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Abstract

Automatic analysis and understanding of common ac-

tivities and detection of deviant behaviors is a challeng-

ing task in computer vision. This is particularly true in

surveillance data, where busy traffic scenes are rich with

multifarious activities many of them occurring simultane-

ously. In this paper, we address these issues with an unsu-

pervised learning approach relying on probabilistic Latent

Semantic Analysis (pLSA) applied to a rich set visual fea-

tures including motion and size activities for discovering

relevant activity patterns occurring in such scenes. We then

show how the discovered patterns can directly be used to

segment the scene into regions with clear semantic activ-

ity content. Furthermore, we introduce novel abnormality

detection measures within the scope of the adopted model-

ing approach, and investigate in detail their performance

with respect to various issues. Experiments on 45 minutes

of video captured from a busy traffic scene and involving

abnormal events are conducted.

1. Introduction

Increasing needs for security applications have moti-

vated the advancement of research in the area of visual

surveillance systems in recent days. Because of the over-

whelming amount of data from these surveillance systems,

unsupervised methods with ideally no manual labeling are

preferred. In this paper we address the problem of learn-

ing common patterns of activities occurring in a busy traffic

scene. In such a scene, it is not easy to extract trajectories

of individual objects due to frequent occlusions. Still, one

would like to obtain dominant activity patterns occurring

in the scene, segment the scene based on activities happen-

ing at each location, and detect abnormal events. In order

to achieve this we use low level visual features extracted

from the video as input to the pLSA topic model to find the

spatio-temporal correlations among these features. We im-

prove the method proposed by Wang et al. in [8] by adding

object size information along with location and motion in-
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formation, and present a novel way to segment the scene us-

ing the patterns discovered with pLSA directly as features.

The obtained scene segments have semantic interpretation

at each level of cluster size.

Using topic models like pLSA allows us to use differ-

ent abnormality measures based on the interpretation of the

model. We investigate the use of abnormality measures that

include likelihood measure coming from the fitting of the

learned topics to the test document, or the likelihood of

measured topic distribution compared to those observed in

the training data. As a novelty in this context, we explore

the use of document reconstruction errors relying on distri-

bution distances like Kullback-Leibler divergence or Bhat-

tacharyya distance. Using 45 minutes of video captured

from a busy traffic scene and involving abnormal activities

(vehicles parked at wrong locations, or people crossing out-

side the zebra crossing), we compare the performance of the

different measures by plotting recall-precision curves and

discuss the effects of document size, object size features,

and number of topics on the detection results. Results show

the need for appropriate normalization of abnormality mea-

sures and that our abnormality measure performs as well as

the more traditional likelihood fitting measure.

The rest of the paper is organized as follows.In the next

section we present a brief survey of related work. In sec-

tion 3, input features to pLSA are described. In section 4

the dataset, discovered activity patterns and scene segmen-

tation are detailed. In section 5, we present various abnor-

mality measures and comparative results. The conclusions

are given in section 6.

2. Related Work

Methods proposed for activity analysis can be broadly

classified into two categories. Under the first category, ob-

jects are first detected, tracked and the object trajectories are

used for further analysis. Examples of this approach can be

seen in [7, 2, 12, 10]. While good results are reported us-

ing this approach in uncluttered scenarios, it is sensitive to

occlusion and tracking errors. The problem becomes more

pronounced in the case of crowded scenes as frequent oc-

clusions make reliable tracking an impossibility.

Under the second category, motion and appearance fea-

tures are extracted from the video stream without tracking



or object detection. The features thus extracted are directly

used to create models of activities, but loss of tracking in-

formation makes it very difficult to separate different ac-

tivities happening simultaneously. Recently, Topic mod-

els have been successfully used in getting semantic activ-

ity patterns from low-level feature co-occurrences. Wang et

al. [8] introduced the use of location and optical flow fea-

tures along with Hierarchical Bayesian approach to model

activities and interactions. Li et al. [4] used spatio-temporal

features along with a hierarchical pLSA for learning global

behavior correlations. The method we propose is along the

ideas given in [8], but we use a richer feature set by includ-

ing object size, and propose a method of using the model

for scene segmentation.

