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Abstract

Background: Identification of master regulators (MRs) using transcriptome data in cervical cancer (CC) could help
us to develop biomarkers and find novel drug targets to fight this disease.

Methods: We performed differential expression (DE) analyses of public microarray and RNA-seq transcriptome data
of CC and normal cervical tissues (N). Virtual Inference of Protein activity by Enriched Regulon analysis (VIPER) was
used to convert the DE outcomes to differential activity (DA) signature for MRs. Synergy analysis was conducted to
study synergistic effect of MR-pairs. TCGA and microarray data were used to test the association of expression of a
MR and a clinical feature or a molecular feature (e.g. somatic mutations). Various bioinformatic tools/websites (DAVI
D, GEPIA2, Oncomine, cBioPortal) were used to analyze the expression of the top MRs and their regulons.

Results: Ten DE and 10 DA signatures were generated for CC. Two MRs, DNA topoisomerase II alpha (TOP2A) and
centromere protein F (CENPF) were found to be up-regulated, activated and synergistic in CC compared to N across
the 10 datasets. The two MRs activate a common set of genes (regulons) with functions in cell cycle, chromosome,
DNA damage etc. Higher expression of CENPF was associated with metastasis. High expression of both MRs is
associated with somatic mutation of a set of genes including tumor suppressors (TP53, MSH2, RB1) and genes
involved in cancer pathways, cell cycle, DNA damage and repair. The magnitude of up-regulation and the absolute
expression level of both MRs in CC are significantly higher compared to many other cancer types.

Conclusion: TOP2A and CENPF are a synergistic pair of MRs that are overexpressed and activated in CC. Their high
expression is correlated with some prognosis features (e.g. metastasis) and molecular features (e.g. somatic
mutations) and distinctly high in CC vs. many other cancer types. They may be good biomarkers and anticancer
drug targets for CC.
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Background
Cervical cancer (CC) is the fourth most common female

malignancy worldwide. More than half a million women

are diagnosed with cervical cancer and the disease re-

sults in over 300,000 deaths worldwide each year [1, 2].

Extended understanding of the gene expression pro-

grams, especially the master regulators (MRs) in CC, will

help us to fight this devastating disease.

Since early 2000s, microarrays have been used to pro-

file transcriptome of cervical cancer tissues. Further, the

application of RNA-sequencing (RNAseq) in recent

years has rapidly generated large amount of data on the

gene expression landscape of this disease. Differential

expression (DE) analysis is the most common and

straightforward analysis for a gene expression dataset.

Through DE analysis, a set of highly up-regulated and

down-regulated genes can be identified by comparing

two groups of samples (e.g. cancer vs. normal). However,

gene expression is highly dynamic, and the expression

quantification may depend on the techniques (e.g. differ-

ent platforms of microarray, or RNAseq), making the

cross-dataset comparison difficult. Moreover, the top

regulated gene may not represent the key genes or the

MRs under a biological system. The activities of MRs

cannot be directly measured by microarray or RNA-seq

because these techniques only measure RNA expression

level and do not consider protein level and protein activ-

ity changes by post-translational modifications. Fortu-

nately, MR activity can be inferred by its regulons (genes

downstream and regulated by of the MR) through the

“Virtual Inference of Protein activity by Enriched Regu-

lon analysis” (VIPER) [3], which takes the DE data and

an context-specific gene regulatory network (interac-

tome) as inputs.

The presence of MRs in various cancers has been

well-documented, whose coordinated activity within

tightly regulated modules (tumor checkpoints) are

strictly necessary for tumor state initiation and

maintenance [3]. To identify the top MRs in CC, we ini-

tially collected 10 transcriptome datasets from Gene Ex-

pression Omnibus (GEO) [4] with CC and normal

cervical tissue (N) samples. We performed gene expres-

sion analysis using CC compared to N and generated 10

DE signatures. Then VIPER was conducted to convert

the 10 DE signatures to 10 differential activity (DA) sig-

natures for MRs. We further analyzed the DA-DE

consistency, the synergy of MR pairs and identified

TOP2A-CENPF as a synergistic MR pair in CC. Both

MRs showed increased activity and expression. We fur-

ther studied the common regulons of the two MRs, the

links between the expression of the two MRs and clinical

or molecular features of CC. Finally, we compared the

expression of them in CC vs. other cancer types.

Methods
GEO data collection

Data were collected through searching Gene Expression

Omnibus (GEO) [4] for microarray or RNA-seq data for

gene expression profiling using key word “cervical can-

cer”. All datasets were manually inspected to select data-

sets with both cervical cancer (CC) tissue samples and

normal (N) cervical tissue samples. To eliminate the po-

tential noise from small number of samples, a minimum

of 5 samples per group was required for each dataset. A

summary of all data used can be found in Table 1.

Gene expression analysis of microarray data from GEO

database

Gene expression of microarray data were computed

using the GEO2R tool (https://www.ncbi.nlm.nih.gov/

geo/geo2r/). The CC and N samples within the same

dataset were compared. Normalized expression values of

genes or probes were visualized within GEO2R tool as a

boxplot. Obvious outliers (samples with distribution of

normalized values very different from the rest of sam-

ples) were excluded from the dataset for further analysis.

Table 1 Datasets used in this study

Data Name GEO ID #Tumor #Normal Platform Dataset type Refa

Biewenga_2008 GSE7410 19 5 Agilent Oligo G4112A discovery [5]

Boon_2015 GSE63514 28 24 Affymetrix U133 Plus 2.0 discovery [6]

Guardado_2012 GSE29570 45 17 Affymetrix Gene 1.0 ST discovery [7]

Medina_2014 GSE52903 55 17 Affymetrix Gene 1.0 ST discovery [8]

Zhai_2007 GSE7803 21 10 Affymetrix U133A discovery [9]

Li_2018 GSE107472 5 5 RNA-seq validation [10]

Pappa_2015 GSE63678 5 5 Affymetrix HG133_A_2.0 validation [11]

Pyeon_2007 GSE6791 20 8 Affymetrix U133 Plus 2.0 validation [12]

Scotto_2008 GSE9750 33 24 Affymetrix U133A validation [13]

Sun_2014 GSE55940 5 5 Glue Grant Transcriptome 3.0 validation [14]
a
Ref. references
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Statistical test results for all probes were downloaded.

