
 Open access Journal Article DOI:10.1145/1324172.1324173

Topic taxonomy adaptation for group profiling — Source link

Lei Tang, Huan Liu, Jianping Zhang, Nitin Agarwal ...+1 more authors

Institutions: Arizona State University, Air Force Research Laboratory

Published on: 01 Feb 2008 - ACM Transactions on Knowledge Discovery From Data (ACM)

Topics: Corporate taxonomy

Related papers:

 L-diversity: Privacy beyond k-anonymity

 Collective entity resolution in relational data

 Graph evolution: Densification and shrinking diameters

 k -anonymity: a model for protecting privacy

 A Theory for Record Linkage

Share this paper:

View more about this paper here: https://typeset.io/papers/topic-taxonomy-adaptation-for-group-profiling-
1f6uqezang

https://typeset.io/
https://www.doi.org/10.1145/1324172.1324173
https://typeset.io/papers/topic-taxonomy-adaptation-for-group-profiling-1f6uqezang
https://typeset.io/authors/lei-tang-38jewz254e
https://typeset.io/authors/huan-liu-sfgsts0pym
https://typeset.io/authors/jianping-zhang-43utarvq4c
https://typeset.io/authors/nitin-agarwal-1zdlz2tbw1
https://typeset.io/institutions/arizona-state-university-1xc6ssmf
https://typeset.io/institutions/air-force-research-laboratory-2f66o3ui
https://typeset.io/journals/acm-transactions-on-knowledge-discovery-from-data-3et50top
https://typeset.io/topics/corporate-taxonomy-3427efiz
https://typeset.io/papers/l-diversity-privacy-beyond-k-anonymity-54qdj1526d
https://typeset.io/papers/collective-entity-resolution-in-relational-data-5gh8qrgiy9
https://typeset.io/papers/graph-evolution-densification-and-shrinking-diameters-2g1w8uasep
https://typeset.io/papers/k-anonymity-a-model-for-protecting-privacy-1crq674ku8
https://typeset.io/papers/a-theory-for-record-linkage-59v0x51nu0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/topic-taxonomy-adaptation-for-group-profiling-1f6uqezang
https://twitter.com/intent/tweet?text=Topic%20taxonomy%20adaptation%20for%20group%20profiling&url=https://typeset.io/papers/topic-taxonomy-adaptation-for-group-profiling-1f6uqezang
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/topic-taxonomy-adaptation-for-group-profiling-1f6uqezang
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/topic-taxonomy-adaptation-for-group-profiling-1f6uqezang
https://typeset.io/papers/topic-taxonomy-adaptation-for-group-profiling-1f6uqezang

Topic Taxonomy Adaptation for Group Profiling

Lei Tang†, Huan Liu†, Jianping Zhang‡, Nitin Agarwal†, and John J. Salerno⋆

A topic taxonomy is an effective representation that describes salient features of virtual groups or
online communities. A topic taxonomy consists of topic nodes. Each internal node is defined by
its vertical path (i.e., ancestor and child nodes) and its horizonal list of attributes (or terms). In a
text-dominant environment, a topic taxonomy can be used to flexibly describe a group’s interests
with varying granularity. However, the stagnant nature of a taxonomy may fail to timely capture
the dynamic change of group’s interest. This paper addresses the problem of how to adapt a
topic taxonomy to the accumulated data that reflect the change of group’s interest to achieve
dynamic group profiling. We first discuss the issues related to topic taxonomy. We next formulate
taxonomy adaptation as an optimization problem to find the taxonomy that best fits the data.
We then present a viable algorithm that can efficiently accomplish taxonomy adaptation. We
conduct extensive experiments to evaluate our approach’s efficacy for group profiling, compare
the approach with some alternatives, and study its performance for dynamic group profiling.
While pointing out various applications of taxonomy adaption, we suggest some future work that
can take advantage of burgeoning Web 2.0 services for online targeted marketing, counterterrorism
in connecting dots, and community tracking.

