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Abstract—The original PageRank algorithm for improving the ranking of search-query results computes a single vector, using the link

structure of the Web, to capture the relative “importance” of Web pages, independent of any particular search query. To yield more

accurate search results, we propose computing a set of PageRank vectors, biased using a set of representative topics, to capture

more accurately the notion of importance with respect to a particular topic. For ordinary keyword search queries, we compute the topic-

sensitive PageRank scores for pages satisfying the query using the topic of the query keywords. For searches done in context (e.g.,

when the search query is performed by highlighting words in a Web page), we compute the topic-sensitive PageRank scores using the

topic of the context in which the query appeared. By using linear combinations of these (precomputed) biased PageRank vectors to

generate context-specific importance scores for pages at query time, we show that we can generate more accurate rankings than with

a single, generic PageRank vector. We describe techniques for efficiently implementing a large-scale search system based on the

topic-sensitive PageRank scheme.

Index Terms—Web search, web graph, link analysis, PageRank, search in context, personalized search, ranking algorithm.
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1 INTRODUCTION

VARIOUS link-based ranking strategies have been devel-
oped recently for improving Web-search query results.

The HITS algorithm proposed by Kleinberg [22] relies on
query-time processing to deduce the hubs and authorities
that exist in a subgraph of the Web consisting of both the
results to a query and the local neighborhood of these
results. Bharat and Henzinger [4] augment the HITS
algorithm with content analysis to improve precision for
the task of retrieving documents related to a query topic (as
opposed to retrieving documents that exactly satisfy the
user’s information need). Chakrabarti et al. [8] make use of
HITS for automatically compiling resource lists for general
topics.

The PageRank algorithm, introduced by Page et al. [26],

precomputes a rank vector that provides a priori “im-

portance” estimates for all of the pages on the Web. This

vector is computed once, offline, and is independent of the

search query. At query time, these importance scores are

used in conjunction with query-specific IR scores to rank

the query results [7]. PageRank has a clear efficiency

advantage over the HITS algorithm, as the query-time cost

of incorporating the precomputed PageRank importance

score for a page is low. Furthermore, as PageRank is

generated using the entire Web graph, rather than a small

subset, it is less susceptible to localized link spam. Fig. 1

illustrates a system utilizing the standard PageRank

scheme.
We propose an approach that (as with HITS) allows

query-time information to influence the link-based score,

yet (as with PageRank) requires minimal query-time
processing. In our model, we compute offline a set of
PageRank vectors, each biased with a different topic, to
create for each page a set of importance scores with respect
to particular topics [18]. The idea of biasing the PageRank
computation was first suggested in [26] for the purpose of
personalization, but was never fully explored. This biasing
process involves the introduction of artificial links into the
Web graph during the offline rank computation and is
described further in Section 2

The recent work of Chakrabarti et al. [10] and Pennock et
al. [27] demonstrates that the properties of the Web graph
are sensitive to page topic. In particular, the former work
shows that pages tend to point to other pages that are on the
same “broad” topic. Although this property helps explain
why a query-independent PageRank score can be useful for
ranking, it also suggests that we may be able to improve the
performance of link-based computations by taking into
account page topics. By making PageRank topic-sensitive,
we avoid the problem of heavily linked pages getting highly
ranked for queries for which they have no particular
authority [3]. Pages considered important in some subject
domains may not be considered important in others,
regardless of what keywords may appear either in the page
or in anchor text referring to the page. The Hilltop approach
suggested by Bharat and Mihaila [5] has a similar
motivation, but is designed to improve results for popular
queries. Hilltop generates a query-specific authority score
by detecting and indexing pages that appear to be good
experts for certain keywords, based on their outlinks.
However, query terms for which experts were not found
will not be handled by the Hilltop algorithm.

Rafiei and Mendelzon [28] propose using the set of Web
pages that contain some term as a bias set for influencing
the PageRank computation, with the goal of returning terms
for which a given page has a high reputation. An approach
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for enhancing search rankings by generating a PageRank
vector for each possible query term was proposed by
Richardson and Domingos [29] with favorable results.
However, the approach requires considerable processing
time and storage, and is not easily extended to make use of
user and query context. Diligenti et al. [11] propose topic-
specific PageRank scores for enhancing vertical search. Our
approach to biasing the PageRank computation is novel in
its use of a small number of representative basis topics,
taken from the Open Directory, in conjunction with a
multinomial naive-Bayes classifier for classifying the query
and query context [18].

In our work, we consider two scenarios. In the first, we
assume a user with a specific information need issues a
query to our search engine in the conventional way, by
entering a query into a search box. In this scenario, we
determine the topics most closely associated with the query
and use the appropriate topic-sensitive PageRank vectors
for ranking the documents satisfying the query. This
ensures that the “importance” scores reflect a preference
for the link structure of pages that have some bearing on the
query. As with ordinary PageRank, the topic-sensitive
PageRank score can be used as part of a scoring function
that takes into account other IR-based scores. In the second
scenario, we assume that the user is viewing a document
(for instance, browsing the Web or reading email), and
selects a term from the document for which he would like
more information. This notion of search in context is
discussed by Finkelstein et al. [14]. For instance, if a query
for “architecture” is performed by highlighting a term in a
document discussing famous building architects, we
would like the result to be different than if the query
“architecture” is performed by highlighting a term in a
document on CPU design. By selecting the appropriate
topic-sensitive PageRank vectors based on the context of
the query, we hope to provide more accurate search
results. Note that, even when a query is issued in the
conventional way without highlighting a term, the history
of queries issued constitutes a form of query context. Yet
another source of context comes from the user who
submitted the query. For instance, the user’s bookmarks
and browsing history could be used in selecting the
appropriate topic-sensitive rank vectors. These various
sources of search context are discussed in Section 5.