Moderated t-statistic were used as the DE measurement

for the dataset. If one gene has multiple probes, only the

one with highest absolute t value was used. All probes

without assigned gene ID were discarded. For dataset

Biewenga_2008 [5], the expression values for an individ-

ual gene/probe for all samples were extracted using the

“Profile graph” function in GEO2R tool. The expression

differences between different sample types (ie. N, Nor-

mal; C, tumour without lymph node metastasis; M,

tumour with lymph node metastasis) were analyzed

using Wilcoxon Rank-Sum test.

Gene expression analysis of RNA-seq data from GEO

database

Fastq files were downloaded from Sequence Read Arch-

ive (SRA, https://www.ncbi.nlm.nih.gov/sra/, [15]) data-

base using SRA Toolkit (https://ncbi.github.io/sra-tools/

). Reads were mapped to human reference genome

(hg19) using STAR (2.6.0a) [16]. Reads with mapping

quality score (MAPQ) < 10 or those with > 5 mismatches

in 100 bp aligned region were discarded. Reads mapped

to coding sequence (CDS) region of Refseq-defined

genes were used to quantify gene expression. For non-

protein-coding transcripts, reads mapped to all exons

were used to quantify gene expression. For genes with

multiple transcripts, only the transcript with the largest

number of reads (sum for all samples) was used. DESeq2

[17] was used for differential expression (DE) analysis

comparing CC vs. N samples. The DE measurement for

RNA-seq is -S × log10 (adjusted P-value), in which S is

the sign indicating the direction of regulation (+ 1 for

upregulation and − 1 for downregulation).

Master regulator (MR) analysis using VIPER

Virtual inference of protein activity by enriched regulon

analysis (VIPER) [3] was conducted to infer the master

regulator differential activities (DA) from the DE data.

The “msviper” function in R package “viper” was used as

the program to run VIPER analysis. VIPER takes a DE

signature and a regulatory network as inputs. Context-

specific regulatory networks “aracne.networks” [18] were

downloaded from Bioconductor. Human cervical squa-

mous carcinoma context-specific ARACNe interactome

“reguloncesc” was used as the “network” in this study.

Parameter “pleiotropy” was set to TRUE to correct for

the effects of target overlap between different MRs.

VIPER outputs P-values and normalized enrichment

scores (NES) which represents the DA signature of MRs.

MR categories

These 5838 MRs in interactome “reguloncesc” were cat-

egorized into three groups based on their function anno-

tation in gene ontology (GO) database (http://

geneontology.org/): (1) 1588 transcriptional factors

(TFs): genes annotated in the GO Molecular Function

database GO:0003700 (DNA binding transcription factor

activity), or GO:0003677 (DNA binding) and GO:

0030528 (Transcription regulator activity), or GO:

0003677 and GO:0045449 (Regulation of transcription);

(2) 280 transcriptional co-factors (TFcoFac): genes not

in TF and annotated as GO:0003712 (transcription co-

factor activity), GO:0030528 or GO:0045449; (3) 3883 in

signal pathways (SigPathway): genes not in TF or TFco-

Fac and annotated in the GO Biological Process database

as GO:0007165 (signal transduction) or in the GO Cellu-

lar Component database as GO:0005622 (intracellular)

or GO:0005886 (plasma membrane); 87 MRs were not

annotated in these three categories.

Selecting common top MRs in CC

The 10 GEO datasets (Table 1) were randomly assigned

to two groups: 5 discovery datasets and 5 validation

datasets. To select top common MRs in CC, the top N

(N = 50, 100, 200, 300) most activated MRs and top N

suppressed MRs in each one of five discovery datasets

were selected. The common activated and suppressed

MRs were the common ones in the top N MRs from all

the five discovery datasets. Whether these common top

MRs were also significant in the validation datasets were

examined by comparing the DA values of the common

MRs vs. all the other MRs using Wilcoxon Rank-Sum

test. We also require that these top MRs have significant

and consistent DE change in the discovery datasets.

With another requirement that DE > 3 or DE < -3 for

when the DA is positive or negative respectively, the

resulting MRs are called DA-DE consistent MRs. In this

study, the results for N = 100 were presented in the main

text and results for all Ns (N = 50, 100, 200, 300) are

provided in the supplementary Table 1.

Synergy analysis of MR pairs

Synergy of two MRs was to test whether their common

regulons have a more extreme DE signature than the

rest of regulons. Among the DA-DE consistent MRs, all

pairs of MRs were considered for synergy analysis. For a

given pair of MRs (denoted here as MR1 and MR2),

their regulons were extracted from the interactome “reg-

uloncesc” in regulatory networks “aracne.networks” [18].

Then the common regulons for both MRs were selected.

Only when MR1 and MR2 have > 10 and > 10% common

regulons among the regulon number in both MR1 and

MR2, the synergy analysis was conducted. All regulons

belong to MR1 or MR2 were separated to three groups:

common, MR1-unique and MR2-unique. For each DE

dataset, two statistical tests were performed: common vs.

MR1-unique for MR1 regulons and common vs. MR2-

unique for MR2 regulons. The Expression Contribution

Yu et al. BMC Medical Genomics          (2020) 13:145 Page 3 of 17

https://www.ncbi.nlm.nih.gov/sra/
https://ncbi.github.io/sra-tools/
http://geneontology.org/
http://geneontology.org/


to Activity (ECA) values of all regulons were calculated

for each MR and each DE dataset. ECA = DE x MOR, in

which DE is the differential expression value and MOR

is the mode of regulation value of a MR-regulon pair

from the interactome “reguloncesc”. MOR indicates the

sign of the association between a MR (regulator) and a

regulon (target gene) and ranges between − 1 and + 1,

with positive and negative value indicating positive and

negative regulation respectively. The ECA distribution of

common regulons were compared with MR1-unique or

MR2-unique regulons, using Wilcoxon Rank-Sum test

(one tailed), in which the alternative hypothesis of the

test is “greater” and “less” when the sign of the DA of

the MR in the DE dataset is positive and negative re-

spectively. A synergistic MR pair will show significant

higher ECA values for common regulons than other reg-

ulons if the MR is activated (positive DA value) and vice

versa.

Network visualization of MRs and regulons

The MR and regulon network were visualized using

Cytoscape 3.7.1 [19]. A node is either a MR or a regulon.

An edge is a MR-regulon relationship. Node color repre-

sents the average DE scores of a gene (a MR or a regu-

lon) in the 10 datasets with red and blue indicating up-

regulation and down-regulation respectively. Edge color

represent the MOR of a MR and a regulon relationship

with red and blue indicating positive and negative regu-

lation respectively.

