - - 1.5x10"2 | 56 x 1073 | t¢ [220, 30]
teg 44x 1072 [ 35x1073[83x107%[65x107°|21x107° [ 21 [225]
88x1072 | 78x1073 | 20x 1073 | 1.6 x 10~% | 4.9x 1073 | 22 [142]
- - -1 73%x107%|22x10"% |tV [226, 227]
-119x10"2 | 27x10°3 - — | decay [229]
- - -1 1.6x10"! | 5.7x10"2 | ¢ [220, 30}
tuy 7.9x 1072 [ 3.5x 1073 - 1.8%x10°° [39x107%° |tV [226, 227
- - -1 30x1073[1.1x10°3 | ¢t [220, 30]
- - —11.9%x10"* | 48x 1075 | ATLAS [30]
- - -1 86x107% | 40x 1075 | CMS [230]
tey - - -1 15x10"%|35x107° | tV [226, 227]
- - -1 17%x10"2 | 55 x 10-3 | ¢t [220, 30]
- - -1 1.9%x10"% | 4.8 x 10°% | ATLAS [30]
- - —186x107% | 4.0x10"5% | CMS [230]
tuZ 45%x 10T [ 3.2x 1072 —|48x10~%[11x107% [tV [226, 227]
-1 11x1072 | 52x1073[58x10"% | 1.9%x107* | decay  [219]
- - -11.9%x10°! | 6.8x 1072 | ¢¢ [220, 30]
- - -1 65%x10"% | 1.0x 107* | ATLAS [30]
- - -114%x10"% | 1.4x10-* | CMS [230]
tcZ — Z ~11.9x10° [ 48%x10°% [V [226, 227]
-] 11%x1072 | 52x10"3 | 58x10"% | 1.9x107* | decay  [219]
- - - 1.9 | 6.7x 10"t | ¢t [220, 30]
- - - 165x10"% | 1.0x 10~* | ATLAS [30]
- - -114%x107% | 14x10"* | CMS [230}




7.5 Conclusion on tqV anomalous couplings

Table 23 presents a short summary of LHC sensitivities to anomalous FCNC couplings of the top quark.
For comparison, we present also the estimates of the corresponding sensitivities at Tevatron. For com-
pleteness we anticipate and include here the results from rare decays discussed in the next section (see
also [219, 229]). To unify the description of the LHC potential to detect top anomalous couplings from
production and decay processes, all results in Table 23 are expressed in terms of limits on top decay
branching ratios: ['(t—¢V)/T'sm (= 1.56 GeV). The results were obtained using m; = 175 GeV,
o, = 0.1,and o = 1/128. When needed the limits quoted in the table have been rescaled to the different
luminosities and to the S/+/S + B > 3 criterion by using a simple linear extrapolation of the available
bounds (see [30, 230] and Section 8.). The limits on the top anomalous couplings from ¢V production
in Table 21 were obtained using the FC prescription [200] and have been multiplied by a factor of /2,
which roughly relates this prescription with the statistical criterion adopted in Table 23 [226, 227].

At present, only few cases (like-sign top-pair production, t—¢Z and t—¢~y decays, see [30, 230])
were investigated with a more or less realistic detector simulation (ATLFAST and CMSJET). Other in-
vestigations were done at the parton level (the final quarks were considered as jets and a simple smearing
of lepton, jet and photon energies was applied). Of course, more detailed investigations with a more
realistic simulation of the detector response may change these results.

The most promising way to measure the anomalous FCNC top-gluon coupling seems to be the
investigation of single top production processes, as the search for ¢—gq decays would be overwhelmed
by background from QCD multi-jet events. At the same time, both top quark production and decay would
provide comparable limits on top quark anomalous FCNC interactions with a photon or a Z-boson. In
general, the studies shown above indicate that the LHC will improve by a factor of at least 10 the Tevatron
sensitivity to top quark FCNC couplings. Of course, the results presented here are not complete, since
other new kinds of interactions may lead to the appearance of unusual properties of the top quark. For
example, recently proposed theories with large extra-dimensions predict a significant modification of ¢
pair production (see, for example, [231] and references therein). It was found that the exchange of spin-2
Kaluza-Klein gravitons leads to a modification of the total ¢¢ production rate as well as to a noticeable
deviation in the pr and M,; distributions with respect to the SM predictions. Naturally, we may expect
also the modifications of spin-spin correlations due to graviton exchange.

It has to be stressed that different types of new interactions may affect the same observable quan-
tity. Only a careful investigation of different aspects of top quark physics may provide a partial separation
of these interactions.

8. RARE DECAYS OF THE TOP QUARK?

The production of 107 — 108 top quark pairs per year at LHC will allow to probe the top couplings to
both known and new particles involved in possible top decay channels different from the main {—bW.
Thanks to the large top mass, there are several decays that can be considered, even involving the presence
of on-shell heavy vector bosons or heavy new particles in the final states. On a purely statistical basis,
one should be able to detect a particular decay channel whenever its branching ratio (BR) is larger than
about 10~ — 10~7. In practice, we will see that background problems and systematics will lower this
potential by a few orders of magnitude, the precise reduction being dependent of course on the particular
signature considered. We will see, that the final detection threshold for each channel will not allow the
study of many possible final states predicted in the SM, unless new stronger couplings come into play.

8.1 Standard Model top decays

In this section, we give an overview of the decay channels of the top quark in the framework of the SM.
In the SM the decay t—bW is by far the dominant one. The corresponding width has been discussed in
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Section 2.1. The rates for other decay channels are predicted to be smaller by several orders of magnitude
in the SM. The second most likely decays are the Cabibbo-Kobajashi-Maskawa (CKM) non-diagonal
decays t—sWand t—dW. Assuming |V;,| ~ 0.04 and |V;4| ~ 0.01, respectively [192], one gets

BR(t—sW) ~ 1.6 x 102 and BR(t—dW) ~ 1 x 10™* (57)

in the SM with three families. From now on, for a generic decay channel X, we define

rit—X)

(58)
The two-body tree-level decay channels are the only ones that the LHC could detect in the framework of
the SM. With the exception of higher-order QED and QCD radiative decays, the next less rare processes
have rates no larger than 1076,

Fig. 43: Feynman graphs for the decay t bW Z (t—bW H).

At tree level, the decay t—bW Z (Fig. 43) has some peculiar features, since the process occurs
near the kinematical threshold (m; ~ Mw + Mgz + my) [232, 233, 234, 235]. This fact makes the W
and Z finite-width effects crucial in the theoretical prediction of the corresponding width [233]. Because
the W and Z are unstable and not observed directly, more than one definition of the {—bW Z branching
ratio is possible. If defined according to

T (t—rbuv,vev,)
BR(W —puv,)BR(Z—v.be)’

C(t—bWZ) = (59)

including a consistent treatment of W and Z width effects, the branching ratio is to a very good approx-
imation given by the double resonant set of diagrams (shown in Fig. 43), since the background to the
neutrino decay of the Z is negligible. One obtains [235], for m; = 175 GeV,

BR(t—bWZ) = BR,.,(t—bWZ) = 2.1 x 107°. (60)

However, the signature buv, v, 7, is not practical from an experimental point of view. In [233], a first
estimate of BR(t—bWW Z) was given on the basis of the definition

+ -_—
T(t—bW Z) = [(tbuvyeTe”)

(61)

BR(W—uv,)BR(Z—ete™)’
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which involves experimentally well-observable decays, but includes contributions to the numerator from
t—bWy decays (with y—se*e™) and other “background” diagrams. The estimate for the corresponding
branching ratio is

BR.,t(t—bWZ) ~ 6 x 1077, (62)

for m; = 175 GeV, assuming a minimum cut of 0.8 Mz on the e* e~ -pair invariant mass. This cut tries
to cope with the contribution of background graphs where the et e~ pair comes not from a Z boson but
from a photon.

If the Higgs boson is light enough, one could also have the decay t—+bW H (Fig. 43), although the
present limits on my strongly suppress its rate. For my & 100 GeV, one gets [233]:

BR(t—bWH) $7x 1078, ’ (63)
Finally, the decay t—cWW is very much suppressed by a GIM factor %52'- in the amplitude. One then
w
gets [234]:
"BR(t—=cWW) ~ 10713, (64)

One can also consider the radiative three-body decays t—bWg and {—bW+. These channels suffer
from infrared divergences and the evaluation of their rate requires a full detector simulation, including
for instance the effects of the detector resolution and the jet isolation algorithm. In an idealised situation
where the rate is computed in the ¢ rest frame with a minimum cut of 10 GeV on the gluon or photon
energies, one finds [236]:

BR(t—bWg) ~ 0.3 , BR(t—bWy)~3.5x 1075, (65)

The FCNC decays t—cg, t— ¢y and t—cZ occur at one loop, and are also GIM suppressed by a
2
factor ﬁf— in the amplitude. Hence, the corresponding rates are very small [249]:
w

BR(t—cg) ~5x 107 | BR(t—cy)~5x 1072 |, BR(—cZ)~1.3x1071%  (66)

For a light Higgs boson, one can consider also the FCNC decay t—cH . A previous evaluation of its
rates [249] has now been corrected. For mg ~ 100 (160) GeV, one gets [237]:

BR(t—cH) ~ 0.9 x 107 (4 x 107°). 67)

To conclude the discussion of rare SM decays of the top quark, we point out here the existence
of some studies on semi-exclusive t-quark decays where the interaction of quarks among the ¢ decay
products may lead to final states with one hadron (meson) recoiling against a jet. In [238] decays with
an T meson in the final state and decays of the top through an off-shell W with virtual mass My near
to some resonance M, like nt, p*, K+, D}, were considered. An estimate for the latter case is

GLm}
T(t—b M)~ £ _Lf2 2. 68
(t—d M) 1ddn FurlVagl (68)
The typical values of the corresponding branching ratios are too small to be measured:
BR(t—br) ~4-1078 | BR(t—bD,) ~2-107". (69)

In Table 24 we summarize the expected decay rates for the main top decay channels in the SM.

8.2 Beyond the Standard Model decays

The fact that a measurement of the top width is not available and that the branching ratio BR{t—bW)
~ is a model dependent quantity makes the present experimental constraints on the top decays beyond the
SM quite weak. Hence, the possibility of ¢ decays into new massive states with branching fraction of
order BR (t—bW) is not excluded. Apart from the production of new final states with large branching
fractions, we will see that new physics could also give rise to a considerable increase in the rates of many
decay channels that in the SM framework are below the threshold of observability at the LHC.




Table 24: Branching ratios for the main SM top decay channels.

| channel | BRgsym || channel | BRsym |
bW 1 sW 1.6-10-3
dw ~107% bWg | 0.3(E; > 10GeV)
bW+ 3.5.-1073 (E, > 10GeV) || 6WZ 2.10°%
cWHw- ~ 10~ bW+H < 10-7
q9 5.1071 gy 5.1071°
qZ 1.3-10713 cH < 10713

8.21 4* fermion family

Extending the SM with a 4** fermion family can alter considerably a few ¢ decay channels. First of
all, when adding a 4** family to the CKM matrix the present constraints on the |V;,| elements are con-
siderably relaxed. In particular, [V;,| and |V;4] can grow up to about 0.5 and 0.1, respectively [192].
Correspondingly, assuming | V| ~ 1 for the sake of normalisation, one can have up to :

BRy4(t—sW) ~ 0.25 and BR4(t—dW) ~ 0.01, (70)

to be confronted with the SM expectations in (57).

