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ABSTRACT 
In many Web applications, such as blog classification and news-
group classification, labeled data are in short supply. It often hap-
pens that obtaining labeled data in a new domain is expensive and 
time consuming, while there may be plenty of labeled data in a 
related but different domain. Traditional text classification ap-
proaches are not able to cope well with learning across different 
domains. In this paper, we propose a novel cross-domain text 
classification algorithm which extends the traditional probabilis-
tic latent semantic analysis (PLSA) algorithm to integrate labeled 
and unlabeled data, which come from different but related do-
mains, into a unified probabilistic model. We call this new model 
Topic-bridged PLSA, or TPLSA. By exploiting the common top-
ics between two domains, we transfer knowledge across different 
domains through a topic-bridge to help the text classification in 
the target domain. A unique advantage of our method is its ability 
to maximally mine knowledge that can be transferred between 
domains, resulting in superior performance when compared to 
other state-of-the-art text classification approaches. Experimental 
evaluation on different kinds of datasets shows that our proposed 
algorithm can improve the performance of cross-domain text clas-
sification significantly. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval: Classification and Clustering.  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Topic-bridged PLSA, Cross-Domain, Text Classification 

1. INTRODUCTION 
In the traditional supervised learning framework, a classification 
task is to first train a classification model on a labeled training 
data. Then, the learned model is used to classify a test data set. 
Generally speaking, under such a framework, the learning algo-
rithm relies on the availability of a large amount of labeled data. 
In practice, high-quality labeled data are often hard to come by, 
especially for learning tasks in a new domain. Labeling data in a 
new domain involves much human labor and is time-consuming.  
Fortunately, there are often plenty of labeled data from a related 
but different domain. This may be the case when the labeled data 

are out-of-date, but the new data are obtained from fast evolving 
information sources such as the Web blogs. The situation is more 
serious in current dynamically-changing Web environment. Un-
fortunately, traditional learning approaches cannot cope well with 
such a situation. For example, as described in [16], a text classifi-
cation model trained on a Yahoo! directory performs poorly on a 
Weblog classification problem, since the distribution of terms 
may differ significantly. Another example is newsgroup classifi-
cation, where the news items for financial news may have a dif-
ferent distribution from the sporting events. It is often true that the 
performance of such classification decreases dramatically along 
the time dimension. This poses a new learning problem, because 
we often have to spend much effort in labeling the old documents, 
but it will cost us much to label the new ones. It would be a waste 
to throw away the old labeled documents entirely. In such a situa-
tion, how to accurately classify the new test data using as much of 
the old data as possible becomes a critical problem.  
In this paper, we focus on the problem of cross-domain text clas-
sification. We are given two data sets DL and DU, which are from 
two related but different domains. Here DL is a labeled data set 
from old domain, while DU is from a new domain and needs to be 
classified. We assume that, the class labels in DL and the labels to 
be predicted in DU are drawn from the same class-label set C. 
Under such circumstances, our objective is to accurately classify 
the documents in DU by fully utilizing the old domain data DL and 
their labels.  
We propose a novel approach called Topic-bridged PLSA (or 
TPLSA for short) for the cross-domain text classification problem. 
Our intuition is derived from the observation that the data in two 
domains may share some common topics, since the two domains 
are assumed to be relevant. Our key idea is to extend PLSA [8] to 
build a topic-bridge and then transfer the common topics between 
two domains. Using our TPLSA model, the common knowledge 
between two domains can be extracted as a prior knowledge in the 
model, and then can be transferred to the test domain through the 
bridge with respect to common latent topics. Overall, we combine 
this knowledge and the new knowledge learned from the unla-
beled data for text classification in the test domain, even when the 
test domain has a different distribution from the training domain. 
In particular, we first extend the probabilistic latent semantic 
analysis (PLSA) [8] to incorporate both labeled and unlabeled 
data. Our extension allows us to use the hidden variables in PLSA 
as topics (or classes in classification setting) to bridge the docu-
ments in training and test domains, and learn under a joint prob-
abilistic model. Such a new model is based on a simultaneous 
decomposition of the contingency tables associated with term 
occurrence knowledge in documents from both training and test 
domains, which identifies the principal topics of the training data 
as well as documents in the test data that support those topics. 
These topics are then taken as a bridge between the training and 
test domains. In addition, more prior knowledge from the training 
data is encoded in a set of constraints imposed between docu-
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ments, including the must-link constraints for documents to be-
long to the same cluster and cannot-link constraints for documents 
to belong to the different clusters. This prior knowledge is learned 
and applied for learning a classifier on the test data from different 
domains. According to the above algorithm, an object function is 
given involving both the likelihood on all the data and the pair-
wise constraints on the labeled training data. The EM algorithm is 
applied to iteratively maximizing such object function to acquire 
the final categories for the test data.  
A major advantage of our work is that by extending the PLSA 
model for data from both training and test domains, we are able to 
delineate nicely parts of the knowledge through TPLSA that is 
constant between different domains and parts that are specific to 
each data set. This allows the transferring of the learned knowl-
edge to be naturally done even when the domains are different 
between training and test data. We conduct experiments to test 
the performance of TPLSA on 11 different datasets and compare 
our PLSA-based cross-domain text classification algorithm with 
other state-of-the-art algorithms. Experimental results prove that 
topic-bridged PLSA can achieve higher performance than other 
algorithms.  
The paper is organized as follows. In Section 2, we give a brief 
review of related work. In Section 3, topic-bridged PLSA is pro-
posed for cross-domain text classification. The evaluation results 
are shown in Section 4. Section 6 concludes with a summary and 
suggestion for future work.  