How is abnormality defined? Qualitatively, an abnormal

(rare, unusual) event can be simply defined as “an action

done at an unusual location, at an unusual time”. Quan-

titatively, abnormality is defined in [6] in two ways, 1)

Events that are fundamentally different in appearance, and

2) unusual order of events, where many of the events could

be normal. Machine learning approaches to abnormality

detection define them simply as behaviors that cannot be

explained by the learnt models. In cases where the scene

model is learnt by clustering trajectories [9, 2] abnormality

is defined as an outlier trajectory i.e, when an object trajec-

tory’s distance to every cluster exceeds the intraclass dis-

tance of every cluster [2]. When activities are modelled as

a sequence of observations as in [6], based on a set of ob-

servations yo, ...yt−1 a prior for observation yt is formed.

After observing yt, the posterior distribution is evaluated.

The distance between the prior and posterior distributions is

used as a criteria to identify anomalies. Xiang et al. in [12]

propose a run-time accumulative anomaly measure based

on likelihood obtained from the learned model. Zhong et

al. in [13] build a database of spatio-temporal patches us-

ing normal behavior and detect those patterns that cannot be

composed from the database as being abnormal. The work

mentioned so far extract explicit object information to iden-

tify abnormalities.

Among the methods using low level visual features,

Wang et al. [8] use likelihood measure calculated from the

learnt model. But as simple motion features are used, it does

not model activities of static objects in the scene. In [4], ab-

normalities are detected using an un-normalized likelihood

measure. It was shown to work only with a single type of

abnormality. While un-normalized measure can give good

results when the documents are more or less of same size,

they are prone to errors due to variations in document size.

In our work, we show that due to the large variability in the

video content, simple un-normalized measure does not give

good results. Therefore we investigate possible abnormal-

ity measures within our modelling framework in order to

understand the various aspects influencing a particular mea-

sure. In our experiments, we found that the normalized log-

likelihood measure and a novel abnormality measure based

on the Bhattacharyya distance between the raw word dis-

tribution and the reconstructed one using the learned topic

distribution gives good performance.

3. From Visual Features to Activity Patterns

Topic models have shown good performance in model-

ing complex scenarios with a simple data representation.

They were initially proposed to automatically discover the

main themes or topics from large corpus of text documents,

where a topic refers to a set of consistently co-occurring

words in the text documents. In video analysis, these topics

correspond to the activities that are frequently occurring in

the scene, where the meaning of an activity depends on the

visual words which have been used to build the documents.

In the following, we first present the visual features used

to characterize our scene content and build our documents,

and then describe the pLSA topic model.

3.1. Visual words

To discover global activity patterns using pLSA, we need

to define our vocabulary (the set of visual words character-

izing the scene content), and how we build our video doc-

uments. In our case, a visual activity is described by three

types of features: location, motion, and size features.

Location: In surveillance videos, most of the activities are

characteristic of the place where they occur. Thus, location

has to be taken into account when building our vocabulary,

and we quantize a pixel position into non-overlapping cells

of 10 × 10. Therefore for a video of dimension, 280 × 360
we obtain a set of 28 × 36 cells.

Motion: To identify the relevant parts of the scene, we first

perform background subtraction using the algorithm pro-

posed in [11] and detect the foreground pixels. For each

of them, we also compute its optical flow using the Lucas-

Kanade algorithm. Foreground pixels are categorized into

static pixels (static label) and moving pixels by thresholding

the magnitude of the optical flow vectors. Moving pixels

are further differentiated by quantizing their motion direc-

tion into four labels (left, right, up, down) according to the

intervals (−π
2 , π

2 ], (π
2 , 3π

2 ], ( 3π
2 , −3π

2 ], (−3π
2 , −π

2 ]. Thus, in

total, we have 5 possible motion words.

Size: To further characterize foreground objects, we asso-

ciate with each foreground pixel the size of the connected

component it belongs to. In our dataset we observe that the

foreground blobs can be roughly classified into two cate-

gories based on foreground blob size. The first one con-

sists of small blobs corresponding mainly to pedestrians

and the second one consists of large blobs corresponding

to vehicles or group of pedestrians. Therefore, we apply a

simple K-Means clustering on the extracted blob sizes with



Figure 1. The Generative model of pLSA

K = 2, and use the cluster number as a size word describ-

ing roughly the size of objects in the scene.