Categories and Subject Descriptors: I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text Analysis; I.2.6 [Artificial Intelligence]: Learning—Knowledge acquisition; H.4 [In-

formation Systems Applications]: Miscellaneous

General Terms: Algorithms, Management, Experimentation

Additional Key Words and Phrases: Topic Taxonomy, Group Interest, Dynamic Profiling, Text
Hierarchical Classification, Taxonomy Adjustment

1. INTRODUCTION

With the prolific and expanded use of Internet and increasing success of the concept
of Web 2.0 (e.g., flickr, del.icio.us, youtube, myspace, digg and facebook), virtual
communities and online interactions have become a vital part of human experience.
Members of virtual communities1 tend to share similar interests or topics. For
example, there can be two groups browsing news at some website such as digg.com:
one is interested in topics related to Meteorology, while the other in Politics; A
blogger (say the owner of http://hunch.net/) who publishes blog posts actively
on “machine learning” often has links on his/her blog site to other bloggers who

1In this work, group and community are used interchangeably.

† {L.Tang, Huan.Liu, Nitin.Agarwal.2}@asu.edu. Department of Computer Science and Engi-
neering, Fulton School of Engineering, Arizona State University, Tempe, AZ 85287-8809.
‡ jzhang@mitre.org. The MITRE Corporation, McLean, VA 22102.
⋆ John.Salerno@rl.af.mil. Air Force Research Laboratory, AFRL/IFEA, Rome NY, 13441-4505.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–26.

2 · Lei Tang, et al.

Root

Meteorology

Hurricane

Politics

Root

Meteorology

Hurricane

Politics

Fig. 1. “Hurricane” Example

concentrate on “machine learning” as well. It would be interesting to find these
like-minded individuals for developing many promising applications including alert
systems, direct marketing, group tracking, etc. One way is to profile a group, then
search for additional groups that match the profile.

As group interest might change over time, a static group profile cannot keep
pace with an evolving environment. In this work, we aim to address the issue of
dynamic online group profiling in a text-dominant environment. In particular, we
investigate two key issues: (1) how to describe a group - we study how to
sensibly represent a group and what comprises a group profile; and (2) how to
track changes of group interests. Evolving group interests present challenges
to group profiling to keep up with the changes. We elaborate a viable approach
that takes into account the above two issues in regards to dynamic profiling.

In a text-dominant environment, a set of topics is a sensible way of describing
the interest of a group. Police might want to track a coterie with interest in topics
related to “dirty bombs”, “massive destruction”, or “sabotage” to thwart crimes
before they occur; a company might want to find different groups who are interested
in its products (e.g., brands, functionality, or price ranges); an organization might
just be interested in the opinions of various groups on the major policies (e.g.,
“boosting the US force presence in Iraq”), critical decisions (e.g., GM’s voluntary
departure packages). Since a group consists of people with shared interests, one
intuitive way of describing a group is to clip a group with some topics shared by
most of the members in the group. A refined way is to associate each topic with
keywords (features). These keywords can be supplied by human beings, or extracted
using some feature selection methods [Forman 2003; Liu and Yu 2005].

However, the topics associated with different communities can be inordinate,
and the number of relevant features to distinguish between topics can be huge.
For example, the Yahoo! directory used in [Liu et al. 2005] has 292,216 categories
(one category is a topic). Facing a large number of topics, we need to find a more
suitable representation. Organizing the topics into a tree-structured2 taxonomy or
hierarchy is an alternative, as it provides more contextual information with refined
granularity compared with a flat list. The left tree in Figure 1 shows one simple
example of a topic taxonomy. Basically, each group is associated with a list of
topics. Each topic can be either a non-leaf (internal) node like Meteorology or
Politics, or a leaf node like Hurricane. Different groups can have shared topics.

2This structure allows one node to be the child of multiple parent nodes.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 3

A topic taxonomy is often provided by human beings based on topic semantics
or abridged from a very large taxonomy like Yahoo! or Google directory. It is a
relatively stable description. However, group interests develop and change. Let us
look at an example about “Hurricane”. As shown in Figure 1, in a conventional
topic taxonomy, the category Hurricane is likely under Meteorology, and not related
to Politics. Suppose we have two groups: one is interested in Meteorology and the
other in Politics. The two groups have their own interests. One would not expect
that “Hurricane” is one of the key topics under Politics. However, in a period of time
in 2005, there was a surge of documents/discussions on “Hurricane” under Politics.
Before we delve into why this happened, this example suggests the change of group
interests and the need for corresponding change of the taxonomy. A good number
of documents in category Hurricane are more about Politics because Hurricanes
‘Katrina’ and ‘Rita’ in the United States in 2005 caused unprecedented damages
to life and properties; and some of the damages might be due to the responsibility
and faults of FEMA3 in preparation for and responding to the disasters.

