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Abstract
Topic modeling has been commonly used to dis-
cover topics from document collections. How-
ever, unsupervised models can generate many in-
coherent topics. To address this problem, sev-
eral knowledge-based topic models have been
proposed to incorporate prior domain knowledge
from the user. This work advances this research
much further and shows that without any user in-
put, we can mine the prior knowledge automati-
cally and dynamically from topics already found
from a large number of domains. This paper
first proposes a novel method to mine such prior
knowledge dynamically in the modeling process,
and then a new topic model to use the knowledge
to guide the model inference. What is also inter-
esting is that this approach offers a novel lifelong
learning algorithm for topic discovery, which ex-
ploits the big (past) data and knowledge gained
from such data for subsequent modeling. Our
experimental results using product reviews from
50 domains demonstrate the effectiveness of the
proposed approach.

1. Introduction
Topic models, such as LDA (Blei et al., 2003) and
pLSA (Hofmann, 1999), have been widely used to dis-
cover topics in text documents. Most of such models are
unsupervised. However, researchers have shown that unsu-
pervised models may produce many incoherent topics be-
cause the objective functions of topic models may not cor-
relate well with human judgments (Chang et al., 2009). To
tackle this problem, several knowledge-based topic mod-
els (KBTM) have been proposed. They use prior domain
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knowledge specified by the user to guide modeling. DF-
LDA (Andrzejewski et al., 2009) is perhaps the earliest
KBTM, which can incorporate two forms of prior knowl-
edge from the user: must-links and cannot-links. A must-
link states that two words should belong to the same topic
whereas a cannot-link states that two words should not be-
long to the same topic. We will discuss this and other ex-
isting models in section 2.

In this work, we show that much of the prior knowledge
from the user can actually be mined automatically (with-
out user input) from a large amount of data in many do-
mains. In most cases, such data is readily available on the
Web. This is possible because although every domain is
different, there is a fair amount of concept or topic overlap-
ping across domains. For example, every product review
domain probably has the topic price, reviews of most elec-
tronic products share the topic of battery and reviews of
some products share the topic of screen. Topics produced
from a single domain can be erroneous (i.e., a topic may
contain some irrelevant words in its top ranked positions),
but if we can find a set of shared words among some topics
generated from multiple domains, these shared words are
more likely to be coherent for a particular topic. They can
serve as a piece of prior knowledge to help topic modeling
in each of these domains or in a new domain.

For example, we have product reviews from three domains.
We run LDA to generate a set of topics from each domain.
Every domain has a topic about price, which is listed below
with its top four words (words are ranked based on their
probabilities under each topic):

Domain 1: price, color, cost, life
Domain 2: cost, picture, price, expensive
Domain 3: price, money, customer, expensive

These topics are not perfect due to the incoherent words:
color, life, picture, and customer. However, if we focus on
those topical words that appear together in the same topic
across at least two domains, we find the following two sets:
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{price, cost} and {price, expensive}.
We can see that the words in such a set are likely to belong
to the same topic. Such, {price, cost} and {price, expen-
sive}, can serve as prior knowledge, which we call prior
knowledge sets (or pk-sets for short), in a KBTM to im-
prove the output topics for each of the three domains or a
new domain. For example, after running a KBTM on the
reviews of Domain 1, we may find the new topic: price,
cost, expensive, color, which has three coherent words in
the top four positions rather than only two words as in the
original topic. This represents a good topic improvement.

The above discussion suggests a three-step approach to our
task. Given a set of document corpora D = {D1, . . . , Dn}
from n domains, step 1 runs a topic model (e.g., LDA) on
each domain Di ∈ D to produce a set of topics Si. We call
these topics the prior topics (or p-topics for short). Step 2
mines a set of pk-sets (prior knowledge sets)K from all the
p-topics S = ∪iSi. Step 3 uses the pk-sets K in a KBTM
to generate topics for a test document collection Dt (Dt

may or may not be from D).

To further improve, our proposed method embeds step 2
in step 3 so that the mining of prior knowledge is targeted
and thus more accurate. Specifically, we first run a KBTM
on the test document collection Dt without any knowledge
(which is equivalent to LDA) until its topics (At) stabilize.
To distinguish these topics from p-topics, we call these top-
ics the current topics (or c-topics for short). For each c-
topic aj ∈ At, we then find a set of matching or similar
p-topics M t

j in S (the set of all p-topics). The intuition
here is that these p-topics M t

j are targeted with respect to
aj and should provide high quality knowledge for aj . We
then mine M t

j to generate pk-sets Kt
j for c-topic aj . After

that, we continue the execution of the KBTM onDt, which
is now guided by the new pk-sets Kt (which is the union
of all Kt

j), in order to generate better c-topics (details are
in Section 4).

