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Abstract—Graph mining has been a popular research area
because of its numerous application scenarios. Many unstruc-
tured and structured data can be represented as graphs, such as,
documents, chemical molecular structures, and images. However,
an issue in relation to current research on graphs is that they
cannot adequately discover the topics hidden in graph-structured
data which can be beneficial for both the unsupervised learning
and supervised learning of the graphs. Although topic models
have proved to be very successful in discovering latent topics,
the standard topic models cannot be directly applied to graph-
structured data due to the ‘bag-of-word’ assumption. In this
paper, an innovative Graph Topic Model (GTM) is proposed to
address this issue, which uses Bernoulli distributions to model
the edges between nodes in a graph. It can, therefore, make
the edges in a graph contribute to latent topic discovery and
further improve the accuracy of the supervised and unsupervised
learning of graphs. The experimental results on two different
types of graph datasets show that the proposed GTM outperforms
the Latent Dirichlet Allocation on classification by using the
unveiled topics of these two models to represent graphs.

Index Terms—Graph mining, Topic model, Latent Dirichlet
Allocation

I. INTRODUCTION

G
RAPH is a structure of a set of nodes where some pairs

of nodes are connected by links. Many unstructured and

structured data can be represented as graphs. The research

about this graph structured data belongs to the graph mining

area [1]. The motivation for graph mining is that the edges

(formed structures) will contribute to the classification or

clustering of the data as compared to instance mining which

only considers nodes [1], [2]. In text mining, a document,

for example, [3], [4] is composed of some words as nodes

and word relations, which can be co-occurrence relations,

association relations, or other semantic relations. The classi-

fication of these document graphs can improve the accuracy

of document retrieval with word vectors as representations.

To provide another example, a chemical molecular structure

can be represented by a graph with basic elements as nodes

and chemical bonds as edges. The classification of these
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chemical molecular graphs can help to label molecular struc-

tures which is normally a very difficult and time-consuming

process. Moreover, products, services, website retrieval and

many real-world tasks can benefit from such graph mining.

However, the existing graph mining algorithms are mainly

based on the frequent subgraph representation [5]–[7] which

transforms a graph into an instance where each subgraph is

a dimension and then the existing instance-based machine

learning algorithms can be adopted. The problem with this is

that the links between subgraphs in a single graph are omitted.

This omission unfortunately loses some valuable information.

On the other hand, although the topic detection in text

mining [8] and video processing [9] is a hot research area,

the research issue, that of discovering hidden topics in graph-

structured data, has not been well solved. For example, in

the text mining area, if topics are from scientific papers

about a research area, the topics mean the different research

directions of this research area, i.e., cloud computing and

machine learning; in the image mining area, if topics are

about the images in a scene, the topics mean the different

background semantics (e.g. the combinations of objects, like

the combination of ‘sky’ and ‘water’ can actually be the

‘environment’). These discovered topics are useful for many

real-world tasks, such as, topic detection and tracking in text

mining, image segmentation and retrieval, and dimensionality

reduction, but we do not have a suitable solution for graphs

since the existing works on topic discovery are only based on

instance-represented data [10]–[12]. A challenging question

therefore arises: how do we discover hidden topics for graph-

structured data?

In order to resolve this research issue, we propose a topic

model for graph mining (GTM) in this paper. To the best

of our knowledge, we are the first to apply the topic model

for graph mining. Although topic models have proved to be

very successful in discovering latent topics, the standard topic

models cannot be directly applied to graph-structured data

because of the ‘bag-of-word’ assumption. Here, we make an

assumption that if there is an edge between two nodes in a

graph, these two nodes tend to ‘talk’ similar content. In GTM,

a Bernoulli distribution is adopted to model the existence of an

edge parameterized by topics of two linked nodes. By directly

the modelling edges, GTM can make the edges contribute to

latent topic discovery instead of the process of using frequent

subgraphs. Finally, we compare the performance of GTM and

Latent Dirichlet Allocation (LDA) on the classification task.

The experimental results show that the ability of GTM on

document and chemical formula classifications is better than

LDA. The discovered topics by GTM are also better than LDA.

In other words, topics from GTM can more accurately describe

graphs than LDA.

The contributions of this paper are:
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1) An innovative Graph topic model (GTM) for graph-

structured data is built by modelling the edges in graphs

using Bernoulli distribution, which makes the edges in

graphs contribute to the discovered topics;

2) Two inference algorithms: Variational algorithm and

Markov Chain Monte Carlo algorithm are developed to

resolve the proposed GTM.