DAVID analysis

The function annotation analysis for a given gene list

was conducted using the Database for Annotation,

Visualization and Integrated Discovery (DAVID) v6.8

(https://david.ncifcrf.gov/) [20]. The gene symbols of a

gene list were submitted to the DAVID webserver. “OF-

FICIAL_GENE_SYMBOL” was chosen to map the genes

to the IDs in the DAVID database. The annotations of

genes were limited to “Homo sapiens” only. The back-

ground gene list was also set to “Homo sapiens”. The

“Functional Annotation Clustering” function of the web-

site was taken. Several gene annotation databases were

included: UP_KEYWORDS, UniProt Keywords; UP_

SEQ_FEATURE, UniProt sequence feature; GOTERM_

BP_DIRECT, Gene ontology biological process;

GOTERM_CC_DIRECT, Gene ontology cellular compo-

nent; KEGG_PATHWAY, KEGG pathway. The results

were downloaded and certain generic annotation terms

with total gene number (“Pop Hits”) > 1000 were

removed.

TCGA data

The gene expression data for individual genes for CC

samples in The Cancer Genome Atlas (TCGA) [21] was

retrieved from TSVdb [22]. The RSEM (RNA-Seq by Ex-

pectation Maximization) values were used. The overall

survival (OS) data was also retrieved from TSVdb. Other

clinical and molecular features (e.g. Somatic mutation

data) data were retrieved from the supplementary Table

1 and 2 of Cancer Genome Atlas Research Network

et al., 2017 [23]. The loss-of-function (LOF) mutations

include nonsense, frame shift and splicing mutations. A

sample with both a missense mutation and a LOF muta-

tion of a gene is classified as LOF. The description of

each clinical or molecular feature can be found in the

“features list” tab in the supplementary Table 1 of Can-

cer Genome Atlas Research Network et al., 2017 [23].

The features were separated to categorical or numerical

data. For each categorical feature, only the sample

groups with > 5 samples were analyzed. The expression

values of a MR for different groups of a categorical fea-

ture were compared using Wilcoxon Rank-Sum test. All

gene somatic mutation data were treated as categorical

data with three groups: no mutation (None), missense

mutation and LOF mutation. Rather than setting a min-

imal sample number threshold to filter the data, we se-

lected all genes with missense or LOF mutations having

expression of a MR different than the None group with

P < 0.1. For each numerical feature, the Spearman correl-

ation was computed to test the significance of the correl-

ation of the expression of a MR and the feature.

For survival analysis, all patients with OS data were di-

vided into two groups based on the 80th percentile value

of the expression of a gene. The survival curve was

drawn using the R package “survminer” (https://cran.r-

project.org/web/packages/survminer/). P-value is calcu-

lated based on the log-rank test.

Network visualization of association of MRs and genes

with somatic mutations

The MR and somatic mutation gene network were visu-

alized using Cytoscape 3.7.1 [19]. A node is either a MR

or a gene with somatic mutations (SMG) in TCGA CC

samples. An edge is a MR-SMG relationship. Edge color

represents the direction of a MR-SMG relationship with

red and blue indicating that samples with a SMG with

mutations associated with high and low expression of a

MR respectively. The arrowhead shape represents the

type of a mutation with an open square and a solid dia-

mond representing a missense mutation and a LOF mu-

tation respectively.

GEPIA2 analysis

Gene Expression Profiling Interactive Analysis 2 (GEPI

A2) is a web server for analyzing the RNA sequencing

expression data of 9736 tumors and 8587 normal sam-

ples from the TCGA and the GTEx projects (http://

gepia2.cancer-pku.cn) [24]. We analyzed the expression
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of the top MRs in cancer and normal tissues for 33 can-

cer types using the “Dot plot” function of GEPIA2. The

expression of a gene is plotted in log2(TPM + 1) scale, in

which TPM is the Transcript Per Million value. Analysis

of variance (ANOVA) was used to test the statistical sig-

nificance of the difference of expression in tumor tissues

vs. paired normal tissues.

Oncomine analysis

Oncomine is a bioinformatics platform aimed at collect-

ing, standardizing and analyzing cancer transcriptome

microarray data (http://www.oncomine.org) [25]. We

used Oncomine 4.5 to analyze the expression of top

MRs (CENPF and TOP2A) in different cancers types. All

datasets were filtered using the gene symbol, “Analysis

Type = Cancer vs. Cancer Analysis” and “Cancer Type =

cervical cancer”. The “Bittner Multi-cancer” dataset was

returned as the top significant dataset. “Bittner Multi-

cancer” is from the Expression Project for Oncology

(expO) which contains 1911 various tumor samples ana-

lyzed on Affymetrix U133 Plus 2.0 microarrays (unpub-

lished, GEO ID, GSE2109). The log2 median-centered

intensity was used as gene expression value. The expres-

sion difference of a MR in cervical cancer vs. other can-

cer types was tested using Student’s t-test.

The human protein atlas

The immunohistochemistry of cervical cancer tissue,

protein subcellular localization and cell cycle expression

pattern information were extracted from the “PATH-

OLOGY” and “CELL” tab of The Human Protein Atlas

(http://www.proteinatlas.org) [26]. The cell cycle de-

pendency expression data for a protein was analyzed

using a custom assay by staining of U-2 OS FUCCI cells.

The FUCCI cells, Fluorescence Ubiquitination Cell Cycle

Indicator, are cells tagged with different fluorescent pro-

teins fused to two different cell cycle regulators Cdt1

(expressed in G1 phase) and Geminin (expressed in S

and G2 phases) that allows cell cycle monitoring. When

both proteins are present, the overlay of the images ap-

pear in yellow marking the G1/S transition.

OncoPrint visualization using cBioPortal

OncoPrints are compact means of visualizing distinct

genomic alterations, including somatic mutations, copy

number alterations, and mRNA expression changes

across a set of cases. OncoPrint was generated using

cBioPortal [27].

Protein-protein association analysis using STRING

STRING [28] was used to study the protein-protein as-

sociation of TOP2A, CENPF and their common regu-

lons with average DE score (DE.average) > 5. Only

associations experimentally determined, from curated

database or from text mining were shown. The kmeans

clustering method with the number of clusters = 3 was

used for the clustering analysis.

DepMap analysis

The correlation analysis of gene expression and pro-

moter methylation for TOP2A and CENPF was per-

formed using the Data Explorer tool of DepMap [29].