A summary of our approach follows: During the offline

processing of the Web crawl, we generate 16 topic-sensitive

PageRank vectors, each biased (as described in Section 2)

using URLs from a top-level category from the Open

Directory Project (ODP) [2]. At query time, we calculate the

similarity of the query (and, if available, the query or user

context) to each of these topics. Then instead of using a single

global ranking vector, we take the linear combination of the

topic-sensitive vectors, weighted using the similarities of the

query (and any available context) to the topics. By using a set

of rank vectors, we are able to determine more accurately

which pages are truly the most important with respect to a

particular query or query-context. Because the link-based

computations are performed offline, during the preproces-

sing stage, the query-time costs are not much greater than

that of the ordinary PageRank algorithm. An illustration of

our topic-sensitive PageRank system is given in Fig. 2.

2 REVIEW OF PAGERANK

A review of the PageRank algorithm follows: The basic idea

of PageRank is that, if page u has a link to page v, then the

author of u is implicitly conferring some importance to page

v. Intuitively, Yahoo! is an important page, reflected by the

fact that many pages point to it. Likewise, pages promi-

nently pointed to from Yahoo! are themselves probably

important. How much importance does a page u confer to

its outlinks? Let Nu be the outdegree of page u and let

RankðpÞ represent the importance (i.e., PageRank) of page p.

Then, the link ðu; vÞ confers RankðuÞ=Nu units of rank to v.

This simple idea leads to the following iterative fixpoint

computation that yields the rank vector ~Rank�Rank� over all of

the pages on the Web. If n is the number of pages, assign all

pages the initial value 1=n. Let Bv represent the set of pages

pointing to v. In each iteration, propagate the ranks as

follows:1

8vRankðiþ1ÞðvÞ ¼
X
u2Bv

RankðiÞðuÞ=Nu: ð1Þ
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Fig. 1. Simplified diagram illustrating a simple search engine utilizing the

standard PageRank scheme.

Fig. 2. Illustration of our system utilizing topic-sensitive PageRank.

1. Note that, for u 2 Bv, the edge ðu; vÞ guarantees Nu � 1.



We continue the iterations until ~RankRank stabilizes to within

some threshold. The final vector ~Rank�Rank� contains the

PageRank vector over the Web. This vector is computed

only once after each crawl of the Web; the values can then

be used to influence the ranking of search results [1].
The process can also be expressed as the following

eigenvector calculation, providing useful insight into

PageRank. Let M be the square, stochastic matrix corre-

sponding to the directed Web graph G.2 If there is a link

from page j to page i, then let the matrix entry mij have the

value 1=Nj. Let all other entries have the value 0. One

iteration of the previous fixpoint computation corresponds

to the matrix-vector multiplication M � ~RankRank. Repeatedly

multiplying ~RankRank by M yields the dominant eigenvector
~Rank�Rank� of the matrix M. In other words, ~Rank�Rank� is the

solution to

~RankRank ¼M � ~RankRank: ð2Þ

Because MT is the stochastic transition matrix over the

graph G, PageRank can be viewed as the stationary

probability distribution for the Markov chain induced by

a random walk on the Web graph.
One caveat is that the convergence of PageRank is only

guaranteed if M is irreducible (i.e., G is strongly

connected) and aperiodic [25]. The latter is guaranteed in

practice for the Web, while the former is true if we 1) add

a complete set of outgoing edges to nodes in G with

outdegree 0 and 2) damp the rank propagation by a factor

1ÿ � by adding a complete set of outgoing edges, with

weight �=n, to all nodes. We can accomplish this task by

constructing a new matrix M 0 in the following way. Let n

be the number of nodes (i.e., pages) in the Web graph. Let

~pp be the n-dimensional column vector representing a

uniform probability distribution over all nodes:

~pp ¼ 1

n

� �
n�1

: ð3Þ

Let ~dd be the n-dimensional column vector identifying the

nodes with outdegree 0:

di ¼
1 if degðiÞ ¼ 0;
0 otherwise:

�
Then, we construct M 0 as follows:

D ¼ ~pp� ~ddT

E ¼ ~pp� ½1�1�n

¼ 1

n

� �
n�n

if ~pp is the uniform distribution

M 0 ¼ ð1ÿ �ÞðM þDÞ þ �E:

ð4Þ

This modification improves the quality of PageRank by

introducing a decay factor 1ÿ � which limits the effect of

rank sinks [26], in addition to guaranteeing convergence to a

unique rank vector. Substituting M 0 for M in (2), we can

express PageRank as the solution to:3

~RankRank ¼M 0 � ~RankRank ð5Þ

¼ ð1ÿ �ÞðM þDÞ � ~RankRankþ �~pp
ð6Þ

with ~pp ¼ 1
n

� �
n�1

. The key to creating topic-sensitive

PageRank is that we can bias the computation to increase

the effect of certain categories of pages by using a

nonuniform n� 1 personalization vector for ~pp.4 To ensure

that M 0 is irreducible when ~pp contains any 0 entries, nodes

not reachable from nonzero nodes in ~pp should be

removed. This modification is not implementationally

problematic. Note that the topic-based influencing in-

volves introducing additional rank to the appropriate

nodes in each iteration of the computation—it is not

simply a postprocessing step performed on the standard

PageRank vector.
In terms of the random-walk model, the personalization

vector represents the addition of a complete set of transition
edges where the probability on an artificial edge ðu; vÞ is
given by �pv. We will denote the solution ~Rank�Rank� of (6), with
� ¼ �� and a particular ~pp ¼ ~p�p�, as ~PRPRð��; ~p�p�Þ. By appro-
priately selecting ~pp, the rank vector can be made to prefer
certain categories of pages. The bias factor � specifies the
degree to which the computation is biased towards ~pp.