Regarding knowledge-based topic models (KBTM), we
could not use the existing ones because they typically as-
sume the given prior knowledge to be correct (see Sec-
tion 2). There is clearly no guarantee that the automatically
mined pk-sets are all correct for a domain. First, due to
wrong topics in S or mining errors, the words in a pk-set
may not belong to the same topic in general. Second, the
words in a pk-set may belong to the same topic in some do-
mains, but not in others due to the domain diversity. Thus,
to apply such knowledge in modeling, the model must deal
with possible errors in pk-sets. We propose a new fault-
tolerant knowledge-based model to deal with the problem.
It can exploit the automatically mined prior knowledge and
deal with incorrect knowledge to produce superior topics.

Due to this ability of using topics (or knowledge) generated
from other domains to help modeling in the current domain,

this work offers two novel capabilities: (1) lifelong learn-
ing (Thrun, 1998) and (2) modeling with big data. We call
the proposed model Lifelong Topic Model (LTM).

In summary, this paper makes the following contributions:

1. It proposes a novel approach to exploit text collections
from many domains to learn prior knowledge to guide
model inference in order to generate more coherent top-
ics. The process is fully automatic. This actually also
represents a lifelong learning approach. To our knowl-
edge, it is the first lifelong learning method for topic
modeling. It also helps deal with big data, see Section 5.

2. It proposes an effective method to mine/learn quality
knowledge dynamically from raw topics produced us-
ing text data from a large number of domains.

3. It proposes a new knowledge-based topic model LTM
that is able to deal with possible incorrect knowledge.

2. Related Work
The most related work to this paper is the knowledge-based
topic models (KBTM), (e.g., Andrzejewski et al. 2009;
Chen et al. 2013b; Mukherjee & Liu 2012). However,
the models in these papers typically assume that the given
knowledge is correct. The GK-LDA model in (Chen et al.,
2013a) has an automated mechanism to deal with wrong
lexical knowledge by using the ratio of probabilities of two
words under each topic to estimate the reliability of each
piece of knowledge. In contrast, the proposed LTM model
dynamically balances the use of learned knowledge and the
information in the actual document collection during the
Gibbs sampling. As we will see in Section 5, LTM out-
performs both DF-LDA and GK-LDA significantly. LTM
also automatically mines the prior knowledge. None of the
above existing models can do that. In (Chen et al., 2014),
we proposed a preliminary method for the same task. The
LTM model has the additional mechanism to dynamically
adjust (and re-extract) knowledge that targets the current
model. The fault tolerant ability of LTM is also shown to
be more effective in Section 5.

Besides the above knowledge-based topic models, Blei &
McAuliffe (2007) and Ramage et al. (2009) studied topic
models in a supervised setting. Ahmed et al. (2013) con-
sidered location knowledge in topic models. All of these
models assume that the prior knowledge, e.g., labels or re-
gions, is correct. Their modeling tasks are also quite differ-
ent from ours.

Our work is also related to transfer learning and lifelong
learning. Topic models have been used to help transfer
learning (Xue et al., 2008; Pan & Yang, 2010). However,
transfer learning in these papers is for traditional super-
vised classification. Kang et al. (2012) proposed topic mod-
els with better fitting by transferring labels. We do not use
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any labeled data. Yang et al. (2011) modeled the language
gap between topics using a user provided parameter indi-
cating the degree of technicality of the domain. In contrast,
our proposed LTM model is fully automatic. Our work also
touches multi-domain learning (Joshi et al., 2012). How-
ever, multi-domain learning is still for supervised classifi-
cation. Our focus is topic modeling. In the context of topic
modeling, we are not aware of any existing model for life-
long learning (Thrun, 1998; Silver et al., 2013) .

Last, since we use product reviews as our data, our work
is related to opinion mining using topic models, e.g., (Mei
et al., 2007; Titov & McDonald, 2008; Zhao et al., 2010).
However, none of the models mines prior knowledge and
uses knowledge to guide modeling.