2. RELATED WORK 
The traditional classification learning assumes that the class labels 
are given for training data under the same distribution as the test 
data. Two schemes are generally considered, including supervised 
learning and semi-supervised learning. Supervised learning fo-
cuses on the case where the labeled data are sufficient. Naive 
Bayes classifiers [13] and support vector machines [11] are 
known as two of the most effective methods for supervised text 
classification. Semi-supervised learning [25] addresses the prob-
lem that the labeled data are too few to build a good classifier. It 
makes use of a large amount of unlabeled data, together with a 
small amount of the labeled data to enhance the classification. 
Examples for semi-supervised learning include EM-based meth-
ods [17], transductive learning [12] etc. Both supervised and 
semi-supervised classification requires the labeled and unlabeled 
data should be under the same distribution. However, in our prob-
lem, the labeled and unlabeled data come from different domains, 
and their underlying distributions are often different from each 
other. This violates the basic assumption of traditional classifica-
tion learning. 
Correcting sample selection bias [24] is another branch of work 
related to cross-domain classification. If we assume the domain 
discrepancy is only caused by sample selection bias, while other 
facts are ignored, we can simply apply the theory of correcting 
sample selection bias to solve the cross-domain classification 
problem. Sample selection bias [7], the Nobel-prize winning work 
in Economics in 2000, assumes that the distribution difference is 
resulted from using non-randomly selected samples from the uni-
verse. Sample selection bias was firstly introduced in the econo-
metrics [7], and then came into the field of machine learning [24]. 
Zadrozny [24] proposed a two-step approach for correcting sam-
ple selection. The probability density is estimated to model the 
selection of training instances, and then the sample selection bias 
is corrected based on the estimated density. Several researches 

addressed the selection probability density estimation, e.g. kernel 
density estimation [20] and kernel mean matching [9]. Blitzer et 
al. [2] also analyzed the learning bounds for cross-domain learn-
ing based on instance weighting. However, those algorithms did 
not investigate the rich structure of the test data.  
Learning from auxiliary data [21] sources addresses classification 
using small amount of high quality base training data and large 
amount of low quality auxiliary training data. For cross-domain 
learning, we can consider the base and auxiliary training data 
come from different domains. In this area, Wu et al. [21] proposed 
an SVM-based algorithm using both base and auxiliary training 
data. They demonstrated some improvement by using the auxil-
iary data. After that, several other researches emerged to improve 
this learning task, e.g. active learning [14], and boosting [5]. Dif-
ferent from these works, in our problem, there are not any base 
labeled data.  
The probabilistic latent semantic analysis [8] is a popular method 
for document clustering and related tasks. PLSA was derived 
from the well-known latent semantic analysis (LSA) for text anal-
ysis, and provides solid statistical foundation. In this model, each 
document is considered as the convex combination of several 
topics, where these topics or latent semantic variables are ob-
tained using the maximum-likelihood principle. An expansion of 
PLSA is proposed in [4], which integrates document content and 
hypertext connectivity for document clustering. Similar to other 
clustering methods, PLSA does not need labeled information, and 
thus does not consider the available prior knowledge of the do-
main. We adapt this model to include the labeled information on 
topics, thus arriving at a new model we call topic-bridged PLSA 
(TPLSA) that uses the training documents as source to extract the 
prior knowledge. By making use of this prior knowledge, our 
algorithm is able to find documents that relevant for each topic 
even when these documents are from different domains.  
In this paper, we will incorporate the must-link and cannot-link 
constraints into our TPLSA model, which borrowed the idea from 
semi-supervised clustering. Semi-supervised clustering [1] builds 
clusters under some additional constraints provided by a few la-
beled data, in the form of must-links (two examples must in the 
same cluster) and cannot-links (two examples cannot in the same 
cluster). It finds a balance between satisfying these constraints 
and optimizing the original clustering objective function. Several 
semi-supervised clustering algorithms have been proposed, in-
cluding [1][3][10]. Our algorithm is essentially a classification 
algorithm in which the constraints given by the training data pro-
vide a class structure. It will be shown theoretically and empiri-
cally that our algorithm works well for cross-domain classifica-
tion. In addition, we are interested in using the class-label knowl-
edge gained from source domain training data to help classify 
documents in the target domain, which is not solvable by tradi-
tional semi-supervised clustering algorithms alone.   

3. TOPIC-BRIDGED PLSA 
3.1 Problem Definition 
In our problem, each training instance d is a text document and is 
assigned to a unique output label from a topic set C = {c1, …, ck}. 
A vocabulary of words W = {w1, …, wv} is given, allowing each 
input document to be represented as a “bag-of-words” vector via 
term frequency.  These labeled documents are DL = {d1, …, dm}, 
where each dl ∈ DL is assigned with label ci ∈ C.  The test data 
are DU = {d1, …, dn}, which are the unlabeled documents for 



prediction. In this paper, we assume the training dataset DL are 
from the related but different domain with test dataset DU. Our 
objective is to assign the labels  ci ∈ C to  du ∈ DU as accurately 
as possible using the training data DL in another domain.  