Expression signature comparison with the connectivity

map (CMap) using CLUE

The Connectivity Map (CMap) [30] is a database devel-

oped by the Broad Institute with > 1 million expression

signatures of cells responding to chemical, genetic, and

disease perturbations. CLUE (https://clue.io/) [30] is a

cloud-based software platform for the analysis of pertur-

bational datasets of CMap. QUERY is a tool in CLUE to

find positive and negative connections between the gene

expression signature of interest and all the signatures in

CMap. We used TOP2A, CENPF and their common

regulons with average DE score (DE.average) > 5 as input

upregulated gene list and used QUERY tool to query the

CMap database. The result included connectivity score

matrix of 8969 perturbations in 9 cell types. The con-

nectivity score is a standardized measure ranging from

− 100 to 100 with a positive score indicating a similarity

between a given perturbagen’s signature and that of the

query, while a negative score indicating an opposing

signature.

Statistical test

All statistical tests and plotting were performed in R

3.5.2 (https://www.r-project.org/) unless otherwise

mentioned.

Results
Identification of top MRs in CC

To identify the top MRs in CC, a collection of 10 data-

sets were selected from GEO database (Table 1). Each

dataset has at least 5 CC samples and at least 5 normal

cervical tissues as controls. Alltogether, 236 CC samples

and 120 normal tissues were analyzed. The DE analysis

was performed in each of the 10 datasets, resulting in 10

DE signatures. Using VIPER [3], we converted each DE

signature of all genes to a DA signature of 5838 MRs

(Fig. 1a-c, supplementary Table 1). We sought to use a

discovery-and-validation approach (Fig. 1b-c) to identify

top MRs. The 10 datasets were randomly assigned to a

discovery group and a validation group each include 5

datasets (Table 1). Using the top 100 most activated and

top 100 most suppressed MRs in each of the 5 discovery

DA signatures, we identified 18 common activated and 3

common suppressed MRs (Fig. 2a left). The 18 and 3

MRs were found to be also significantly enriched in the
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top activated and suppressed MRs, respectively in the 5

validation datasets (Fig. 2a right), indicating that these

MRs are robust top MRs in CC. Next, we compared the

DA and DE signatures of the 18 and 3 MRs (Fig. 1d)

using the 5 discovery datasets and selected 12 MRs

which have consistent DA and DE profiles. All the 12

MRs are activated and up-regulated (Fig. 2b). The 12

MRs contain four transcriptional factors or co-factors

(GMNN, DNMT1, PSMC3IP, FOXM1) and eight in-

volved in signal pathways (TOP2A, RACGAP1, CENPF,

MCM6, DEPDC1, RAD51, TYMS, CCNA2) (Fig. 2 b).

Identification of synergistic MRs TOP2A and CENPF in CC

Next, we sought to identify synergistic MR-pairs in CC,

i.e., the two MRs with their common regulons being

more extremely regulated than regulons unique to each

of them (Fig. 1e-f). From the 12 DA-DE consistent MRs,

four pairs have at least an overlap of 10 regulons and

10% of regulons (Fig. 3a). The synergy test was con-

ducted using the ECA values of common regulons vs.

MR1- or MR2-unique regulons using Wilcoxon Rank-

Sum test for the 10 datasets (Fig. 3a-b). MR pair TOP2A

and CENPF was found to be highly significant in all the

10 datasets (P-value range from 7E-3 to 1E-10). The

common regulons of them are all positively regulated

(MOR> 0) by both MRs and were more up-regulated

than the rest of regulons (Fig. 4a). There are all together

34 common regulons of TOP2A and CENPF (supple-

mentary Table 2, 3). Most of them (32) are upregulated

in all the 10 datasets with an average DE > 2 (Fig. 4b,

supplementary Table 2). A functional annotation of the

common regulons showed that their encoded proteins

are significantly associated with (1) mitosis, cell cycle,

cell division; (2) kinesin-motor, microtubule-based

movement, kinesin complex; (3) chromosome, sister

chromatid cohesion, centromere; (4) DNA damage,

DNA repair (Fig. 4c, supplementary Table 4).

Clinical implications of expression of TOP2A and CENPF in

CC

Next, we explored the question whether the expression

of TOP2A and CENPF have any clinical implications.

We used Biewenga_2008 (Table 1) microarray data

which has 5 normal cervical tissues (N), 19 tumour sam-

ples without lymph node metastasis (C) and 16 tumour

samples with lymph node metastasis (M) (supplementary

Table 5). As expected, both CENPF and TOP2A expres-

sion are significantly (P < 0.01) higher in C vs. N. Inter-

estingly, both CENPF and the average of the two genes

showed higher expression (P < 0.05) in M vs. C. (Fig. 5a).

The median expression of TOP2A is also higher in M vs.

C, although the P-value is not significant. The expres-

sion of CENPF and TOP2A is highly correlated (Pearson

correlation coefficient = 0.79) in all the samples. These

Fig. 1 A flowchart of current study strategy to analyze the MRs of CC. a 10 gene expression datasets of cervical cancer tissues and normal
cervical tissues were selected from GEO database. b VIPER was used to convert a DE profile of genes to a DA profile of MRs. Top activated or
suppressed MRs were selected from 5 discovery datasets. c The top MRs were validated in the other 5 validation datasets. d the DE profiles of the
top MRs in the 5 discovery datasets were extracted. DA-DE consistent MRs were selected. e Synergistic MR pairs were identified by comparing
the distribution of ECA for common and unique regulons of two MRs. f The top significant synergistic MR pair and their regulons were visualized
in a network. g The common regulons of the two MRs were functionally annotated using DAVID. h The clinical significance the two MRs was
further analyzed using additional data such as TCGA
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observations were confirmed using the TCGA data

(RNA-seq), which has 3 N samples, 304 C samples and

2M samples (Fig. 5b, supplementary Table 6). From a

survey of additional 21 clinical or molecular features (in-

cluding 14 categorical and 7 numerical features, supple-

mentary Figure 1, 2), we found that clinical feature

lymphovascular space invasion (LVSI) and lymphnodes

(LN) positive is associated with higher (P < 0.05) expres-

sion of TOP2A or the average expression of the two

genes in CC tissues (Fig. 5c, supplementary Table 6).