Vocabulary: Our vocabulary could be defined as the carte-

sian product of the location, motion, and size word spaces,

leading to a total of 28× 36× 5× 2 = 10080 words. How-

ever, while knowing the joint feature (motion,size) for each

location might be desirable (for instance to distinguish be-

tween cars and people on zebra crossings), this results in a

high dimensional vocabulary. As pLSA models word co-

occurrences across documents, we expect that topics will

capture separately people activity or car activity at a given

location since they don’t occur simultaneously. In other

words, given an activity and location, we expect the mo-

tion and size to be independent, and thus we can simply

concatenate them and define the set of words for a cell c,

denoted by Vc, to be the concatenation of the motion and

size words1, leading to a codebook of 28 × 36 × (5 + 2)
words only. Thus, a word can be denoted by wc,a, where c

is the location and a one of the seven characteristic labels.

Documents: They are built by dividing the video into short

video clips, and count for each clip or document d the num-

ber of times n(d, w) a word w occurs in it to obtain the

document bag-of-words representation. Henceforth, we use

the terms document and clip interchangeably.

3.2. pLSA

Probabilistic latent space models [3], [1], [8] have been

used to capture co-occurrence information between ele-

ments in a collection of discrete data in order to discover the

recurrent topics in the collection. In our context, we expect

such analysis to discover the main scene activities, where an

activity mainly consists of the recurrent observation of the

same motion and size words in scene regions. In this pa-

per, we used the pLSA [3] model which originates from a

statistical view of LSA. Although pLSA is a non-fully gen-

erative model, its tractable likelihood maximization makes

it an interesting alternative to fully generative models like

LDA [1] with comparative performance.

pLSA is a statistical model that associates a latent vari-

able z ∈ Z = {z1, . . . , zNA
} with each observation (oc-

currence of a word in a document). These variables, usually

called topics, are then used to build a joint probability model

1This means that when constructing documents, a pixel will provide

two words for the cell it belongs to: a motion word and a size word.

over documents and words, defined as the mixture

P (w, d) = P (d)P (w|d) = P (d)

zNA
∑

z=z1

P (z|d)P (w|z). (1)

pLSA introduces a conditional independence assumption,

namely that the occurrence of a word w is independent of

the video document or clip d it belongs to, given a topic

z. The model in Eq. 1 is defined by the probability of a

document P (d), the conditional probabilities P (w|z) which

represent the probability of observing the word w given the

topic z, and by the document-specific conditional multino-

mial probabilities P (z|d). The topic model decomposes the

conditional probabilities of words in a document P (w|d) as

a convex combination of the topic specific word distribu-

tions P (w|z), where the weights are given by the distribu-

tion of topics P (z|d) in the document.

The parameters of the model are estimated using the

maximum likelihood principle. More precisely, given a set

of training documents D, the log-likelihood of the model

parameters Θ can be expressed by:

L(Θ|D) =
∑

d∈D

∑

w

n(d, w) log (P (w|d)) (2)

where the probability model is given by Eq. 1. The opti-

mization is conducted using the Expectation-Maximization

(EM) algorithm [3]. This estimation procedure allows to

learn the topic distributions P (w|z) representing the sought

scene activities.

At test time, we are interested in estimating the weights

P (z|d) of the topics for a document d. This is achieved

by running the EM algorithm keeping the learned model

P (w|z) fixed and maximizing the log likelihood of the

words in the document:

Lu
d(P (z|d)) =

∑

w

n(d, w) log

(

∑

z

P (z|d)P (w|z)

)

(3)

4. Activity patterns and scene segmentation

To illustrate the pLSA modeling with the proposed fea-

tures, we present some topics that were discovered by the

approach and how it can be used to identify activities re-

lated to different object sizes or to segment the scene into

different semantic regions.