3.2 Learning under the Topic-bridged PLSA  
Since the documents in DL and DU are generally composed of 
terms, we can decompose two parts of the TPLSA on DL and DU 
separately. According to the observation of DL and W, we can 
perform a PLSA on DL × W  as:  

∑=
z

ll wzzdwd )|Pr()|Pr()|Pr(  (1)

where dl ∈ DL is the document in training set.  
For the test data DU, according to the observation of DU and W, 
we can perform the PLSA on DU × W:  

∑=
z
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where du ∈ DU is the document in test set. Note that, DL and DU 
come from different domains.  

3.2.1 Bridging Multiple Domains with PLSA 
Analogous to [4], our key observation is that even if the domains 
are different between the training and test datasets, they are re-
lated and still share similar topics from the terms. Rather than 
applying two separate PLSAs, it is reasonable to integrate the two 
models into a joint probabilistic model, and use the hidden vari-
able z to bridge the training and test domains. This is the essential 
part of TPLSA as shown in Figure 1. 

 
Figure 1. TPLSA Model for Bridging Training and Test Data 

By Equations (1) and (2), both decompositions share the same 
term-specific mixing part Pr(z | w). They relate the conditional 
probabilities for training documents and test documents: each 
topic has some probability Pr(dl | z) of generating a training doc-
ument dl with one distribution as well as some probability Pr(du | z) 
of generating a test document du with other distribution. As a 
result, we can merge training documents and test documents into 
an integrated model. Since the mixing topics are shared, the 
learned decompositions must be consistent with training and test 
data. We define such mixing topic z as a bridge, and the knowl-
edge transferred between training and test domains should be 
consistent between two domains as well. In the knowledge trans-
ferring application, such a bridge allows the model to take evi-
dences about training data structure into account when predicting 
the categories of test data. Meanwhile, the structure of test data is 
also be exploited simultaneously under the coupling model. Thus, 
the model can capture the inherent distribution of test data.  
After the decomposition is learned on both training and test data 
jointly, the class information of the test data can be acquired 
through the categories of the training data. We integrate the two 
models using a relative weight parameter λ ∈ (0, 1), which is 
introduced to represent the trade-off of the weighting between 
training data and test data. Clearly, if λ is near 0, we trust the test 

data more and training data less. If λ approaches to 1, we rely 
heavily on the training data. After the integration, we can maxi-
mize the following log-likelihood function with the relative 
weight λ.  
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3.2.2 Topic Constraints on PLSA 
To fully utilize the knowledge in the training domain, we apply 
the idea of must-link constraints and cannot-link constraints used 
in semi-supervised clustering [3] to our model: for all dl

i, dl
j in a 

same topic, there is a must-link constraint for all pairs (dl
i, dl

j); for 
all dl

i, dl
j in two different topics, there must have a cannot-link 

constraint. We encode these two kinds of constraints as follows:  
 To enforce the must-link constraint for (dl

i, dl
j), we add the 

following penalty term:  
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Note that Pr(dl
i | z) Pr(dl

j | z) represents the probability that 
two documents dl

i and dl
j generated by same topic z, and the 

penalty term fs(dl
i, dl

j) denotes the log-probability that two 
documents dl

i and dl
j are on the same topic.  

 In the opposite way, the cannot-link constraint for two doc-
uments (dl

i, dl
j) can be enforced as the penalty terms of fd(dl

i, 
dl

j) as  
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Considering the penalty terms of fs(dl
i, dl

j)  and fd(dl
i, dl

j), together 
with the log-likelihood function L, the objective function can be 
expressed as follows.   
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Recall that L is the log-likelihood of the observed data. The sec-
ond term of Equation (6) denotes that all documents known to be 
on the same topic should be grouped into same cluster, while the 
third term denotes that all documents in different topic should be 
grouped into different clusters. Here β1 and β2 are the parameters 
to set the weights for the must-link and cannot-link constraints 
during estimation. According to our experiments, the performance 
is not very sensitive to the value  β1 and β2.  

3.2.3 Optimization for Objective Function Lc 
Since the objective function Lc is non-convex, EM algorithm [6]  
is used to find a local optimal solution of Lc in Equation (6).   
For the E-step, we use the following formulae for the posterior 
probabilities of the latent variables associated with each observa-
tion:  
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As the optimization on constraints fs(dl
i, dl

j)  and fd(dl
i, dl

j), we use 
the expression for C(dl, w, z) to represent the similar meaning to 
Pr(z | d, w) in the traditional PLSA. For all pairs dl

i, dl
j under the 



same category z, Cs(dl
i, dl

j, z) can be interpreted as the probability 
of a topic z on the condition that two documents belong to same 
topic. Similarly, for all pairs dl

i, dl
j in two different categories, 

Cd(dl
i, dl

j, zi, zj)  is the probability that two documents belong to 
two different topics zi and zj. The terms Cs and Cd correspond to 
the must-link and cannot-link constraints, respectively. Specifi-
cally, C(dl, w, z), Cs(dl