The rest of this paper is organized as follows. Some related

works are given in Section II. In Section III, we introduce the

proposed GTM with the inference algorithms. In Section IV,

experiments are conducted to compare traditional LDA with

the proposed GTM on the classification. Finally, Section V

concludes this study and discusses further work.

II. RELATED WORK

In this section, we will review the state-of-the-art research

in two areas: topic models and graph mining. A successful

model and also our competitive model will be introduced in

more detail.

A. Topic models

Probabilistic Latent Semantic Indexing (pLSI) [13], which

is an extension of Latent Semantic Indexing (LSI) [14], can

be seen as the first topic model. The original idea of this

comes from the sparse document-keyword matrix. LSI uses

Singular Value Decomposition (SVD) from the dimension

reduction view and pLSI builds a generative model to find

the latent classes (topics). However, there is an over-fitting

problem in the pLSI model, which is addressed by Latent

Dirichlet Allocation (LDA) [11] using a Dirichlet prior to

all the topic distributions with the resulting sacrifice of the

inference complexity [15]. There are also many extensions of

LDA which have considered different aspects of data, such as

the label [16], time [12], author [17], emotion [18] and so on.

More information about topic models can be found in [19],

[20].

There are also some works which try to capture the

dependencies using topic models. Here, we class them as

three categories according to the dependence level: topic-

level, document-level and word-level. At the topic level, a

correlated topic model is proposed to capture the relations

between hidden topics by replacing the Dirichlet prior with

Log-normal prior [21]. An infinite topic tree is learned from

the data by a nested Hierarchal Dirichlet Process [22]. At the

document-level, the citation relations between scientific papers

are considered by a relational topic model [23], [24]. Both

topic-level and document level models are still based on the

‘bag-of-word assumption. At the word level, Thomas Griffiths

[25] tries to fill this gap by adding the syntactic relations of

words in a sentence to the model. The Hidden Markov Model

(HMM) [26] is combined with the topic model by assuming

that the keywords in a document are generated under an

inherent linguistic sequence. Although these two works have

proved to be successful, only the linguistic linear relation of all

keywords in a sentence or document are considered. Actually,

there are many types of relations between keywords in a

document and these relations are not limited in a sentence. Our

work belongs to the third level, i.e. the word-level. Compared

with current works, our model can be extended to the graph

mining area, because our model can capture more general

relations (e.g. graph structure).

B. Graph mining

Graph mining [27] has become an important research topic

and has been successfully applied to numerous applications,

like computational biology, chemistry and so on. Compared

with the traditional instance-based data representation, the

graph-based representation expresses more data information

which constitutes the structure of data. The main work in

the graph mining area is to find a way to incorporate this

structural information into the traditional algorithms, such as

classification, clustering, frequent pattern mining, and so on.

Frequent subgraph mining is of significance in graph mining

because it is the bridge connecting traditional data mining

algorithms and graphs. So, there are plenty of frequent sub-

graph mining algorithms proposed in the literature which

are categorized in terms of ‘general purpose’ and ‘pattern

dependent’ algorithms [28]. Based on the graph traversing

strategies, BFS and DFS, some algorithms are designed, like

FSG [29], DPMine [30], gSpan [31], GASTON [32], etc.

Graph classification provides the labels for the unlabelled

graphs using labelled graphs as training data. A similarity

measure between two graphs is the basis for the graph

classification, because the traditional measures do not work

for graphs, e.g. cosine, Euclidean distance, and Minkowski

distance. Kernel-based [33] methods are proposed to resolve

this problem. Since the direct comparison between two graphs

is the NP hard problem, some graph kernels [34], [35] are

proposed to measure the distance between the two graphs by

considering the properties of graphs, like nodes, edges, paths.

The original kernel-based methods [34], [36] are normally

time-consuming. For example, the geometric random walk

graph kernel [36] requires O(n6) time. Four approximation

methods are proposed to reduce this complexity to O(n4),
and, for some sparse graphs, the time only requires O(n2)
[37]. Subgraph-based graph classification is also a prevalent

method [5], [7]. Some boosting approaches have been adopted

to select interesting subgraphs from the original big subgraph

set [38]. The dual active features [6] and positive labels [39]

are considered.

Graph clustering clusters the graphs with similar labels.

Apparently, the most important thing for graph clustering is

the existence of similarity between two graphs. Some ideas

of graph classification can also be adopted here. There are

also some other methods, like the entropy-based method [40]

and some works try to improve efficiency by employing the

parallel algorithm [41].

To sum up, although various methods about graph have

been proposed, there is little work on the probabilistic model

for graph mining. Accordingly, we have sought to build a

probabilistic model for the different kinds of graphs based

on the idea of topic models.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 3

Fig. 1: Instance-based and Graph-based representation of a document. Each node in the graph denotes a word in the document. The edges
denotes a kind of relationes between words.