The samples with molecular feature APOBEC mutagen-

esis (Low) has higher expression of CENPF or the aver-

age of the two genes (P < 0.05) than the samples without

APOBEC mutations (No) (Fig. 5d, supplementary Table

6). The OS of samples with high expression of CENPF is

slightly poorer than those with lower expression, al-

though the P-value did not reach significance level (P =

0.15, supplementary Figure 3). Among all the numerical

features, only the sample purity computed by ABSO-

LUTE (Purity_Absolute) showed positive correlation

with the expression of CENPF (P = 0.03) and TOP2A

(P = 3E-5) (supplementary Figure 2), confirming the

finding that these genes are highly up-regulated in CC

compared to N tissues. Other features, including race,

human papillomavirus (HPV) status or type, clinical

stage, EMT score, mutation rate, etc. do not correlate

Fig. 2 Identification of top MRs in CC. a Left, Top 100 activated MRs and 100 suppressed MRs were selected within each of the five discovery datasets.
The common 18 activated and 3 suppressed MRs were identified and shown as red and blue in the NES boxplot. Right, the same 18 and 3 MRs were
shown in the NES boxplot of other 5 validation datasets. The NES value distribution of the 18 and 3 MRs compared to the rest of MRs were tested
using Wilcoxon Rank-Sum test. The P-values are 2e− 13, 2e− 13, 2e− 13, 2e− 13, 2e− 13 for the 18 activated MRs for discovery set; 1e− 03, 1e− 03, 1e−
03, 1e− 03, 1e− 03 for the 3 suppressed MRs for the discovery set; 1e− 13, 4e− 13, 1e− 12, 3e− 12, 9e− 11 for the 18 activated MRs for validation set; 2e
− 03, 1e− 03, 1e− 03, 2e− 03, 1e− 03 for the 3 suppressed MRs for the validation set. b The DA (NES scores) and DE (t-scores) matrix of the 21 MRs (18
activated and 3 suppressed) in the 5 discovery datasets. DA-DE Consistency set was selected using |DE| value> 3 and same sign as DA in all five
datasets. MRs in signal pathway or transcription factors were highlighted in orange and green background respectively
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with the expression of the two genes (supplementary

Figure 1, 2, supplementary Table 6).

Somatic mutations associated with expression of TOP2A

and CENPF

The association of the expression of CENPF and the

APOBEC mutagenesis (Fig. 5d) prompted us to find

genes with somatic mutations (SMGs) associated with

the expression of the two MRs. Using the TCGA data,

we identified 45 SMGs forming 60 SMG-MR pairs, in

which a SMG with either missense or LOF mutations as-

sociate with high or low expression of a MR (TOP2A or

CENPF) with P < 0.1 (Wilcoxon Rank-Sum test) (Fig. 6a,

supplementary Table 7). Majority (55/60) of these asso-

ciations involve missense mutations. And two third (40/

60) of the mutations are correlated with higher expres-

sion of the two MRs (supplementary Table 7). For ex-

ample, missense mutations of TP53 gene are associated

with higher expression of both CENPF and TOP2A (P <

0.05) (Fig. 6b left two). Missense mutations of MSH2

(P < 0.05) or RB1 (P < 0.1) are associated with higher ex-

pression of TOP2A (Fig. 6b right two). Altogether mis-

sense mutations of 28 genes are associated with higher

expression of CENPF or TOP2A, among them 9 are as-

sociated with higher expression of both MRs (Fig. 6a).

By grouping samples based on a combined effect of all

the 28 genes, samples with missense mutations in any

one of these genes have significantly higher (P = 8E-7

and 1E-9 respectively) expression of both MRs (Fig. 6c).

A functional annotation analysis using DAVID showed

that genes with mutations associated with higher

expression of either or both the two MRs are involved in

or be annotated with DNA-directed DNA polymerase

(POLD1, POLE, POLQ), chromatin regulator (ATRX,

KDM6A, KMT2C, KMT2B, RB1), DNA repair (ATRX,

MSH2, TP53BP1, POLE, POLQ), DNA damage (ATRX,

MSH2, TP53BP1, POLE, POLQ), pathways in cancer

(EGFR, EP300, MSH2, TP53, RB1, CTNNA1), viral car-

cinogenesis (EP300, DDX3X, TP53, RB1), tumor suppres-

sor (MSH2, TP53, RB1) and cell cycle (EP300, TP53, RB1)

(Figs. 1 g-h, Fig. 6d and a full list in supplementary Table

8).

Expression of TOP2A and CENPF in CC compared to other

cancer types

Finally, we asked the question whether the two MRs

(TOP2A and CENPF) are especially significant for CC

compared to other cancer types. Using GEPIA2, a web

server integrating TCGA and the GTEx data for 33 cancer

types, we found that TOP2A and CENPF expression are

higher in tumor than normal tissues in most of cancer

types except for LAML, which showed opposite trend for

both MRs. However, cervical squamous cell carcinoma

and endocervical adenocarcinoma (CESC) is one of the

several cancer types (8 and 4 for TOP2A and CENPF, re-

spectively) which showed most significant expression in-

crease (ANOVA P < 1E-10 and fold change> 4) in tumor

compared to normal tissues (Fig. 7a). Only three other

cancer types (THYM, UCEC and UCS) showed similar

magnitude of expression change for both MRs. By analyz-

ing “Bittner Multi-cancer”, a multi-cancer microarray

dataset using Oncomine, we observed that TOP2A and

Fig. 3 Identification of synergistic MR pairs. a Each row shows a pair of MRs (MR1 and MR2), their sizes (number of regulons) and common size
(number of common regulons), two Wilcoxon Rank-Sum test P-values for each dataset. b Six examples of synergistic tests as shown in the color-
matched boxes in A. For each MR-pair in a dataset, the ECA values of the common regulons were compared to either MR1-unique regulons or
MR2-unique regulons, generating two P-values
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CENPF expression was higher (Student’s t-test, P = 2E-7

and 3E-4 respectively) in CC than other 15 cancer types

(Fig. 7b), confirming the RNA-seq data from TCGA and

the GTEx.

Discussion
In current study, TOP2A-CENPF was identified as a syn-

ergistic MR pair in CC. Both MRs showed increased ex-

pression and activity in CC. TOP2A encodes DNA

Fig. 4 Synergistic effect of TOP2A and CENPF. a Regulon enrichment plot of regulons of TOP2A (left), CENPF (middle) or common regulons (right).
For each dataset, all genes were sorted based on the DE signature from most down-regulated to most up-regulated. The position of regulons in
the sorted gene list was shown as a vertical blue (negative regulons) or red (positive regulons) bar. b Network view of TOP2A, CENPF and their
regulons. Node color represents the average DE signature in the 10 datasets. Edge color represent the MOR of a MR and a regulon. c DAVID
function annotation of the common regulons of TOP2A and CENPF
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topoisomerase II alpha, an enzyme that controls and al-

ters the topologic states of DNA, involves in processes

such as chromosome condensation, chromatid separ-

ation, and the relief of torsional stress during DNA

transcription and replication. TOP2A was frequently

identified as a top overexpressed gene in CC [26, 27,

31–33]. Unsurprisingly, TOP2A is considered a late

marker in CC and immunohistochemistry or RT-PCR

Fig. 5 TOP2A and CENPF expression is correlated with clinical or molecular features. a Left three plots, expression of CENPF, TOP2A and the
average of the two for different sample types in Biewenga_2008 dataset. P-values were from Wilcoxon Rank-Sum test. *, P < 0.05; **, P < 0.01.
Right, scatter plot of the expression of the two genes. The Pearson correlation coefficient is indicated in the plot. b Similar to A, except that TCGA
RNAseq gene expression data was used. c Similar to B, except that two clinical categories of hysterectomy, LVSI and LN (LVSI_LNneg and
LVSI_LNpos) were compared. d Similar to B, except that three APOBEC categories were used to group samples
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analysis of TOP2A combined with other markers (e.g.