3 TOPIC-SENSITIVE PAGERANK

In our approach to topic-sensitive PageRank, we precom-
pute the importance scores offline, as with ordinary
PageRank. However, we compute multiple importance
scores for each page; we compute a set of scores of the
importance of a page with respect to various topics. At
query time, these importance scores are combined based on
the topics of the query to form a composite PageRank score
for those pages matching the query. This score can be used
in conjunction with other IR-based scoring schemes to
produce a final rank for the result pages with respect to the
query. As the scoring functions of commercial search
engines are not known, in our work we do not consider
the effect of these IR scores (other than requiring that the
query terms appear in the page).5 We believe that the
improvements to PageRank’s precision will translate into
improvements in overall search rankings, even after other
IR-based scores are factored in. Note that the topic-sensitive
PageRank score itself implicitly makes use of IR in
determining the topic of the query. However, this use of
IR is not vulnerable to manipulation of pages by adversarial
webmasters seeking to raise the score of their sites.

3.1 ODP-Biasing

The first step in our approach is to generate a set of biased
PageRank vectors using a set of basis topics. This step is
performed once, offline, during the preprocessing of the
Web crawl. There are many possible sources for the basis
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2. Assume for now that all nodes in G have at least one outgoing edge.
3. Equation (6) makes use of the fact that k ~RankRank k1¼ 1.

4. Page et al. [26] originally suggest setting ~pp directly using the
bookmarks of the user, although that approach is not practical for large
numbers of users.

5. For instance, most search engines use term weighting schemes which
make special use of HTML tags.



set of topics. However, using a small basis set is important
for keeping the preprocessing and query-time costs low.
One option is to cluster the Web page repository into a
small number of clusters in the hopes of achieving a
representative basis. We chose instead to use the freely
available, hand constructed Open Directory as a source of
topics. To keep the basis set small, we made use of the
16 top-level categories; using finer grained basis sets is part
of our future work and is discussed in Sections 6 and 7.

Let Tj be the set of URLs in the ODP category cj. Then,
when computing the PageRank vector for topic cj, in place
of the uniform damping vector ~pp ¼ 1

n

� �
n�1

, we use the
nonuniform vector ~pp ¼ ~vjvj, where

vji ¼
1
jTjj i 2 Tj;
0 i 62 Tj:

�
ð7Þ

The PageRank vector for topic cj is given by ~PRPRð�; ~vjvjÞ. We
also generate the single unbiased PageRank vector (denoted
as NOBIAS) for the purpose of comparison. The choice of �
will be discussed in Section 4.1.

We also compute the 16 class term vectors ~DjDj consisting
of the terms in the documents below each of the 16 top-level
categories. Djt simply gives the total number of occurrences
of term t in documents listed below class cj of the ODP.

As mentioned previously, one could envision using other
sources of topics; however, the ODP data is freely available
and, as it is compiled by thousands of volunteer editors, is
less susceptible to influence by any one party. In Section 7,
we describe a modification of the above construction that
reduces the ability for even malicious ODP editors to affect
scores in any nonnegligible way.

3.2 Query-Time Importance Score

The second step in our approach is performed at query
time. Given a query q, let q0 be the context of q. In other
words, if the query was issued by highlighting the term q in
some Web page u, then q0 consists of the terms in u.
Alternatively, we could use only those terms in u nearby the
highlighted term, as often times a single Web page may
discuss a variety of topics. For ordinary queries not done in
context, let q0 ¼ q. Using a multinomial naive-Bayes
classifier [24],6 with parameters set to their maximum-
likelihood estimates, we compute the class probabilities for
each of the 16 top-level ODP classes, conditioned on q0. Let
q0i be the ith term in the query (or query context) q0. Then
given the query q, we compute for each cj the following:

P ðcjjq0Þ ¼
pðcjÞ � P ðq0jcjÞ

P ðq0Þ / P ðcjÞ �
Y
i

P ðq0ijcjÞ: ð8Þ

P ðq0ijcjÞ is easily computed from the class term-vector ~DjDj.
The quantity P ðcjÞ is not as straightforward. We chose to
make it uniform, although we could personalize the query
results for different users by varying this distribution. In
other words, for some user k, we can use a prior
distribution PkðcjÞ that reflects the interests of user k. This
method provides an alternative framework for user-based

personalization, rather than directly varying the damping

vector ~pp as had been suggested in [6], [7], [26].
Using a text index, we retrieve URLs for all documents

containing the original query terms q. Finally, we compute

the query-sensitive importance score of each of these

retrieved URLs as follows: Let rjd be the rank of document

d given by the rank vector ~PRPRð�; ~vjvjÞ (i.e., the rank vector for

topic cj). For the Web document d, we compute the query-

sensitive importance score sqd as follows:

sqd ¼
X
j

P ðcjjq0Þ � rjd: ð9Þ

The results are ranked according to this composite score sqd.
7

The above query-sensitive PageRank computation has

the following probabilistic interpretation in terms of the

“random surfer” model [26]. Let wj be the coefficient used

to weight the jth rank vector, with
P

j wj ¼ 1 (e.g., let

wj ¼ P ðcjjqÞ). Then, note that the equality

X
j

wj ~PRPRð�; ~vjvjÞ
h i

¼ ~PRPR �;
X
j

½wj~vjvj�
 !