Fig. 2: Instance-based and Graph-based representation of a chemical formula. A chemical formula (left figure) is composed by different
elements, like O, C, HO, and so on. The connections between these elements are called bonds between them, which have almost same ability
to influence the function of a chemical formula. Here, two different representations are constructed for a same chemical formula.

α

θd zn nd φk

β

N
D K

Fig. 3: Graphical representation of LDA

C. Latent Dirichlet Allocation

Since our work is based on Latent Dirichlet Allocation

(LDA) and it aims to extend LDA to graphs, we will provide

more details about this model. LDA [11] is a generative

graphical model, as shown in Fig .3. The documents are

selected as the example dataset in line with the original paper,

but it should be noted that LDA can be used for any instance-

based representation objects. The aim of this model is to

discover the underlying topics in a corpus. It assumes that

a document is composed by a number of topics with different

weights (called topic distribution), and a topic is composed by

a number of keywords 1 with different weights (called keyword

distributions). The generative process is:

• Draw φz ∼ Dir(β) for each topic;

• Draw θd ∼ Dir(α) for each document;

1Keywords are the selected words to express/represent the semantics of the
documents. Here, the keywords in this paper are non-stopwords and these
are stemmed by the NLP tools. All the words are also given certain POS,
and then only the nouns and verbs are kept analogous with other literature,
because the document classification is mainly sensitive to nouns and verbs.
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• For all keywords in a document:

– Draw zd,n ∼ Multi(θd) for each keyword;

– Draw nd ∼ Multi(φzd,n) for each keyword;

The inference for this model is the inverse process of this

generative process. The Expectation Maximization algorithm

is adopted to get optimized latent variables for maximizing the

model likelihood. In this generative process, the topic assign-

ment of each keyword is determined by the topic distribution

of the belonged documents, and each keyword is determined

by its topic assignment and keyword distribution of topics, as

shown in Fig. 3. It is a pity that the relations between keywords

in a document have been overlooked in previous studies.

III. GRAPH TOPIC MODEL

In this section, we first present some basic concepts used in

this paper. Based on these concepts, we introduce the proposed

model followed by two inference algorithms. In order to show

the procedure and intrinsic of the algorithms, an illustrative

example is given at last.

A. Graph

The definition of graph is given here and its representative

ability is shown by two examples: a document graph and a

chemical graph. Besides, some basic concepts and notations

will also be given, which will be used throughout this paper.

Definition 1 (Graph): A graph g is composed by nodes and

edges,

g :=< V, {e} > (1)

where V is a node set in a dataset G and {e} is an edge set

of relations between nodes within this graph. Examples are

shown in Fig. 1 and Fig. 2.

Graph can be used to model or represent lots of items. In

this paper, we give two examples of graphs, one is document

graph and the other is chemical graph.

1) Document Graph: A document is apparently composed

by some words, which is the reason why most of researches

about documents using a word vector to represent a document.

In order to construct a graph for a document, we just need to

add relations between these keywords as shown in Fig. 1. The

relation in this paper between keywords is selected as the co-

occurrence relation. Co-occurrence frequency of two keywords

is,

fco =
|Gni

∩Gnj
|

|G|

where Gni
is the documents which contain keyword ni. An

edge eni,nj
exists only if the co-occurrence frequency of

them exceeds a threshold ρ. This edge means that these two

keywords have a big probability to be used to describe a

similar topic. If there are a number of topics, it means these

two keywords may have similar topic distribution.

The reason why this co-occurrence relation is selected here

is that it is a weak-semantic relation between keywords and

can be easily and automatically constructed without appealing

to other resources. Actually, there are other concrete and rich-

semantic relations can be discovered by some other methods,

like Resource Description Framework (RDF) [42] or Ontology

TABLE I: Notations used in this paper

Symbol Description

|G| the number of graphs in a graph dataset G
N the number of nodes in a graph dataset G
K the number of topics in a dataset
θg topic distribution of graph g
zg,n topic assignment of node n of graph g
ng node n of graph g

e
g
i,j

an edge between nodes ni and nj in graph g

φk node distribution of topic k

[43], [44]. However, they normally need the help of outer data

resources or the human intervention. For an arbitrary corpus,

co-occurrence relation is a better choice.

2) Chemical Graph: Each chemical formula seems nat-

urally a graph with each chemical element as a node and

chemical bonds as edges. However, the nodes may occur twice

in a single chemical formula with different positions. Since a

treatment function is normally expressed by the combination

of basic chemical elements [45], we cannot directly use the

original graph structure.