This example demonstrates some inconsistency between a stagnant taxonomy and
changing interests of an online group. Group interests might shift and the semantics
of a topic could be changed due to a recent event. To enable a topic taxonomy to
profile the changing group interest, we need to allow the topic taxonomy to adapt
accordingly and reflect the change, which necessitates the need for dynamic group
profiling. The dynamic changes of semantics are reflected in documents under
each category, just like in the hurricane example. This observation motivates us
to adjust a given topic taxonomy in a data-driven fashion. Figure 2 illustrates a
typical process of topic taxonomy adaption. By observing the difference between
the original taxonomy and the newly generated taxonomy, we notice that topics
can emerge and disappear for various groups. Given recent data (e.g., blog posts,
visited web pages, submitted search queries) and a given topic taxonomy, we aim to
automatically find a revised taxonomy that is consistent with the data and captures
dynamic group interests.

In this paper, we systematically study the effect of taxonomy on dynamic group
profiling, including efficacy and efficiency. We first discuss the impact of topic
taxonomies on group profiling in Section 2; formulate the taxonomy adaptation
problem in Section 3; discuss about the challenges in addressing the problem and
introduce two approaches to perform taxonomy adaptation: Greedy and TopDown
in Section 4; present the experimental results and further study and analysis in
Section 5. We review existing literature related to group profiling and taxonomy
adaptation in Section 6; and discuss some future work and potential applications
of our method in Section 7.

2. TOPIC TAXONOMIES IN GROUP PROFILING

A topic taxonomy is a concise representation for group profiles. Using a structural
hierarchy4 of topics to describe groups exhibits several merits:

(1) Fewer terms for representing a topic. Each node in the topic taxonomy has

3Federal Emergency Management Agency
4Hierarchy and taxonomy are used interchangeably henceforth.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Lei Tang, et al.

Discussion posts, Blog posts,
Visited Web pages, Search queries

Naïve Topic Taxonomy
(constructed by human beings)

Refined Topic Taxonomy
based on data content

Fig. 2. Topic Taxonomy Adaptation Process

a smaller number of sub-categories rather than a flat list of all topics.
These sub-categories can be differentiate by a small set of features. The
sets of reduced features shed light to utilize more complex models for profil-
ing, without encountering many of the standard computational and robustness
difficulties [Koller and Sahami 1997] in the context of classification. The liter-
ature also confirms that hierarchical models (which utilize the structure of the
taxonomy) often outperform flat models (which perform classification without
taxonomy) in training efficiency, classification efficiency, and accuracy [Koller
and Sahami 1997; McCallum et al. 1998; Ruiz and Srinivasan 1999; Dumais
and Chen 2000; Cai and Hofmann 2004; Yang et al. 2003; Liu et al. 2005].

(2) Concise representations of adjustable granularity. Some groups might be inter-
ested in “sports”, while some other groups might be interested in more specific
topics such as “football”, “basketball”, or “baseball”. Using a flat represen-
tation would mix up all these topics since they are overlapped with “sports”.
Taxonomies, on the other hand, can flexibly provide topics with varied granu-
larity to serve different needs of various groups.

(3) Rich contextual information. Within a taxonomy, each topic is an internal or
leaf node in a path originating from the root node. This path suggests the con-
text of a topic, providing more detailed information than a flat list of topics.
Each node is further described by a set of features (terms) providing addi-
tional semantic information. Given a topic taxonomy, it is easy to find related
or similar topics via parent, sibling, child nodes. Taxonomies also facilitate
the visualization of relationships between different groups and the detection of
related or similar groups.

The core problem now is how to find a good taxonomy, which means that it can
accurately represent a group profile. Several ways can be exploited to find the pro-
file for each group. Given some labeled training data, for example, a classifier can
be constructed. This training data can either be provided by human experts, or de-
rived from the tags associated with data gleaned from the Web, if such information

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 5

is available. With a robust classifier built from the available data, new documents
can be labeled automatically by the classifier. Therefore, the corresponding classi-
fication performance is one effective way of indirectly measuring how good a topic
taxonomy is in group profiling. In other words, the quality of a topic taxonomy
now boils down to the classification performance (e.g. recall, precision, ROC, etc.)
based on the taxonomy.