3. Overall Algorithm
This section first introduces the proposed overall algorithm,
which follows the idea described in Section 1. It then intro-
duces a lifelong learning approach for topic modeling. The
algorithm consists of two general steps:

Step 1 (prior topic generation): Given a set of document
collections D = {D1, . . . , Dn} from n domains, Algo-
rithm 1 PriorTopicsGeneration runs LDA on each domain
Di ∈ D to produce a set of topics Si (lines 2 and 4). The
resulting topics from all n domains are unionized together
to produce the set of all topics S (line 9) fromD. We call S
the prior topic (or p-topic) set. The p-topics in S are used in
the proposed model LTM to generate the prior knowledge.

Iterative improvement: The above process can actually be
run iteratively to improve the p-topics in S. That is, S
from the previous iteration can help generate better topics
from D using the proposed LTM model for the next iter-
ation. This process is reflected in lines 1, 5-7 and 10. We
will examine the performance of different iterations in Sec-
tion 5.2. Note that from the second iteration (r ≥ 1), LTM
is used (line 6).

Step 2 (testing): Given a test document collection Dt and
a prior topic (or p-topic) set S, this step employs the pro-
posed topic model LTM (Algorithm 2) to generate topics
from Dt. To distinguish these topics from p-topics, we
call them the current topics (or c-topics for short). LTM
is given in Algorithm 2, which we will detail in the next
section. Note that Dt can be a document collection from
D or a new domain. This can be seen as two ways of using
the proposed algorithm: (1) the topics from Dt can be part
of p-topics in S used in knowledge mining in LTM, and (2)
not part of p-topics in S. We will experiment with these
two settings in Section 5.

Lifelong learning: The above approach naturally enables
lifelong learning. S is the knowledge base (e.g., the p-topic

Algorithm 1 PriorTopicsGeneration(D)
1: for r = 0 to R do
2: for each domain corpus Di ∈ D do
3: if r = 0 then
4: Si ← LDA(Di);
5: else
6: Si ← LTM(Di, S);
7: end if
8: end for
9: S ← ∪iSi;

10: end for

Algorithm 2 LTM(Dt, S)
1: At ← GibbsSampling(Dt, ∅, N); // Run N Gibbs iter-

ations with no knowledge (equivalent to LDA).
2: for i = 1 to N do
3: Kt ← KnowledgeMining(At, S);
4: At ← GibbsSampling(Dt, Kt, 1); // Run with

knowledge Kt.
5: end for

set) generated by a system (or even specified by the user),
and LTM is the learning algorithm. Given a new learning
task G (e.g., topic modeling in our case) with its data (e.g.,
Dt), lifelong learning works in two main phases.

Phase 1: Learning with prior knowledge: This is es-
sentially Step 2 above using LTM, which solves two sub-
problems. Step 1 is the initialization.

a) Identify shared knowledge for task G. Identify the part
of the knowledge in S that can be used for G. In our
case, the shared knowledge is Kt in Algorithm 2.

b) Knowledge-based learning. Learn for task G with the
help of Kt using a learning algorithm. In our case, it is
the GibbsSampling function in line 4 of LTM.

Phase 2: Knowledge retention and consolidation. In our
case, we simply add the topics from G to S if G is a new
task. If G is an old task, we replace its topics in S. This is
not included in Algorithms 1 or 2, but can be added easily.

4. LTM Model
Like many topic models, LTM uses Gibbs sampling for in-
ference (Griffiths & Steyvers, 2004). Its graphical model
is the same as LDA, but LTM has a very different sampler
which can incorporate prior knowledge and also handle er-
rors in the knowledge.

LTM works as follows: It first runs the Gibbs sampler of
LTM forN iterations (or sweeps) to find a set of initial top-
ics At from Dt with no knowledge (line 1, Algorithm 2).
Since there is no knowledge, the sampler is equivalent to
that of LDA. It then makes another N Gibbs sampling
sweeps (lines 2-5). But in each of these new sweeps, it first
mines pk-sets Kt for all topics in At using the function
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Algorithm 3 KnowledgeMining(At, S)
1: for each p-topic sk ∈ S do
2: j∗ = minj KL-Divergence(aj , sk) for aj ∈ At;
3: if KL-Divergence(aj∗ , sk) ≤ π then
4: M t

j∗ ←M t
j∗ ∪ {sk};

5: end if
6: end for
7: Kt ← ∪j∗ FIM(M t

j∗ ); // Frequent Itemset Mining.

KnowledgeMining (Algorithm 3, detailed in Section 4.1)
and then uses Kt to generate a new set of topics from Dt.
The intuition of LTM has been explained in Section 1. Note
that to make the algorithm more efficient, we do not need to
mine knowledge for every sweep (see Section 5.5). Below,
we focus on the knowledge mining function of LTM. The
Gibbs sampler will be given in Section 4.2.