ð10Þ

holds, as shown in the appendix. Thus, we see that the

following random walk on the Web yields the topic-

sensitive score sqd. With probability 1ÿ �, a random surfer

on page u follows an outlink of u (where the particular

outlink is chosen uniformly at random). With probability

�P ðcjjq0Þ, the surfer instead jumps to one of the pages in Tj
(where the particular page in Tj is chosen uniformly at

random). The long term visit probability that the surfer is at

page v is exactly given by the composite score sqd defined

above. Thus, topics exert influence over the final score in

proportion to their affinity with the query (or query

context).

4 EXPERIMENTAL RESULTS

We conducted a series of experiments to measure the

behavior of topic-sensitive PageRank. In Section 4.1, we

describe the similarity measure we use to compare two

rankings. In Section 4.2, we investigate how the induced

rankings vary, based on both the topic used to bias the rank

vectors, as well as the choice of the bias factor �. In

Section 4.3, we present results of a user study showing the

retrieval performance of ordinary PageRank versus topic-

sensitive PageRank. In Section 4.4, we provide an initial

look at how the use of query context can be used in

conjunction with topic-sensitive PageRank.
As a source of Web data, we used the latest Web crawl

from the Stanford WebBase [19], performed in January 2001,

containing roughly 120 million pages. Our crawl contained

roughly 280,000 of the three million URLs in the ODP. For

our experiments, we used 35 of the sample queries given in

[12], which were in turn compiled from earlier papers.8 The

queries are listed in Table 1.
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6. The multivariate-Bernoulli and the multinomial event models for
naive-Bayes text classification are compared in [23]. The multinomial event
model, which corresponds to a unigram language model, performs better in
most scenarios.

7. Alternatively, sqd can be used as part of a more general scoring
function.

8. Several queries which produced very few hits on our repository were
excluded.



4.1 Similarity Measure for Induced Rankings

We use two measures when comparing rankings. The first
measure, denoted OSimð�1; �2Þ, indicates the degree of
overlap between the top k URLs of two rankings, �1 and
�2. We define the overlap of two sets A and B (each of size
k) to be jA\Bjk . In our comparisons, we will use k ¼ 20. The
overlap measure OSim gives an incomplete picture of the
similarity of two rankings, as it does not indicate the degree
to which the relative orderings of the top k URLs of two
rankings are in agreement. Therefore, in addition to OSim,
we use a second measure, KSim, based on Kendall’s �
distance measure.9

For consistency with OSim, we will present our defini-
tion as a similarity (as opposed to distance) measure, so that
values closer to 1 indicate closer agreement. Consider two
partially ordered lists of URLs, �1 and �2, each of length k.
Let U be the union of the URLs in �1 and �2. If �1 is U ÿ �1,
then let � 01 be the extension of �1, where � 01 contains �1

appearing after all the URLs in �1.10 We extend �2

analogously to yield � 02. We define our similarity measure
KSim as follows:

KSimð�1; �2Þ ¼
jðu; vÞ : � 01; �

0
2 agree on order of ðu; vÞ; u 6¼ vj
ðjU jÞðjU j ÿ 1Þ :

ð11Þ

In other words, KSimð�1; �2Þ is the probability that � 01 and
� 02 agree on the relative ordering of a randomly selected pair
of distinct nodes ðu; vÞ 2 U � U .11

4.2 Effect of ODP-Biasing

In this section, we measure the effects of topically biasing the
PageRank computation. First, note that the choice of the bias
factor �, discussed in Section 2, affects the degree to which
the resultant vector is biased toward the topic vector used for

~pp. Consider the extreme cases. For � ¼ 1, the URLs in the bias
set Tj will be assigned the score 1

jT j , and all other URLs
receive the score 0. Conversely, as � tends to 0, the content of
Tj becomes irrelevant to the final score assignment.

We heuristically set � ¼ 0:25 after inspecting the rank-
ings for several of the queries listed in Table 1. We did not
concentrate on optimizing this parameter; although �
affects the induced rankings of query results, the differences
across different topically-biased PageRank vectors, for a
fixed �, are much higher. For instance, for � ¼ 0:05 and
� ¼ 0:25, we measured the average similarity of the
induced rankings across our set of test queries, for each of
our PageRank vectors.12 The results are given in Table 2. We
see that the average overlap between the top 20 results for
the two values of � is high. Furthermore, the high values for
KSim indicate high overlap as well as agreement (on
average) on the relative ordering of these top 20 URLs for
the two values of �. Chakrabarti et al. [10] suggest that the
ideal choice of � may differ for different topics; choosing
the optimal � for each topic is an avenue for future study.
All subsequent experiments in this paper use � ¼ 0:25.

We now discuss the difference between rankings in-
duced by different topically-biased PageRank vectors. We
computed the average, across our test queries, of the
pairwise similarity between the rankings induced by the
different topically-biased vectors. The five most similar
pairs, according to our OSim measure, are given in Table 3,
showing that even the most similar topically-biased rank-
ings have little overlap. Having established that the topic-
specific PageRank vectors each rank the results substan-
tially differently, we proceed to investigate which of these
rankings is “best” for specific queries.