4.1. Dataset

The approach can typically be used on outdoor video

sequences. We applied it to videos capturing a portion of

a busy traffic-controlled road junction. Sample frames are

shown in Fig. 2. The scene has multiple activities that in-

clude people walking on the pavement or waiting for ve-

hicles to cross over zebra crossings, and vehicles moving



Figure 2. Traffic Scene

in and out of the scene in different directions. A video se-

quence of 45 minutes recorded at 25 Hz with frame size of

288 × 360 was captured and video clips of 5 seconds du-

ration (125 frames) were defined as our documents. These

clips were divided into a training dataset of 2210 video doc-

uments, and a test dataset of 320 clips.

4.2. Activity patterns

An activity like a vehicle moving on the road can be de-

scribed by a set of motion and size features co-occurring

over a sequence of locations. Similarly, a pedestrian stand-

ing at the foot path can be described by a co-occurring set of

static pixels and size features. Thus, each activity pattern or

a topic is a strongly co-occurring set of visual features rep-

resented by p(w|z). To identify the set of locations which

are mainly active for a given topic, we can marginalize the

word distribution w.r.t. the words that occur at the same lo-

cation. That is, we can plot the map defined for each cell c

by: p(activity ∈ c|z) =
∑

w∈Vc
p(w|z). Fig. 3(a)-(f) show

the activity locations of selected topics highlighted.

Size or Static related topics: We can identify which of

the extracted topics are more related to the activities of

objects of small or large sizes by ranking the aspect ac-

cording to the size probability obtained by marginalizing

over the word ’small size’ of every cell, i.e. by comput-

ing p(size = small|z) =
∑

wc,a/a=small p(w|z). For in-

stance, Fig. 3(c)-(d) show the top two topics from 10 topics

used to train pLSA involving small objects that correspond

to pedestrians walking on the side-walk. A similar analysis

can be done with static objects, and corresponding topics

indicate pedestrians waiting to cross the road and cars wait-

ing at the traffic light (Fig. 3(e) and (f)). Interestingly, note

that the topic model was able to discover that during several

parts of the junction traffic cycle, both pedestrian (bottom

right) and cars (top right) needed to wait simultaneously.

4.3. Scene segmentation

Another way to investigate the learned topic is to seg-

ment the scene according to the extracted activities. Knowl-

edge of the semantic scene regions could then provide con-

text to the actions and thus help in understanding the intent

of actions in a scene location. For example, in a typical traf-

(a) (b)

(c) (d)

(e) (f)
Figure 3. (a)-(b) Examples of common activity patterns (a) vehi-

cles passing, (b) pedestrians crossing the road, (c)-(d) the first two

topics involving small objects - pedestrians walking on the foot

path, (e)-(f) the first two topics involving static pixels, (e) partially

occluded vehicle waiting for signal (top right) with pedestrians

waiting for signal at the bottom-right, (f) pedestrians waiting at

the footpath for crossing the road.

fic scene like in Figure 2, activities like pedestrians walking

along the pavement, waiting at the zebra crossings are seen

on the pedestrian side while vehicular movements are (in

principle) only seen on the roads. An activity based seg-

mentation achieves this by grouping parts of the scene into

segments such that each segment corresponds to locations

where similar semantic activities take place.

Approach: In [4], Li et al. represent the activity at a given

location by the distribution of quantized spatio-temporal

words that are observed at this location in the training data.

In this paper, we propose instead to characterize a location

by the set of activities that can occur at this pixel. This

should lead to a less noisy representation, and implicitly in-

corporate temporal information as the activities model ob-

servations which co-occur, unlike raw feature distributions

[4]. Activities at the cell location c are represented by the

topic distribution at this cell, denoted P (z|c) and defined as

P (z|c) = P (z|Vc) ∝ P (Vc|z) =
∑

w∈Vc
P (w|z). In prac-

tice, we expect these distributions to smoothly evolve when

the location c moves along semantically similar regions

(e.g. while moving along the same side of the road), and

change abruptly when the location moves across some se-

mantic border (e.g. moving from the road zone to the side-

walk region). Thus, clusters mainly correspond to smooth



manifolds which can not be well represented using metric

based clustering approaches like K-means. We used a spec-

tral clustering algorithm [5] which have been shown to bet-

ter capture such manifolds. It takes an input, an affinity

matrix A which in our case is given by

Aci,cj
= exp(

−D2
Bhat(P (z|ci), P (z|cj))

2σ2
) (4)

where DBhat denotes the Bhattacharyya distance used to

compute the pairwise similarity between the two activity

distributions at cell ci and cj , and is defined by:

DBhat(P,Q) =

√

1 −
∑

x∈X

√

p(x).q(x). (5)

The scale σ is taken to be the value that gives minimum

cluster distortion [5].