Here, we use the frequent subgraphs in a dataset as the

nodes and the links between subgraphs as edges. At first,

gSpan2 is adopted to mine the subgraphs. Each chemical

formula is re-represented as a vector of subgraphs,

gc =< sg1, sg2, ..., sgn > (2)

where sgi denotes the weight of ith subgraph in this chemical

graph gc. At last, the subgraph relations are defined as their

inclusive relation. For example, if a subgraph sgi contains

another subgraph sgj , there will be an edge < sgi, sgj >

between sgi and sgj as shown Fig. 2.

Definition 2 (Topic): A topic is a vector of all nodes in a

dataset with their weights.

From different datasets, topics have different meanings. For

example, the topics from scientific papers can be seen as

the different research directions; the topics from chemical

formulas can be seen as the different treatment functions, such

as activity, toxicity, etc.

Some other frequently used notations in this paper are listed

in Table I.

B. Proposed Model

This model is an extension of LDA, so it is also a generative

model. The graphical representation of GTM is shown in Fig.

4 and the corresponding generative process is,

1) draw φk ∼ Dir(β) for each topic;

2) draw θg ∼ Dir(α) for each graph;

3) for all nodes in a graph:

a) draw zg,n ∼ Multi(θg) for one node;

b) draw ng ∼ Multi(φzg,n) for one node;

4) for all edges in a graph:

draw egni,nj
∼ π(pgni,nj

) for an edge eni,nj
,

pgni,nj
(egi,j = 1) =f(zg,ni

, zg,nj
,φ)

=φzg,ni
◦ φzg,nj

(3)

2http://www.cs.ucsb.edu/ xyan/software/gSpan.htm
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Fig. 4: Graphical representation of GTM

The pgni,nj
is the parameter of Bernoulli distribution of the

existing of an edge between two nodes ni and nj . It should be

noted that the edge generation here is different from the edge

definition in Section III.A. The edge definition is a description

of the observed data. But the edge generation here is a part

of the statistical model assumption. We just learn the data

from this model assumption. The difference from LDA and

the main idea of this model lie on modelling the edges in

graphs using Bernoulli distribution parameterized by the topic

distribution of nodes. We can see from the Fig. 4 that egni,nj

is generated by {zg,ni
, zg,nj

,Φ}. It means that the probability

of the existence of an edge between two nodes is determined

by the similarity of their topic distributions. This similarity is

measured by vector inner product between φzg,ni
and φzg,nj

,

where φzg,ni
is node distribution of topic {zg,ni

}, as shown in

Eq. (3). The more similar topics of two keywords are, the more

likely there is an edge between these two nodes. As discussed

in next subsection, the learning process for this model will

show that the edges between nodes will influence the topic

assignment of nodes and then influence the topic distribution

of a graph. It is just this influence that makes the discovered

topics are better than ones from LDA.

C. Variational Inference

For model learning, variational Expectation Maximization

is adopted to learn the posterior distribution of graphs. It has

two steps: e-step and m-step. In the e-step, the key work is

to compute probability distribution of latent variables of the

model. The posterior distribution of latent variables of a graph

is,

p(θg, zg,φ1:K |ng, eg, α, β) (4)

Generally, this distribution is intractable to compute. The

idea of variational inference is to use Jensen’s inequality to

maximize the lower bound on the log likelihood. The original

posterior distribution in Eq. (4) is factorized into some selected

distributions parameterized by variational parameters.

For GTM, the distributions used to factorize posterior dis-

tribution are,

θg ∼Dir(γg)

zg,n ∼Multi(ϕg,n)

φk ∼Multi(κk)

(5)

where γg , ϕg,n and κk are variational parameters. Actually,

they are not just three distributions but three distribution

families composed by distributions with different parameter

values. Then, the Eq. (4) is factorized as,

q(θg, zg,φ1:K |γg,ϕg,κg)

=qθ(θg|γg)

N
∏

n=1

qz(zg,n|ϕg,n)

K
∏

k=1

qφ(φk|κk)
(6)

This is an approximation of the posterior distribution. The

distance between this approximation and original posterior

distribution can be measured by KL distance, as

log p(ng, eg|α, β)

= logEq

[

p(θg, zg,φ1:K ,ng, eg|α, β)

q(θg, zg,φ1:K)

]

≥ Eq

[

log p(θg, zg,φ1:K ,ng, eg|α, β)
]

− Eq

[

log q (θg, zg,φ1:K)
]

(7)