A good taxonomy can be obtained via different methods:

1) Extracted from a general grand taxonomy like Yahoo! or Google directory,

2) Provided by human experts, or

3) Generated via hierarchical clustering on topics.

The taxonomy provided by the above methods are relatively stable, and cannot
scale up to capture the dynamic change of group interests.

Given the dynamic group profiling problem, we notice the following challenges
that should be addressed in search of a suitable method to find a good taxonomy:

• Dynamic. The method must adaptively find a topic taxonomy to reflect the
dynamic change in the data.

• Accurate. The obtained taxonomy must provide an accurate profile for each
group. Since each group is profiled using topics and keywords associated with
each topic, precise profiling necessitates accurate hierarchical document classifi-
cation.

• Efficient. The method proposed must be efficient in adapting a taxonomy to keep
pace with the prolific growth of online documents. The method should scale well
to handle large number of documents as well as topics.

• Automatic. It is desirable for the method to minimize human involvement in this
process, achieving efficiency and efficacy.

Clearly, methods 1–3 cannot serve the need outlined above. We propose topic tax-
onomy adaptation in this work to attain a good taxonomy. In practice, a semantics-
based taxonomy can be provided as a seed through method 1 or 2. The provided
taxonomy can be considered as a form of prior knowledge and contains valuable
information. With this prior knowledge, we can narrow down the hypothesis space
and efficiently find reliable hierarchies with good classification performance and
generalizability. Instead of “start-from-scratch” as of method 3, we propose to
modify a given taxonomy gradually and generate a data-driven taxonomy, so as to
achieve classification improvement for accurate dynamic group profiling.

The topic taxonomy adaptation problem can be rephrased as follows: Given a
taxonomy, find a refined taxonomy such that an accurate hierarchical classification
model can be induced for dynamic group profiling.

3. TAXONOMY ADAPTATION

For dynamic group profiling, the basic problem is how to find a refined taxonomy
to effectively capture the characteristics of online groups given a taxonomy. We
assume that leaf-level topics are always there for simplicity. This could be done by
including a large variety of topics. But the topics of internal nodes in a taxonomy

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Lei Tang, et al.

could emerge and disappear as new documents arrive. Before we formulate our
problem, we present several definitions concerning hierarchies as follows:

Definition 3.1 Admissible Hierarchy. Let L = {L1, L2, · · · , Lm} denotes the cat-
egories at the leaf nodes of a taxonomy H, and C = {C1, C2, · · · , Cn} denotes the
categories of data D. H is an admissible hierarchy for D if m = n and there’s a
one-to-one mapping between L and C.

Definition 3.2 Optimal Hierarchy.

Hopt = arg max
H

p(D|H) = arg max
H

log p(D|H)

where H is an admissible hierarchy for the given data D.

In other words, the optimal hierarchy given a data set should be the one with
maximum likelihood. The brute-force approach to finding the optimal hierarchy is
to try all the admissible hierarchies and output the optimal one. Unfortunately,
even for a small set of categories, there could be a huge number of admissible
hierarchies.

Suppose there are n leaf nodes, one approach to construct a taxonomy is: pick
two categories to form a new parent node; then merge this parent node with a new
leaf node to form another new parent node; continue this process until no leaf nodes
are left. Then we end up with a highly unbalanced binary tree. Clearly, the final
taxonomy structure depends on the order of picking leaf nodes. Hence, we could
have O(n × (n − 1) × · · · × 1) = O(n!) different hierarchies. Note that this is only
one strategy to construct a binary tree and many other admissible binary trees are
not considered yet. Not to mention those n-ary trees. Actually, this problem is
highly related to Steiner tree problem [Hwang and Richards 1992] which is proved
to be NP-complete. It is impractical to try all the possible hierarchies and pick the
optimal one. A more effective way should be explored.