MCM2, Ki-67, CDKN2A) could be used in CC screening

which increases the sensitivity or specificity of the diag-

nosis compared to the high risk HPV test alone [34–37].

The over-expression of TOP2A seems to correlate with

the grade of cervical intraepithelial neoplasia (CIN), but

does not predict prognosis in CC [38, 39]. Consistent

with these, in this study, we didn’t observe any signifi-

cant association between TOP2A expression and HPV

status, HPV subtype, metastasis or survival among CC

samples. Only LVSI and LN positive is associated with

higher TOP2A expression (Fig. 5c), indicating a potential

link with invasion. CENPF encodes centromere protein

F, that associates with the centromere-kinetochore com-

plex. CENPF is a cell cycle associated nuclear antigen

with maximal expression in G2/M-cells. To date, there

is no reported functional role of CENPF implicated in

CC. However, CENPF was reported to be overexpressed,

drive tumorigenesis and/or associated with poor progno-

sis in several human malignancies, including breast can-

cer [40], prostate cancer [41–44], bladder cancer [45],

gastric cancer [46], hepatocellular carcinoma [47–49],

pancreatic carcinoma [50]. In this study, higher CENPF

expression was found to be significantly associated with

metastasis compared to CC tissues (Fig. 5a, b). Higher

CENPF expression is also associated with shorter sur-

vival although the P-value didn’t reach significance level

(supplementary Figure 3). All these suggested that CENP

F might also be related to tumor progression to metasta-

sis stage and predict poor prognosis in CC. Interestingly,

Fig. 6 Tumor samples with high or low expression of CENPF and TOP2A are associated with gene somatic mutations. a Network view of CENPF,
TOP2A and genes with somatic mutations in TCGA samples with CC. Wilcoxon Rank-Sum test P < 0.1 was used to select associations between a
type of mutation and gene expression of a MR. Loss of function (LOF) mutations include nonsense, splice site mutations and frameshift
mutations. b Examples of mutations in three genes (TP53, MSH2 and RB1) associated with expression level of CENPF or TOP2A. (two tailed
Wilcoxon Rank-Sum test, * P < 0.1, ** P < 0.05) c Expression of CENPF or TOP2A in 67 samples with missense mutations in any of the 28 genes
compared to 124 samples with none of these mutations. d DAVID function annotation of the genes with mutations associated with high
expression of CENPF or TOP2A
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when considering the average expression of TOP2A and

CENPF, both metastasis and LVSI and LN positive are

significantly associated with higher average expression

(Fig. 5a-c), indicating that a combined feature of the two

MRs might be a better marker for CC prognosis.

According to the information from The Human Pro-

tein Atlas (http://www.proteinatlas.org) [26], both

TOP2A and CENPF proteins have medium to high level

of expression in most of CC tissue samples based on the

immunohistochemistry results (supplementary Figure 4

and 5). These results confirmed our analysis based on

RNA expression and predicted protein activity. Both of

them are localized in nucleoplasm (supplementary Fig-

ure 6A-B). Both of them show cell cycle dependent ex-

pression and are expressed commonly during S and/or

G2 phases (supplementary Figure 6C-F). These data at

least make it possible that these two proteins are acting

synergistically in CC cells. The localization and the cell

cycle dependency of their expression are also consistent

with the functions of their common regulons: e.g., cell

Fig. 7 Expression of CENPF and TOP2A in CC compared to other cancer types. a Expression of TOP2A and CENPF in 33 cancer types (red) and
matched normal tissues (green). Data were from TCGA and GTEx analyzed using GEPIA2. Comparisons with ANOVA P < 1E-10 and fold change> 4
were highlighted in red text and marked with a *. Red and green horizontal dotted lines reflect the median value of expression for CESC and
normal cervical tissue respectively. Abbreviations for cancer types are: ACC, Adrenocortical carcinoma; BLCA, Bladder Urothelial Carcinoma; BRCA,
Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, Cholangio carcinoma; COAD, Colon
adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC,
Head and Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell
carcinoma; LAML, Acute Myeloid Leukemia; LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma;
LUSC, Lung squamous cell carcinoma; MESO, Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG,
Pheochromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous
Melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular Germ Cell Tumors; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine
Corpus Endometrial Carcinoma; UCS, Uterine Carcinosarcoma; UVM, Uveal Melanoma; b Expression analysis of TOP2A and CENPF using Bittner
Multi-cancer Dataset analyzed by Oncomine. The expression in cervical cancer (CC, group 4) was compared to all other cancer types using
Student’s t-test. P-values are indicated. The blue horizontal dotted lines reflect the median value of the expression in CC
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cycle, DNA replication/repair, kinesin complex, chromo-

some etc. (Fig. 4c). A protein-protein association net-

work analysis of TOP2A, CENPF and their common

regulons also suggested a close association of these pro-

teins (supplementary Figure 7). Although a physical

interaction between TOP2A and CENPF has not been

experimentally determined, many other proteins have

shown such interaction. It is also possible that TOP2A

and CENPF interact indirectly with each other through

other proteins (supplementary Figure 7).