Through the adjusting of variational parameters, the distribu-

tions that can maximize the Eq. (7) can be found from the

variational distribution families. After transforming the search-

ing of variational distributions to an optimization problem, the

variational parameters can be computed as,

γg,k = αk +

N
∑

n

ϕg,n,k (8)

and

∂f(ϕg,n,k)

∂ϕg,n,k

=
(

Ψ(κk,n)−Ψ(
N
∑

n

κk,n) + Ψ(γg,k)

−Ψ(
K
∑

k

γg,k)− logϕg,n,k − 1
)

+
∑

nj∈Ne(ni)

(

ζ−1 · κ
ϕg,nj,k

k,nj
· lnκk,n · κ

ϕg,n,k

k,n

)

(9)

and

∂f(κk,n)

∂κk,n

=

(

Ψ,(κk,n)−Ψ,(
N
∑

n

κk,n)

)

(ϕg,n,k + βn − κk,n)

+
∑

nj∈Ne(ni)

(

ζ−1 · ϕg,ni,k · κ
ϕg,ni,k

−1

k,ni
· κ

ϕg,nj,k
−1

k,nj

)

(10)

and

ζ = N(ni,nj)

K
∑

k

(

κ
ϕg,ni,k

k,ni
· κ

ϕg,nj,k

k,nj

)

(11)

where Ne(n) is the number of neighbors of a node n and ζ

is the a parameter of Taylor expansion of log probability of

Eq. (3) (The detail is shown in Appendix) . We can compute
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Algorithm 1: Variational Inference for GTM

Input: Topic number K, graph dataset G

Output: γ, ϕ and κ

1: random initialization of variational variables γ, ϕ and κ

2: i = 1
3: while i ≤ maxiteration do

4: for g = 0 to |G| do

5: Update γg through Eq. (8)

6: Update ϕg by gradient-based optimization with

derivative in Eq. (9)

7: end for

8: Update κ by gradient-based optimization with

derivative in Eq. (10)

9: Update ζ by gradient-based optimization with

derivative in Eq. (11)

10: i = i + 1.

11: end while

Algorithm 2: MCMC Inference for GTM

Input: Topic number K, graph dataset G

Output: φ, θ and z

1: random initialization of variables φ, θ and z

2: i = 1
3: while i ≤ maxiteration do

4: for g = 0 to |G| do

5: Update θg through Eq. (13)

6: Update zg through Eq. (14)

7: end for

8: Update φ through Eq. (17)

9: i = i + 1.

10: end while

the exact form of γ and ζ, but ϕ and κ cannot. So, gradient-

based optimization method 3 is adopted to get the optimized

ϕ and κ. The whole procedure, named Variational Inference

for GTM, is shown in Algorithm 1.

After getting the posterior distribution of each graph in

Eq. (4), we need to maximize the likelihood of the graph

by selecting α and β in the m-step. The Newton method 4

is adopted here. The detail is omitted, because there is no

difference from the method used in LDA.

Let us see how the edges in a graph impact on the topic

distribution θg of this graph. Since γg is the variational

parameter of θg , the value of γg will influence the topic

distribution θg of a graph g. In Eq. (8), it can be seen that

γg is influenced by topic assignments ϕg,n of its nodes and

ϕg,n is in turn impacted by its neighbors as the Eq. (9) shown.

This is consisted with our former discussion about GTM.

D. Markov Chain Monte Carlo (MCMC) Inference

Another method to get posterior distribution in Eq. (4) for

each graph is Gibbs sampling, which construct a Markov

chain with stationary distribution as the desired posterior

3http://en.wikipedia.org/wiki/Gradient descent
4http://en.wikipedia.org/wiki/Newton’s method

distribution. What we need to do is to find the conditional

distributions for each variables in this posterior distribution in

the model.

At first, since the prior of θ is Dirichlet distribution and its

likelihood is multinomial distribution, the posterior distribution

of θg conditioned on all other variables is easily found out as,

p(θg| · · · ) ∼ Dir(α1 +mg,1, α2 +mg,2, · · · , αK +mg,K)
(12)

where mg,k is the number of zi = k in graph g. Eq. (13)

relies on the conjugation between Dirichlet distribution and

multinomial distribution.

Sampling z will be a little more complicated. We know that

the prior for zg,n = k is multinomial distribution parameter-

ized by θg . The likelihood should be,

p(n|φz=k) ·





∏

m∈Ne(n)

p(en,m = 1|φz=k, φkm
)









∏

j /∈Ne(n)

p(en,j = 0|φz=k, φkj
)





(13)

where km is the topic assignment of node m. The likelihood

contains three parts. The first part is for the generation of node

n. Second part is for the generation of edges in graph g. It

should be noted that the third part, which is for the edges with

0 weights, is also necessary. With the prior and likelihood in

hand, the conditional distribution of zg,n = k is given as,

p(zg,n = k| · · · )

∝θk · p(n|φk) ·





∏

m∈Ne(n)

p(en,m = 1|φk, φkm
)









∏

j /∈Ne(n)

p(en,j = 0|φk, φkj
)





(14)

For the φk, its prior is Dirichlet distribution with parameter

β. The likelihood should be derived for its conditional distri-

bution. In GTM, the Φ are used to generate nodes and edges.