4.1. Knowledge Mining

The knowledge-mining function is given in Algorithm 3.
For each p-topic sk ∈ S, it finds the best matching (or
the most similar) c-topic aj∗ in the c-topic set At (line 2).
M t
j∗ is used to mine pk-sets for c-topic aj∗ (line 7). We

find the matching p-topics for each individual c-topic aj∗
because we want aj∗ specific p-topics for more accurate
knowledge set mining. Below, we present the algorithms
for topic match and knowledge set mining.

Topic match (lines 2-5, Algorithm 3): To find the best
match for sk with a c-topic aj∗ in At, we use KL Di-
vergence to compute the difference of the two distribu-
tions (lines 2 and 3). In this paper, we use Symmetrised
KL Divergence for all divergence computing, i.e., given
two distributions P and Q, the divergence is calculated as
(KL(P,Q) + KL(Q,P ))/2. We denote the c-topic with
the minimum KL Divergence with sk as aj∗ . π is used to
ensure the p-topics in M t

j∗ are sufficiently correlated with
aj∗ .

Mine knowledge sets using frequent itemset mining
(FIM): Given p-topics in each matched set M t

j∗ , this step
finds sets of words that appear together multiple times
in these p-topics. Each set of shared words among re-
lated p-topics across multiple domains are likely to be-
long to the same topic. To find such sets of words in the
matched set of p-topics M t

j∗ , we use frequent itemset min-
ing (FIM) (Agrawal & Srikant, 1994).

FIM is stated as follows: Given a set of transactions X ,
where each transaction xi ∈ X is a set of items. In our
context, xi is a set of top words of a p-topic (no probability
attached). X is actually M t

j∗ without lowly ranked words
in each p-topic as only the top words are usually represen-
tative of a topic. The goal of FIM is to find every itemset
(a set of items) that satisfies some user-specified frequency
threshold (also called minimum support), which is the min-

imum number of times that an itemset should appear in X.
Such itemsets are called frequent itemsets. In our context,
a frequent itemset is a set of words that have appeared to-
gether multiple times in the p-topics ofM t

j∗ . Such itemsets
are our prior knowledge pk-sets.

In this work, we use only frequent itemsets of length two,
i.e., each pk-set has only two words. For example, {battery,
life}, {battery, power}, {battery, charge}. Using two words
in a pk-set is sufficient to cover the semantic relationship
of words belonging to the same topic. Longer sets tend
to contain more errors since some words in a set may not
belong to the same topic as others. Such errors can hurt the
downstream modeling.

4.2. Gibbs Sampler

This sub-section gives the Gibbs sampler of the LTM
model, which differs from LDA as LTM needs additional
mechanisms to leverage the prior knowledge and to also
deal with wrong knowledge during sampling. Below, we
first discuss the techniques used for these two capabilities,
and then present the final Gibbs sampler.

4.2.1. INCORPORATING PRIOR KNOWLEDGE AND
DEALING WITH WRONG KNOWLEDGE

As each pk-set reflects a possible semantic similarity rela-
tion between a pair of words, we use the generalized Pólya
urn (GPU) model (Mahmoud, 2008) to leverage this knowl-
edge in Gibbs sampling to encourage the pair of words to
appear in the same topic. GPU was first introduced to topic
modeling in (Mimno et al., 2011). However, their model
is not concerned with any prior knowledge, and is still an
unsupervised model.

The Pólya urn model works on colored balls and urns. In
the topic model context, a word can be seen as a ball of a
certain color and a topic as an urn. The classic topic-word
distribution is reflected by the color proportion of balls in
the urn. LDA follows the simple Pólya urn (SPU) model
in the sense that when a ball of a particular color is drawn
from an urn, that ball is put back to the urn along with a
new ball of the same color. The content of the urn changes
over time, which gives a self-reinforcing property known
as “the rich get richer”. The GPU model differs from SPU
in that, when a ball of a certain color is drawn, two balls of
that color is put back along with a certain number of balls
of some other colors. These additional balls of some other
colors added to the urn increase their proportions in the urn.
We call this the promotion of these colored balls. Applying
the idea to our case, when a word w is assigned to a topic t,
each word w′ that shares a pk-set of topic t with w is also
assigned the topic t by a certain amount, which is decided
by the matrix A′t,w′,w. w′ is thus promoted by w, meaning
that the probability of w′ under topic t is also increased.
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Here, a pk-set of a topic t means this pk-set is extracted
from the p-topics matching with topic t.