As an example, Table 4 shows the top four ranked URLs
for the query “bicycling,” using several of the topically-
biased PageRank vectors. Note, in particular, that the
ranking induced by the SPORTS-biased vector is of high
quality. Also, note that the ranking induced by the
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TABLE 1
Test Queries Used

TABLE 2
Average Similarity of Rankings for � ¼ f0:05; 0:25g

9. Note that the schemes for comparing top k lists recently proposed by
Fagin et al. [13], also based on Kendall’s � distance measure, differ from
KSim in the way normalization is done.

10. The URLs in � are placed with the same ordinal rank at the end of � .
11. A pair ordered in one list and tied in the other is considered a

disagreement. 12. We used 25 iterations of PageRank in all cases.



SHOPPING-biased vector leads to the high ranking of
websites selling bicycle-related accessories.

4.3 Query-Sensitive Scoring

In this section, we look at how effectively we can utilize the
ranking precision gained by the use of multiple PageRank
vectors. Given a query, our first task is to determine which
of the rank vectors can best rank the results for the query.
We found that using the quantity P ðcjjqÞ as discussed in
Section 3.2 yielded intuitive results for determining which
topics are most closely associated with a query. In
particular, for most of the test queries, the ODP categories
with the highest values for P ðcjjqÞ are intuitively the most
relevant categories for the query. In Table 5, we list for
several of the test queries the three categories with the
highest values for P ðcjjqÞ. When computing the composite
sqd score in our experiments, we chose to use the weighted
sum of only the rank vectors associated with the three
topics with the highest values for P ðcjjqÞ, rather than all of
the topics. Based on the data in Table 5, we saw no need to
include the scores from the topic vectors with lower
associated values for P ðcjjqÞ.

To compare our query-sensitive approach to ordinary
PageRank, we conducted a user study. We randomly
selected 10 queries from our test set for the study, and
found five volunteers. For each query, the volunteer was
shown two result rankings; one consisted of the top 10
results satisfying the query, when these results were ranked
with the unbiased PageRank vector, and the other consisted
of the top 10 results for the query when the results were
ranked with the composite sqd score.13 The volunteer was
asked to select all URLs which were “relevant” to the query,
in their opinion. In addition, they were asked to mark which
of the two rankings was the better of the two, in their
opinion. They were not told anything about how either of
the rankings was generated.

Let a URL be considered relevant if at least three of the
five volunteers selected it as relevant for the query. The
precision then is the fraction of the top 10 URLs that are
deemed relevant. The precision of the two ranking techni-
ques for each test query is shown in Fig. 3. The average
precision for the rankings induced by the topic-sensitive
PageRank scores is substantially higher than that of the
unbiased PageRank scores; 0.51 versus 0.28. Furthermore,
as shown in Table 6, for nearly all queries, a majority of the
users selected the rankings induced by the topic-sensitive
PageRank scores as the better of the two. These results

suggest that the effectiveness of a query-result scoring
function can be improved by the use of a topic-sensitive
PageRank scheme in place of a generic PageRank scheme.14

4.4 Context-Sensitive Scoring

In Section 4.3, the topic-sensitive ranking vectors were
chosen using the topics most strongly associated with the
query term. If the search is done in context, for instance by
highlighting a term in a Web page and invoking a search,
then the context can be used instead of the query to
determine the topics. Using the context can help disambig-
uate the query term and yield results that more closely
reflect the intent of the user. We now illustrate with an
example how using query-context can help a system which
uses topic-sensitive PageRank.

Consider the query “blues” taken from our test set. This
term has several different senses; for instance, it could refer
to a musical genre or to a form of depression. Two Web pages
in which the term is used with these different senses, as well
as short textual excerpts from the pages, are shown in Table 7.
Consider the case where a user reading one of these two
pages highlights the term “blues” to submit a search query.
At query time, the first step of our system is to determine
which topic best applies to the query in context. Thus, we
calculate P ðcjjq0Þ as described in Section 3.2, using for q0 the
terms of the entire page,15 rather than just the term “blues.”
For the first page (discussing music), argmaxcj P ðcjjq0Þ is
ARTS, and for the second page (discussing depression),
argmaxcjP ðcjjq0Þ is HEALTH. The next step is to use a text
index to fetch a list of URLs for all documents containing the
term “blues”—the highlighted term for which the query was
issued. Finally, the URLs are ranked using the appropriate
ranking vector that was selected using the P ðcjjq0Þ values
(i.e., either ARTS or HEALTH). Table 8 shows the top five
URLs for the query “blues” using the topic-sensitive
PageRank vectors for ARTS, HEALTH, and NOBIAS. We see
that, as desired, most of the results ranked using the ARTS-
biased vector are pages discussing music, while all of the top
results ranked using the HEALTH-biased vector discuss
depression. The context of the query allows the system to
pick the appropriate topic-sensitive ranking vector and
yields search results reflecting the appropriate sense of the
search term.

5 SEARCH CONTEXT

In Section 4.4, we gave an example of one possible source of
context to utilize when generating the composite PageRank
score, namely, the document containing the query term
highlighted by the user. There are a variety of other sources
of context that may be used in our scheme. For instance, the
history of queries issued leading up to the current query is
another form of query context. A search for “basketball”
followed up with a search for “Jordan” presents an
opportunity for disambiguating the latter. As another
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13. Both the title and URL were presented to the user. The title was a
hyperlink to a current version of the Web page.