i, dl
j, z) and Cd(dl

i, dl
j, zi, zj) are estimated by:  
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In the M-step, the probabilities with respect to unlabeled data du 
can be estimated in the similar ways to traditional PLSA, so that 
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For labeled data dl, after C(dl, w, z), Cs(dl
i, dl

j, z) and Cd(dl
i, dl

j, zi, 
zj) are determined, the new values of parameters  Pr(dl | z) can be 
calculated by 
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where β1 and β2 are the weight parameters for these constraints. 
Hence, the estimation of Pr(dl | z) is for the objective function Lc.  
While considering w is co-occurrence with documents in training 
dataset DL and with the documents in test dataset DU, Pr(z | w) is 
estimated with the mixing properties:  
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The principal of EM algorithm ensures that the value of the objec-
tive function Lc as defined in Equation (6) increases monotoni-
cally and converges to a local optimization [6]. When the EM 
algorithm converges, the values of parameters Pr(du | z) are used 
to assign each document to a category.  

3.3 Algorithm for TPLSA 
We now put the entire model together as topic-bridged PLSA 
(TPLSA). Our proposed algorithm is an integration on the unified 
model and the constraints to maximize Lc, Pr(du | z), Pr(z | w), and 
Pr(dl | z), respectively.  
As notations, we use c as the function to represent the category of 
the document or a hidden factor, c(d) as the category of document 
d, and c(z) as the category represented by a hidden factor. Our 
TPLSA algorithm is given in Algorithm 1. Here Lc(i) is the con-
strained likelihood function at ith iteration.  
As described in [8], the time complexity of the standard PLSA is 
O(k·N), where k is the total number of categories and N is the 
number of total term-document co-occurrence. In the worst case, 
N is equal to v· (m + n) where v is the total number of terms while 
m and n is the total number of documents in training dataset and 
test dataset. According to Equations (12), (13), and (14), the total 

time cost for unified model is still equal to O(k·v·(m + n)). The 
time cost of calculating the constraints for Equations (9) to (11) is 
O(k·m2). As a result, the total time cost for topic-bridged PLSA is 
O(k·m2 + k·v·(m + n)).  

4.  EXPERIMENTS 
 In this section we empirically evaluate our algorithm for TPLSA 
for cross-domain text classification and compare it with other 
state-of-the-art algorithms.  

4.1 Datasets 
In order to evaluate the properties of our framework, we con-
ducted experiments with three different text corpora: UseNet 
news articles (20 Newsgroups1), SRAA2 and Newswire articles 
(Reuters-215783). Since these three data sets are not originally 
designed for evaluating cross-domain classification, we split the 
original data in a way to make the domains of the training and test 
data different, as follows.  

 
Figure 2. Example of Data Generation 

First, we observe that all three data sets have hierarchical struc-
tures. For example, 20 Newsgroups corpus contain seven top 
categories. Under the top categories, there are 20 sub-categories. 
We define the tasks as top-category classification problems, 
where our goal is to classify the documents according to the top-
one level categories. When we split the data to generate training 
and test datasets, the data are split based on sub-categories instead 
of based on random splitting. As shown in Figure 2, for example, 
A and B are two top categories, each having two subcategories. 
Consider a classification task to distinguish the test instances 
                                                                 
1 http://people.csail.mit.edu/jrennie/20Newsgroups/ 
2 http://www.cs.umass.edu/mccallum/data/sraa.tar.gz 
3 http://www.daviddlewis.com/resources/testcollections/ 

Algorithm 1 Topic-bridged PLSA 

Input: Document-term matrices DL × W and DU × W, and the 
predefined topic c for each d ∈ DL; 

Output:  Topic c for each d ∈ DU. 
1: Initialize Pr(dl | z), Pr(du | z), , and Pr(z | w) randomly. 
2: while Lc has not converged to a pre-specified value do 
3:       Estimate the values of  Pr(z|dl, w), Pr(z|du, w),  C(dl, w, 

z), Cs(dl
i, dl

j, z)  and Cd(dl
i, dl

j, zi, zj) in Equations (7), 
(8), (9), (10) and (11), respectively. 

4:       Maximize the values of Pr(du | z),  Pr(dl | z) and  Pr(z | w), 
in Equations (12), (13), and (14), respectively.    

5: end while 
6: for each z do  
7:         |})(|{|maxarg)( zdcDdzc Lc =∈= . 
8: end for 
9: for each d ∈ DU do  
10:       ))|Pr(max(arg)( dzcdc z= . 
11:end for 



between A and B. Under A, there are two sub-categories A1 and 
A2, while B1 and B2 are two sub-categories under B. We split the 
data set in such a way that A1 and B1 are used as training data, 
and A2 and B2 are used as the test data. Then, the training and test 
sets contain data in different sub-categories. Their domains also 
differ as a result.  

4.1.1 20 Newsgroups 
The 20 Newsgroups is a text collection of approximately 20,000 
newsgroup documents, partitioned across 20 different newsgroups 
nearly evenly.  Six different datasets are generated from 20 News-
groups for evaluating cross-domain classification algorithms. Each 
data set contains two top categories: one as positive and the other as 
negative classes. Then, we split the data based on sub-categories, as 
shown in Table 1. In Table 1, comp vs. sci indicates that the top 
category comp is treated as positive class and sci is as negative. Four 
sub-categories comp.graphics, comp.os.ms-windows.misc, sci.crypt 
and sci.electronics are chosen to be the training data, while five sub-
categories comp.sys.ibm.pc.hardware, comp.sys.mac. hardware, 
comp.windows.x, sci.med, and sci.space to be the test data.  The 
other five data sets are organized in the same way. 

Table 1. Six Datasets Generated from 20 Newsgroups  
Data Set Traning Data Test Data

comp  vs  sci

comp.graphics
comp.os.ms-window-misc

sci.crypt
sci.electronics

comp.sys.ibm.pc.hardware
comp.sys.mac.hardware

comp.windows.x
sci.med

sci.space

rec  vs  talk

rec.autos
rec.motocycles

talk.politics.guns
talk.politics.misc

rec.sport.baseball
rec.sport.hockey

talk.politics.mideast
talk.religion.misc

rec  vs  sci

rec.autos
rec.sport.baseball

sci.med
sci.space

rec.motocycles
rec.sport.hockey

sci.crypt
sci.electronics

sci  vs  talk

sci.electronics
sci.med

talk.politics.misc
talk.religion.misc

sci.crypt
sci.space

talk.politics.guns
talk.politics.mideast

comp  vs  rec

comp.graphics
comp.sys.ibm.pc.hardware

comp.sys.mac.hardware
rec.motocycles

rec.sport.hockey

comp.os.ms-window-misc
comp.windows.x

rec.autos
rec.sport.baseball

comp  vs  talk

comp.graphics
comp.sys.mac.hardware

comp.windows.x
talk.politics.mideast

talk.religion.misc

comp.sys.ibm.pc.hardware
comp.sys.mac.hardware

talk.politics.guns
talk.politics.misc

 
Table 2. Two Datasets Generated from SRAA  

Data Set Traning Data Test Data

auto  vs  aviation sim-auto & sim-aviation real-auto & real-aviation

real  vs simulated real-aviation & sim-aviation real-auto & sim-auto  
4.1.2 SRAA 
SRAA is a Simulated/Real/Aviation/Auto UseNet data set for 
document classification. 73,218 UseNet articles are collected from 
four discussion groups about simulated autos (sim-auto), simulated 
aviation (sim-aviation), real autos (real-auto) and real aviation 
(real-aviation). 
Consider a task that aims to predict labels of instances between real 
and simulated. We use the documents in real-auto and sim-auto as 
training data, while real-aviation and sim-aviation as test data. Since 
all the data in the training set are about autos, while all the data in 

the test set are about aviation, the distributions of feature spaces in 
the training and test sets are different from each other.  The auto vs 
aviation data set is generated in the similar way.  

4.1.3 Reuters-21578 
Reuters-21578 is one of the most used test collections for evaluating 
automatic text-categorization techniques. It contains five top catego-
ries. Among these categories, orgs, people and places are three big 
ones. For the category places, we removed all the documents about 
the USA to make the three categories nearly even.  
Reuters-21578 corpus also has hierarchical structure. The data sets 
are generated for cross-domain classification in the similar ways as 
what we have done on the 20 Newsgroups and SRAA corpora. 
Three datasets orgs vs. people, orgs vs. places and peoples vs. 
places are generated for cross-domain classification. Since there are 
too many sub-categories, we do not list the details description here.  

4.1.4 Data Preprocessing 
Some preprocessing has been applied to the raw text data. First, we 
perform the Porter stemmer [18] on terms. Then, stop words were 
removed. A simple feature selection method, Document Frequency 
(DF) Thresholding [23], is used to cut down the number of features, 
in order to speed up the classification. Based on [23], DF threshold-
ing is suggested, as the method, which has comparable performance 
with Information Gain or CHI, is simplest with lowest cost in com-
putation. In our experiments, we set the DF threshold to 3. Finally, 
TFIDF [19] is used for feature weighting. After that, all the docu-
ment vectors are converted to a unit vector dividing by its length. 

4.1.5 Data Distribution 
The first three columns of Table 3 show the statistical properties of 
the data sets. The first two data sets are from the SRAA corpus. The 
next six are generated using 20 Newsgroups data set. The last three 
are from Reuters-21578 test collection. Kullback-Leibler divergence 
values [15] between the training and test sets in each test are pre-
sented in the second column in the table, sorted in decreasing order 
from top down. The next column titled “Documents” show the size 
of the data sets used.  

Table 3. Datasets for  Cross-Domain Classification, including 
the Performance by SVM and NBC on the Measurement of 

Accuracy 

|D L | |D U | D L -D U D U - CV D L -D U D U -CV

real  vs simulated 1.161 8,000 8,000 0.734 0.968 0.741 0.965
auto  vs  aviation 1.126 8,000 8,000 0.772 0.967 0.85 0.969

rec  vs  talk 1.102 3,669 3,561 0.767 0.997 0.765 0.994
rec  vs  sci 1.021 3,961 3,965 0.788 0.993 0.835 0.992

comp  vs  talk 0.967 4,482 3,652 0.897 0.995 0.976 0.996
comp  vs  sci 0.874 3,930 4,900 0.683 0.988 0.793 0.979
comp  vs  rec 0.866 4,904 3,949 0.835 0.992 0.928 0.993
sci  vs  talk 0.854 3,374 3,828 0.774 0.991 0.774 0.989

orge vs places 0.329 1,079 1,080 0.546 0.915 0.623 0.753
people vs places 0.307 1,239 1,210 0.734 0.887 0.784 0.883
orgs vs people 0.303 1,016 1,046 0.703 0.894 0.711 0.871

Data Set
SVM NBCDocumentsKullback-Leibler

Divergence

 

KL divergence [15] is calculated as:  
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where PrL(w) is the estimation of feature w on DL and PrU(w) is the 
estimation of feature w on DU. It can be seen that the Kullback-
Leibler divergence (KL) values for all the data sets are much larger 



than the case when we simply split the same data set into test and 
training data, which has a KL value of nearly zero.  
An example of co-occurrence for document and word distribution 
on real vs. simulated dataset is shown in Figure 3. The first 8000 
documents are training documents and next 8000 documents are test 
documents. Among 8000 documents, the first 4000 documents are 
labeled with real and the next 4000 documents are labeled with 
simulated. As shown in the figure, training data has different distri-
bution with the test data. Furthermore, there are still large common-
ness among them. In this work, we propose to enlarge such com-
monness to improve the classification over the domains with differ-
ent distributions.  
We further show the performance on these datasets with the other 
supervised classification algorithms that are typically used for text 
classification, to illustrate the effect of different domains. As shown 
in Figure 3, the column DU  – DU   shows the performance when we 
use the labeled training data DL to train the model for classification 
and test the new data DU while column DU–CV  shows the best case 
of performing 10-fold cross-validation on DU. Note that in obtaining 
the best case for each classifier, the training data are obtained from 
the labeled data from DU and the test part is also from DU while 
hiding the labels in different folds. Thus, this best case is the case 
for classification with the same domain, which gives the best possi-
bly result for that classifier. As shown in the table, we can find that 
using a learned model from the different domain data to classify the 
test data will significantly decrease the performance. There exists a 
big gap between the worst and best cases for each row.  

 
Figure 3. Co-occurrence of Documents and Words for Dataset 

“real vs. simulated” 
4.2 Compared Algorithms 
Three different types of algorithms are employed for comparison 
with proposed topic-bridged PLSA algorithm. The first two are 
supervised learning algorithms including NBC, SVM, semi-
supervised learning algorithms TSVM [12] and Kernel Density 
Estimation (KDE) algorithm [24].  
Naïve Bayesian classifier (NBC) is a well-known supervised learn-
ing algorithm, and SVM has been successfully applied in many 
applications like text classification [11]. For algorithms that use 
SVMlight, we used a linear kernel function as done in [11].  
We further compared topic-bridged PLSA with semi-supervised 
learning. For semi-supervised learning, we implemented the Trans-
ductive Support Vector Machines (TSVM) [12]. For TSVM, we 
used a linear kernel function as in [12] for the semi-supervised 
transductive learning.  

We also compare to the algorithm which corrects sample selection 
bias using Kernel Density Estimation [24]. The basic classifier for 
KDE is based on NB and SVM with linear. We call them as KDE-
NB and KDE-SVM, respectively.  

4.3 Evaluation Metric 
There exist many evaluation metrics for measuring the performance 
of classification. In this paper, we employ the metric accuracy for 
comparing different algorithms by considering that it is binary clas-
sification. Assume that T is function which maps from document d 
to its true class label c = T(d), and L be the function which maps 
from document d to its prediction label c = L(d) by the classifiers. 
According to the definition in [22], the accuracy is defined as:  Ac-
curacy = |{d | d ∈ DU ∧ T(d) = L(d)}| / |DU|. 

4.4 Overall Performance  
In this section, two compared experiments are conducted for four 
algorithms. For the proposed topic-bridged PLSA algorithm, we set 
the parameters λ, β1 and β2 with 0.5, 50 and 15, respectively. The 
iteration times is set to 100. These parameters will be studied in 
parameter tuning section.  

4.4.1 Performance on Different Datasets 
The first experiment is conducted on 11 datasets listed in Table 3. 
The experimental results are listed in Table 4 with the measure ac-
curacy. As shown in the table, TPLSA can achieve better perform-
ance than other algorithms. Unlike the aforementioned algorithms, 
our algorithm incorporates the training data and test data into a uni-
fied model, which can better exploit the knowledge of the training 
dataset and the inherent structure of test dataset.  

Table 4. Performance Comparison for Different Datasets 

Data Set NB SVM KDE_NB KDE-SVM TSVM TPLSA

real vs simulated 0.741 0.734 0.764 0.743 0.87 0.889

auto vs aviation 0.85 0.772 0.85 0.772 0.898 0.947

rec vs talk 0.765 0.767 0.765 0.786 0.96 0.977

rec vs sci 0.835 0.788 0.855 0.788 0.938 0.951

comp vs talk 0.976 0.897 0.976 0.897 0.903 0.977

comp vs sci 0.793 0.683 0.801 0.684 0.817 0.989

comp vs rec 0.928 0.835 0.928 0.835 0.902 0.951

sci vs talk 0.774 0.774 0.786 0.79 0.892 0.962

orgs vs places 0.623 0.546 0.623 0.551 0.564 0.653

people vs places 0.784 0.734 0.784 0.742 0.769 0.805

orgs vs people 0.711 0.703 0.712 0.704 0.703 0.763

Average 0.798 0.748 0.804 0.754 0.838 0.897  

Since supervised approaches including SVM and NBC do not con-
sider the domain difference on training and test datasets, there algo-
rithms get worse performance. Semi-supervised approach TSVM 
can achieve higher performance than supervised methods, which 
prove that inspecting the testing data will achieve higher perform-
ance. However, these methods assume that the training data and test 
data are from the same domain. These methods do not fully utilize 
the structure information contained in test data with different do-
main. As a result, the semi-supervised algorithms can not be good 
enough. Correcting sample selection bias [24], the columns under 
“Kernel Density Estimation” (KDE), performs only slightly better 
than NB and SVM classification algorithms, respectively. We be-
lieve it is because distribution difference cannot cover all the issues 
in cross-domain text classification.  



As mentioned, the performance of supervised learning algorithms 
including SVM and NBC will be affected according to the distribu-
tion of training data and testing data since they are from different 
domains. After performing topic-bridged PLSA, we can exploit 
training data and test data simultaneously. The improvement over 
the supervised methods is shown in Figure 4. The X-axis represents 
different datasets while the KL divergence is decreased from 1 to 11. 
The Y-axis represents the improvement for our proposed algorithm 
over SVM and NBC. Generally, we can find that the lower KL 
divergence is, the less improvement will be achieved. It can be ex-
plained the general supervised algorithms can also perform good 
enough on the datasets with lower divergence.  
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Figure 4. Performance for Different KL divergence 

4.4.2 Performance on Different Size of Training Data 
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Figure 5. Performance Comparison for Different Data Size 

For most of learning algorithms, the density of training data will 
affect the performance. In this experiment, we conduct experiments 
on the “org vs. people” dataset to empirically analyze how classifi-
cation accuracy evolves when the size of training data is changed 
from 10%, 20%, …, and 100%. We simulate the different sizes of 
training data by randomly extracting from the training data. The 
experimental results are shown in Figure 5. We can find that the 
accuracy curve of TPLSA is above over the curves of other three 
algorithms. TPLSA can achieve higher performance over other three 
algorithms on different size of training data, specifically on few 
training data. Furthermore, as shown in the figure, our proposed 
algorithm is not very sensitive to the data size. This also confirms 
that using the structure information of unlabeled data can achieve 
better performance.  
According to our calculating, the KL divergence between different 
training data and test data is decreased according to the increasing of 
training data size. As shown in Figure 5, we can also find that the 
higher KL divergence is, the more improvement will be achieved.  

4.5 Parameters Sensitivity 
In this section, the experiments are conducted to tune the parameters 
and to show that our proposed TPLSA algorithm is not sensitive to 
these parameters. Each parameter is tuned by fixing other parame-
ters.  

4.5.1 Parameters for Must-link and Cannot-link  
The main two parameters of TPLSA are: the coefficients β1 and β2 
for the penalty terms. The coefficient β1 represents the degree of 
enforcement that the documents with same category in labeled data 
should be in same cluster, while the coefficient β2 regulates the 
degree of enforcement that the documents with different categories 
in training data should be in different clusters. To reveal the effect 
of β1 and β2 on the performance, we fix the value of one of them 
and vary the other to show the change in performance. The experi-
ment for tuning is conducted on orgs vs. people dataset. 
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Figure 6. Performance for Different 1β  
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Figure 7. Performance for Different 2β  
Figure 6 and Figure 7 show the impact of β1 and β2 on the perform-
ance of TPLSA. One character of the curves in Figure 6 is that when 
β1 is increased from 0 to 150 with interval 10, the performance will 
be increased firstly and then decreased. This indicates that setting β1 
properly will give a better performance. When the value of β1 is 
decreased to close to 0, the impact of the penalty terms for the must-
links is removed. As a result, the performance will be decreased, 
which indicates that the must-link constraints have a strong impact 
on the performance. Furthermore, as shown in the Figure 6, the 
value β1 is relatively stable in the interval [30, 120]. We believe the 
TPLSA algorithm is not sensitive to the value β1 since the interval is 
large enough. As shown in Figure 7, changing β2 have little impact 
on the performance. The performance of TPLSA is not sensitive to 
the value β2. In our experiments, 501 =β  and 152 =β .  

4.5.2 Performance on Different λ 
As shown in Equation (3), the parameter λ is to tune the weight 
between labeled training data and unlabeled test data. Here we show 
the different performance affected by the parameter λ  to inspect the 
sensitiveness of TPLSA. λ is tuned on 11 different datasets in table 
3. The experimental results are shown in Figure 8. In the figure, X-
axis shows the change of parameter λ which is tuned from 0.1 to 1. 
As shown in the figure, the performance will first increase and then 
decrease when λ is increased from 0.1 to 1. It is shown that setting λ 
with a proper value will achieve higher performance for TPLSA. 
Furthermore, as shown in the Figure, if the value of λ is changed in 
the interval from 0.4 to 0.8, the performance of TPLSA will be less 
impacted across different datasets. It shows that our proposed algo-
rithm is not sensitive to the parameter λ. In this work, we set λ to 
0.5 for other experiments. 
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Figure 8. Performance for Different λ 