So, the likelihood for node generations of φk is,

∏

n:kn=k

p(n|φk) (15)

n : kn = k are the nodes that are assigned to topic k. And the

likelihood for edge generations is,





∏

en,m=1&kn=k

p(en,m = 1|φk, φkm
)









∏

en,m=0&kn=k

p(en,m = 0|φk, φkm
)





(16)

Here, all the edges with one node assigned to topic k are

separated into two groups, one is with weight 1 (existence)

and one is with weight 0 (non-existence). Combine the prior
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Fig. 5: An illustrative example

and two likelihoods,

p(φk| · · · ) ∝ p(φk|β) ·
∏

n:kn=k

p(n|φk)







∏

en,m=1
⋂

kn=k

p(en,m = 1|φk, φkm
)













∏

en,m=0
⋂

kn=k

p(en,m = 0|φk, φkm
)







(17)

The iterative sampling θg , zg , φ1:K for all graphs will

get the samples of posterior distribution of the whole dataset.

Except for θg , zg , φ1:K , the model parameters α and β could

also join the sampling without predefining specific values.

For the symmetric Dirichlet distribution, the prior for α and

β could be Gamma distribution and the likelihoods are also

easily computed. The final algorithm, named MCMC Inference

for GTM, is described in Algorithm 2.

E. An intuitive example to show the implication of GTM

Here, a simple example is made up to show how the

algorithms work. Suppose we have a document graph dataset

that contains three document graphs as shown in Fig. 5. There

are only two hidden topics discussed in these documents: the

first is about planting apple tree and the second is about apple

computer and electronic equipments. The topic assignment of

each graph can be represented by a two dimensional vector

(a, b) in which a denotes the probability of this graph assigned

to first topic and b denotes the probability of this graph

assigned to second topic. In Fig. 5, first frame denotes a very

simple graph in dataset and composed by three nodes (words):

plant, CPU and apple with an edge between apple and CPU

and an edge between apple and plant. The other two graphs

have same nodes with the first one but different edges.

At first, we can see that this graph dataset will be equal to

the corresponding instance dataset if the edges are omitted.

In this situation, all the graphs are identical. Take the first

graph as an example, there is one word CPU that belongs to

second topic apple computer and electronic equipments. At

the same time, there is one word ‘plant’ that belongs to first

topic planting apple tree. Third word apple could belong to

either one. To sum up, the topic assignment of the first graph is

(0.5, 0.5). The other two graphs are same with the first graph.

However, when we consider their structure (edges), three

graphs are not identical any more. Take Algorithm 2 as an

example. We do the following steps:

1) Input: three graphs and topic number is two;

2) Initialization: randomly set the topic assignments of

graphs. Here, we give them the same topic assignments:

(0.5, 0.5); topic assignments of keywords of all graphs:

(0.5, 0.5); and the keyword assignments (apple, CPU,

plant) of topics (0.33, 0.33, 0.34);
3) For the first graph, we can update the topic assignment

of the first graph from (0.5, 0.5) to (0.5, 0.5), according

to Eq. (13);

4) According to Eq. (14), the topic assignment of apple will

change from (0.5, 0.5) to (0.5, 0.5), the topic assignment

of CPU will change from (0, 1) to (0.2, 0.8), and the

topic assignment of plant will change from (1, 0) to

(0.8, 0.2);
5) For the second graph, we can update its topic assignment

from (0.5, 0.5) to (0.3, 0.7), according to Eq. (13);

6) According to Eq. (14), the topic assignment of apple will

change from (0.5, 0.5) to (0.3, 0.7), the topic assignment

of CPU will change from (0, 1) to (0.1, 0.9), and the

topic assignment of plant will change from (1, 0) to

(1, 0);
7) For the third graph, we can update its topic assignment

from (0.5, 0.5) to (0.7, 0.3), according to Eq. (13);

8) According to Eq. (14), the topic assignment of ‘apple’

will change from (0.5, 0.5) to (0.7, 0.3), the topic as-

signment of CPU will change from (0, 1) to (0.1, 0.9),
and the topic assignment of plant will change from (1, 0)
to (0.9, 0.1);

9) Then, we update keyword assignment of topics

using Eq. (17), the first topic from (0.33, 0.33, 0.34)
to (0.3, 0.2, 0.5), and the second topic from

(0.33, 0.33, 0.34) to (0.3, 0.5, 0.2);
10) Stop until reach the max iteration number.

Using the Algorithm 2, we get different topic assignments

of graphs. The topic assignment of the first graph does not

change. But the one of second graph changes from (0.5, 0.5)
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TABLE II: Statistics of document graph dataset

Topic name document number all keyword number

earn 3722
14424

acq 2127

TABLE III: Value of ρ

ρ average document graph density

0.01 0.3104
0.0042 0.4017
0.0017 0.5023
0.0006 0.6103

(the result of omitting edges) to (0.3, 0.7) (the result of Algo-

rithm 2). It means the second graph is more likely discussing

second topic. The reason why the Algorithm 2 gets this result

is because there is an edge between apple and CPU. By the

effect of this edge, the word apple is more likely discussing

second topic. Overall, the second graph is more tend to talk

about second topic.

From this simple example, we can see that the edges do

affect the hidden topic discovery and intuitively these edges

can improve the accuracy of discovered topics from the Fig.

5. Next, we will test on the real-world datasets to verify our

algorithms.

IV. EXPERIMENTS AND RESULT ANALYSIS

In order to verifying the merit of considering edges between

nodes, we compare our proposed GTM with LDA on two

different types of datasets, one type is document and the other

is chemical formula. The objects are represented as instances

and graphs and trained by LDA and GTM, respectively.

After that, objects are re-represented by the topic distributions

that are outputs of both models. This new re-represented

objects are used for a typical graph mining task–classification.

The accurate classification result means the topics can better

represent the semantic of objects. The implementation of LDA

is from JGibbLDA5 . The two inference methods of GTM

are implemented by Matlab in this paper for documents and

chemical formula, respectively.

A. Document classification

The document dataset used here is Reuters-215786 in which

documents have been labelled with topics. Two topics, ‘earn’

and ‘acq’, are selected and some statistics are shown in Table

II after removing documents which have less than 10 keywords

(only considering noun and verb). Each document in these two

topics is represented by 90% of keywords (only considering

noun and verb) ranked by tf-idf [46] in this document. k-

Nearest Neighbour algorithm (k-NN) [47] is selected as the

classification method, because it is simple and does not do

much operations on the features of data comparing with

other classification methods, like Decision tree or SVM. The

implementation of k-NN comes from Weka7 with 10 times

cross-validation. In order to compare LDA and GTM, the

5http://jgibblda.sourceforge.net/#Griffiths04
6http://www.daviddlewis.com/resources/testcollections/reuters21578/
7http://www.cs.waikato.ac.nz/ml/weka/
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TABLE IV: Statistics of chemical graph dataset

BioassayID Topic name
chemical formula

number
subgraph number

NCI33
active 1000

252
inactive 1000

NCI47
active 1000

325
inactive 1000

NCI81
active 1000

251
inactive 1000

numbers of topics are all set 2 which is just the number of

topics of data.

Since relations between keywords are considered in GTM,

the number of links in documents need to be given, which

is controlled by threshold of co-occurrence frequency ρ. As

shown in Fig. 6, the distribution of average density of docu-

ment graphs and ρ approximate power-law distribution. The

average document graph densities are given in Table III in

which four kinds of density and corresponding ρ are given.

The results are shown in Fig. 7 and Fig. 8. There are 6

methods are compared in these two figures: LDA-tf (original

LDA), LDA-tfidf (use tf-idf to replace tf of keyword weights

in original LDA [48]), GTM-0.01 (GTM with ρ = 0.01),

GTM-0.0042 (GTM with ρ = 0.0042), GTM-0.0017 (GTM

with ρ = 0.0017) and GTM-0.0006 (GTM with ρ = 0.0006).

To sum all, the efficiency of GTM is better than LDA. The

density of average graphs impacts on the efficiency of GTM,

because the GTM relies on the relations between keywords.

However, it does not mean that the more links the better. As

shown in Fig. 7 and 8, the best is ρ = 0.0042 and average

document graph density is 0.4017. We believe that this value is

not fixed and depends on dataset. If there is no co-occurrence

of keywords in documents of a corpus and then documents

are totally ‘separated’, GTM is not better than LDA.

B. Chemical formula classification

In this section, we use a common benchmark dataset,

NCI cancer screening dataset8. Each chemical formula is

represented as a graph with atoms as nodes and bonds as

edges. According to the activity against corresponding cancer,

each graph has a label active’ or ‘inactive’. We use them as the

dataset, and select 1000 active graphs and 1000 inactive graphs

of which frequent subgraphs are mined by gSpan algorithm9

with support 30. The statistics are shown in Table IV. We

use these graphs as the original data and transform them into

new graphs with frequent subgraphs as nodes by the method

proposed in Eq. 2.

To compare the performance of GTM with LDA, we use

the topic distributions from both LDA and GTM as the

new representations of graphs to do classification. The more

accurate the discovered topics are, the better the classification

results would be. The MCMC inference method is used for

GTM in this section. The Fig. 9 shows the convergence of

log likelihood of GTM with Gibbs iteration number. The

final results are also shown in Fig. 9. Here, four different

classifiers are adopted, including k-NN, J48, SVM and NB

8http://pubchem.ncbi.nlm.nih.gov
9http://www.cs.ucsb.edu/x̃yan/software/gSpan.htm

(implementations are also from Weka). Except the SVM for

NCI81, all the classifiers on three datasets indicate that the

topics learned from the GTM are better than LDA. It should

be noted that these differences are determined by the natures

of different classifiers. Some classifiers, like kNN and J48, are

more sensitive to the different data representation (the topic

distribution from GTM or LDA) and some are not, like NB.

This difference is not our focus in this paper. We only use

these classifiers to show the topics mined from our proposed

GTM are better than the ones from LDA. To sum up, our

proposed GTM outweighs LDA.

Normally, the variational inference is more efficient than M-

CMC inference, and MCMC inference is more easily extended

to some more complicated tasks. In this paper, we just show

two basic inferences for graph mining. More graph mining

tasks can be benefit from topic models by extending them.

V. CONCLUSION AND FURTHER STUDY

In order to extend the topic model for graph mining, we

have proposed a Graph Topic model. The innovative premise

of this model is that Bernoulli distributions has been used to

model the edges between two nodes in a graph, which are

parameterized by the similarity between two topics of two

linked nodes. Considering the edges of graphs, the discovered

topic distribution of a graph by GTM is not just determined

by its nodes. Two inference algorithms have been developed

to resolve the proposed model. The experimental results on

different datasets have verified that the topics discovered by

GTM can describe graphs better than the ones from LDA. This

improvement is due to the fact that the edges of graphs are

considered in our innovative model and this makes the dis-

covered topics far more suitable for the graph data. Therefore,

the proposed model can be used for graph mining, including

the supervised learning and unsupervised learning. Possible

applications that could be improved by our proposed model

also include document retrieval and chemical graph labelling.

In the future, we aim to investigate how to incorporate the

structural information of graphs into the model and not just

consider each edge separately. The reason for this is that there

should be some hidden relations between these edges which

will impact on their formation as well. Incorporating these

structures may further improve the classification accuracy. An-

other interesting extension of our work is to use nonparametric

learning methods to avoid predefining the number of topics,

e.g. Hierarchical Dirichlet Processes [49].
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APPENDIX A

SOME DERIVATION OF VARIATIONAL INFERENCE

For Eq. 7, we can expand it as:

log p(ng, eg|α, β)

≥Eq [log p(θg, zg,φ1:K ,ng, eg|α, β)]

− Eq [log q (θg, zg,φ1:K)]

=

N
∑

n

Eq [log p (wg,n|zg,n, φ)] + Eq [log p (θg|α)]

+
∑

(ni,nj)

Eq

[

log p
(

cni,nj
|zg,ni

, zg,nj
, φzni

, φznj

)]

+
K
∑

k

Eq [log p (φk|β)] +
N
∑

n

Eq [log p (zg,n|θg)]

−

K
∑

k

Eq [log qφ (φk|κk)]−

N
∑

n

Eq [log qz (zg,n|ϕg,n)]

− Eq [log qθ (θg|γg)]

(18)

Since many parts of Eq. 18 are similar with other topic models,

we just focus on the third part of this equation which is related

to the relations between keywords.
∑

(ni,nj)

Eq

[

log p
(

eni,nj
|zg,ni

, zg,nj
, φzni

, φznj

)]

=
∑

(ni,nj)

Eq

[

log
(

φzg,ni
◦ φzg,nj

)]

≈
∑

(ni,nj)

Eq

[

ζ−1
K
∑

k

φzg,ni,k
· φzg,nj,k

+ log ζ − 1

]

=
∑

(ni,nj)

(

ζ−1κ
ϕg,ni,k

k,ni
· κ

ϕg,nj,k

k,nj
+ log ζ − 1

)

(19)

In Eq. 19, we use the Taylor expansion for function log(x)
in order to get the expectation of this function and ζ is the

expansion point.
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