Results: Figure 4 illustrates the results obtained when ap-

plying the algorithm with number of clusters equal to 2,3, 4

and 9, when the number of topics extracted with pLSA was

10. As can be seen, the results reveal that the number of

clusters correspond to different level of details in interpret-

ing the semantic activities in the scene. When K = 2, the

algorithm segments the scene into regions of activity and

no activity. When K = 3, the activity region is further di-

vided into the pedestrian and vehicle regions. When K = 4,

the road is split into the different sides of the road. When

K = 9, further semantic regions like the region correspond-

ing to zebra crossing, where both car and pedestrian motion

can occur, or the different regions from where people come

to cross the road (and wait) appear. Thus, we see that there

is not a single valid value for K, but that each value lead to

a scene segmentation with clear semantic interpretation.

5. Abnormality detection

As discussed in the related work section, there exist sev-

eral ways to define abnormality. In this Section, we present

those that are pertaining to the topic model that we are us-

ing, and evaluate their performance on our dataset.

5.1. Abnormality measures

Modeling using a generative approach gives scope to use

a variety of measures to identify unusual patterns in the

data. But, little study has been done in comparing the dif-

ferent measures on the same task. Here, we present various

possible measures that can be used based on the approach

we consider, and evaluate the measures within the proposed

framework to understand their merits and demerits.

Fitting measures: The estimation of the topic distribu-

tion P (z|d) of a given clip is obtained by optimizing the

log-likelihood function of Eq. 3. Thus, one natural way

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Semantic Scene Segmentation obtained from 10 pLSA

Topics with the segments superimposed on the scene in the right:

(a)-(b) 2 clusters (c)-(d) 3 clusters (e)-(f) 4 clusters, (g)-(h) 9 clus-

ters

to consider if a clip is normal or abnormal is to use this

log-likelihood measure Lu
d(P (z|d)) at the end of the fit-

ting phase. If the activities happening within the clip cor-

responds to those observed in the training dataset, then the

fitting should be able to find a suitable topic distribution ex-

plaining the bag-of-word representation of the clip. Thus,

normal clips will generally provide high log-likelihood. On

the other hand, if an abnormal activity is going on, none

of the learned topic is able to explain the observed words

of that activity, resulting in a low likelihood fit. In [4], this

measure is used to find abnormal behavior correlations from

a traffic scene.

The likelihood expression in Eq. 3 suffers from a severe

drawback: it is not normalized and thus, whatever the qual-

ity of the fit, the measure is highly correlated with the doc-

ument size. To solve this issue, we can exploit the aver-

age log-likelihood of each word, by dividing n(d, w) by the

number of words nd =
∑

w n(d, w) in Eq. 3, and get the



normalized log-likelihood measure:

Lnl
d (P (z|d)) =

∑

w

n(d, w)

nd
log
∑

z

P (z|d)P (w|z)

=
∑

w

Po(w|d) log Pc(w|d) (6)

where Po(w|d) = n(d,w)
nd

is called the objective distribu-

tion as it is measured directly from the test document, and

Pc(w|d) =
∑

z P (z|d)P (w|z) is called the constrained dis-

tribution as it lies in the constrained simplex spanned by the

topic distribution P (w|z).

Distribution reconstruction errors: The goal of optimiz-

ing the likelihood function is to fit the constrained distri-

bution to the objective distribution. Thus one possibility to

evaluate the quality of the fitting is to measure the discrep-

ancy between the two distributions. For instance, we could

use the Kullback-Leibler divergence as the distance mea-

sure leading to:

LKL
d (P (z|d)) = KL[Po(w|d)|Pc(w|d)] (7)

= −Lnl
d (P (z|d)) − H(Po(w|d))

where H(Po(w|d)) is the entropy of document d, which is

a constant specific to each document. From this expression

we note that the topic distribution P (z|d) which maximizes

the likelihood expression in Eq. 3 is actually the one that

minimizes the KL distance LKL. We can thus interpret the

fitting as a document reconstruction process where the error

in reconstruction is given by Eq. 7. Accordingly, we can use

such reconstruction error measure as our abnormality mea-

sure. This also allows us to use other probability distances

as abnormality measures. In this paper, we also used the

Bhattacharyya distance given by Eq. 5 to compare Po and

Pc, according to:

LBh
d (P (z|d)) = DBhat (Po(w|d), Pc(w|d)) (8)

Scene topic abnormality measures: Activities that can oc-

cur in a scene are characterized by the activity topics learned

by the model. However, in general, not all combinations of

activities are valid, that is, can occur simultaneously in the

scene. This constraint can be taken into account by learning

the allowed distribution of topics using a training dataset. In

our case, this was done by fitting a Gaussian Mixture Model

with L mixtures to the topic distributions P (z|d) extracted

from the training document. Then, when considering a test

document, we first estimate its topic distribution (by opti-

mizing using Eq. 3), and then compute the likelihood of

this distribution with the GMM to evaluate its validity. In

this view, abnormal clips are outlier entities that have low

likelihood of being generated by the L GMM mixtures of

the topic distribution.

5.2. Results and discussion

The different measures were applied to our test data, con-

taining 140 normal activity documents, and 180 video clips

corresponding to abnormal documents, where abnormality

is defined as: people crossing the road at the wrong place

(far away from zebra crossing), vehicle parked at the pedes-

trian path, or vehicles stopping ahead of the stop line while

the stop sign is red. In the following experiments, unless

stated otherwise, 20 topics were used to model the scene

activities.

Qualitative illustration. The abnormality measures that

we have defined allowed us to identify multiple instances

of several abnormal events occurring both in isolation or

simultaneously with other normal activities in the image.

Fig. 5 shows the first video clips that were retrieved as

abnormal using the normalized log-likelihood Lnl2 mea-

sure. The object causing the abnormality is marked with

red boxes for identification. Fig. 5(a)-(b) shows the event

where a car is parked in the pedestrian foot path. In (b), ad-

ditionally a pedestrian crosses the road in the wrong place.

In Fig. 5(c)-(d) a car stops ahead of the stop line, and this

stop is not due to stopped cars in front of it. In Fig. 5, (e)-(f)

pedestrian were crossing the road away from the foot path.

Quantitative evaluation. Recall-Precision (RP) curves

were considered to quantitatively assess the performance of

the approach and compare the abnormality measures. Fig. 6

shows the RP curves for the Likelihood, Normalized Like-

lihood, KL-Divergence, Bhattacharyya distance and Topic-

GMM likelihood abnormality measures. We first note that

the performance obtained with the Topic-GMM likelihood

abnormality measure has the least detection rate. Indeed,

this approach only considers as normal the specific com-

bination of activities observed in the training documents.

Thus, as we only have around 35 minutes of video in the

training data, there is very little chance to observe all com-

mon activity combinations, and thus this abnormality mea-

sure quickly performs randomly, i.e. according to the odds

in the test set. As expected, the unnormalized likelihood

measure too does not achieve good performance. The re-

construction error measure obtained from KL-divergence

and Bhattacharya distance show better performance, but

still not as good as the normalized likelihood measure,

which achieves the best performance with good detection

rates (with a precision of almost 1 for a recall of 50%).

Document size normalization. An analysis of the detec-

tion errors made using the likelihood measure, the KL-

divergence, and the Bhattacharyya distance, reveal that they

are affected by document size or entropy. This is illus-

trated in Fig. 7, where we plot the Bhattacharya distance

error measure as a function of the document size. As can

2The Adaptive Bhattacharyya measure that we will describe below pro-

duced the same results.