The presence of a 4%* fermion family could also show up in the ¢ direct decay into a heavy b’
quark with a relatively small mass (my ~ 100 GeV) [239]. This channel would contribute to the
t—cWW decay, with arate:

BR(t—=WHb (=W™¢)) ~ 1073 (10™7) at my = 100 (300) GeV, (71)

to be confronted with the SM prediction in (64).

8.22 Two Higgs Doublet models (2HDM'’s)

The possibility that the EW symmetry breaking involves more than one Higgs doublet is well motivated
theoretically. In particular, three classes of two Higgs doublet models have been examined in connection
with rare top decays, called model I, Il and III. The first two are characterised by an ad hoc discrete
symmetry which forbids tree-level FCNC [240], that are strongly constrained in the lightest quark sector.
In model I and model II, the up-type quarks and down-type quarks couple to the same scalar doublet
and to two different doublets, respectively (the Higgs sector of the MSSM is an example of model II).
In model III [241, 242], the above discrete symmetry is dropped and tree-level FCNC are allowed. In
particular, a tree-level coupling ¢cH is predicted with a coupling constant S \/mgm./v (Where v is the
Higgs vacuum expectation value). '

Since enlarging the Higgs sector automatically implies the presence of charged Higgs bosons in
the spectrum, one major prediction of these new frameworks is the decay t—bH*, possibly with rates
competitive with BR(t—bW) for my+ < 170 GeV. In the MSSM, one expects BR(t—bH ) ~ 1, both
at small and large values of tan 3. The interaction Lagrangian describing the H*¢ b-vertex in the MSSM
is [243]:

g
V2Mw

where P p = 1/2(1 F 4s) are the chiral projector operators.

At tree level the corresponding decay widths of t—bH*, Ht—rv, and H* b (or, analogously,
of H*+—c3) are equal to [243]

H?* [t (micot B P+ mptan B3 Pr) b+  (mgtan 3 Pr) 4] + h.c., (72)
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[(mf + mi — m¥)(m? cot? B + m? tan® 8) + 4mfm§] , (73)

2
[(HY—=rty) = w—mi tan? 3, (74)
32r M,
DH ) = —3L a1, 78 mE)
T 32rMEmy b "my’ my
[(m}; —m? — m}) (m? cot? B 4+ m? tan? 8) — 4m?m§] ) (75)

where A(a, b, c) = a® + b% + ¢ — 2(ab+ ac + bc), and myg = my+.

Consequently, if my < m; — ms, one expects HY—7+v (favoured for large tan 3) and/or
H*—¢5 (favoured for small tan §) to be the dominant decays. Hence, for tan8 > 1 and H+—7ty
dominant, one can look for the channel t—6H* by studying a possible excess in the T lepton signature
from the ¢ pair production [244]. On the other hand, if tan 8 < 2 and mg > 130 GeV, the large mass
(or coupling) of the t-quark causes BR(H T —t*b—W¥bb) to exceed BR(H *—c3) (Fig. 44, see [245]
for details).
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Fig. 44: Branching fractions for three H™* decay modes for two values of m g+ vs. tan 3.

As a consequence, new interesting signatures at LHC such as leptons plus multi-jet channels with
four b-tags, coming from the gluon-gluon fusion process gg—tbH ~, followed by the H ~—b decay,
have been studied [246]. These processes could provide a viable signature over a limited but interesting
range of the parameter space.

One should recall however that both BR(t—bH*) and BR(Ht—W*bb) are very sensitive to
higher-order corrections, which are highly model dependent [247].

In model III, the tree-level FCNC decay {—+ch can occur with branching ratios up to 102 [242].
In [248], the rate for the channel t—ch—cW W (cZ Z) has been studied. Accordingly, BR({t—cWW)
can be enhanced by several orders of magnitude with respect to its SM value. In particular, for an on-
shell decay with 2Mw < my < my, one can have up to BR(t—cW W) ~ 107 from this source. The
same process was considered in a wider range of models, where the decay t—c¢W W can occur not only
through a scalar exchange but also through a fermion or vector exchange [239). In this framework, the
fermion exchange too could lead to detectable rates for t—cWW, as in (71).
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In 2HDMs, the prediction for the FCNC decays t—cg, t—cy and t—cZ can also be altered.
While in models I and II the corresponding branching fractions cannot approach the detectability thresh-
old [249], in model III predicts values up to BR(t—cg) ~ 103, BR(t—cy) ~ 1077 and BR(t—¢cZ) ~
1078 [2171.

By further extending the 2HDM’s Higgs sector and including Higgs triplets, one can give rise to a
vertex HW Z at tree level in a consistent way [250]. Accordingly, the t—bW Z decay can be mediated
by a charged Higgs (coupled with m;) that can enhance the corresponding branching fraction up to
BR(t—+bWZ) ~ 10~2. Large enhancements can also be expected in similar models for the channels
t—=sWZ and t—dW Z.

8.23 Minimal Supersymmetric Standard Model (MSSM)

Supersymmetry could affect the ¢ decays in different ways. (Here, we assume the MSSM frame-
work [26], with (or without, when specified) R parity conservation.)

First of all, two-body decays into squarks and gauginos, such as t—£,§, t—by X7, t—#; %3, could
have branching ratios of order BR (t—bW¥), if allowed by the phase space (see, i.e. [251] for references).
QCD corrections to the channel ¢t—; § have been computed in [252] and were found to increase its width
up to values even larger than I (¢—bW). Three-body ¢ decays in supersymmetric particles were surveyed
in [251]. .

The presence of light top and bottom squarks, charginos and neutralinos in the MSSM spectrum
could also give rise to a CP asymmetry of the order 1072 in the partial widths for the decays t—bW*
and t—bW — [140, 253]. :

Explicit R-parity violating interactions [254] could provide new flavour-changing ¢ decays, both
at tree-level (as in the channels t—7b and t—7b%] [255]) and at one loop (as in t—cP [256]), with
observable rates. For instance, BR(¢t—cD) ~ 10~* — 10~2 in particularly favourable cases.

Another sector where supersymmetric particles could produce crucial changes concerns the one-
loop FCNC decays t—cg, t—cy, t—cZ and t—cH , which in the SM are unobservably small. In the

MSSM with universal soft breaking the situation is not much affected, while, by relaxing the universality
with a large flavour mixing between the 2"¢ and 3"¢ family only, one can reach values such as [257, 258]:

BRyssm(t—cg) ~ 1076 | BRyssm(t—cy) ~ 1072 | BRyssm(t—cZ) ~ 1078, (76)

which, however, are still not observable. The introduction of baryon number violating couplings in
broken E-parity models could on the other hand give large enhancements [218], and make some of these
channels observable:

BRp(t—cg) ~ 1073 | BRp(t—cy) ~ 1075 , BRp(t—cZ) ~ 1074 7

A particularly promising channel is the FCNC decay t—ch in the framework of MSSM, where

h = A9 HO®, A° is any of the supersymmetric neutral Higgs bosons [259]. By including the leading

MSSM contributions to these decays (including gluino-mediated FCNC couplings), one could approach

the detectability threshold, especially in the case of the light CP-even Higgs boson, for which one can
get up to:

BRyssm(t—ch®) ~ 1074 (78)

8.24 Anomalous couplings

In the framework of the top anomalous couplings described in Section 7., one can predict large enhance-
ments in different FCNC top decay channels. While the t—cg, t—c7y, and t—¢Z processes are analysed
in section 7., here we concentrate on the possible FCNC contributions to the top decays into two gauge
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bosons, t—¢V'V, where V is eithera W ora Z and ¢ = ¢, u:
tagWtZ_ |, taqWtW™ | t=qZZ._ (79). .

In the SM, the first two decays occur at tree level, while t—+¢qZ Z proceeds only through loop contribu-
tions. We will see that within the present experimental limits on the top anomalous couplings, the rates
for these processes can be large with respect to the SM prediction, but are still below the detectability
threshold at the LHC. :

The FCNC contribution to the first channel in (79), for the anomalous coupling ., ~ 0.3, has a
rate of the the same order of magnitude as the SM BR(t—bW Z) [260]:

BRpeng ((—eW Z) ~ 1076 ~ BRsm (t—0W Z). (80)

Top anomalous FCNC interactions with both a photon and a Z-boson contribute to the second
process in eq.(79). Contrary to the SM case this amplitude has no GIM suppression. As a result, the
corresponding branching ratio can have almost the same value as that of the t—qW Z decay {260]:

BRrone (t—)CW+W~) ~1077> BRgMm (t—-)CWW). (81)

For the t—¢Z Z decay mode, a coupling k., ~ 0.3 gives a branching ratio much greater than the
corresponding SM one ( < 10713 [260]):

BRpenc (t—9¢ZZ) ~ 10~% > BRgm (t—qZZ7), (82)

but still too small to be detected at LHC.

In summary, the observation of any of these decays at LHC would indicate new physics not con-
nected with the top FCNC interactions (see, for example, [248]).

8.3 ATLAS studies of (rare) top quark decays and couplings

In ATLAS various analyses have been performed on top decays, using the PYTHIA Monte-Carlo inter-
faced to a fast detector simulation (ATLFAST). In the following, the most relevant results are reported.

8.31 BR(t— bX) and measurement of |Vy|

The SM prediction BR(t— W*b) ~ 1 can be checked by comparing the number of observed (1 or 2)
b-tags in a tf sample. The first b-tag is used to identify the event as a tf event, and the second b-tag (if
seen) is used to determine the fraction of top decays producing a b quark. Within the three-generation
SM, and assuming unitarity of the CKM matrix, the ratio of double b-tag to single b-tag events is given
by:

Ras/1 = BR(t— Wb)/BR(t— Wq) = [V [/ (IVisl* + Vil + [Vaal?) = |Val? (83)

The CDF collaboration has used the tagging method in leptonic ¢Z events to obtain the result
Raps1s = 0.99 £ 0.29 [261], which translates to a limit of |[Vis] > 0.76 at the 95% CL assuming three-
generation unitarity. If this constraint is relaxed, a lower bound of |Vis| > 0.048 at the 95% CL is .
obtained, implying only that |V}| is much larger than either |V;,| or |Vi4).

The LHC will yield a much more precise measurement of Ry/15. For example, tt events in the
single lepton plus jets mode can be selected by requiring an isolated electron or muon with pr > 20
GeV, E7*** > 20 GeV, and at least four jets with pr > 20 GeV. Requiring that at least one of the
jets be tagged as a b-jet produces a clean sample of ¢ events, with S/B = 18.6, with the remaining
background coming mostly from W +jet events [30]. Assuming a b-tagging efficiency of 60%, a sample
of 820 000 single b-tagged events would be selected for an integrated luminosity of 10 fb~1. Of these,




P

276 000 would be expected to have a second b-tag, assuming the SM top quark branching ratios. This
ATLAS study indicates that the statistical precision achievable would correspond to a relative error of
0Rgs/15/Rap/15 (stat.) = 0.2% for an integrated luminosity of 10 fb=!. The final uncertainty will be
dominated by systematic errors due to the uncertainty in the b-tagging efficiency and fake b-tag rates, as
well as correlations affecting the efficiency for b-tagging two different jets in the same event. Further
study is needed to estimate the size of these systematic uncertainties.