TOP2A and CENPF are altered (somatic mutation or

copy number alternations) in only a small fraction (1

and 5%) of CC patients (supplementary Figure 8). DNA

methylation does not seem to correlate with their ex-

pression level based on analysis of ~ 800 cancer cell lines

(supplementary Figure 9, 10). However, their high ex-

pression level is associated with CC patients with mis-

sense mutations of 28 genes (Fig. 6a, c, supplementary

Table 7). Totally 67 (35%) of the 191 samples have mis-

sense mutations in at least one of these 28 genes. And

131 (67%) of the 191 samples have somatic mutations or

copy number alternations in the 28 genes or CENPF or

TOP2A (supplementary Figure 8). Many of the 28 genes

are directly involved in DNA metabolism (DNA damage,

DNA repair, DNA polymerase) or cell cycle. Some are

involved in viral carcinogenesis, tumor suppressor and

cancer pathways etc., which may eventually drive cancer

progression. These data suggest that the two master reg-

ulators (TOP2A and CENPF) may “collect” the somatic

mutation effect of many other genes in different cancer-

related pathways and with increased expression, promote

cell proliferation and tumor progression. Persistent in-

fections of HPV were thought to contribute to 95% of

CC cases [51]. One mechanism of HPV to cause CC is

that the viral oncogenes inactivate tumor suppressors

p53 and RB, leading to increased genomic instability and

accumulation of somatic mutations [51]. In this study,

we found that missense mutations of TP53 and RB1 but

not HPV status are associated with higher expression of

TOP2A and/or CENPF (Fig. 6b, supplementary Figure

1). These data may suggest that the high expression of

TOP2A and/or CENPF are hallmarks of CC regardless of

HPV status. HPV negative CC may develop tumor

through other mechanisms (e.g. accumulate mutations

to inactivate TP53 or RB1). Thus, detecting TOP2A and/

or CENPF expression in clinical may decrease the false

negative rate of CC diagnosis by HPV test alone.

We found that the two synergistic MRs TOP2A and

CENPF have both the high magnitude of increase of ex-

pression (vs. normal tissue) and the high absolute ex-

pression level in CC compared to many other cancer

types (Fig. 7). This may suggest that these two genes are

potential anticancer drug targets in CC. The enzyme

encoded by TOP2A has been designed as the target for

several anticancer agents and a variety of mutations in

this gene have been associated with the development of

drug resistance [52]. Small molecule compounds target-

ing CENPF have not been reported, possibly attributed

by the difficulty to target a non-enzyme target. However,

reports have shown that silencing CENPF using in vitro

models abolished invasion in gastric cancer [46], resulted

in the cell cycle arrest at G2/M checkpoint in hepatocel-

lular carcinoma [47], reduced levels of epithelial-

mesenchymal transition markers, inhibited cell prolifera-

tion, migration, and invasion, reduced global bio-

energetic capacity and altered the global metabolic pro-

files in prostate cancer [43, 53]. It remained to be vali-

dated whether silencing/inhibiting either CENPF or both

CENPF and TOP2A will have a strong phenotypic conse-

quence in CC using an in-vitro or/and in vivo model. If

these targets can be validated, drugs (an antisense oligo,

antibody, etc.) could be developed targeting CENPF with

or without a combination of a small molecule drug tar-

geting TOP2A in future CC treatment.

To explore more related to drug selection in clinical use

for cancer patient, we queried CMap database using CLUE

and identified potential perturbations that could reverse the

over-expression signature of TOP2A, CENPF and their

common regulons (supplementary Table 9). Unsurprisingly,

CDK inhibitor purvalanol-a, aminopurvalanol-a, JAK3-

inhibitor-VI, and topoisomerase inhibitor, cell cycle inhibi-

tor etoposide are top listed compounds (CPs) that showed

a strong negative connectivity scores in 8 cancer cell lines.

The “Cell Cycle Inhibition GOF” is the top perturbation

class (PCL), consistent with the function of the two MRs

and their common regulons. These data may help the clini-

cians to select better drugs for cancer patients with an

over-expression signature of the two MRs and their com-

mon regulons. This also suggests that developing or select-

ing drugs targeting the signal pathway they involved in

might be a promising approach for CC and other cancer

treatment.

Conclusions
In conclusion, our analysis suggested that TOP2A and

CENPF are MRs that are overexpressed and activated in

CC and synergistically regulate a common set of regu-

lons, with functions related to cell cycle, DNA replica-

tion/repair, kinesin complex etc. Their high expression

are linked to metastasis and the mutation status of a set

of genes including a few tumor suppressors. They may

serve as biomarkers for future CC diagnosis. They are

also potential anticancer drug targets for future drug dis-

covery. Our discovery could also provide guidance for

clinicians to select anti-cancer drugs for CC patients. Fi-

nally, some of the observations were also observed in

other cancer types, suggesting a potential wider impact

of our study.
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12920-020-00800-2.

Additional file 1: Supplementary Table 1: MR DA and DE signatures
for the 10 datasets. “MR_set”, categories of functions of MRs (TF,
transcriptional factor; TFcoFac, transcriptional co-factors; SigPathway, sig-
nal pathway); “regulon_size”, number of regulons for a MR; “rank_cat”, cat-
egory of ranking. For example, 100 indicates that the MR is a common
MR of the top 100 activated MRs in the 5 discovery datasets. -100 indi-
cates that the MR is a common MR of the top 100 suppressed MRs in the
5 discovery datasets. 0 indicates the MR is not the common top MRs in
the 5 discovery datasets. “nes.”, the NES score of a MR in a dataset calcu-
lated using VIPER, representing the DA signature. “pval.”, the P-value of
the NES from the VIPER analysis. “t.”, the value representing the DE signa-
ture (e.g. the t-statistics for microarray). “DiscoverySet_DA-DE_consistent”,
whether the DA and DE are consistent. The DA-DE Consistency set was
selected using |DE| value> 3 and same sign as DA in all the five discovery
datasets. Supplementary Table 2: DE signatures of the common regu-
lons of TOP2A and CENPF for the 10 datasets. “MOR_sign”, sign of MOR
(positive (1) or negative (− 1) MOR for both TOP2A-regulons and CENPF-
regulons). “DE.average”, the average values of the DE values for the 10
datasets. Supplementary Table 3: Network of TOP2A, CENPF and their
regulons. “Regulator” is the gene ID of a MR (here CENPF or TOP2A).
“interaction” is always “regulate”. “Target” is the regulon of a regulator.
“MOR”, mode of regulation, ranges between − 1 and + 1. “likelihood”,
range from 0 to 1, an edge weight that indicates how strong the mutual
information for an edge is. All information was extracted from the ara-
cne.networks R package. Supplementary Table 4: “Functional Annota-
tion Clustering” analysis of the 34 TOP2A-CENPF common regulons on
DAVID 6.8 website. See DAVID website for details of methods used and
interpretation of header names. “Category”, the gene annotation cat-
egory. UP_KEYWORDS, UniProt Keywords annotation of genes; UP_SEQ_-
FEATURE, UniProt sequence feature annotation of genes;
GOTERM_BP_DIRECT, Gene ontology biological process annotation;
GOTERM_CC_DIRECT, Gene ontology cellular component annotation.
Supplementary Table 5: CENPF and TOP2A expression in dataset Bie-
wenga_2008 (GSE7410). The expression data were extracted from GEO
database using GEO2R tool. The probe ID is indicated after the gene
symbol. “Avg_Gex”, the average expression value of CENPF and TOP2A.
“sample_type”, sample type (N, healthy cervical tissue; C, Early stage cer-
vical tumour without lymph node metastasis; M, Early stage cervical
tumour with lymph node metastasis). Supplementary Table 6: CENPF,
TOP2A expression and clinical, molecular data in CC samples in TCGA.
The clinical and molecular feature information were from the supplemen-
tary Table 1 and 2 of the publication: The Cancer Genome Atlas Research
Network et al., 2017. The expression values of CENPF and TOP2A were
downloaded from TSVdb. Supplementary Table 7: Somatic mutations
associated with expression of CENPF and TOP2A in CC TCGA data. Each
row is an association of a gene (Gene.mutation) with missense or LOF
mutations and expression of CENPF or TOP2A tested using Wilcoxon
Rank-Sum test. “delta. Median.Exp” is the difference of average expression
of samples with mutation and samples without mutation. “Direction.Exp”
indicates whether the samples with mutation has higher or lower expres-
sion than the samples without mutation. P-value is indicated in “Wilcox.P”
column. Only associations with a P < 0.1 were included in the list. Sup-
plementary Table 8: DAVID “Functional Annotation Clustering” analysis
of the genes with mutations associated with high or low expression of
TOP2A or CENPF. See DAVID website for details of methods used and in-
terpretation of header names. “Category”, the gene annotation category.
UP_KEYWORDS, UniProt Keywords annotation of genes; KEGG_PATHWAY,
KEGG pathway annotation of genes. Supplementary Table 9: Connec-
tions of expression signature of TOP2A, CENPF and their common regu-
lons with all expression signatures in Connectivity Map (CMap) using the
QUERY app of CLUE. Each row is a perturbation in CMap. Id, perturbation
ID; type, type of perturbation (CP, compound; KD, gene knockdown; OE,
gene over-expression; PCL, perturbation class); HA1E, PC3, VCAP, A375,
A549, HCC515, HT29, MCF7, HEPG2, the connectivity score for the indi-
cated cell lines; summary, summary connectivity score of all cell lines;
Average_CancerCells, average connectivity score of 8 cancer cell lines