(a) (b)

(c) (d)

(e) (f)
Figure 5. The top abnormal events retrieved using the normalized

likelihood measure or the Adaptive Bhattacharyya distance mea-

sure. Note that, for illustration purposes, several abnormal doc-

uments corresponding to the same already displayed events have

been omitted. (a)-(b) shows the event where a car is parked in

the pedestrian foot path. (b) pedestrian crossing the road in the

wrong place, (c)-(d) a car stopping ahead of the stop line. (e)-(f)

pedestrian crossing the road away from the foot path.
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be seen, smaller documents (with low entropy) tend to have

higher reconstruction error, while larger documents (with

high entropy) tend to have lower error. The normalized log-

likelihood measure directly alleviates this effect by using

the average word log-likelihood as abnormality measure.

The KL-divergence measure can be normalized by remov-

ing the document specific entropy term. When this is done,

we are left with the cross entropy term H(Po|Pc) given by:

H(Po|Pc) =
∑

w

Po(w|d)logPc(w|d) (9)

which is simply the normalized log-likelihood measure.
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Figure 7. Bhattacharyya abnormality error measure vs Document

Size: Scatter plot showing the relation between the Document size

(number of words) and Bhattacharyya distance abnormality mea-

sure. The superimposed curve in red shows the expected Bhat-

tacharyya error for a given size computed from the training data.
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Figure 8. RP curves for Normalized Likelihood, Bhattacharyya

distance and Adaptive Bhattacharyya distance.

In the case of Bhattacharyya distance, such a direct nor-

malization is not possible. Therefore we treat this bias by

performing an adaptive normalization based on document

size and learnt from the training data. For this, we construct

a histogram of document size in the training set, and calcu-

late for each bin the expected error measure for documents

belonging to that bin (please see the red curve in Fig. 7).

Then, for a test document, its reconstruction error using

Bhattacharyya distance is normalized with the expected er-

ror according to its size before being compared with the

abnormality threshold. Fig. 8 shows the results obtained

after removal of the document size bias. As can be seen,

this leads to a considerable improvement, and the Adaptive-

Bhattacharyya abnormality measure performs now as well

as the normalized log-likelihood measure, although with

a different behavior. While the latter one performs better

at medium recall, the Adaptive-Bhattacharyya succeeds to

keep a precision significantly higher than random for very

high recall.
Video Features. We also evaluate the effect of adding the

size words in our description of activities, as compared to

using just optical flow words as was done in [8]. This is dis-

played in Fig. 9, where the normalized log-likelihood and

Adaptive Bhattacharyya distance abnormality RP curve are

plotted with and without object size words. These curves

show that the detection rates improve significantly when ob-
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Figure 9. RP curves for Normalized Likelihood, Adaptive Bhat-

tacharyya distance, with and without using the size words.
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Figure 10. Effect of varying the number of topics: RP curves for

Normalized Likelihood (left), and Adaptive Bhattacharyya dis-

tance (right) when using 10, 20, 50 and 100 Topics.

ject size words are used as compared to just optical flow

words.

Number of topics. Finally, Fig. 10 plots the RP curves for

our two best measures when 10,20,50 and 100 topics were

used (20 topics were used in the other curves) to model the

different scene activities. As can be seen, the number of

topics does not affect the results much. This is particularly

true for the normalized likelihood measure, and when using

more than 20 topics in the Adaptive Bhattacharyya case.

6. Conclusion

In this paper we have presented an unsupervised ap-

proach to activity analysis using pLSA. A novel scene seg-

mentation based on the learned topics is proposed to local-

ize and analyze the activity patterns, and results show that

the obtained segmentation matches well with locations of

semantic activities of the scene. A detailed investigation

on various abnormality measures is presented. The results

obtained from our experiments on a real dataset show that

topic modeling approach is effective for abnormality deduc-

tion. They have highlighted the need for normalizing abnor-

mality measures w.r.t. the document size, and, we believe,

have provided greater insights into the merits and demerits

of the abnormality measures, enabling one to choose the

most appropriate method for the task. In the future, we

would like to confirm our results with more datasets, and

explore fusing the results from Normalized Likelihood and

Adaptive Bhattacharyya measure to improve our results.
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