8.32 BR(t— WX)

The measurement of the ratio of di-lepton to single lepton events in a t£ sample can be used to determine
BR(t— W X). In this case, the first lepton tags the tf event, and the presence of a second lepton is used
to determine the fraction of top quark decays producing an isolated lepton, which can be then be related
to the presence of a W (or other leptonically decaying states) in the decay. The SM predicts that Ry;/y; =
BR(W — fv) = 2/9 where £ = (e, ). Deviations from this prediction could be caused by new physics,
for example, the existence of a charged Higgs boson. The dominant H+ decays in such instances are
usually considered to be Ht— 7v or HT— ¢5. In either case, the number of isolated electrons and
muons produced in top decay would be reduced, and Ry;/1; would be less than the SM prediction.

A study performed by ATLAS [30] shows that with an integrated luminosity of 10 fb™?, a clean
sample of about 443 000 ¢t events in the single lepton plus jets mode could be selected by requiring an
isolated electron or muon with pr > 20 GeV, E7*** > 20 GeV, and at least two b-tagged jets with pr
> 20 GeV. To determine Rg;/y;, one then measures how many of these events have a second isolated
electron or muon, again with pr > 20 GeV, and of the opposite sign to the first lepton. Assuming the
SM, one would expect a selected sample of about 46 000 di-lepton events with these cuts. Given these
numbers, the statistical precision achievable would correspond to a relative error of §Ry;/11/Rai/1; (stat.)
= 0.5% for an integrated luminosity of 10 fb~!. Further study is required to estimate the systematic
uncertainty on Ry;/; due to the lepton identification and fake rates.

8.33 Radiative Decays: t— WbZ,t— WbH

The ‘radiative’ top decay t— WbZ has been suggested [233] as a sensitive probe of the top quark mass,
since the measured value of m; is close to the threshold for this decay. For the top mass of (173 £ 5.2)
GeV [192], the SM prediction, based on the Z— ee signature and a cut m.. > 0.8 Mz (see Section 8.1),
is BReut (t— WbZ) = (5.4157) x 1077 [233]. Thus, within the current uncertainty ém; ~ 5 GeV, the
predicted branching ratio varies by approximately a factor of three. A measurement of BR(t— WbZ2)
could therefore provide a strong constraint on the value of m;. Similar arguments have been made for
the decay t— WbH, assuming a relatively light SM Higgs boson.

ATLAS has studied the experimental sensitivity to the decay t— WbZ [30, 262], with the Z
being reconstructed via the leptonic decay Z—!! (£ = e, u), and the W through the hadronic decay
W — jj. The efficiency for exclusively reconstructing t— WbZ is very low, due to the soft pr spectrum
of the b-jet in the t— WbZ decay. Instead, a semi-inclusive technique was used, where a W Z pair
close to threshold was searched for as evidence of the t— WbZ decay. Since the t— WbZ decay is
so close to threshold, the resolution on mw z is not significantly degraded with respect to the exclusive
measurement. The selection of Z— Il candidates required an opposite-sign, same-flavor lepton pair,
each lepton having pr > 30 GeV and || < 2.5. The clean Z— [l signal allows a wide di-lepton mass
window to be taken (60 GeV < my, < 100 GeV) in order to have very high efficiency. Candidates for
W — jj decay were formed by requiring at least two jets, each having pr > 30 GeV and || < 2.5, and
satisfying 70 GeV < mjj < 90 GeV. The Il;j invariant mass resolution was o{mw z] = 7.2 + 0.4 GeV,
and the signal efficiency was 4.3%.

The dominant backgrounds come from processes with a Z boson in the final state, primarily
Z+jet production, and to a much lesser extent from WZ and ¢t production. In order to reduce the




Z+jet background, an additional cut requiring a third lepton with pr > 30 GeV was made. For the
signal process tf — (WbZ)(Wb), this cut selects events in which the W from the other top decays
leptonically. After this selection, and with a cut on mwz of £10 GeV around the top mass, the total
expected background was reduced to & 1.5 events (mostly from W Z production) per 10 fb~!. Requiring
at least five events for signal observation leads to a branching ratio sensitivity of order 10~3. Since the
background has been reduced essentially to zero, the sensitivity should improve approximately linearly
with integrated luminosity. However, even with a factor of ten improvement for an integrated luminosity
of 100 fb~1, the sensitivity would still lie far above the SM expectation of order 10~7 — 108

Given this result, observation of the decay t— WbH does not look possible. The current LEP
limit on my implies that the Higgs is sufficiently heavy that, in the most optimistic scenario that the
Higgs mass is just above the current limit, BR{(t— WbH) < BR(t— WbZ). As my increases further,
BR(t— WbH) drops quickly. Assuming myg =~ mz, one would have to search for t— WbH using
the dominant decay H—+ bb. The final state suffers much more from background than in the case of
t— WbZ, where the clean Z — £ ¢~ signature is a key element in suppressing background. Although
BR(H - bb) in this my range is much larger than BR(Z — £¥£~ ), the large increase in background
will more than compensate for the increased signal acceptance, and so one expects the sensitivity to
BR(t— WbH) to be worse than for BR(¢— WbZ). The decay t— WbH has therefore not been studied
in further detail.

834 t— H*b

Limits on the mass of the charged Higgs have been obtained from a number of experiments. An indirect
limit obtained from world averages of the 7 branching ratios excludes at 90% CL any charged Higgs with
myg+ < 1.5tan 3 GeV [263], where tan 3 is the ratio of the vacuum expectation values of the two Higgs
doublets. CLEO indirectly excludes myg+ < 244 GeV for tan 8 > 50 at 95% CL, assuming a two-Higgs-
doublet extension to the SM [212], while the LEP experiments directly exclude mpy+ < 59.5 GeV/c? at
95% CL [264]. Searches at the Tevatron have extended the region of excluded [mp+, tan 3] parameter
space, particularly at small and large tan 3, and set a limit on the branching ratio BR(t— H¥b) <
0.45 at 95% CL [265]. Run 2 at the Tevatron will be sensitive to branching fractions BR(t— H*b) >
11% [266].

ATLAS has performed an analysis of the experimental sensitivity to the t— H*b decay, followed
by Ht— 7v, in the context of the MSSM [30, 267]. Since the relevant t— H b branching ratio is
proportional to (m? cot? 8 + m? tan? ) (see (73)), for a given value of my+ the branching ratio for
such decays is large at small and at large tan 3, but has a pronounced minimum at tan 3 ~ /m;/mg ~
7.5. The exact position of this minimum and its depth is sensitive to QCD corrections to the running
b-quark mass.

In the ATLAS analysis, an isolated high-p7 lepton with | 7 | < 2.5 is required to trigger the ex-
periment, which in signal events originates from the semi-leptonic decay of the second top quark. One
identified hadronic tau is then required, and at least three jets with pr > 20 GeV and | | < 2.5, of which
two are required to be tagged as b-jets. This reduces the potentially large backgrounds from W+jet and
bb production to a level well below the ¢f signal itself. These cuts enhance the T-lepton signal from H *
decays with respect to that from W decay, and select mostly single-prong r-decays. After the selection
cuts and the 7 identification criteria are applied, t— H b decays appear as final states with an excess of -
events with one isolated r-lepton compared to those with an additional isolated electron or muon.

A signal from charged Higgs-boson production in tf decays would be observed for all values of
my+ below m; — 20 GeV over most of the tan 8 range. For moderate values of tan 8, for which the
expected signal rates are lowest, the accessible values of m;+ are lower than this value by 20 GeV. The
limit on the sensitivity to BR(t— H1b) is dominated by systematic uncertainties, arising mainly from
imperfect knowledge of the r-lepton efficiency and of the number of fake r-leptons present in the final
sample. These uncertainties are estimated to limit the achievable sensitivity to BR(t— H*b) = 3%.
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For charged Higgs masses below 150 GeV and for low values of tan 3, the H¥— cs and H*— cb
decay modes are not negligible. In the same mass range, the three-body off-shell decays H*— AW™,
H%*— AW* and H*—s bt*— bbW also have sizeable branching ratios. When the phase-space increases,
for 150 GeV < my+ < 180 GeV, both the bW and the hW™ mode could be enhanced with respect
to the Tv mode. Decays into the lightest chargino )Zli and neutralino X or decays into sleptons would
dominate whenever kinematically allowed. For large values of tan 3 the importance of these SUSY
decay modes would be reduced. However, for values as large as tan 8 = 50, the decay H*— #5 would
be enhanced, provided it is kinematically allowed and would lead to 7’s in the final state. Their transverse
mementum spectrum is, however, expected to be softer than that of 7’s from the direct H¥— v decays.

The HE— ¢s decay mode has been considered as a complementary one to the H*— Tv channel
by ATLAS for low values of tan 8. In the ATLAS analysis, one isolated high pr lepton with | 7 | <
2.5 is required to trigger the experiment, which in signal events originates from the semi-leptonic decay
of the second top quark. Two b-tagged jets with pz > 15 GeV and | | < 2.5 are also required, with
no additional b-jet. Finally, at least two non-b central jets with | 7 | < 2.0 are required for the H¥— ¢s
reconstruction, and no additional jets above 15 GeV in this central region. Evidence for H* is searched
for in the two-jet mass distribution. The mass peak from an H* decay can be reconstructed with a
resolution of & = (5 — 8)GeV if the mass of the H¥ is in the range between 110 and 130 GeV. In this
mass range, the peak sits on the tail of the reconstructed W— 57 distribution from ¢f background events
which decay via a Wb instead of a H*b. In the mass range 110 < H* < 130 GeV, the H* peak can
be separated from the dominant W—s jj background, with S/B a2 4-5% and S/+/B ~ 5. This channel
is complementary to the H*— 7v channel for low tan 8 values. Whereas the H*— v channel allows
only the observation of an excess of events, it is possible to reconstruct a mass peak in the H¥— cs
decay mode.

The H*— hW*, H¥*— AW* and H*— bt*— bbW have not been studied so far by ATLAS. With
the expected b-tagging efficiency, these multi-jet decay modes are very interesting for a more detailed
investigation.

835 t—2Zq décay

The sensitivity to the FCNC decay ¢t — Zq¢ (with ¢ = u, c) has been analyzed [268] by searching for a
signal in the channel £ — (Wb)(Zgq), with the boson being reconstructed via the leptonic decay Z — Il.
The selection cuts required a pair of isolated, opposite sign, same flavor leptons (electrons or muons),
each with pp > 20 GeV and |5| < 2.5 and with |my;; — mz| < 6 GeV. The dominant backgrounds come '
from Z + jet and W Z production. Not only cuts were applied on the Zg¢ final state, but also on the Wb
decay of the other top quark in the event, to further reduce the background. Two different possible decay
chains have been considered: the first (“leptonic mode”) where the W decays leptonically W — £fv, .
and the second (“hadronic mode”) with W — jj. The hadronic W decay signature has a much larger
branching fraction, but suffers from larger backgrounds. The search in the leptonic mode required, in
addition to the leptons from the Z boson decay, a further lepton with p7 > 20 GeV and |7| < 2.5, ng"”
> 30 GeV, and at least two jets with pr > 50 GeV and |7} < 2.5. Exactly one of the high pr jets was
required to be tagged as a b-jet. The invariant mass spectrum of each Z¢ combination was then formed
from the Z — Il candidates taken with each of the non b-tagged jets. The Zq invariant mass resolution
was 10.1 GeV. Combinations were accepted if mz, agreed with the known top mass within 4= 24 GeV.
Assuming an integrated luminosity of 100 fb—!, 6.1 signal events survive the cuts with 7 background
events. A value of BR(t—Zg) as low as 2 - 10~* could be discovered at the 5o level.