14. The effect on the relative ranking performance of our scheme
when aggregated with Web-oriented IR scores is an avenue of future
investigation.

15. It may be preferable to use only a window of terms surrounding the
highlighted query terms. Determining the best window to use is left for
future investigation.

TABLE 3
Topic Pairs Yielding the Most Similar Rankings



example, most modern search engines incorporate some
sort of hierarchical directory, listing URLs for a small subset
of the Web, as part of their search interface.16 The current
node in the hierarchy that the user is browsing at
constitutes a source of query context. When browsing URLs
at TOP/ARTS, for instance, any queries issued could have
search results (from the entire Web index) ranked with the
ARTS rank vector, rather than either restricting results to
URLs listed in that particular category, or not making use of
the category whatsoever. In addition to these types of
context associated with the query itself, we can also
potentially utilize query independent user context. Sources
of user context include the users’ browsing patterns,
bookmarks, and email archives. As mentioned in
Section 3.2, we can integrate user context by selecting a
nonuniform prior, PkðcjÞ, based on how closely the user’s
context accords with each of the basis topics.

When attempting to utilize the aforementioned sources of
search context, mediating the personalization of PageRank
via a set of basis topics yields several benefits over attempting
to explicitly construct a personalization vector.

. Flexibility. For any kind of context, we can compute

the context-sensitive PageRank score by using a

classifier to compute the similarity of the context

with the basis topics and then weighting the topic-

sensitive PageRank vectors appropriately. We can

treat such diverse sources of search context such as

email, bookmarks, browsing history, and query

history uniformly.
. Transparency. The topically-biased rank vectors

have intuitive interpretations. If we see that our
system is giving undue preference to certain topics,
we can tune the classifier used on the search context,
or adjust topic weights manually. When utilizing
user context, the users themselves can be shown
what topics the system believes represent their
interests.

. Privacy. Certain forms of search context raise
potential privacy concerns. Clearly, it is inappropri-
ate to send the user’s browsing history or other
personal information to the search-engine server for
use in constructing a profile. However, a client-side
program could use the user context to generate the
user profile locally and send only the summary
information, consisting of the weights assigned to
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16. See, for instance, http://directory.google.com/Top/Arts/ or http://
dir.yahoo.com/Arts/.

TABLE 4
Top Results for the Query “Bicycling” When Ranked Using Various Topic-Specific Vectors



the basis topics, over to the server. The amount of
privacy lost in knowing only that the user’s
browsing pattern suggests that he is interested in
COMPUTERS with weight 0.5 is much less than
actually obtaining his browser’s history cache. When
making use of query-context, if the user is browsing
sensitive personal documents, they would be more
comfortable if the search client sent to the server
topic weights rather than the actual document text
surrounding the highlighted query term.

. Efficiency. For a small number of basis topics (such
as the 16 ODP categories), both the query-time cost
and the offline preprocessing cost of our approach is
low and practical to implement with current Web
indexing infrastructure.

Given the rapid expansion of the Web, with no

corresponding increase in query specificity, a large portion

of the Web is effectively inaccessible to users who issue

simple search queries. By utilizing search context, ranking

functions can help solve the problem of allowing effective
search with simple queries over a rapidly expanding Web.

6 EFFICIENCY CONSIDERATIONS

In this section, we discuss the time and space complexity of
both the offline and query-time components of a search
engine utilizing the topic-sensitive PageRank scheme.

6.1 Offline Processing

We begin with a discussion of the space and time
complexity for a straightforward implementation of the
offline step. The offline processing was done on a machine
with dual 1533 Mhz AMD Athlon CPUs, 480 GB RAID-5,
and 2.5 GB of main memory. As mentioned previously, we
used the Stanford WebBase repository, containing roughly
120 million pages, as our source of data. The link graph
consisted of the crawled URLs, as well as URLs on the
“frontier,” for a total of 360 million URLs, and required
7.3 GB of storage (uncompressed). After removing two
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TABLE 5
Estimates for P ðcjjqÞ for a Subset of the Test Queries



levels of dangling pages [26], 80 million URLs remained in
the link graph, requiring 4.3 GB of storage. This subgraph
was used for all but the final two PageRank iterations, for
which the full graph was used. Using a straightforward
implementation [16], running PageRank for 25 iterations on
one CPU took roughly five hours, both for the standard
vector as well as for each topical vector. Utilizing two dual-
processor machines, we can generate all 16 topical vectors
in roughly 20 hours.

For generating a small number of topic-specific vectors,
the above approach is reasonable in terms of time complex-
ity. However, reducing the running time can be very useful
in minimizing the delay between the completion of a new
Web crawl and the generation of an updated search index.
To improve on the above running times, we use a scheme
introduced by Kamvar et al. [21] to accelerate PageRank
computations by using successive iterates to approximate
and subtract out the nonprincipal eigenvectors from the
current iterate. Intuitively, during the iterative computation,
the algorithm periodically uses a sequence of intermediate
iterates to extrapolate the value of the true rank vector.
Using this scheme, called Quadratic Extrapolation, the
convergence of PageRank can be sped up by 25-300 percent,
depending on the setting of the parameter �.