The problem is how to set proper values for matrixAt,w′,w.
To answer this question, let us also consider the problem
of wrong knowledge. Since the pk-sets are mined from p-
topics in multiple previous domains automatically, the se-
mantic relationship of words in a pk-set may not be correct
for the current domain. It is a challenge to determine which
pk-set is not appropriate. One way to deal with both prob-
lems is to assess how the words in a pk-set correlated with
each other in the current domain. If they are more corre-
lated, they are more likely to be correct for a topic in the
domain and thus should be promoted more. If they are less
correlated, they are more likely to be wrong and should be
promoted less (or even not promoted).

To measure the correlation of two words in a pk-set in
the current domain, we use Pointwise Mutual Information
(PMI), which is a popular measure of words association in
text. It has also been used to evaluate topic models (New-
man et al., 2010). PMI is the logarithmic ratio of the actual
joint probability of two events to the expected joint prob-
ability if the two events were independent. In our case, it
measures the extent to which two words tend to co-occur,
which corresponds to the higher-order co-occurrence on
which topic models are based (Heinrich, 2009). The PMI
of two words is defined as follows:

PMI(w1, w2) = log
P (w1, w2)

P (w1)P (w2)
(1)

where P (w) denotes the probability of seeing word w in a
random document, and P (w1, w2) denotes the probability
of seeing both words co-occurring in a random document.
These probabilities are empirically estimated from the cur-
rent domain collection Dt:

P (w) =
#Dt(w)

#Dt
(2)

P (w1, w2) =
#Dt(w1, w2)

#Dt
(3)

where #Dt(w) is the number of documents inDt that con-
tain the word w and #Dt(w1, w2) is the number of docu-
ments that contain both words w1 and w2. #Dt is the total
number of documents in Dt. A positive PMI value implies
a true semantic correlation of words, while a non-positive
PMI value indicates little or no semantic correlation. Thus,
we only consider pk-sets with positive PMI values. We
also add a parameter factor µ to control how much the GPU
model should trust the word relationships indicated by PMI
(see the setting of µ in Section 5.1). Finally, the amount of
promotion for word w′ when seen w is defined as follows:

A′
t,w′,w =


1 w = w′

µ× PMI(w,w′) (w,w′) is a pk-set of t
0 otherwise

(4)

4.2.2. CONDITIONAL DISTRIBUTION OF GIBBS
SAMPLER

The GPU model is nonexchangeable, i.e., the joint prob-
ability of the words in any given topic is not invariant to
the permutation of those words. The inference for the
model can be computationally expensive due to the non-
exchangeability of words, that is, the sampling distribution
for the word of interest depends on each possible value for
the subsequent words along with their topic assignments.
We take the approach of (Mimno et al., 2011) which ap-
proximates the true Gibbs sampling distribution by treating
each word as if it were the last. The approximate Gibbs
sampler has the following conditional distribution:

P (zi = t|z−i
,w, α, β, A

′
) ∝

n−i
d,t + α∑T

t′=1
(n−i

d,t′ + α)
×

∑V
w′=1

A′
t,w′,wi

× n−i

t,w′ + β∑V
v=1(

∑V
w′=1

A′
t,w′,v × n

−i

t,w′ + β)

(5)

where n−i is the count excluding the current assignment of
zi, i.e., z−i, w refers to all the words in all documents in
the document collection and wi is the current word to be
sampled with a topic denoted by zi. nd,t denotes the num-
ber of times that topic t was assigned to words in document
d, which is the document index of word wi. nt,v refers to
the number of times that word v appears under topic t. α
and β are predefined Dirichlet hyper-parameters. T is the
number of topics, and V is the vocabulary size. A′ is the
promotion matrix defined in Equation 4.

5. Evaluation
This section evaluates the proposed LTM model and com-
pares it with four state-of-the-art baselines:

LDA (Blei et al., 2003): An unsupervised topic model.
DF-LDA (Andrzejewski et al., 2009): A knowledge-based
topic model that can use the user-provided knowledge.
GK-LDA (Chen et al., 2013a): A knowledge-based topic
model that uses the ratio of word probabilities under each
topic to reduce the effect of wrong knowledge.
AKL (Chen et al., 2014): A knowledge-based topic model
that applies clustering to learn the knowledge and utilizes
the knowledge in the form of knowledge clusters.