The search in the hadronic mode required, in addition to the Z — Il candidate, at least four jets
with py > 50 GeV and || < 2.5. One of the jets was required to be tagged as a b-jet. To further reduce
the background, the decay t — jjb was first reconstructed. A pair of jets, among those not tagged as a
b-jet, was considered a W candidate if |m;; — Mw| < 16 GeV. W candidates were then combined with
the b-jet, and considered as a top candidate if |m ;5 — m:| < 8 GeV. For those events with an accepted
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t — j7bcandidate, the invariant mass of the Z candidate with the remaining unassigned high pr jets was
calculated to look for a signal from ¢ — Zg decays. Combinations were accepted in case [mz, — my|
< 24 GeV. Assuming an integrated luminosity of 100 fb~!, one would get 0.4 signal events, with 2
background events.

836 t— vqdecay

The FCNC decay ¢ — vq (with ¢ = u, ¢) can be searched for as a peak in the M, ; spectrum in the
region of m;. The requirement of a high pr isolated photon candidate in t¢ — (Wb)(7yq) events is
not sufficient to reduce the QCD multi-jet background to a manageable level. Therefore, the t —+ Wb
decay of the other top (anti-) quark in the event was reconstructed using the leptonic W — {v decay
mode, and looking for the t£ — (Wb)(vq) — (£vb)(~yq) final state. For the event selection, the ATLAS
collaboration [30, 262] required the presence of an isolated photon with pr > 40 GeV and || < 2.5, an
isolated electron or muon with p7 > 20 GeV and || < 2.5, and ER*** > 20 GeV. Exactly 2 jets with pr
> 20 GeV were required, in order to reduce the tf background. At least one of the jets was required to
be tagged as a b-jet with pr > 30 GeV and |5| < 2.5. The t — £vb candidate was first reconstructed.
The combination was accepted as a top quark candidate if my,, agreed with m; within +20 GeV. For
these events the ¢ — ¢ decay was sought by combining the isolated photon with an additional hard jet
with pr > 40 GeV and |n| < 2.5. The invariant mass of the vj system was required to agree with the
known value of m; within +20 GeV. The m.,; resolution with the cuts described above was 7.7 GeV, and
the signal efficiency (not counting branching ratios) was 3.3%, including a b-tagging efficiency of 60%.
The background (155 events for an integrated luminosity of 100 fb~1) is dominated by events with a real
W — £v decay and either a real or a fake photon. These processes include tZ, single top production,
W + jets and Wbb production. The corresponding So discovery limit is

BR(t = v¢) = 1.0 x 107*. (84)

8.37 t — gqdecay

The search for a FCNC tgq coupling (with ¢ = u, c) through the decay ¢ — gg was analyzed in [229]
for the Tevatron. However, as can be seen from Table 23 in Section 7., the sensitivity for such a coupling
turns our to be much larger in the ¢ production processes than in the decay ¢ — g¢, whose signal will be
overwhelmed by the QCD background. We refer the reader to Section 7. for a detailed discussion of this
point.

8.4 CMS studies of FCNC top quark decays and t— H*b

The CMS sensitivity to t — v(Z)(u, c) decays was studied recently (see [230] for details). The
PYTHIA 5.7 [52] generator was used for the signal and background simulations and the detector re-
sponse was simulated at the fast MC level (CMSJET [177]). For the t — v(u, ¢) signal the exact 2 — 5
matrix elements gg(g§) — t&t — yu(c) + W*b(— £vb) were calculated and included in PYTHIA. The
t = 7(Z)(u, c) decays would be seen as peaks in the M.,(z) ;. spectrum in the region of m.. To separate
the signal from the background one has to exploit the presence of the additional top decaying to the £vb
in the same event. The signature with the hadronic decay of the additional top was found to be hopeless.

841 t— y(u,c)

In order to separate the (yq)(£vb) final state from the backgrounds several selection criteria were
found to be effective. First, the presence of one isolated photon with E; > 75 GeV and |n| > 2.5, one
isolated lepton (i, €) with E; > 15 GeV and |n| > 2.5, and at least two jets with £; > 30 GeV and
Inl > 2.4 is required. One top quark has to be reconstructed from the photon and jet (M, jer C m: £ 15
GeV), the corresponding jet is not allowed to be b-tagged. On the contrary, the jet with maximal F,




which is not involved in the (v, jet) system has to be b-tagged, should have E; > 50 GeV and contribute
to another reconstructed top quark (Mp,; C m;+25GeV). There must be no additional jets with E; > 50
GeV. The b-tagging efficiency was assumed to be 60% for the purity 1%(10%) with respect to the gluon
and light quark jets (c-quark jets). After this selection, approximately 270 background events dominated
by the ¢tf and W + jets, including W bb, survive for the integrated luminosity of 100 fo~!, while the signal
efficiency is 9.1%. The S/ B ratio is about 1 for BR(¢ = 7v(u, ¢)) = 10~ and the 5 o discovery limit is
as low as 3.4 x 1075 for 100 fb~1.

842 t— Zgq

The t — Zq signal was searched for in the t£ — (££q)£vb final state. Three isolated leptons with
E; > 15 GeV and |n] < 2.5, and exactly two jets with E; > 30 GeV and |n| < 2.5 are required. The
pair of the opposite-sign same-flavour leptons has to be constrained to the Z mass (M,; C Mz £6 GeV)
and one jet, combined with the reconstructed Z, has to form the top system (My;; C m; £ 15 GeV).
This jet is not allowed to be the b-jet, but the last “free” jet in the event has to be b-tagged. For the
integrated luminosity of 100 fb—! just ~ 9 background events coming from the W Z, t{Z and Z + jets
processes survive. The signal efficiency is about 6.8% which corresponds, however, only to ~ 12 events
for BR(t = Z(u,c)) = 10~*. The indication is that one can reduce the background rate to the nearly
zero level tightening the selection criteria. In particular, requiring in addition E/*** > 30 GeV and a
harder jet involved in the top (ZZ 7) system (E; > 50 GeV) one can reduce the background to the level
of ~ 0.6 events still keeping ~ 3.7% of the signal (6.6 events for BR(¢ — Z(u,c)) = 16™* and 100
fb~1). One can conclude that the t — Z(u, c) signal should be very clean but, due to the low signal event
rate, only ~ 3 X 100fb~! of integrated luminosity would allow one to probe BR(t — Z(u, c)) as low as
10~*, provided the present background understanding is correct and the detector performance will not
be deteriorated during the long run. The 50 reach for 100 fb=1 is ~ 1.9 x 1074,

843 t— H'b

CMS has investigated the production of the light charged Higgs, mp+ < my, in tf events using the decay
chain tf— HEbWb—(tv,b) + (£vb) [269]. The HE—7v branching ratio is large ~98% in this mass
range for tan 8 >2 and only slightly dependent on tan 3. The t— H*b branching ratio is large both at
high and at low tan 8 values and has a minimum of ~0.8% around tan § ~6. Since the Higgs mass
cannot be reconstructed in this process the signal can be only inferred from the excess of 7 production
over what is expected from the SM t—Wb, W* 7%y decay.

An isolated lepton with p; > 20 GeV is required to identify the top decay and to trigger the
event. The 7’s are searched starting from calorimeter jets with E; >40 GeV within |n| <2.4. For the
7 identification the tracker information is used, requiring one hard isolated charged hadron with p; >30
GeV within the cone of AR <0.1 inside the calorimeter jet. The algorithm thus selects the one prong 7
decays.

The main backgrounds are due to the ¢ events with tF—=WbWb—s(r%v,b) + (évb) and W +
jet events with W—7v. The ¢ background is irreducible, but can be suppressed by exploiting the
7 polarisation effects [270]. Due to the 7 polarisation the charged pion from r—n*v decay has a
harder p; spectram when coming from H*— v than from W*—rv. The decay matrix elements with
polarisation [271] were implemented in PYTHIA [52]. Due to the polarisation, the efficiency of the above
T selection is significantly better for H £ 370 (~19%) than for WE—7v (~6%).

The events were required to have at least one b-jet with F; > 30 GeV tagged with an impact
parameter method [272]. This b-tagging suppresses efficiently, by a factor of ~70, the background from
W +jet events. The efficiency for tf events is ~35%. The expected 50 discovery range for 10 fb-!
in the MSSM (m 4, tan 3) parameter space was found to be: m4 < 110 GeV for all tan § values and
somewhat extended (m4 < 140)fortan 8 < 2.
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8.5 Conclusions on rare top decays

In the framework of the SM, the top rare decays (that is any channel different from t—¢W) are definitely
below the threshold for an experimental analysis at LHC. On the other hand, LHC experiments will be
able to probe quite a few predictions of possible extensions of the SM.

An extended Higgs sector will be looked for through the tree-level decay t—bH . ATLAS esti-
mates its sensitivity to this channel in the MSSM, through an excess in the tau lepton signal, to be around
BR({t—H™*b) = 3% (that is almost 4 times better than what expected from Run 2 at the Tevatron). This
would allow to probe all values of mgs below m; — 20 GeV over most of the tan 3 range. For low
tan 3, the complementary decay mode H*—scs has been considered. In the mass range 110 < H* <
130 GeV, the H* peak can be reconstructed and separated from the dominant W— 33 background.

For CMS, using the T excess signature, the expected 5S¢ discovery range for 10 fb~! in the MSSM
(m4,tan 3) parameter space is ms < 110 GeV, for all tan 3 values, and somewhat extended (m 4 S
140), fortan 8 $ 2.

Other interesting signatures like HE—hW*, H¥— AW* and H*—bt*—bbW are very promising
in particular parameter ranges, but have not yet been thoroughly investigated.

ATLAS has studied its sensitivity to the radiative decay t—WbZ. This has been found to be at
most of the order 10~*, that is insufficient for the study of a SM signal (~ 10~°), but possibly useful for
exploring the predictions of some extended Higgs-sector model, for which BR(t—+Wg¢Z) < 1072, On
the other hand, the radiative Higgs decay {—WbH seems out of the reach of LHC in any realistic model.

The LHC reach for the FCNC decays t—¢Z, t—¢7y and t—qg has also been thoroughly in-
vestigated. Apart from the t— gg, which is completely overwhelmed by the hadronic background, both
ATLAS and CMS have a sensitivity of about 2 x 10~* to the t—¢Z channel, while the CMS reach for
the t—qy channel is about 3.4 x 1075, that is slightly better than the ATLAS sensitivity (1.0 x 107%),
assuming an integrated luminosity of 100 fb~!. These thresholds could be largely sufficient to detect
some manifestation of possible FCNC anomalous couplings in the top sector.