For generating a larger number of topic-specific vectors,
a different approach is required; speeding up the computa-
tion of individual rank vectors is insufficient. Jeh and
Widom [20] propose a scheme for efficiently computing
personalized PageRank vectors by exploiting the overlap in
the computation of the different vectors. The intuition
behind their scheme can be seen through an example.
Consider the simple graph given in Fig. 4. If we set the
personalization vector ~pp to add a complete set of artificial
transitions terminating at A (Graph 1), the induced random
walk is very similar to the case where we set ~pp so that each
of the children of A, namely, B and C, are targets of a
complete set of artificial transitions (Graph 2). By exploiting
this simple observation, they construct a dynamic program-
ming algorithm to generate a large basis set of personalized
PageRank vectors simultaneously, which can then be used
to compute arbitrary topic-specific vectors. As the time and
space overhead of this latter algorithm is high, which of the

above techniques is most suitable depends on the granu-
larity of the topical basis desired.

6.2 Query-Time Processing

For efficient query-time processing, it is desirable to keep
most (if not all) of the topic-specific ranking data in main
memory. Section 6.2.1 gives an overview of a scalable
keyword-search system to help make clear why this is the
case.17 In Section 6.2.2, we describe memory-efficient
encodings for PageRank vectors that minimize the effect
of the lossy encoding on final search rankings.

6.2.1 Overview of Keyword Search Processing

As depicted in Fig. 5, a Web search system utilizes an
inverted text index I and a set of auxiliary, numeric ranking
vectors f~RRig. In our case, f~RRig includes a set of topic-
specific PageRank vectors. For simplicity, consider a system
with only the standard PageRank vector ~RRp. The index I
contains information about the occurrences of terms in
documents and is used to retrieve the set of document IDs
for documents satisfying some query Q. The index ~RRp is
then consulted to retrieve the PageRank for each of these
candidate documents. Using the information retrieved from
I and ~RRp, a composite document score is generated for each
candidate result, yielding a final ranked listing.

The inverted index I is constructed offline and provides
the mapping ft! fdtg, where fdt describes the occurrence
of term t in document d. In the simplest case, fdt could be
the within-document frequency of t. The number of random
accesses to I needed to retrieve the necessary information
for answering a query Q exactly equals the number of terms
in the query, jQj. Because queries are typically small,
consisting of only a few words, it is practical to keep the
index I on-disk and perform jQj seeks for answering each
query.

The auxiliary index ~RRp is also constructed offline and
provides the mapping fd! rdg, where rd is the PageRank
of document d. Note that, in contrast to I , the index ~RRp

provides per-document information. The search system
typically must access ~RRp once for each candidate document
of the result set, which could potentially be very large.
These random accesses would be prohibitively expensive,
unless ~RRp can be kept entirely in main memory. Whereas
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Fig. 3. Precision @ 10 results for our test queries. The average precision

over the 10 queries is also shown.

17. For further information on large-scale search systems, we refer the
reader to [30], [9].

TABLE 6
Ranking Scheme Preferred by Majority of Users



the query length is the upper bound for the accesses to I ,
the number of candidate results retrieved from I is the
upper bound for accesses to ~RRp. One way to reduce the
number of random accesses required is to store the attribute
values of ~RRp in I instead; e.g., create an index I0 that
provides the mapping ft! ffdt; rdgg. However, this re-
quires replicating the value rd once for each distinct term
that appears in d, generally an unacceptable overhead
especially if several numeric properties (e.g., several topic-
specific PageRank scores) are used.

6.2.2 Memory-Efficient Encoding of PageRank

Much work has been done on compressing I , although
comparatively less attention has been paid to effective ways
of compressing auxiliary numeric ranking vectors such as
~RRp. The typical keyword search system has only one such
auxiliary ranking vector, ~RRl—the document lengths needed
in computing the query-document cosine similarity
[30]—and can be kept in main memory without much
difficulty. However, for our richer topic-sensitive PageRank
scheme, much more consideration needs to be given to the
encodings used for the attribute values.

Note that falling main memory prices do not alleviate the
need for efficient encodings; increasingly affordable disk

storage is leading to rapidly growing Web-crawl reposi-

tories, in turn, leading to larger sets of documents that need

to be indexed. Utilizing a rich set of per-document numeric

ranking attributes for growing crawl repositories and

growing numbers of users thus continues to require

efficient encoding schemes.
Using a standard IEEE single-precision floating point

representation, each final rank vector would require four

bytes (32 bits) of storage per page—each PageRank vector for

HAVELIWALA: TOPIC-SENSITIVE PAGERANK: A CONTEXT-SENSITIVE RANKING ALGORITHM FOR WEB SEARCH 793

TABLE 8
Results for Query “Blues” Using Three Different Ranking Vectors

TABLE 7
Two Different Search Contexts for the Query “Blues”

Fig. 4. Graph 1 personalizes on node A and Graph 2 personalizes on the

children of A. Random walks on these graphs behave similarly, an

observation that Jeh and Widom [20] use to compute a large number of

personalized PageRank vectors simultaneously.



our 120 million page repository would require 460 MB. We

make use of scalar quantization [15] to store instead

approximate PageRank values for each page using fewer

bits. Conceptually, we partition the range of PageRank

values into intervals (or cells). For a page u that has rank ru,

instead of storing the value ru, we store the codeword for the

corresponding cell. The approximate value associated with

the cell, called the reproduction value, is given by the midpoint

of the interval. For a partition consisting of n cells, the cell is

represented by a fixed-length codeword of length dlog2 ne
bits. This coding scheme is lossy since encoding and then

decoding the value ru will yield some reproduction value

qðruÞ rather than ru itself. The key challenge is constructing

the partition in a way that minimizes the effect of the lossy

encoding on the search rankings. A scheme that partitions

the range into cells of equal width, e.g., a uniform quantizer,

tends to perform poorly in providing good approximations

of the input data values. Note that, instead of directly

constructing a nonuniform partition, we can apply a non-

linear compressor function to the input values, which we then

partition into equal-width intervals; there is no loss in

expressivity [15]. This type of quantizer (e.g., a nonlinear

compressor followed by uniform quantization) is known as a

compander. A detailed discussion on how to determine the

optimal partition (equivalently, the optimal compander) in

the context of search rankings can be found in [17].

Using a distortion measure, we can analyze the perfor-
mance of a particular partition by looking at how the
approximation affects search rankings. Here, for simplicity,
we give the performance of various strategies in compres-
sing the standard PageRank vector; results for the topic-
specific vectors are similar.

For measuring the difference between two rankings �1

and �2, we use the distortion measure KDistð�1; �2Þ, defined
as 1ÿKSimð�1; �2Þ, where KSim is the similarity measure
defined in Section 4.1. By measuring the average distortion
of search result rankings caused by quantizers, we can
estimate quantizer performance and choose the quantizer
that works best in practice. We next briefly describe some
empirical results showing the average distortion for the
quantizers given in Table 9. Details on these strategies can
be found in [17].

Let cosðQ; dÞ be the cosine similarity between a query Q
and document d. Let rd be the PageRank of document d. Let
qðrdÞ be the approximation of rd generated by a quantizer.
We then let � be the ordered list of the top 100 documents
when results to the query Q are ranked by the composite
score cosðQ; dÞ � rd, and we let �q be the ordered list of the
top 100 documents when query results are ranked by
cosðQ;dÞ � qðrdÞ for some quantizer q. Note that � 6¼ �q
because qðrdÞ is only an approximation of rd. We then
measure the distortion of q using the average value of
KDistð�; �qÞ over a large number of sample queries. As
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TABLE 9
A Description of the Six Quantization Strategies We Compare

Fig. 5. A simplified illustration of a search engine with a standard inverted text-index and three auxiliary numerical attributes for each document. Note

that the number of random accesses to I is typically small, whereas the number of accesses to f~RRig is large. Our goal is to minimize the space

needed for the data structure f~RRig.



shown in Fig. 6, in this scenario, the log compander

performs the best for all codelengths in minimizing the

mean KDist distortion.
Using eight bits per value, the 16 topic-specific vectors

for the 120 million page Web crawl can be stored in just

under 2 GB of main memory; query-processing (including
the disk-based text-index retrieval) takes roughly one

second per query on our data set, using the hardware
described in Section 6.1.

7 FUTURE WORK

We are currently exploring several ways of improving our
topic-sensitive PageRank approach. As discussed pre-
viously, discovering sources of search context is a ripe area
of research. Another area of investigation is the develop-
ment of the best set of basis topics. For instance, it may be
worthwhile to use a finer-grained set of topics, perhaps
using the second or third level of directory hierarchies,
rather than simply the top level. However, a fine-grained
set of topics leads to additional efficiency considerations, as
the cost of the naive approach to computing these topic-
sensitive vectors is linear in the number of basis topics.

We are also currently investigating a different approach
to creating the personalization vector ~pp used to create the

topic-specific rank vectors. This approach has the potential
of being more resistant to adversarial ODP editors.

Currently, as described in Section 3.1, we set the damping
vector ~pp for topic cj to ~vjvj, where ~vjvj is defined in (7). In the

modified approach, we instead first train a classifier for the

basis set of topics using the ODP data as our training set
and then assign to all pages on the Web a distribution of

topic weights. Let this topic weight of a page u for category
cj be wuj. Then, we replace (7) with

8i2Web vji ¼
wijP
k wkj

� �
: ð12Þ

In this way, we hope to ensure that the PageRank vectors
generated are not overly sensitive to particular choices

made by individual ODP editors.

APPENDIX

CONVEX COMBINATIONS oF PAGERANK VECTORS

In this section, we derive the interpretation of the

convex combination of PageRank vectors.18 Consider a

set of rank vectors f ~PRPRð�; ~vjvjÞg for some fixed �.19 For

brevity, let ~rjrj ¼ ~PRPRð�; ~vjvjÞ. Furthermore, let ~r0r0 ¼
P

j½wj~rjrj�,
and ~v0v0 ¼

P
j½wj~vjvj�. We claim that ~r0r0 ¼ ~PRPRð�;~v0v0Þ. In other

words, ~r0r0 is itself a PageRank vector, where the

personalization vector ~pp is set to ~v0v0. The proof follows.
Because each ~rjrj satisfies (6) (with ~pp ¼ ~vjvj), we have that

~r0r0 �
X
j

½wj~rjrj� ð13Þ

¼
X
j

½wjðð1ÿ �ÞðM þDÞ~rjrj þ �~vjvjÞ� ð14Þ

¼
X
j

½ð1ÿ �ÞwjðM þDÞ~rjrj� þ
X
j

½�wj~vjvj� ð15Þ

¼ ð1ÿ �ÞðM þDÞ
X
j

½wj~rjrj� þ �
X
j

½wj~vjvj� ð16Þ

¼ ð1ÿ �ÞðM þDÞ~r0r0 þ �~v0v0: ð17Þ

Thus, ~r0r0 satisfies (6) for the personalization vector ~pp ¼ ~v0v0,
completing our proof.
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