The given hierarchy provides valuable information for classification and can serve
as a seed to find the intended optimal hierarchy. In order to change a hierarchy to
another admissible hierarchy, we define three elementary operations:

Promote: roll up one node to upper level,

Demote: push down one node to its sibling, and

Merge: merge two sibling nodes to form a super node.

As shown in Figure 3, H1 is the original hierarchy. H2, H3 and H4 are obtained
by promoting Node 6 to its upper level, demoting Node 3 under its sibling Node
2, and merging Node 3 and 4, respectively. Node 7 is a newly generated node (the
super node) after modification. Note that the set of leaf nodes remains unchanged.

Theorem 3.3. The elementary operations are complete for hierarchy transfor-
mation.

In other words, we can transform one hierarchy H to any other admissible hier-
archy H ′ by using just the above three operations. The proof is trivial as we can
transform H to a 1-level tree by promoting all the nodes to its upper level until
it reaches the first level. Then, according to the structure of H ′ , merging and
demoting can be applied to construct the hierarchy.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 7

1

2 3 4

5 6

42

35 6

1

72

3 45 6

1

(H1) (H2)

(H3) (H4)

2 3 4

5

6

1

Fig. 3. Elementary Operations. H1 is the original hierarchy. H2, H3 and H4 are obtained by
performing different elementary operations. H2: Promote node 6; H3: Demote node 3 under node
2; H4: Merge node 3 and node 4.

Definition 3.4 Hierarchy Difference. Hierarchy difference between two admissi-
ble hierarchies H and H ′ is the minimum number of elementary operations to
transform H into H ′ . Suppose the minimum number of operations is k, we denote
the difference between H and H ′ as

‖ H ′ − H ‖= k

Hierarchy difference actually represents the minimum edit distance of two hi-
erarchies in terms of our defined elementary operations. Given explicit hierarchy
difference, we define the constrained optimal hierarchy below.

Definition 3.5 Constrained Optimal Hierarchy. Given a hierarchy H0, if there
exists a sequence of admissible hierarchies Q = {H1,H2, · · · ,Hn} such that their
conditional probabilities satisfy the following

P (D|Hi) ≥ P (D|Hi−1)

‖ Hi − Hi−1 ‖= 1 (1 ≤ i ≤ n)

∀H ′ if ‖ H ′ − Hn ‖= 1, P (D|H ′) ≤ P (D|Hn)

then Hn is a constrained optimal hierarchy for H0 and D .

In other words, the constrained optimal hierarchy (COH) is the hierarchy that is
attainable from the original hierarchy following a list of admissible hierarchies with
likelihood increase between consecutive ones. When we reach a COH, we cannot
find a neighboring hierarchy with higher likelihood than it. By its definition, each
COH is a local optimum. If we state our problem as that of search, then a provided
hierarchy is a sensible starting point in our attempt to reach the optimal hierarchy
following a short path. Hence, we formulate our challenge as follows:

Hierarchy Search Problem: Given data D, and a taxonomy H0, find a hierarchy
Hopt such that

Hopt = arg max
H

log p(D|H)

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Lei Tang, et al.

H
0

H
12

H
11

H
32

H
33

H
31

H
03

H
02

H
13

H
21

H
22

H
23

H
24

H
01

H
04

Fig. 4. Hierarchy Search Space

where H is a constrained optimal hierarchy for D and H0.
Put it another way, we can consider hierarchy search problem as searching in the

hierarchy space as in Figure 4. All the hierarchies in the figure are admissible for
some data, and an arrow from Hi to Hj denotes likelihood increase if we transform
Hi to Hj by just one hierarchy adjustment elementary operation. If there is no
link between two nodes (hierarchies), then one hierarchy cannot be transformed
to the other by just one operation. For the given hierarchy H0, there are three
constrained optimal hierarchies, H13, H24 and H33. Notice that there are actually
two paths leading to H13. And two constrained optimal hierarchies (H13 and H24)
might share partial search path (H0 to H23). As the topic changes during group
profiling are often not many or mostly local, the optimal hierarchy is expected to
reside within the vicinity of a given hierarchy. The optimal hierarchy should be one
of the constrained optimal hierarchies. As shown in Figure 4, the optimal hierarchy
should be chosen among H13, H24 and H33 as they yield the maximal likelihood.