ATLAS has also investigated its sensitivity to a measurement of |V;3| through a determination
of the rate BR(t—bX), by comparing the number of observed (1 or 2) b-tags in a tf sample. Within
the three-generation SM, the ratio of double b-tag to single b-tag events is Rgy/15 = [Vip]?. LHC will
allow a much more precise determination of Rop/1, with respect to the Tevatron (where, presently, one
gets [Vis| > 0.76 at the 95% CL). On a purely statistical basis, the expected relative error on Ryp/15 is
8Ras/18/Raos/15 (stat.) = 0.2% for an integrated luminosity of 10 fb™1, that would imply a relative error
on |V;| of about 1% . On the other hand, the final uncertainty will be dominated by systematic errors
related to the b-tagging. Further study is needed to estimate the size of these systematic uncertainties.

9. ASSOCIATED TOP PRODUCTION?*

The associated production of a Higgs boson (both SM-like and MSSM) with a top-antitop pair, is one of
the most promising reactions to study both top quark and Higgs boson physics at the LHC.

The pp — tt H channel can be used in the difficult search for an intermediate mass Higgs (m g~
100 — 130 GeV), as first proposed in [273]. In this mass region, the associated top production cross
section is quite high but still smaller than the leading g¢g — H and ¢¢ — Hgg cross sections by two
orders and one order of magnitude, respectively. However, since the final state ¢# H signature is extremely -
distinctive, even such a small signal production rate can become relevant, especially if identifying the
Higgs through its dominant H — bb decay becomes realistic, as will be discussed in the following.

Associated t H production will furthermore provide the first direct determination of the top quark
Yukawa coupling, allowing to discriminate, for instance, a SM-like Higgs from a more general MSSM
Higgs. Processes like gg — H or H — <~ are also sensitive to the top Yukawa coupling, but only

#Section coordinators: A. Belyaev, L. Reina, M. Sapinski (ATLAS), V. Drollinger (CMS).
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through large top loop corrections. Therefore loop contributions from other sources of new physics can
pollute the interpretation of the signal as a measurement of the top Yukawa coupling.

In the following we will concentrate on the case of a SM-like Higgs boson, whose top Yukawa
coupling (y;: = 23/ 4G},1/2mt) is enhanced with respect to the corresponding MSSM (scalar Higgs) cou-
pling for tan 8 > 2, the region allowed by LEP data. Predictions for the MSSM case can be easily
obtained by rescaling both the ttH coupling and any other coupling that appears in the decay of the
Higgs boson.

The cross section for pp — ttH at LO in QCD has been known for a long time [274] and has
been confirmed independertly by many authors. We have recalculated it and found agreement with the
literature. Of the two parton level processes (¢ — ttH and gg — ttH), gg — ttH dominates at
the LHC due to the enhanced gluon structure function. The complete gauge invariant set of Feynman
diagrams for gg — ¢t H is presented in Fig. 46. The corresponding analytical results are too involved to
be presented here. The numerical results for /s=14 TeV and a few values of the QCD scale p are given
in Table 25, and illustrated in Fig. 45 as functions of mpy, for p=mpg. For consistency, we have used the
leading order CTEQ4L PDFs [115] as well as the leading order strong coupling constant (for reference,
al© (4= Mz) = 0.1317 for Ag%'D = 0.181). The cross section, as expected from a LO calculation,
shows a strong scale dependence, as can be see in Table 25 , where results for p=mg , m:, myg + 2my
and /3 are presented. In comparison with p = 2m; + mp, for p = mpy we have 80-50% higher cross
sections, when 100 GeV < mg < 200 GeV. Since the choice of the QCD scale at LO is pretty arbitrary,
and since we expect NLO QCD corrections to enhance the LO cross section, we decide to use p=mpg in
Fig. 45 and in the following presentation. These calculations have been performed independently using
the CompHEDP software package [275] and MADGRAPH [276]+HELAS [277].

The NLO QCD corrections are expected to enhance the cross section, but their complete evaluation
is still missing at the moment. Associated top production is in fact the only Higgs production mode for
which the exact NLO QCD corrections have not been calculated yet. The task is very demanding, since
it requires the evaluation of several one loop five-point functions for the virfual corrections and the
integration over a four-particle final state (three of which massive) for the real corrections.

For large mpy, the cross section for tfH has been calculated including a complete resummation
of potentially large logarithms, of order In(mg/m;), to all orders in the strong coupling [278]. These
effects can almost double the cross section for mg =1 TeV.




Table 25:  Leading order cross sections for ¢¢H production at the LHC. The individual parton level channels (¢ — ¢£H and
gg — ttH) as well as their sum are given for a few values of the renormalization scale u.

-my[GeV] | qd(fb] | gglfb]l | q¢d+gg(fb] | qd+gg [fb] q4+gg [fb] qq+gg [fb]
p=myg |p=myg | p=my p=m; | p=2m+my| p=+3
100 348. 990. 1340. 1070. 765. 685.
110 279. 740. 1020. 840. 596. 534,
120 227. 558. 785. 674. 473, 422.
130 186. 428. 613. 542. 379. 338.
140 153. 334, 487. 445, 308. 273.
150 128. 263. 391. 367. 251. 224,
160 107. 210. 317. 306. 207. 184.
170 90.5 169. 260. 257. 173. 152.
180 76.8 139. 216. 218. 145. 128.
190 65.7 115. 181. 187. 124. 108.
200 56.4 97.1 153. 162. 106. 92.4
300 15.0 29.5 44.5 557 332 284
400 5.11 15.6 20.7 29.6 16.2 13.8
500 2.04 9.51 11.5 18.4 9.32 7.98
600 0.909 6.00 6.91 12.1 5.73 493
700 0.439 3.86 429 8.20 3.63 3.14
800 0.226 2.50 2.72 5.62 2.34 2.04
900 | 0.122 1.65 1.76 390 1.54 1.35
1000 0.0684 1.10 1.16 273 1.02 0.900

For an intermediate mass Higgs, the K factor (cnx10o/0Lo) has been estimated in the Effective
Higgs Approximation (EHA) [279]. The EHA neglects terms of O(mg/+/s) and higher and works
extremely well for ete~ — ttH already at /s=1 TeV. However, it is a much poorer approximation in
the pp — ttH case, since it does not include the ¢ -channel emission of a Higgs boson for gg — ttH.
Indicatively, at /s = 14 TeV, for a SM-like Higgs boson with mg ~ 100—130 GeV, the EHA gives
K ~1.2 — 1.5, with some uncertainty due to scale and PDF dependence. Only the complete knowledge
of the NLO level of QCD corrections will allow to reduce the strong scale and PDF dependence of the
LO and EHA cross sections. For the following analysis we choose to use the pure LO cross section
with no K-factor, both due to the uncertainty of the result and for consistency with the corresponding
background cross sections. However, one should point out that, due to the choice of a quite low QCD
scale (u=mpr), a sort of effective K-factor has been automatically included in our analysis.

In the following subsection we present the analysis and results from the ATLAS collaboration as
well as a discussion of the main backgrounds. The analysis mainly focuses on the search and study
of an intermediate mass Higgs boson. To introduce the study, it is useful to discuss and qualitatively
understand the size of the possible irreducible backgrounds in the 100 < myg < 140 GeV mass region.

Given the relatively small number of events that will be available, one should try to consider all

possible decay channels of the Higgs boson in the intermediate mass region: 7 — bb, 7, vy, WW -

and ZZ. The corresponding irreducible backgrounds are: 1) t£bb, 2) tir7, 3) tiyy, 4) HWW, and 5)
ttZ Z. The number of events expected from signal and background signatures for 1)-5) are presented in
Fig. 47. This figure shows the number of signal and background events in each bin of the corresponding
invariant mass: M, M,,, M., Myww or Mzz. They are obtained multiplying the t¢H cross section
by the respective Higgs boson branching ratios. In order to take into account finite mass resolution
effects, we have chosen 10 GeV bins for the M., distribution and 50 GeV for the others. The presented




Table 26: Leading-order cross sections for various ¢£X X backgrounds.

ttbb ttrt ttyy ttWW | ttZZ
cuts || < 3 |7l < 3 |7y < 2.5
E% >15GeV | EZ > 15GeV | E] > 15GeV
mpy > 90 GeV M, > 90 GeV
o [fb] q@ 41.2 2.9 2.73 050 | 1.11
99 846. 15.7 1.82 1.52 | 0.567
qG+g9g 387. 18.6 4.55 253 | 1.68

numbers correspond to 30 fb~! of integrated luminosity. The corresponding total cross sections are given
in Table 26.

Cross sections for backgrounds 1)-3) were calculated with the kinematic.cuts shown in Table 26,
while for processes 4) and 5) no cuts were applied. We have used CTEQ4L PDF and p? = Mxx, where
XX is bb, 7+7, vy, WHW~ or ZZ depending on the channel. One can see that the tfbb signature
has the highest signal (and background) event rate. It has been the object of the study of the ATLAS
collaboration and will be discussed in the next section. The ¢t~y channel has also been the subject
of [280] where signal as well as reducible and irreducible backgrounds have been studied in details at the
parton level. However, one can see that other signatures could also be interesting and helpful in searching
for the Higgs boson and measuring the tt H Yukawa coupling, and should be taken into account in future
studies.

9.1 ttH : Analyses and Results

The ATLAS collaboration has studied several channels in which the discovery of a SM-like Higgs boson
would be possible and obtained a quite complete Higgs discovery potential [30]. One of the most impor-
tant channels for discovery of a low mass Higgs boson (100 — 130 GeV) is the tH, H — bb channel,
in which it is possible to obtain quite large signal significance [281] and also to measure the top-Higgs
Yukawa coupling.

The final state of this channel consists of two W bosons and four b—jets: two from the decay of
the top quarks, and two from the decay of the Higgs boson. In order to trigger signal events, one W
boson is required to decay leptonically. The second W boson is reconstructed from the decay to a ¢'g
pair. This channel could be also investigated with both W bosons decaying leptonically. However, for
this signature the total branching ratio is much smaller and, in addition, it is more difficult to reconstruct
two neutrino momenta from the measured missing energy.

In the analysis both top quarks are fully reconstructed, and this reduces most of the W +jets back-
ground. The reconstruction is done using strategies similar to those discussed in Section 3.5 for the
kinematic studies of tf production. The main backgrounds for this process are:

e the irreducible continuum ¢£bb background;
e the irreducible resonant t£Z background, which is not very important for this channel as it has a
very small cross section;

WWbbjj, etc.

After the reconstruction of the two top quarks, it has been found that the most dangerous back-
ground is t£bb (56% of all tf+jets background). In Table 27 we give o XxBR, where BR represents the
product of the branching ratios for t -+ Wb, W; — v, W; — q1q2, and H — bb. We also give
the number of events expected after the reconstruction procedure for 3 years of low luminosity oper-
ation (b-tagging efficiency ¢, = 60%; probability to mistag c-jet as b-jet ¢, = 10%; probability to
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Fig. 47: Number of events for ¢fH signal (solid line) and background t#bb, tfyy, tiWW, ttZ Z signatures (histogram), as a
function of the corresponding invariant masses Mx x , assuming 30 fb~! of integrated luminosity at /5 =14 TeV. The bin size
is 10 GeV for the M., distribution and 50 GeV for the others.

mistag any other jet as b-jet ¢; = 1%; ;t > 15 GeV;, lepton identification efficiency ¢; = 90%;
p7 > 20 GeV), and after one year of high luminosity operation (for high luminosity the b-tagging effi-
ciency is degraded to €, = 50% (e., ¢; and ¢, remain unchanged), the threshold on jet reconstruction is
raised to pr > 30 GeV and the electron pr threshold is raised to p%. > 30 GeV). Combined results are
also shown.