Note that although both DF-LDA and GK-LDA can take
prior knowledge from the user, they cannot mine any prior
knowledge, which make them not directly comparable with
LTM. Thus, we have to feed them the knowledge produced
using the proposed knowledge mining algorithm. This al-
lows us to assess the knowledge handling capability of each
model. AKL uses its own way to generate and incorporate
knowledge.

5.1. Experimental Settings

Dataset. We have created a large dataset containing 50
review collections from 50 product domains crawled from
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Amazon.com. Each domain has 1,000 (1K) reviews. We
followed (Chen et al., 2013a) to pre-process the dataset.
The dataset and the code are publically available at the au-
thors’ websites. To test the behaviors of LTM for large
datasets (see Sections 5.4 and 5.5), we created 4 large re-
view collections with 10,000 (10K) reviews in each. Note
that most product domains in our collections do not have
such a large number of reviews.

Parameter Setting. For all models, posterior estimates of
latent variables were taken with a sampling lag of 20 it-
erations in the post burn-in phase (first 200 iterations for
burn-in) with 2,000 iterations in total. The parameters of
all topic models are set as α = 1, β = 0.1, T = 15. The
other parameters for baselines were set as suggested in their
original papers. For parameters of LTM, the top 15 words
of each topic were used to represent the topic in the topic
matching process and also frequent itemset mining. This
is intuitive as the top words in each topic are more likely
to be semantically coherent while words at lower positions
are much less related. The minimum support threshold is
empirically set to min(5, 0.4×#Trans) where #Trans
is the size of each M t

j∗ (Section 4.1). This is also intuitive
as appearances in a reasonable number of domains show
likely word semantic correlations. The parameter π in Al-
gorithm 3 is empirically set to 7.0. The parameter µ in
Equation 4 is set to 0.3, which determines the extent of
promotion of words in a pk-set using the GPU model. In-
tuitively, a too small value of µ will lead to an inferior per-
formance as it basically ignores the knowledge, while a too
large value can damage the model too due to the errors in
the knowledge.

Test Settings: We use two test settings to evaluate LTM,
which represent two ways of using LTM in Section 3:

1. Mine prior knowledge pk-sets from topics of all do-
mains including the test domain.

2. Mine prior knowledge pk-sets from topics of all do-
mains excluding the test domain.

Setting 1 has a slight advantage as in mining knowledge
for a test domain collection, its own initial topics are used,
which can help find more targeted knowledge. We report
the results for Setting 1 in Sections 5.2 and 5.3, and the
results for Setting 2 in Section 5.4.

5.2. Topic Coherence of Test Setting 1

This sub-section evaluates the topics generated by each
model based on the Topic Coherence measure in (Mimno
et al., 2011). Traditionally, topic models are typically eval-
uated using perplexity. However, as shown in (Chang et al.,
2009), the perplexity measure does not reflect the seman-
tic coherence of individual topics, which can sometimes be
contrary to the human judgments. The Topic Coherence
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Figure 1. Average Topic Coherence values of each model at dif-
ferent learning iterations for Setting 1 (Iteration 0 = LDA).

measure (Mimno et al., 2011) is proposed as a better alter-
native for assessing topic quality. It is shown in (Mimno
et al., 2011) that Topic Coherence correlates well with hu-
man expert labeling. Recently, it has become popular to
use Topic Coherence to evaluate topic models (Arora et al.,
2013). Furthermore, as our goal is to discover meaningful
or coherent topics, Topic Coherence is more suitable for
our evaluation. A higher Topic Coherence value indicates
a higher quality of topics.

Our proposed algorithm (Algorithm 1) is designed for iter-
ative improvements, i.e., a higher quality of topics can gen-
erate better knowledge, which in turn helps discover more
coherent topics. This framework is also suitable for DF-
LDA, GK-LDA, and AKL, i.e., the topics learned from a
model at iteration r is used to generate knowledge for that
model at iteration r + 1. Iteration 0 is equivalent to LDA
(without any knowledge). We call each of these iterations
a learning iteration. Since DF-LDA and GK-LDA cannot
mine any prior knowledge, they use our proposed knowl-
edge mining method. Our knowledge in the form of pairs
(sets of two words) has the same meaning as the knowl-
edge used in DF-LDA (must-link) and GK-LDA (LR-set).
In this work, we do not use cannot-links.