(except for HA1E (human kidney epithelial cell), all other cell lines are
cancer cell lines). Name, perturbation name; Description, perturbation de-
scription; Target, the target of a compound; “belongs_to”, the PCL the
perturbation belongs to. The table was sorted based on ascending Avera-
ge_CancerCells. The top rows represent perturbations thar reverse (down-
regulate) the expression of Top2A, CENPF and their common regulons.
The negative connectivity scores from − 95 to − 100 were formatted in
Excel in blue background with increasing darkness.

Additional file 2: Supplementary Figure 1. Association of CENPF and
TOP2A expression with category clinical features (TCGA data). The clinical
category with > 5 samples were used for comparison. The groups were
sorted by median expression from low to high. The number of samples
in each group is indicated above the plot (using “# = xx xx” format, in
which “xx” represent sample number matching the sorted groups). The
groups with the lowest and highest median expression were compared
using Wilcoxon Rank-Sum test. The P-values are indicated on the top of
the plot. P < 0.05 was indicated by a *. Supplementary Figure 2. Correl-
ation of CENPF and TOP2A expression (y axis) with continuous clinical fea-
tures (x axis) (TCGA data). A linear regression line was draw. The
Spearman correlation coefficient (r) and P-value are indicated above each
plot. P < 0.05 was marked with an arrow. Supplementary Figure 3. Sur-
vival analysis of CENPF and TOP2A expression. The TCGA samples were
separated to two groups (exp-high in red and exp-low in blue) using the
80th percentile of expression of CENPF or TOP2A. P-value is based on the
log-rank test. Confidence intervals were shown as shaded areas. Supple-
mentary Figure 4. Protein expression of TOP2A in CC tissues as de-
tected by immunohistochemistry (data retrieved from The Human
Protein Atlas). (A) Summary of three antibody staining results for 11 pa-
tients as detected by antibody HPA006458 or 12 patients as detected by
antibodies HPA026773 and CAB002448 (full bar represents all patients).
(B) An example of staining image from a patient with cervix squamous
cell carcinoma. (C) An example of staining image from a patient with cer-
vix adenocarcinoma. Supplementary Figure 5. Protein expression of
CENPF in CC tissues as detected by immunohistochemistry (data re-
trieved from The Human Protein Atlas). (A) Summary of two antibody
staining results for 11 patients per antibody (full bar represents all pa-
tients). (B) An example of staining image from a patient with cervix squa-
mous cell carcinoma. (C) An example of staining image from a patient
with cervix adenocarcinoma. Supplementary Figure 6. Protein expres-
sion in subcellular localization and cell cycle for CENPF and TOP2A (data
retrieved from The Human Protein Atlas). (A) Staining of Hela cell shows
that CENPF is mainly localized in nucleoplasm. (B) Staining of U2 OS cell
shows that TOP2A is mainly localized in nucleoplasm. (C-D) Staining of U-
2 OS FUCCI cells, to characterize the cell cycle dependency of the protein
expression pattern. CENPF is mostly expressed during S and/or G2. (E-F)
Similar to C-D unless that protein TOP2A is shown to be expressed dur-
ing S and/or G2 and during Mitosis. Supplementary Figure 7. Protein-
Protein association network of TOP2A, CENPF and their common regu-
lons. Supplementary Figure 8. OncoPrint visualization of somatic muta-
tions, copy number alterations for the 28 genes (rows) with missense
mutation associated with higher expression of CENPF and/or TOP2A in
191 cervical squamous cell carcinoma and endocervical adenocarcinoma
(TCGA, Firehose Legacy) samples (columns). The mutation and gene ex-
pression profile of CENPF and TOP2A are also shown. 131 (69%) of queried
patients/samples have at least one queried gene altered. Supplemen-

tary Figure 9. Correlation of gene expression and promoter region
methylation of TOP2A in 789 cancer cell lines. (A) Scatter plot, each can-
cer type is shown in a different color. A linear regression line is drawn for
each cancer type. (B) Table of correlation coefficients and linear regres-
sion P-values for different cancer types. Supplementary Figure 10. Cor-
relation of gene expression and promoter region methylation of CENPF
in 823 cancer cell lines. (A) and (B) Similar to supplementary Figure 9 ex-
cept that CENPF is shown.
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