Figure 48 shows the signal and background shapes for my =120 GeV and 100 fb~! of integrated
luminosity obtained with combined detector performance (30 fb—! with low luminosity and 70 fb~! with
high luminosity). On the other hand, Fig.49 illustrates the signal shape for my = 100 GeV, as obtained
by using the full (GEANT) simulation of the detector. In this figure, the shaded area represents the true
signal where both b-jets come from the Higgs boson, and the solid line stands for the signal obtained
through the method that we described above. The combinatorial background, which comes from taking
at least one b-jet from a top instead the one from the Higgs, is quite large and the signal purity is at the
level of 60% for low luminosity.

For the fast simulation the m,; peak mass resolution is oy, = 19.0 GeV, while for the full

simulation, including the influence of electronic noise and the threshold on cell energy, a resolution
Oy, =20.0 GeV has been obtained. «




Table 27: Cross sections multiplied by branching ratios and numbers of events after all cuts, including the 30 m,; mass win-
dow cut, for 30 fb~! (low luminosity detector performance), 100 fo-! (high luminosity detector performance) and combined
100 5! (30 fb~! with low luminosity and 70 fb=! with high luminosity detector performance) of integrated luminosity.

o x BR nr. of
process (pb) reconstructed events
low lumi | high lumi | combined
ttH, mg = 120GeV | 0.16 40 62 83
tt + jets 87 120 242 289
Wiiiiis 65200 5 10 12
ttZ 0.02 2 5 6
total background - 127 257 307
S/B - 0.32 0.24 0.27
S/\/(B) - 3.6 3.9 438
Str 5/ Stotal - 59% 50% -
0y:/y: (stat.) - 16.2% 14.4% 11.9%

Similar analyses have been performed for the £ H, H — v channel. Since the signal rate for this
channel is very small, it will not be useful during the low luminosity period. However, thanks to the high
purity of the signal, it will be possible to obtain between 4 or 5 signal events above 1 event from ttyy
background per one year of high luminosity operation [282]. To increase the signal rate, W H and ZH
with H — 77 channels have been included into the analysis and 14 signal events above 5 background
events (W7, Z~v+, tty~ and bby~) are expected for one year of high luminosity operation [30].

The statistical uncertainty in the determination of the top-Higgs Yukawa coupling y; is given in
the last row of Table 27. These results assume that the theoretical uncertainty is small, as we expect to
be the case by the time the LHC turns on. Many statistical uncertainties of the direct measurement of
"y, such as those associated with uncertainties in the integrated luminosity and in the ¢ reconstruction
efficiency, could be controlled by comparing the t¢ H rate with the ¢t rate.

To conclude, the tfH, H — bband H — 7+ channels are very useful for Higgs boson discovery
as well as for the measurement the of top-Higgs Yukawa coupling.

9.11 A closer look at the ttbb background: CompHEP versus PYTHIA

It is necessary to stress that the correct understanding of the t£bb background is one of the main points
of this study. One can simulate this background using PYTHIA, by generating events of top pair produc-
tion and emitting bb pairs from the gluon splitting after the initial and final state radiation. In order to
understand how good or bad this approximation is, one needs to calculate and simulate the complete ttbb
process. We have done this using the CompHEP package [275].

In order to compare CompHEP and PYTHIA on the same footing, one should take into account
the effects of the initial and final state radiation in CompHEP. This has been done through a CompHEP-
PYTHIA interface [283]. We use parton level events generated by CompHEP and link them to PYTHIA in
order to include initial and final state radiation effects as well as hadronization effects.

Table 28 presents parton level CompHEP and PYTHIA cross sections including branching ratios
of the W-boson decay, for the same choice of structure function (CTEQ4L [115]) and QCD scale (u? =
m?+pZ(average)). We can see a good agreement for the total cross sections between the exact calculation
and the gluon splitting approximation.

In Fig. 50 we present the distribution of b-jet separation in ttbb events. One can see a quite
good agreement between CompHEP and PYTHIA. Figures 51 and 52 compare the transverse momentum
distributions of the most energetic b-jet and of the least energetic b-jet in t£bb production, as reproduced
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Fig. 48: Invariant mass distribution of tagged b-jet ] my, (GeV)
pairs in fully reconstructed t£H signal events and back- Fig. 49: Invariant mass distribution of tagged b-jet pairs in
ground events, obtained using the fast simulation of the fully reconstructed t£H signal events, obtained using a full
ATLAS detector, for m g =120 GeV and integrated lu- (GEANT) simulation of the ATLAS detector, for mg =
minosity of 100 fb~! (30 fo~! at low plus 70 fb~ 1 at 100 GeV and low luminosity performance. The shaded area
high luminosity). The points with error bars represent denotes those events for which the jet assignment in the Higgs
the result of a single experiment and the dashed line rep- boson reconstruction is correct.

resents the background distribution.

Table 28: Results for the £2bb background, assuming an integrated luminosity Liny = 30 f6~!: CompHEP (ISR and FSR
included) versus PYTHIA (default).

| Selection | CompHEP | PYTHIA | CompHEP / PYTHIA |
4 b-quarks with 92000 events 87600 events 1.05
pr > 15GeV/c;|n] < 2.5 o=3.1pb o =29pb
AR(b,b) > 0.5 54000 events 48900 events 1.10
b-quarks not from top decay | 59% of prev. Step | 56% of prev. Step

using PYTHIA and CompHEP respectively. These distributions also confirm that PYTHIA describes well
the ttbb background.

9.2 Summary and conclusions for ttH production

The associated production of a Higgs boson with a top-antitop pair is important for the discovery of an
intermediate mass Higgs boson (m g ~ 100 — 130 GeV) and provides a direct determination of the top-
Higgs Yukawa coupling. From studies of the couplings and of the CP-parity of the Higgs boson [284] it
will be possible to discriminate, for instance, a SM-like Higgs boson from a generic MSSM one.

The ATLAS analysis has focused on the t£H , H — bb channel for the low luminosity run of the
LHC (30fb™1 of integrated luminosity). The results presented in Section 9.1 are very encouraging and
indicate that a signal significance of 3.6 as well as a precision of 16% in the determination of the Yukawa
coupling can be reached (for mg = 120 GeV). Better results can be obtained from the high luminosity:
run of the LHC (100fb~! of integrated luminosity), when also the high purity t{H, H — ~+y channel is
available.
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A APPENDIX: b-TAGGING AND JET E-SCALE CALIBRATION IN TOP EVENTS?

For the reconstruction of the top events and in particular for the precision measurement of the top mass
two important aspects in the detector performance have to be considered:

e the b-quark jet tagging capabilities and efficiency in top events, and

o the jet energy scale calibration for the light quark jets but in particular for the b-jets.
In both experiments ATLAS and CMS several studies have been made on these, highlights of which are
presented here. From the preliminary results available so far, there is confidence that the numbers used
or implied in the analyses presented in this report are realistic. Needless to say that these are preliminary.

results and several detailed studies need to be performed with the final detector simulations and the first
LHC data.

B3ection coordinator: I. Efthymiopoulos
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Fig. 53: Left: jet rejection factors for the vertex b-tagging method, with high luminosity pile-up. Open symbols: my =
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luminosity pile-up included. From [30], Chapter 10.

Al Db-jet tagging in the top events

ATLAS has done extensive studies for the b-tagging performance using jets from the decay of 100 and
400 GeV Higgs bosons ([30], Chapter 10). In Fig. 53 the rejection factors for the light quark jets versus
the b tagging efficiency and the jet p; are shown.

Typically in the ATLAS analyses discussed here, and in particular for the fast simulation studies,
an overall b-jet tagging efficiency of 60% (50%) for low (high) luminosity of LHC is used. The mis-
tagging inefficiencies for the c-jets (or other light quark jets) were 10% (1%) for the pr range interesting
for the top physics. Although most of the studies were done with events from the Higgs decays, the
results were verified with the top events themselves and no significant differences were found.

A2 Absolute jet energy scale calibration

Determining the absolute jet energy scale at LHC will be a rather complex issue because it is subject
to both physics (initial-final state radiation, fragmentation, underlying event, jet algorithm etc.) and
detector (calorimeter response over a wide range of energies and over the full acceptance of the detector,
non-linearities at high energies, e/h ratio etc.) effects. All these have to be understood at the level of a
fraction of a percent in terms of systematic uncertainties as required for the precision measurements of
the top mass.

ATLAS has done an extensive study of the possible in situ jet scale calibration methods using

specific data samples available at LHC ([30], Chapter 12). In general, good candidate event classes at -
LHC will be:

e reconstruction of W — jj decays within the top events themselves [12] to obtain the light quark
jet calibration and,

e events containing a Z boson decaying into leptons balanced with one high-pr jet to cross-check
the light quark jet calibration but in addition to calibrate the b-jets and extend the energy reach to
the TeV range.

In Fig. 54 the results obtained are shown. As can be seen (left plot) for the case of W — j;j events,
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Fig. 54: Left: Ratio of the original parton pr to the pr of the reconstructed jet as a function of the pr of the jet for the
W — jj decays reconstructed in include ¢ events. The jets were reconstruced using a fixed cone jet algorithm with cone size
DR= 0.4, (optimized for high luminosity operation of LHC). Right: Average fractional imbalance between the pr of the Z
boson and the pr of the leading jet as a function of the p» of the jet for the sample of Z + jets events. A cone of DR= 0.7 is
used to collect the jet energy.

once the jet 4-vectors are rescaled using the M constraint the required 1% uncertainty is reached for
jets with pr> 70 GeV up to several hundred GeV. The lower and upper end of this range will depend on
how well residual systematic effects can be controlled in the data and the Monte Carlo simulation [285].

The use of the Z + jets sample in LHC is a bit less straightforward than at the Tevatron [286]
due to the ISR radiation which produces an additional high-p, jet which degrades the quality of the
pr-balance between the Z boson and the leading jet. In Fig. 54 (right) the variation of the average
fractional imbalance between the pr of the leading jet and the Z boson as a function of the pr of the jet.
Rescaling the jet pr to satisfy pr balance with the Z boson and applying tight selection criteria (jet veto
and difference in azimuth §¢ between the reconstructed Z and the leading jet) the desired goal of £1%
systematic uncertainty on the absolute jet energy scale can be achieved for jets with p7 > 50 GeV and
up to the TeV range [287].

However, as shown in Fig. 54 (right), it is possible, taking advantage of the large rate and requiring
tight event selection criteria, to obtain the required precision for jets with p;> 40 GeV and up to the TeV
range.

Clearly more studies are needed, and will be done in the years to come, to understand the limita-
tions of the proposed methods and to devise possible improvements.

B APPENDIX: DIRECT MEASUREMENT OF TOP QUANTUM NUMBERS?¢
B1 Top spin and experimental tests ’

Evidence to date is circumstantial that the top events analysed in Tevatron experiments are attributable
to a spin-1/2 parent. The evidence comes primarily from consistency of the distribution in momentum
of the decay products with the pattern expected for the weak decay t — b+ W, with W — £+ v or
W — jets, where the top ¢ is assumed to have spin-1/2.

%Section coordinators: E.L. Berger, U. Baur.
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Fig. 55: (a) Partonic cross sections & () as functions of partonic sub-energy M for the gg channel. (b) Hadronic cross sections
do /dM in proton-proton collisions at 14 TeV as functions of pair mass. The top quark mass m. = 175 GeV, and the top squark
(stop) mass m; = 165 GeV.

It is valuable to ask whether more definitive evidence for spin-1/2 might be obtained in future
experiments at the Tevatron and LHC. We take one look at this question by studying the differential
cross section do/dM,; in the region near production threshold [288]. Here Mj; is the invariant mass of
the ¢t pair. We contrast the behaviour of ¢f production with that expected for production of a pair of
spin-0 objects. We are motivated by the fact that in electron-positron annihilation, et + e~ — ¢ + g,
there is a dramatic difference in energy dependence of the cross section in the near-threshold region for
quark spin assignments of 0 and 1/2.

For definiteness, we compare top quark ¢ and top squark { production since a consistent phe-
nomenology exists for top squark pair production, obviating the need to invent a model of scalar quark
production. Moreover, top squark decay may well mimic top quark decay. Indeed, if the chargino x*
is lighter than the light top squark, as is true in many models of supersymmetry breaking, the dominant
decay of the top squark is £ — b+ %*. If there are no sfermions lighter than the chargino, the chargino
decays to a W and the lightest neutralino x°. In another interesting possible decay mode, the chargino
decays into a lepton and slepton, ¥t — £17. The upshot is that decays of the top squark may be very
similar to those of the top quark, but have larger values of missing energy and softer momenta of the
visible decay products. A recent study for Run II of the Tevatron [289] concluded that even with 4 fb~!
of data at the Tevatron, and including the LEP limits on chargino masses, these decay modes remain
open (though constrained) for top squarks with mass close to the top quark mass.

At the energy of the CERN LHC, production of ¢ pairs and of ¢t pairs is dominated by gg subpro-
cess, and the threshold behaviours in the two cases do not differ as much as they do for the ¢§ incident
channel. In Fig. 55(a), we show the partonic cross sections (+/3) as functions of the partonic sub-
energy \~/.-§' for the gg channel. In Fig. 55(b), we display the hadronic cross sections for pp — t¢X and
pp — {tX at proton-proton center-of-mass energy 14 TeV as a function of pair mass. We include the
relatively small contributions from the ¢¢ initial state. After convolution with parton densities, the shape
of the £t pair mass distribution is remarkably similar to that of the ¢f case.

Based on shapes and the normalisation of cross sections, it is difficult to exclude the possibility that
some fraction (on the order of 10%) of top squarks with mass close to 165 GeV is present in the current
Tevatron tf sample. The invariant mass distribution of the produced objects, M, is quite different at the
partonic level for the ¢ initial state (dominant at the Tevatron), but much less so for the gg initial state
(dominant at the LHC). However, after one folds with the parton distribution functions, the difference in
the qg channel at the Tevatron is reduced to such an extent that the M,; distribution is not an effective
means to isolate top squarks from top quarks.

Ironically, the good agreement of the absolute rate for ¢¢ production with theoretical expecta-

tions [45, 47] would seem to be the best evidence now for the spin-1/2 assignment in the current Tevatron
sample.
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A promising technique to isolate a top squark with mass close to m; would be a detailed study
of the momentum distribution of the top quark decay products (presumably in the top quark rest frame).
One could look for evidence of a chargino resonance in the missing transverse energy and charged lepton
momentum, or for unusual energy or angular distributions of the decay products owing to the different
decay chains. One could also look for deviations from the expected correlation between angular distri-
butions of decay products and the top spin [167].

As a concrete example of an analysis of this type, in Fig. 56 we present the distribution in the
invariant mass X of the bottom quark and charged lepton, with X2 = (ps + pg+ )2, where the bottom
quark and lepton are decay products of either a top quark with m; = 175 GeV or a top squark £ —
Xtb— WHx% — £+ %%, with m; = 165 GeV, mz+ = 130 GeV, mgo = 40 GeV, and mp = 5 GeV.
The X distribution is a measure of the degree of polarisation of the W boson in top quark decay [290],
and the figure shows that the different dynamics responsible for top squark decay result in a very different
distribution, peaked at much lower X. The areas under the curves are normalised to the inclusive ¢ and
tt rates at the LHC.

In this simple demonstration potentially important effects are ignored such as cuts to extract the £
signal from its backgrounds, detector resolution and efficiency, and ambiguities in identifying the correct
b with the corresponding charged lepton from a single decay. Detailed simulations would be required
to determine explicitly how effective this variable would be in extracting a top squark sample from top
quark events. Nevertheless, such techniques, combined with the large ¢ samples at the Tevatron Run II
and LHC, should prove fruitful in ruling out the possibility of a top squark with mass close to the top
quark mass, or alternatively, in discovering a top squark hidden in the top sample.

B2 Direct Measurement of the Top Quark Electric Charge

In order to confirm that the electric charge of the top quark is indeed Q:0p = 2/3, one can either measure
the charge of the b-jet and W boson, or attempt to directly measure the top quark electro-magnetic
coupling through photon radiation in

pp—tty, pp—tt, t—Wby. (85)

Since the process pp—tty is dominated by gg fusion at the LHC, one expects that the ¢t~y cross section is
approximately proportional to Q;"op. For radiative top decays the situation is more complicated because




¢

the photon can also be radiated off the b-quark or the W line.

The charge of the b-jet can most easily be measured by selecting events where the b-quarks are
identified through their semi-leptonic decays, b—£vc with £ = e, p. The small semi-leptonic branching
ratio of the b-quark (Br(b—£vc) &~ 10%) and wrong sign leptons originating from B — B mixing are the
main problems associated with this method. For a quantitative estimate realistic simulations are needed.
Nevertheless, we believe that the enormous number of top quark events produced at the LHC should
make it possible to use semi-leptonic b-tagging to determine the electric charge of the top quark.

In our analysis, we focus on top charge measurement through the photon radiation processes listed
in (85), concentrating on the lepton-+jets mode,

pp—yvjj bb. (86)

We assume that both b-quarks are tagged with a combined efficiency of 40%. Top quark and W decays
are treated in the narrow width approximation. Decay correlations are ignored. To simulate detector
response, the following transverse momentum, rapidity and separation cuts are imposed:

pr(b) > 15GeV, |y(b)]| < 2, (87)
pr(f) > 20 GeV,  |n(f)] < 2.5, (88)
pr(j) > 20 GeV, In(5)] < 2.5, (89)
pr(y) > 30GeV, |n(y)] < 2.5, (90)

#r>20GeV, all AR's > 0.4. ‘ ©1)

In addition, to suppress contributions from radiative W decays, we réquire that
m(jjy) > 90GeV and mr(ly;¥r) > 90 GeV, (92)

where m is the cluster transverse mass of the ¢ system.
The events passing the cuts listed in (88) — (92) can then be split into three different subsamples:
1. By selecting events which satisfy

m(bjjy) > 190 GeV and mg(béy;pr) > 190 GeV, (93)
radiative top quark decays can be suppressed and an almost pure sample of ¢f+ events is obtained
(“tty cuts™).

2. For
mr(b128y;#1) < 190 GeV  and m(be,1557) > 190 GeV, (94)

the process pp—tt, t—Wby, W — v dominates (“t— Wby, W—£v cuts”).
3. Requiring

mr(by28v;#r) > 190 GeV and 150 GeV < m(by,17j7) < 190 GeV, (95)

one obtains an event sample where the main contribution originates from the process pp—tt,
t—-Why, W—jj (“t—Wby, W—jjcuts™).
For m; = 175 GeV, Q10p = 2/3, and fLdt = 100 fb~?, one expects about 2400, 11000 and 9400 events
in the regions of phase space corresponding to the three sets of cuts. We have not studied any potential
background processes. The main background should originate from W+ jets production and should be
manageable in a way similar to the W+ jets background for regular ¢Z production.

The differential cross section for the photon transverse momentum at the LHC is shown in Fig. 57. -
Results are shown for m; = 175 GeV and three “top” quark charges: Qiop = 2/3, Qtop = —4/3, and
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Fig. 57: The differential cross section for the photon transverse momentum in the reaction pp— y£1j5bb at the LHC for three
different “top” quark charges.

Qiop = 1/3. For Q1,p, = —4/3, the “top” quark decays into a W~ and a b-quark instead of t—W*b.
If Q10p = 1/3, the “b”-quark originating from the “top” decay is a (exotic) charge —2/3 quark. In the
tty region (Eq. (93) and Fig. 57a), the pp—y£vjbb cross section for a charge —4/3 (1/3) “top” quark
is uniformly a factor & 3.3 larger (= 2.3 smaller) than that for Q,, = 2/3, reflecting the dominance
of the gg—t#~ process for which the cross section scales with Q7, . On the other hand, for the pp—t,
t— Wby, W—Lv selection cuts (Eq. (94) and Fig. 57b), the cross section for Qs,, = —4/3 is a factor 3
to 5 smaller than that for a charge 2/3 top quark, due to destructive interference effects in the t—Wby
matrix element. If Q.,, = 1/3, the interference is positive, and the cross section is about a factor 2 to 2.5
larger than for Q;,, = 2/3. The results for the t—+Wby, W—jj selection cuts ((95)) are similar to those
shown in Fig. 57b, and are therefore not shown here. Note that the photon pr distribution for radiative
top decays is much softer than that for t¢y production.

From our (simplified) calculation we conclude that the large number of double-tagged v£4vjj bb
events, together with the significant changes in the ¢¢ and the t£, t—W b~ cross sections should make it
possible to accurately determine ;,, at the LHC.

C APPENDIX: 4" GENERATION QUARKS?

For completeness, we present here results for the total cross section of possible heavy quarks above the
top quark mass. The scale and PDF dependences are shown in Fig. 58. The uncertainty due to the choice
of scale is comparable to that of the ¢ cross section, although the effects of the higher order corrections
are more and more important at large masses (see Fig. 59). The uncertainty induced by PDF changes
becomes very large at large masses, in particular if one considers sets such as CTEQSHJ which have
harder gluons. Notice however that the relative effect due to the resummation corrections depends only
very weakly upon the choice of PDF’s (cf. Section 3.2).

7' Section coordinator: M.L. Mangano
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Fig. 59: Heavy quark total production rates. Left figure: fractional contribution induced by resummation contributions of order
O(a2*). Right figure: initial state composition.

D APPENDIX: MONTE CARLO TOOLS?

D1 Parton shower Monte Carlos

General purpose Monte Carlo event generators like HERWIG, PYTHIA and ISAJET are essential tools
for measuring the top quark cross section, mass and other production and decay properties. They are
complementary to the QCD tools described in Section 3.1 since, although they are less reliable for
inclusive quantities like the total cross section, they provide a fully exclusive description of individual
events at the hadron level. These can be analysed in exactly the same way as experimental data and can be
put through full or fast detector simulations to estimate experimental systematics. In certain kinematic
regions, particularly the quasi-elastic limit in which accompanying radiation is suppressed, they give -
more reliable QCD predictions than the available calculations. They include approximate treatments of
higher order perturbative effects, hadronisation, secondary decays and underlying events.

The three programs we discuss have the same basic structure, although the precise details vary
enormously. Events are generated by starting with the hardest (highest momentum scale) interaction,
described by exact QCD (or EW) matrix elements. This is usually only done to leading order so describes

BSection coordinators: M.L. Mangano, M. Seymour.
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a 2—2 scattering process. The production of multi-parton final states is described as the emission of
additional partons from the incoming and outgoing partons of the hard process. This is simulated by a
parton shower algorithm in which the partons evolve downwards in some energy-like scale according to
perturbatively-calculable probabilistic distributions. When the evolution scale becomes small the running
coupling grows, phase space fills with (mostly soft) partons and perturbation theory breaks down. At this
point a model of the non-perturbative physics is needed: the perturbative emission is cutoff by a fixed
infrared cutoff and the system of partons is confined into hadrons. Having treated all outgoing partons
we are left with the remnants of the incoming protons, stripped of the partons that participated in the hard
process. These remnants can interact with each other, to produce additional soft hadrons in the event,
known as the underlying event.

Parton shower algorithms are developed by studying the amplitude to emit an additional parton
into a given process. This is enhanced in two kinematic regions: collinear, where two massless partons
are much closer to each other than any others or where a massless parton is close to the incoming proton
direction; and soft, where a gluon is much softer than any other parton. In both cases the enhanced terms
are universal, allowing a factorisation of emission by a system of partons from the process that produced
them. In the collinear case, this factorisation works at the level of cross sections, so it is not surprising
that a probabilistic approach can be set up. In the soft case however, the factorisation theorem is valid
at amplitude level and it turns out that in any given configuration, many different amplitudes contribute
equally. It therefore seems impossible to avoid quantum mechanical interference and so to set up the
evolution in a probabilistic way. The remarkable result though is that, due to coherence between all the
coloured partons in an event, the interference is entirely destructive outside angular-ordered regions of
phase space. This means that the soft emission can be incorporated into a collinear algorithm, simply
by choosing the emission angle as its evolution variable, as is done in HERWIG. The most important
effects of coherence can be approximately incorporated by using some other evolution variable, like
virtuality, and vetoing non-angular-ordered emission, as is done in PYTHIA. If the colour-coherence is
not treated at all, one obtains the wrong energy-dependence of jet properties. Such models, like ISAJET,
are completely ruled out by ete™ annihilation data. Colour coherence effects are also important in
determining the initial conditions for the parton evolution, resulting in physically-measurable inter-jet
effects [292], which are also in disagreement with ISAJET.

Since the top quark decays faster than the typical hadronisation time, its width cuts off the parton
shower before the infrared cutoff. Its decay then acts as an additional hard process and the resulting
bottom quark (and two more partons if the W decays hadronically) continue to evolve. Additional coher-
ence effects mean that radiation from the top quark is suppressed in the forward direction (the dead cone
effect), as is radiation in the W direction in the top decay. These effects are again included in HERWIG,
partially included in PYTHIA and not included in ISAJET. Since the top quark is coloured, the b quark in
its decay is colour-connected to the rest of the event, meaning that its properties are not necessarily the
same as in a ‘standard’ b production event. As mentioned in Section 4.6 and as discussed in more detail
in [64], such non-universal effects are small.

Although parton showers are reliable for the bulk of emission, which is soft and/or collinear, it is
sometimes the rare hard emissions that are most important in determining experimental systematics and
biases. Such non-soft non-collinear emission should be well described by NLO perturbation theory, since -
it is far from all divergences. However, it is not straightforward to combine the advantages of the parton
shower and NLO calculation, so it has only been done for a few specific cases. Most notable for hadron-
hadron collisions are the Drell-Yan process, for which matrix element corrections are included in both
HERWIG and PYTHIA, and top decay, which is included in HERWIG and discussed earlier in Section 4.62
in this report. The corrections to Drell-Yan events are particularly important at high transverse momenta,
where the uncorrected algorithms predict far too few events. It is likely that implementing corrections to
tt pair production would cure the analogous deficit at high pf seen in Fig. 7.

Hadronisation models describe the confinement of partons into hadrons. Although this process
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is not well understood from first principles, it is severely constrained by the excellent data from LEP,
SLD and HERA. The string model, used by PYTHIA, and the cluster model, used by HERWIG, both
take account of the colour structure of the perturbative phase of evolution, with colour-connected pairs
producing non-perturbative singlet structures that decay to hadrons. The biggest difference between these
models is in how local these colour-singlet structures are. In the string model they stretch from a quark
(or anti-di-quark) via a series of colour-connected gluons to an antiquark (or di-quark). In the cluster
model each gluon decays non-perturbatively to a quark-antiquark pair and each resulting quark-antiquark
singlet (coming one from each of two colour-connected gluons) decays to hadrons. The independent
fragmentation model, used by ISAJET, on the other hand, treats each parton as an independent source of
hadrons and is strongly ruled out by et e~ data, for example on inter-jet effects in three-jet events, the
so-called string effect. Of the other two models, PYTHIA gives the better description of e* e~ data, but
HERWIG also gives an adequate description, despite having a lot fewer adjustable parameters.

Models of the underlying event are not strongly constrained by either theoretical understanding or
experimental data. Two extreme models are available and the truth is likely to lie between them. In the
soft model, used in HERWIG, the collision of the two proton remnants is assumed to be like a minimum
bias hadron-hadron collision at the same energy. A simple parametrisation of minimum bias data (from
UAS [293]) is used with little additional physics input. In the mini-jet model, used in PYTHIA and
available as an additional package for HERWIG, on the other hand, the remnant-remnant collisions act as
a new source of perturbative scattering, which ultimately produce the hadrons of the underlying event.
To avoid regions of unstable perturbative predictions and problems with unitarity, a cutoff must be used,
Dt,min ~ 1 GeV. Presumably for a complete description, some soft model should describe the physics
below p: min such that the results do not depend critically on its value. Unfortunately no such model
exists at present. Although the two models give rather similar predictions for average properties of the
underlying event, they give very different probabilities for the rare fluctuations that can be most important
in determining jet uncertainties. This is an area that needs to be improved before LHC running begins.

D2 Parton-level Monte Carlos

With few exceptions (e.g. 3 or 4-jet final states in e* e~ collisions) multi-jet final states are not accurately
described by the shower MC’s described above. This is because emission of several hard and widely sep-
arated partons is poorly approximated by the shower evolution algorithms, and exact (although perhaps
limited to the tree level) matrix elements need to be used to properly evaluate quantum correlations.
Parton-level Monte Carlos are event generators for multi-parton final states, which incorporate the exact
tree-level matrix elements. They can be used for parton-level simulations of multi-jet processes, under
the assumption that each hard parton will be identified with a final-state physical jet with momentum
equal to the momentum of the parent parton. Selection and analysis cuts can be applied directly to the
partons. In some cases, the partonic final states can be used as a starting point for the shower evolution
performed using a shower MC such as HERWIG, PYTHIA, or ISAJET. For a discussion of the problems
involved in ensuring the colour-coherence of the shower evolution when dealing with multi-parton final
states, see [294].

In the following, we collect some information on the most frequently used parton-level MCs used
in connection with top quark studies.

D21 VECBOS®

VECBOS [150] is a Monte Carlo for inclusive production of a W-boson plus up to 4 jets or a Z-boson
plus up to 3 jets. VECBOS is therefore a standard tool used in the simulation of backgrounds to tf
production. The matrix elements are calculated exactly at the tree level, and include the spin correlations
of the vector boson decay fermions with the rest of the event. Various parton density functions are

¥ VECBOS authors: F.A. Berends, H. Kuijf, B. Tausk and W.T. Giele. Contacts: giele@fnal.gov




available and distributions can be obtained by using the kinematics of the final state, available on an
event-by-event basis together with the corresponding event weight. The code and its documentation can
be obtained from: V

http://www-theory.fnal.gov/people/giele/vecbos. html
Documentation on the use of VECBOS within ATLAS can be found in [295].

D22 CompHEP*°

CompHEP is a package for the calculation of elementary particle decay and collision properties in the
lowest order of perturbation theory (the tree approximation). The main purpose of CompHERP is to gener-
ate automatically transition probabilities from a given Lagrangian, followed by the automatic evaluation
of the phase-space integrals and of arbitrary distributions. The present version has 4 built-in physical
models. Two of them are the versions of the Standard Model (SU(3)xSU(2)xU(1)) in the unitary and
t"Hooft-Feynman gauges. The user can change the models or even create new ones.

The symbolic part of CompHEP allows the user to perform the following operations:

1. toselect a process by specifying incoming and outgoing particles for the decaysof 1 — 2,...,1 —
5 types and the collisionsof 2 — 2,...,2 — 4 types,

2. to generate Feynman diagrams, calculating the analytical expressions for the squared matrix ele-
ments,

3. to save the algebraic symbolic results and to generate the optimized Fortran and C codes for the
squared matrix elements for further numerical calculations.

The numerical part of CompHEP allows to convolute the squared matrix element with structure functions
and beam spectra, to introduce various kinematic cuts, to introduce a phase space mapping in order to
smooth sharp peaks of a squared matrix element, to perform a Monte Carlo phase space integration by
VEGAS, to generate events and to display distributions for various kinematic variables. Recently, an
interface with PYTHIA has been created [283]. This allows to perform realistic simulations of the process
including hadronisation effects as well as the effects of the initial and final state radiation.

The CompHEP codes and manual are available from the following Web sites:
http://theory.npi.msu.su/~comphep
http://www.ifh.de/~pukhov

D23 ALPHA3!

ALPHA is an algorithm introduced in [296] for the evaluation of arbitrary multi-parton EW matrix el-
ements. This algorithm determines the matrix elements from a (numerical) Legendre transform of the
effective action, using a recursive procedure which does not make explicit use of Feynman diagrams. The
algorithm has a complexity growing like a power in the number of particles, compared to the factorial-
like growth that one expects from naive diagram counting. This is a necessary feature of any attempt
to evaluate matrix elements for processes with large numbers of external particles, since the number of
Feynman diagrams grows very quickly beyond any reasonable value.

An implementation of ALPHA for hadronic collisions was introduced in [294], where the algorithm
was extended to the case of QCD amplitudes (see also [297]). The main aim of the hadronic version of
ALPHA is to allow the QCD parton-shower evolution of the multi-parton final state, in a way consistent
with the colour-coherence properties of the soft gluon emission dynamics. This is achieved by evaluating
the QCD amplitudes in an appropriate colour basis [294], such that the assignement of a specific colour
flow configuration on an event-by-event basis. The pattern of colour flow defines the colour currents

3 CompHEP authors: A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin,
S. Shichanin, A. Semenov. Contacts: pukhov@theory.npi.msu.su, ilyin@theory.npi.msu.su
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required to implement the angular ordering prescription which embodies, at the leading order in the 1/N,
expansion, the quantum coherence properties of soft-gluon radiation, as discussed in Appendix D1. A
version of the code is being completed [298], which incorporates the evaluation of Wbb+n jets (n < 4),
with all b-mass effects included. This program will allow a complete evaluation of the W+ multijet
backgrounds to single top and ¢ production. The code contains 3 modules: the first for the generation
of parton-level events, with the assignement of partonic flavours, helicities and colour flows. The second
for the unweigthing of the events, and the third for the parton-shower evolution of the initial and final
states, done using the HERWIG MC. The code will soon be available from the URL:
http://home.cexrn.ch/~mlm/alpha
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