4. CHALLENGES AND SOLUTIONS

4.1 Challenges

As for the hierarchy search problem, we need to address the following subproblems:

1) How to compute the likelihood of data given a hierarchy (P (D|H) in Defini-
tion 3.2)?

2) While the hierarchy search problem proposes to select the best among the
constrained optimal hierarchies, it is computationally intractable to obtain all
the constrained optimal hierarchies.

3) How to find promising neighbors of a hierarchy? There could be a huge number
of neighbors by performing only one elementary operation for a specific hier-
archy especially when the number of nodes in the tree is large. Suppose the
average number of branching factor and the total number of nodes of the hierar-
chy are b and n, respectively. For each node, there are three kinds of operations:
promote to its parent level; merge with a sibling node; demote to a child of a sib-
ling node. Thus, the total number of neighbors is O((2(b−1)+1)×n) = O(2bn).
Among all these neighbors, most of them are not necessarily better than current
one. It is desirable to identify those promising neighbors only.

Hence, we propose to obtain an approximate solution by developing some heuris-
tics. As for the first subproblem, we actually want to use it to compare two given
hierarchies. Since the topic identification performance indirectly indicates how

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 9

effective our profiling is, we approximate it by comparing two hierarchies’ classifi-
cation performance estimates. As in most classification tasks, the class distribution
is highly imbalanced, accuracy would be biased toward the majority class. Re-
searchers focus on macro-averaged recall (also known as balanced accuracy) or
f-measure [Yang and Pedersen 1997; Liu et al. 2005] rather than accuracy. Here,
we use them as the classification performance to measure likelihood change.

Concerning the second problem, we exploit a greedy approach to find the best
constrained hierarchy. In each search step, we always choose the neighboring node
with largest likelihood improvement. Other variants of search methods like beam
search can also be explored if time and hardware resources permit. However, we
still need to consider the number of neighbors of a hierarchy. Based on some
pathology study in [Tang et al. 2006], we can apply certain heuristics to find those
promising neighbors and remove those non-promising from further consideration. In
this section, we present some heuristics and then provide algorithms that accustom
the given taxonomy according to the data.

4.2 A Greedy Approach

We first give some definitions to facilitate the description of the heuristics.

Definition 4.1 High Miss/Low Miss. For a node in the hierarchy, if it is misclas-
sified at the parent level, then this misclassification is called High Miss. If it is
misclassified as its sibling under the same parent node, then it’s a Low Miss.

Heuristic 4.2. If the proportion of High Miss of one node is significantly larger
than that of the Low Miss, that is,

High Miss > Low Miss + ξ

where ξ is a user defined parameter, we lift this node to the upper level.

Basically, if a node is misclassified a lot at parent level, then we’ll consider lifting
it up to obtain better result.

Definition 4.3 Ambiguity Score. Given two classes A and B, suppose the per-
centage of class A classified as class B is PAB , and the percentage of class B
classified as class A is PBA, then ambiguity score = PAB + PBA.

Heuristic 4.4. We can calculate the Ambiguity Score for each pair of categories
under the same parent node. For each subtree in the hierarchy, we pick the sibling
pair A and B with highest ambiguity score. If |PAB − PBA| ≤ γ where γ is a
predefined threshold, then we merge A and B to form a super category; Otherwise,
if PAB > PBA + γ, we shift Class A as B’s child; If PBA > PAB + γ, then we move
Class B under Class A.

Intuitively, the ambiguity score is the overlapping area of two categories. Hence,
it can help identify the most similar two categories. In the heuristic, we can find
the dominant class by comparing PAB and PBA, and then demote one class as the
other class’s sub-category. Otherwise, neither of them dominates the other and so
they are merged to form a super category.

Based on these heuristics, the search space of hierarchies is significantly reduced.
We can now use a wrapper model to search for better hierarchies. That is, for a given

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Lei Tang, et al.

Input:
H0: Predefined hierarchy
T : Training data
V : Validation set

Output:
Hopt: the approximate best hierarchy

Algorithm:

1. scorebest = 0, Hlist = {H0}

2. flag = false (denoting whether or not the hierarchy is changed)

3. For each hierarchy Hi in Hlist, build a hierarchical model based on T and evaluate its
performance on V . If the corresponding statistic score is larger than scorebest, then
flag = true, scorebest = score and Hopt = