
Topic-Grained Text Representation-based Model
for Document Retrieval

*Mengxue Du, *Shasha Li, Jie YuB, Jun MaB, Bin Ji, Huijun Liu, Wuhang
Lin and Zibo Yi

College of Computer, National University of Defense Technology, Changsha, Hunan
Province, China

{dumengxuenudt,shashali,yj,majun,
jibin,liuhuijun,wuhanglin,yizibo14}@nudt.edu.cn

Abstract. Document retrieval enables users to find their required doc-
uments accurately and quickly. To satisfy the requirement of retrieval
efficiency, prevalent deep neural methods adopt a representation-based
matching paradigm, which saves online matching time by pre-storing
document representations offline. However, the above paradigm con-
sumes vast local storage space, especially when storing the document
as word-grained representations. To tackle this, we present TGTR, a
Topic-Grained Text Representation-based Model for document retrieval.
Following the representation-based matching paradigm, TGTR stores the
document representations offline to ensure retrieval efficiency, whereas
it significantly reduces the storage requirements by using novel topic-
grained representations rather than traditional word-grained. Experi-
mental results demonstrate that compared to word-grained baselines,
TGTR is consistently competitive with them on TREC CAR and MS
MARCO in terms of retrieval accuracy, but it requires less than 1/10 of
the storage space required by them. Moreover, TGTR overwhelmingly
surpasses global-grained baselines in terms of retrieval accuracy.

Keywords: Neural Retrieval · Text Representation · Topic Granularity
· Space Compression

1 Introduction

Recently, deep learning based semantic representations have attracted much re-
search attention and been widely used in the document retrieval field. Recent
methods propose to fine-tune deep pre-trained language models (PLMs) such
as BERT [3] to assess matching degrees of query-document pairs [10, 25, 3].
They achieve the state-of-the-art performance of the document retrieval task by
concatenating query-document pair and feeding it into a PLM to calculate the
matching degree. Unfortunately, despite these methods achieve great success,
they come at a steep increase in time cost, which is unacceptable in practical
application scenarios.

In order to improve the retrieval speed, researchers propose a representation-
based framework, where they encode query and document into word-grained

ar
X

iv
:2

20
7.

04
65

6v
1

 [
cs

.I
R

]
 1

1
Ju

l 2
02

2

2 M. Du et al.

representations [10], as shown in Fig. 1(a). And then they assess the matching
degree of a query and a document pair by calculating the similarity of their
representations. Benefit from the decoupling computation of queries and docu-
ments, the representation-based framework can pre-store document representa-
tions offline. Thus the online retrieval only needs to encode the query while it
obtains the document representations from local storage directly. However, the
representation-based framework come at a steep increase in space cost to store
document representations. For example, when using ColBERT [10] to generate
document representations, it requires 154 GiBs to store the TREC CAR corpus
and 632 GiBs to store the MS MARCO corpus, where the document sizes of two
corpora are only 2.9 GiBs and 15.6 GiBs, respectively. In this paper, we explore
a novel method to compress document representations, with the goal of saving
storage space and guaranteeing the retrieval accuracy as well.

Sim Sim Sim Sim

Score

Query Encoder Document Encoder

(b) Topic-grained Representation-based ranker
(e.g.，the proposed TGTR)

Query Document

2q 3q nq1q 1d 2d 3d ・・・ md

Topic A
Topic B
Topic C

No Topic

Offline storing

Score

Sim Sim Sim Sim

Query Encoder Document Encoder

(a) Word-grained Representation-based ranker
(e.g.，ColBERT)

1d 2d 3d

Query Document

・・・ md

・・・
1
qe

1q 3q

・・・

・・・
nq2q

2
qe 3

qe q
ne 1

de 2
de 3

de d
me

・・・

高11

12 Input Words

Embeddings ・・・
1
qe

q

q
Ne ・・・

1
de

q

d
Ne

Query Encoder

Fig. 1. The matching paradigms of word-grained retriever (a) and the proposed method
(b). Given a query and a document, (a) and (b) encode them into word-level embed-
dings and topic-level embeddings, respectively. (b) reduce the length of document’s
representation from the word count level to the topic count level, which means it sig-
nificantly compresses the space cost of offline storing documents’ representations.

To address the above issues, we proposes TGTR, a topic-grained text representation-
based document retrieval model, as shown in Fig. 1(b). To be specific, we first
model the topics distribution of documents and queries to obtain every word’s
latent topics, and then use Attention network to obtain topic-level embeddings
by fusing words’ contextual embeddings with the same topic. The motivation
is drawn from the fact that, in general, users are only interested in documents
consisting of information closely related to their search topic. The information
in a document may cover multiple topics, and users tend to pay more atten-
tion to those parts of the document which are closely related to the query topic
and less attention to the remainder. Unfortunately, previous document retrieval
models [9, 7, 10, 12, 19] ignore to take the topic information into account. In
addition, the problem is particularly acute for long documents.

We see the following intuitive benefits when using topic-grained representa-
tions of queries and documents to retrieval documents.

1) Compresse the space cost of storing document representations. Compared to
word-grained retrievers, the proposed topic-grained retriever can compress

Topic-Grained Text Representation-based Model for Document Retrieval 3

the size of the document representations by one order-of-magnitude, and the
compression rate increases as the document length increases.

2) Keep a balance of the amount of information between each embedding in
query and document’s representations. We think it’s the main reason why
TGTR can achieve better retrieval accuray than the alternative methods
described in Section 2.

3) Break the existing information fusion that follows the structure of the arti-
cle. We fuse the contents sharing the same topic together across the whole
article. It’s a process of distilling the representive information of a document.
Furthermore, we find that no-topic words are frequently filler words. Which
indicates our model is effective at filtering out redundant information.

In summary, this work makes the following contributions:

1) We propose a novel document retrieval model that introduces topic-grained
representation to the task for the first time;

2) Our model guarantees retrieval accuracy while significantly compressing the
storage space of the document representations;

3) Our model obtains competitive performance compared to all baselines on
two benchmark datasets in terms of retrieval accuracy, but it requires less
than 1/10 of the space cost compared to them.

2 Related Work

Classical information retrieval (IR) systems rely on exact lexical match [21], we
call them lexical retrievers. Lexical retrievers can process queries very quickly.
Nowadays, they are still widely used in production systems [7]. Recently, re-
searchers have utilized deep learning to improve traditional lexical retrievers,
including document expansions [17, 16], query expansions [13] and term weight
estimation [2].

In the past few years, information retrieval researchers have introduced a
range of neural models for semantic retrieval [25, 7, 10, 6, 9, 8, 12, 19]. Due to the
specific requirements of time efficiency, researchers proposed the representation-
based retrieval framework. [3, 6, 7, 9, 10, 11, 19, 23].

Khattab. Omar et al. [10] first proposed a word-grained representation-based
retriever, we call this type of models word-grained retrievers. Word-grained re-
trievers provides state-of-the-art performance at that time while resulting in
significant storage overhead. COIL [7] is another word-grained retriever which
stores the token embedding in an inverted list. Representing queries and/or doc-
uments separately with a single embedding is an important method to compress
document representations, which we call global-grained retrievers [6, 9, 19]

Global-grained retrievers also generate word-level embeddings firstly, but
then they fuse the sequence of embeddings into one by various means. Sentence-
BERT [20] explores the effect of using 1) [CLS] embedding; 2) average pooling;
3) max pooling to fuse the BERT embedding sequence, respectively. However,
This type of models can seriously impair retrieval accuracy. we attribute it to

4 M. Du et al.

that the amount of information between query and document in the real world
is often asymmetric (|query| � |document|), which leads to an imbalance of
the amount of information between each embedding in query and document’s
representations.

In summary, current representation-based retrievers face the tradeoff of the
space cost (document representations) and retrieval accuracy. TGTR effectively
reduces the cost of space by constructing the topic-grained representation, with-
out compromising retrieval accuracy.

3 TGTR

In this section, we present our topic-grained text representation-based model for
document retrieval. Before we present the framework, some preliminary about
representation-based matching paradigm are introduced. Then the TGTR frame-
work are described in detail.

3.1 Preliminary

In the field of document retrieving, specially for deep models, it’s very common
to assess the matching degree of a query-document pair by representing the query
and/or document as a sequence of vectors which we called representation-based
matching paradigm. Given a query sequence Q = [q1, q2, ..., qn] and a document
sequence D = [d1, d2, ..., dm], both qi and dj represent a word. Firstly, encoding
a query and document into representations Eq and Ed, then calculating the
similarity between Eq and Ed [22]. As Fig. 1(a) shows, traditional word-grained
retrievers encode every word into a fixed-length embedding Eq = [eq1, e

q
2, ..., e

q
n]

and Ed = [ed1, e
d
2, ..., e

d
m].

By design, the representation-based matching paradigm isolates almost all
of the computations between queries and documents to enable pre-computing
document representations offline [10]. It proceeds over the documents in the
collection in batches, once the documents’ representations are produced, they
are saved to disk using 32-bit or 16-bit values to represent each dimension. In
Fig. 1, we use the rectangular box with decorative pattern to identify the part
of offline storing.

Generally, per embedding in representation is about hundreds of dimensions
and storing a dimension needs at least 16-bit. The number of a document’s em-
beddings stored by word-grained retrievers is approximately equal to the docu-
ment length, making huge space cost. As Fig. 1(b) shows, we propose to encode
the document with Nd representative topics into topic-grained representations
Ed = [ed

1
, ed2, ..., e

d
Nd

] rather the traditional word-grained representations. The
idea’s purpose is to reduce the number of the document’s embeddings to com-
press the space cost of storing documents’ representations.

Topic-Grained Text Representation-based Model for Document Retrieval 5

3.2 Model Architecture

Fig. 2 depicts the architecture of TGTR, which comprises four components. We
will cover these components in detail in this section.

1q 3q ・・・ nq2q

・・・

Input Words

Word
Contextual

Embeddings

Topic Buckets

Topic-Grained
Embeddings

・・・

1d 2d 3d 4d ・・・

maxsim
Matching Score

Embedding
Similarities

D

1d 2d 3d 4d ・・・・・・

Q

1 3q nq2

(A)

q
nc

d
mc4

dc2
dc 3

dc1
dc

md

md

(B)

(D)

q q

3
qc2

qc1
qc

3
de

(C)

・・・

1
qe

Attention Attention

d

d
Nbucket

Attention

1
dbucket

1
de

Attention

2
dbucket

2
de

Word-Level EncoderWord-Level Encoder

d

d
Ne

宽3高4

宽3高4

宽9高5
1
qbucket

・・・・・・

・・・

q

q
Ne

Attention

q

q
Nbucket

Fig. 2. The architecture of TGTR. (A) Topic Recognizer; (B) Query Encoder; (C)
Document Encoder; and (D) Matching Assessment Mechanism. Given an input query
sentence Q and a document sentence D, (A) recognizes latent topics of every word in
documents and queries, and then (B) and (C) encode the query and the document to
sequences of topic-grained embeddings by three stages, separately. Finally, (D) uses
maximum similarity operation to output final matching score between the query and
the document.

Topic Recognizer The topic recognizer uses traditional topic generation
model to recognize latent topics of every word in documents and queries. As
Fig. 2(A) shows, given a query sequence Q = [q1, q2, ..., qn] and a document
sequence D = [d1, d2, ..., dm], topic recognizer gives their words different topic
colors by analyzing their topics distributions.

To be specific, we use Latent Dirichlet Allocation (LDA) [1] to model doc-
uments and queries’ latent topics. Algorithm 1 depicts the process of obtaining
words’ topics. Firstly, we obtain the text-topic distribution Array as well as the
topic-word distribution Array (line 1-2). We then set threshold θt to extract
the representative topics for each text (line 3-8). In the same manner, we set
fixed threshold θwf and ratio threshold θwr to extract the representative words
in a text under its representative topics (line 9-11). Finally, a two-dimensional

6 M. Du et al.

table M is generated for each text (line 12). The dim of row in M represents a
word, while the dim of column represents a potential topic. Note a word may
have more than one or zero latent topics. The words without any latent topics
are considered meaningless and discarded after helping other words to generate
contextual embeddings (see the red cross symbol in Fig. 2).

Algorithm 1 Topic Recognizer of TGTR

Input:
The text-words array, text2words;
The number of texts, m;
The number of topics, k;
The trained topic model, LDA;
The word frequency builder, Vectorizer;
The threshold for extracting representative topics , θt;
The fixed and ratio threshold for extracting representative words, θwf , θwr;

Output:
The list of potential topics of words in all texts, text2word2topics;

1: textVectorizer← Vectorizer.transform(text2words)
2: text2topics, topic2words← LDA.transform(textVectorizer)
3: for d ∈ [1, 2, ...,m] do
4: M ← [], text2word2topics← []
5: for t ∈ [1, 2, ..., k] do
6: if text2topics[d, t] ≥ θt then
7: Get the distribution of words in the d-th text
8: under the t-th topic disdt ← topic2words
9: l← |disdt|

10: for w ∈ [1, 2, ..., l] do
11: if disdt[w] ≥ θwf or disdt.getorder(w)/l ≤ θwr then
12: M [w].append(t)

13: text2word2topics.append(M)

14: return text2word2topics

Document Encoder We then encode the document to a sequence of fixed-
length embeddings. This part comprises three stages.

Stage 1: Encode word-level contextual embeddings Given a document D, TGTR
first maps each word di into its contextual embedding cdi by using Word-Level
Encoder (WLE). Though we can complete this part of work by using methods
such as in [5, 3], We focus on BERT [3] to keep consistent with the major baseline.
Note BERT uses WordPiece embeddings with a 30,000 token vocabulary, thus
a word can be tokenized to several tokens. Strictly speaking, the i-th word’s
contextual embedding cdi may comprises more than one token embedding, which
we hope readers will notice. The process of this stage is summarized as Equation
1.

[cd1, c
d
2, ..., c

d
m] := WLE(d1, d2, ..., dm) (1)

Stage 2: Word-topic mapping As mentioned above, we obtain a two-dimensional
word-topics table M for every document by modeling latent topics. The dim of

Topic-Grained Text Representation-based Model for Document Retrieval 7

row in M represents a word, while the dim of column represents a potential
topic. Every word’s contextual embedding obtained in Stage 1 is mapped to the
buckets corresponding to topics they have. A word may be mapped into multiple
buckets or filtered out (regarded as meaningless). The bucket corresponding to
the i-th topic is marked as bucketdi . The process of this stage is summarized as
Equation 2, where Nd is the number of representative topics the document d
has.

[bucketd1, bucket
d
2, ..., bucket

d
Nd

] := Mapping(cd1, c
d
2, ..., c

d
m) (2)

Stage 3: Generate topic-grained representation The model TGTR uses At-
tention network to obtain topic-level embeddings, which we call topic-grained
representation. Considering different words with the same topic have different
amount of information, we assign different weights to different words. For the
bucket corresponding to the t-th topic bucketdt : [u1, u2, ..., uBt

] outputed by
stage 2, denote the attention weight of ui as αi:

αi = qt
T tanh(W × ui + b) (3)

αi =
exp (αi)∑Bt

j=1 exp (αj)
(4)

where W and b are parameters, qt is the attention query vector, tanh is the
activation function and Bt is the size of the t-th topic bucket. The final embed-
ding of t-th topic edt is the summation of the word-level embeddings in bucketdt
weighted by their attentions.

edt =

Bt∑
i=1

αiui (5)

Query Encoder Our query encoder has a very similar architecture with doc-
ument encoder, they share model parameters but have a few difference in input
processing. We prepend BERT’s start token [CLS] followed by a special token
[D] when input a document sequence. In the same manner, we prepend BERT’s
start token [CLS] followed by a special token [Q] when input a query sequence.

Matching Assessment Mechanism Finally, we use a maximum similarity
(MaxSim) operation to output our final matching score. Given the query’s topic-
grained representation Eq : [eq1, e

q
2, ..., e

q
Nq

] and the document’s topic-grained rep-

resentation Ed : [ed1, e
d
2, ..., e

d
Nd

], the matching score of query q and document d

is assessed by MaxSim operation between Eq and Ed. To be specific, we applies
MaxSim between one of the query embeddings and all of the document’s em-
beddings, then we sum all items up as final score S(Q,D). The process of this
part is summarized as Equation 6.

S(Q,D) =
∑

i∈[|Eq|]

maxj∈[|Ed|]e
q
i (edj)T (6)

Notice our Matching Assessment Mechanism has no trainable parameters.

8 M. Du et al.

Training The training objective is to learn representations of queries and doc-
uments so that query-positive document pairs have higher matching score than
the query-negative documents pairs in training data. Given a query Q together
with its positive documents D+ and m negative documents. {D−i }mi=1, we mini-
mize the loss function:

L(Q,D+, {D−i }
m
i=1) = −log

exp(S(Q,D+))

exp(S(Q,D+)) +
∑m

i=1 exp(S(Q,D−i))
(7)

4 Experiment Methodology

4.1 Datasets

Following previous work [10], our experiments use two datasets, which differ in
data size, to evaluate our model in document retrieving tasks.
TREC CAR. TREC CAR is introduced by Dietz et al. [4] in 2017, is a com-
posite data set based on Wikipedia containing approximately 29 million articles.
Our assessment was performed on the test set used in TREC 2017 CAR, which
contained 2,254 queries.
MS MARCO. MS MARCO [15] is a dataset introduced by Microso in 2016
for reading comprehension and adapted in 2018 for retrieval. It is a collection of
8.8M passages from Web pages, which were gathered from Bing’s results to 1M
real-world queries.

4.2 Baseline Methods

We adopt three types of baselines for comparison.
Lexical Retriever. Lexical Retriever retrieve document based on lexical match-
ing rather than semantic matching. In this type, we choose three traditional
methods [24, 21, 14] and three network methods [17, 16, 2] as our baselines.
Global-grained Retriever. Global-grained retriever retrieve document with
global-grained representations of queries and documents. In this type, we choose
BERT [3] and DPR [9] as our baselines.
Word-grained Retriever. Global-grained retriever retrieve document with
word-grained representations of queries and documents. In this type, we choose
ColBERT [10] and COIL [7] as our baselines.

5 Experiment Details

5.1 Implementation Details

The complete training details are given below:

– We fit LDA model by using Scikit-learn machine learning library [18]. We
apply variational inference with expectation-maximization to learn model’s
parameters and get the distributions described in Section 3. The number
of latent topics K is a hyper-parameters here, and we set other two hyper-
parameters α and η to 1/K by default.

Topic-Grained Text Representation-based Model for Document Retrieval 9

– We choose the max query length as 32 and the max doc length as 180 at
dataset MS MARCO. Since TREC is much larger than MS MARCO, we set
max query length 48 and max doc length 250 in TREC.

– We use BERT as pre-trained word-level embedding encoder to embed the
query and document sentences with the embedding dimension of 768 and
the vocab size of 30522.

– We then apply attention operation for every topic buckets by different query
vectors. The parameters W and b are shared by all buckets.

– The dimension of final topic-level embedding dim is 768. We passes the
embeddings through a linear layer with no activations to control their di-
mensions. As we discuss later in more detail, we typically fix dim range as
(64, 128, 256, 512, 768). We set dim=256 by default.

5.2 Experiment Results

Table 1 shows the retrieving performance of TGTR and our baselines over two
datasets.

Compared to word-grained retrievers The results show that TGTR per-
forms almost 10 times better than the word-grained baselines in terms of space
cost with no loss in terms of retrieval accuracy on MS MARCO. On TREC
CAR, TGTR performs almost 12 times better than the word-grained baselines
in terms of space cost with 2.3% and 2.0% loss in terms of MRR@10 and MAP
on MS MARCO.

Compared to global-grained retrievers The results show that TGTR
overwhelmingly outperforms global-grained retrievers in terms of space cost and
retrieval accuracy over both datasets. Note our model outperforms global-grained
retrievers in terms of space cost because we reduce the embedding dimension by
passing the original embeddings through a linear layer.

Compared to lexical retrievers The results show that TGTR overwhelm-
ingly outperforms lexical retrievers in terms of retrieval accuracy over both
datasets. Note lexical retrievers don’t need store documents’ representations,
so the compare between our model and them in terms of space cost is not avail-
able.

Summary. Compared to word-grained baselines, TGTR is consistently out-
performing them on MS MARCO and be competitive with them on TREC CAR
in terms of retrieval accuracy, but it performs almost 10 times better than them
in terms of space cost. Moreover, TGTR overwhelmingly outperforms lexical and
global-grained baselines in terms of retrieval accuracy.

10 M. Du et al.

Table 1. Retrieving performances of TGTR and baseline models. We report the per-
formances of our model with the embedding dimension dim=256. Improvement, degra-
dation or equivalent with respect to TGTR in terms of MRR@10, Recall@1K and MAP
is indicated (+/−/-). The unit of ‘Space’ is (GiBs). Results not applicable are denoted
‘n.a.’.

(a) Performance Comparisons on MS MARCO.

Method Space(GiBs) MRR@10 Recall@1K
Lexical Retriever
BM25 n.a. n.a. 0.187 −48.2% 0.857 −11.5%
Doc2query n.a. n.a. 0.215 −40.4% 0.891 −8.0%
DeepCT n.a. n.a. 0.243 −32.7% 0.910 −6.0%
DocTTTTTquery n.a. n.a. 0.277 −23.3% 0.947 −2.2%

Global-grained Retriever
BERT 25.3 ×1.6 0.310 −14.1% 0.929 −4.0%
DPR n.a. n.a. 0.311 −13.9% 0.952 −1.7%

Word-grained Retriever
COIL n.a. n.a. 0.355 −1.7% 0.963 −0.5%
ColBERT 154.0 ×9.9 0.360 -0.3% 0.968 -

Topic-grained Retriever
TGTR 15.6 ×1 0.361 - 0.968 -

(b) Performance Comparisons on TREC CAR.

Method Space(GiBs) MRR@10 MAP
Lexical Retriever
BM25 n.a. n.a. n.a. n.a. 0.153 −50.2%
TextRank n.a. n.a. 0.160 −63.0% 0.120 −60.9%
Doc2query n.a. n.a. n.a. n.a. 0.181 −41.0%
DeepCT n.a. n.a. 0.332 −23.3% 0.246 −19.9%

Global-grained Retriever
BERT 83.2 ×1.6 0.376 −13.2% 0.273 −11.1%

Word-grained Retriever
ColBERT 632.1 ×12.3 0.443 +2.3% 0.313 +2.0%

Topic-grained Retriever
TGTR 51.4 ×1.0 0.433 - 0.307 -

6 Analysis

6.1 A Comparison of Trade-off Quality

In this section, we assess the trade-off quality between space efficiency and re-
trieval accuracy of three types of representation-based retrievers. We use the
quotient of MRR and Space as the trade-off score. We use BERT and ColBERT
to represent the global-grained retriever and word-grained retriever, separately.
Topic-grained Retriever is our model.

Topic-Grained Text Representation-based Model for Document Retrieval 11

Table 2 shows the results. It seems that our model significantly outperforms
other two types of retrievers in term of trade-off quality and the word-grained
retriever performs the worst.

Table 2. Comparisons of Trade-off Quality among Three Types of Retrievers.

Method
MRR/Space (1e-3)

MS MARCO TREC CAR

Global-grained Retriever 12.3 −46.8% 4.5 −46.4%
Word-grained Retriever 2.3 −90.0% 0.7 −91.7%

Topic-grained Retriever 23.1 - 8.4 -

6.2 Embeddings Dimension and Bytes per Dimension

Two of the most attractive features in our model is the embeddings dimension
and the bytes per dimension. Fig. 3 shows the impact of above two features on the
model performance. As Fig. 3(a) shows, retrieval accuracy increases sublinearly

(b)(a) (c)

Fig. 3. (a) and (b) show the impact of embeddings dimension and the bytes per dimen-
sion on MRR@10 and trade-off quality (MRR/Space), separately. (c) shows MRR@10
vs Space(GiBs) as functions of the embeddings dimension and the bytes per dimension.

with the increase of above two features in our model. Fig. 3(b) clearly shows that
it might contribute to higher trade-off quality by reducing the above two features.
As Fig. 3(c) shows, retrieval accuracy increases sublinearly with the increase of
space cost in our model. It seems that when the embedding dimension is small
enough, further compression can cause great accuracy damage.

7 Conclusions

This paper presents TGTR, a novel retrieval model that employs topic-grained
text representation for document retrieval. The key of our model is modeling
the topics distribution of documents and queries to obtain every word’s latent
topics, and then using Attention network to obtain topic-level embeddings by
fusing words’ contextual embeddings with the same topic. Our experiments on
MS MARCO and TREC benchmark datasets demonstrates the advantage of rep-
resenting texts as topic-grained embeddings for document retrieval task. These
results suggest that our model guarantees retrieval accuracy while significantly
compressing the storage space of the document representations.

12 M. Du et al.

References

1. Blei, D.M., Ng, A.Y.: Latent dirichlet allocation. Journal of machine Learning
research 3(Jan), 993–1022 (2003)

2. Dai, Z., Callan, J.: Context-aware term weighting for first stage passage retrieval.
In: SIGIR. pp. 1533–1536 (2020)

3. Devlin, J., et al.: Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv:1810.04805 (2018)

4. Dietz, L., Verma, M.: Trec complex answer retrieval overview. In: TREC (2017)
5. Feng, Z., Tang, D., et al.: Pretraining without wordpieces: Learning over a vocab-

ulary of millions of words. arXiv:2202.12142 (2022)
6. Gao, L., Callan, J.: Condenser: a pre-training architecture for dense retrieval.

arXiv:2104.08253 (2021)
7. Gao, L., Dai, Z.: Coil: Revisit exact lexical match in information retrieval with

contextualized inverted list. arXiv:2104.07186 (2021)
8. Guo, J., Fan, Y.: A deep relevance matching model for ad-hoc retrieval. In: the

25th CIKM. pp. 55–64 (2016)
9. Karpukhin, V., Oğuz, B.: Dense passage retrieval for open-domain question an-

swering. arXiv:2004.04906 (2020)
10. Khattab, O., Zaharia, M.: Colbert: Efficient and effective passage search via con-

textualized late interaction over bert. In: SIGIR. pp. 39–48 (2020)
11. Lu, S., He, D.: Less is more: Pretrain a strong siamese encoder for dense text

retrieval using a weak decoder. In: 2021 EMNLP. pp. 2780–2791 (2021)
12. Ma, X., Guo, J.: Prop: Pre-training with representative words prediction for ad-hoc

retrieval. In: the 14th WSDM. pp. 283–291 (2021)
13. Mao, Y., He, P.: Generation-augmented retrieval for open-domain question answer-

ing. arXiv:2009.08553 (2020)
14. Mihalcea, R., Tarau, P.: Textrank: Bringing order into text. In: the 2004 EMNLP.

pp. 404–411 (2004)
15. Nguyen, T., Rosenberg, M.: Ms marco: A human generated machine reading com-

prehension dataset. In: CoCo@ NIPS (2016)
16. Nogueira, R., Lin, J., Epistemic, A.: From doc2query to doctttttquery. Online

preprint 6 (2019)
17. Nogueira, R., Yang, W., Lin, J., Cho, K.: Document expansion by query prediction.

arXiv:1904.08375 (2019)
18. Pedregosa, F., et al.: Scikit-learn: Machine learning in python. the Journal of ma-

chine Learning research 12, 2825–2830 (2011)
19. Qu, Y., Ding, Y.: Rocketqa: An optimized training approach to dense passage

retrieval for open-domain question answering. arXiv:2010.08191 (2020)
20. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-

networks. arXiv:1908.10084 (2019)
21. Robertson, S.E., et al.: Some simple effective approximations to the 2-poisson

model for probabilistic weighted retrieval. In: SIGIR’94. pp. 232–241. Springer
(1994)

22. Sun, Q., Wu, Y.: A multi-level attention model for text matching. In: International
Conference on Artificial Neural Networks. pp. 142–153. Springer (2018)

23. Zamani, H., et al.: From neural re-ranking to neural ranking: Learning a sparse
representation for inverted indexing. In: the 27th CIKM. pp. 497–506 (2018)

24. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to ad hoc information retrieval (2001)

25. Zheng, Z., Hui, K.: Bert-qe: contextualized query expansion for document re-
ranking. arXiv:2009.07258 (2020)

	Topic-Grained Text Representation-based Model for Document Retrieval