Figure 1 shows the average Topic Coherence value of each
model at each learning iteration. Each value is the av-
erage over all 50 domains. Note that since LDA can-
not use any prior knowledge, its results remain the same.
From Figure 1, we can see that LTM performs the best and
has the highest Topic Coherence values in general. These
show that LTM finds higher quality topics than the base-
lines. Both AKL and GK-LDA perform better than LDA
but worse than LTM, showing their ability of dealing with
wrong knowledge to some extent. DF-LDA does not per-
form well. Without an automated way to deal with each
piece of (correct or incorrect) knowledge specifically for
each individual domain, its performance is actually worse
than LDA.

In summary, we can say that the proposed LTM model
can generate better quality topics than all baseline models.
Even though DF-LDA and GK-LDA use our method for
knowledge mining, without an effective wrong knowledge
handling method, they are not sufficient. The improve-
ments of LTM are all significant (p < 0.01 over AKL and
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Figure 2. Top & Middle: Topical words Precision@5 &
Presicion@10 of coherent topics of each model respectively;
Bottom: number of coherent (#Coherent) topics discovered by
each model. The bars from left to right in each group are for
LTM, LDA, and DF-LDA. On average, for Precision@5 and
Precision@10, LTM improves LDA by 10% and 8%, and DF-
LDA by 15% and 14% respectively. On average, LTM also dis-
covers 0.6 more coherent topics than LDA and 1.1 more coherent
topics than DF-LDA over the 10 domains.

p < 0.0001 over the other baselines) based on paired t-test.

5.3. Human Evaluation

Here we want to evaluate the topics based on human judg-
ment. The results are still from test Setting 1. Two human
judges who are familiar with Amazon products and reviews
were asked to label the generated topics. Since we have a
large number of domains, we selected 10 domains for la-
beling. The selection was based on the knowledge of the
products of the two human judges. Without enough knowl-
edge, the labeling will not be reliable. We labeled the topics
generated by LTM, LDA and DF-LDA at learning iteration
1. For labeling, we followed the instructions in (Mimno
et al., 2011).

Topic Labeling. We first asked the judges to label each
topic as coherent or incoherent. The models that gener-
ated the topics for labeling were obscure to the judges. In
general, a topic was labeled as coherent if its topical words
are semantically coherent and together represent a semantic
concept; otherwise incoherent.

Word Labeling. The topics that are labeled as coherent
by both judges were used for word labeling. Each topical
word was labeled as correct if it is coherently related to
the concept represented by the topic (identified in the topic
labeling step); otherwise incorrect.

The Cohens Kappa agreement scores for topic labeling and
word labeling are 0.862 and 0.857 respectively.

Evaluation measures. Since topics are rankings of words
based on their probabilities, without knowing the exact
number of correct topical words, a natural way to evalu-
ate these rankings is to use Precision@n (or p@n) which
was also used by other researchers, e.g., (Zhao et al., 2010),
where n is a rank position. Apart from p@n, we also report
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Figure 3. Average Topic Coherence values of each model at dif-
ferent learning iterations in Setting 2. The results are slightly
worse than those of Setting 1 (Figure 1).

the number of coherent topics found by each model.

Figure 2 gives the average topical words Precision@5
(top chart) and Precision@10 (middle chart) of only co-
herent topics (those incoherent topics are not considered)
for each model in each domain. It is clear that LTM
achieves the highest p@5 and p@10 values in all 10 do-
mains. LDA is slightly better than DF-LDA in general, but
clearly inferior to LTM. This is consistent with the Topic
Coherence results in Section 5.2. The improvements of
LTM vary in domains. For some domains, e.g., Camera,
Tablet and Headphone, LTM achieves marked improve-
ments. We found that these domains tend to have a lot of
topic overlapping with many other domains. On the other
hand, the improvements in the Monitor domain are less be-
cause of less topic overlapping with other domains. Signif-
icance testing using paired t-test shows that the improve-
ments of LTM over the baselines on p@5 and p@10 are
both significant (p < 0.0001). The bottom chart of Fig-
ure 2 shows that LTM also discovers more coherent topics
than LDA and DF-LDA.

We can then conclude that LTM is superior to the baselines
based on both Topic Coherence and human judgment.

5.4. Topic Coherence of Test Setting 2

We now evaluate LTM in Test Setting 2. That is, in mining
pk-sets, we do not use the topics from the current domain
but only p-topics from the other domains. We set the min-
imum support threshold for knowledge mining to one less
than that for Setting 1 as the current topics are not used.
Here we also experiment the iterative process. We use each
of the 50 domains as the current domain and the rest 49
domains as the prior domains. Figure 3 shows the average
Topic Coherence values for this set of experiments. We see
that LTM again achieves higher Topic Coherence values
in general, which is consistent with the results in previous
sections. The results of LTM (and other knowledge-based
models) are slightly worse than those of Setting 1 (Fig-
ure 1). This is expected as it does not use its own topics
in knowledge mining, which can help mine more suitable
knowledge for the domain.