4.6 Convergence 
The method that we used to find the optimal objective function Lc as 
defined in Equation (6) is based on the EM algorithm, which is an 
iterative process that will converge to a local optimum. Figure 9 
shows the change of performance with respect to the number of 
iterations. We observe that the performance grows faster during the 
first 60 iterations. The performance is nearly constant when more 
than 100 iterations are performed. This proves that our algorithm 
will be converged in about 100 iterations. 
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Figure 9. Performance for Iteration  

5. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a novel algorithm called Topic-bridged 
PLSA to handle the cross-domain text classification problem by 
allowing knowledge learned from documents in one domain to be 
effectively transferred to another. The algorithm extends the tradi-
tional Probabilistic Latent Semantic Analysis (PLSA) to integrate 
the labeled training data and unlabeled test data under a joint prob-
abilistic model with the common topic as bridge. We conducted 
experimental evaluation on 11 datasets and the results show that the 
proposed algorithm achieves better performance than other state-of-
the-art classification algorithms. 
As a future work, we will consider other learning methods to ac-
quire the parameters used in the TPLSA model, and consider other 
related classification tasks such as multi-class classification. More-
over, we plan to do further investigation to inspect the inherent rela-
tions among text datasets with different but related domains. 

6. REFERENCES 
[1] Basu, S., Banerjee, A., and Mooney, R. J. Semi-Supervised 

Clustering by Seeding. In ICML, 2002. 
[2] Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Wort-

man, J. Learning Bounds for Domain Adaptation. In NIPS 
2007. 

[3] Cohn, D., Caruana, R., and McCallum, A. Semi-Supervised 
Clustering with User Feedback.Technical Report TR2003-
1892, Cornell University, 2003. 

[4] Cohn, D., and Hofmann, T. The Missing Link - a Probabilistic 
Model of Document Content and Hypertext Connectivity.  In 
NIPS, 2001. 

[5] Dai, W., Yang, Q., Xue, G.-R., and Yu, Y, Boosting for Trans-
fer Learning. In ICML, 2007.  

[6] Dempster, A., Laird, N., and Rubin, D. Maximum Likelihood 
from Incomplete Data via the EM Algorithm. Journal of Royal 
Statistical Society, Series B, 39(1): 1–38, 1977. 

[7] Heckman, J. J. Sample Selection Bias as a Specification Error. 
Econometrica 47:153–161, 1979. 

[8] Hofmann, T. Probabilistic Latent Semantic Analysis. In SIGIR, 
1999. 

[9] Huang, J., Smola, A., Gretton, A., Borgwardt, K. M., and 
Schölkopf, B. Correcting Sample Selection Bias by Unlabeled 
Data. In NIPS, 2007. 

[10] Ji, X., Xu, W., and Zhu, S. Document Clustering with Prior 
Knowledge. In SIGIR, 2006. 

[11] Joachims, T. Text Categorization with Support Vector Ma-
chines: Learning with Many Relevant Features. In ICML, 
1998. 

[12] Joachims, T. Transductive Inference for Text Classification 
using Support Vector Machines. In ICML, 1999.  

[13] Lewis, D. D. Representation and Learning in Information Re-
trieval. PhD thesis, Amherst, MA, USA, 1992. 

[14] Liao, X., Xue, Y., and Carin, L. Logistic Regression with an 
Auxiliary Data Source. In ICML, 2005. 

[15] Kullback, S. and Leibler, R. A. On Information and Suffi-
ciency. Annals of Mathematical Statistics, 22(1):79-86, 1951.  

[16] Ni, X., Xue, G.-R., Ling, X., Yu, Y., Yang, Q. Exploring in the 
Weblog Space by Detecting Informative and Affective Arti-
cles. In WWW, 2007. 

[17] Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. Text 
Classification from Labeled and Unlabeled Documents using 
EM. Machine Learning, 39(2-3):103–134, 2000. 

[18] Porter, M. F. An Algorithm for Suffix Stripping. Program 14, 
3, pp 130–137, 1980. 

[19] Robertson, S. E., Walker, S., Beaulieu, M. M., Gatford, M., 
and Payne, A. Okapi at TREC-4. In TREC-4, 73-96. 1996.  

[20] Shimodaira, H. Improving Predictive Inference under Covari-
ate Shift by Weighting the Log-likelihood Function. Journal of 
Statistical Planning and Inference, 2000. 

[21] Wu, P., and Dietterich, T. G. Improving SVM Accuracy by 
Training on Auxiliary Data Sources. In ICML, 2004. 

[22] Yang, Y.  An Evaluation of Statistical Approaches to Text 
Categorization. Journal of Information Retrieval, Vol. 1, No. 
1/2,  67–88, 1999. 

[23] Yang, Y. and Pedersen, J.P. A Comparative Study on Feature 
Selection in Text Categorization. In ICML, 1997.  

[24] Zadrozny, B. Learning and Evaluating Classifiers under Sam-
ple Selection Bias. In ICML, 2004.  

[25] Zhu, X. Semi-Supervised Learning Literature Survey. CS TR 
1530, University of Wisconsin-Madison, 2006. 

 