Applying knowledge to 10K reviews. Figures 1 and 3
showed that LTM improves topics for 1,000 (1K) reviews.
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Figure 4. Average Topic Coherence values at different learning
iterations over four 10K domains. The knowledge is mined from
49 domains of 1K reviews.
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Figure 5. Average Topic Coherence values of each model when
dividing big data into small data.

An interesting question is whether LTM can also improve
on 10K reviews given that LDA should perform better
with 10,000 (10K) reviews as more data give more reliable
statistics. We then apply the knowledge learned from test
setting 2 at each learning iteration on each of four domains
with 10K reviews. Figure 4 gives the average Topic Co-
herence values over these four domains. We can see that
with larger datasets, LTM still gets significant improve-
ments over LDA (p < 0.0001 based on paired t-test).

5.5. Improving topic modeling for Big Data

This sub-section shows that our approach can also be ex-
ploited to make topic modeling on a single big data more
effective, slight improvements in topic quality and major
improvements in efficiency.

Following our approach of learning from multiple domains,
we divide a big dataset into a number of small datasets and
pretend that they are from multiple domains. With multiple
small datasets, we can run our experiments just like that
in Section 5.2. Here we use each of the four large data
sets (10K reviews). Although our four large datasets are
not particularly large, as it is shown in (Arora et al., 2013)
that LDA using Gibbs sampling is linear in the number of
documents, our results here are sufficient to show the trend.

For these experiments, we divide each of our four 10K re-
view collections into 10 folders where each folder has 1K
reviews. Then, we run the LTM model treating 10 fold-
ers as 10 domains, and evaluate both topic quality and ef-
ficiency based on Test Setting 1. Here, we also include
AKL in the comparison as it gives the best Topic Coher-
ence among baselines. Note that both PMI in LTM and
co-document frequency ratio used in AKL are computed
using 10K reviews. Figure 5 shows the Topic Coherence
value of each model. Topic Coherence is calculated using
10K reviews. We can see that LTM achieves slightly higher
Topic Coherence than LDA-10K (LDA on 10K reviews)
and much higher Topic Coherence than LDA-1K (LDA on
1K reviews). AKL, however, gets the lowest Topic Co-
herence. We investigated its results and found that for the
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Figure 6. Human labeling of LTM, LDA-10K and LDA-1K (bars
from left to right). The domains from left to rights are Camera,
Cellphone, Computer, and Watch.

noisy topics AKL tends to group them into the clusters of
good topics, which lowers the quality of the mined knowl-
edge. For AKL, we also tried different numbers of clusters
with no improvements. The knowledge mining method in
LTM is shown to be more effective. Since the 10 folders
contain similar information, one learning iteration is suf-
ficient (more learning iterations gave quite similar results).
We also employ human labeling as in Section 5.3. For LTM
and LDA-1K, we labeled the folder with the highest Topic
Coherence value. The results are given in Figure 6 which
also shows a slightly better performance of LTM. The im-
provement of the labeled folder of LTM is 17 points com-
pared with LDA-10K in terms of Topic Coherence. The
topic quality improvements are not large due to the fact
that the 10 small datasets are from the same domain and
are thus less effective for knowledge learning.

LTM’s running time is about 31% of LDA-10K because
we can run the 10 folders in parallel. Note that LTM in
Figure 5 updates knowledge in every 50 iterations. LTM
can be easily applied in MapReduce to further solve the
memory issue with the big data.

In summary, we can conclude that with our LTM model,
it is possible to run a big data set by dividing it into
smaller datasets and achieve slightly better topic quality
while greatly reduce the execution time.

6. Conclusions
This paper studied the problem of using data from a large
number of domains to mine useful prior knowledge to
guide topic modeling in order to generate more coherent
topics. It proposed an advanced topic model LTM that not
only mines prior knowledge automatically, but also exploits
the mined prior knowledge to generate better topic results.
Additionally, the paper showed that LTM actually repre-
sents a novel lifelong learning algorithm for topic discov-
ery. It can be further exploited to deal with topic modeling
in big data. Experimental results using product review col-
lections from 50 domains demonstrated the effectiveness of
the proposed LTM model.
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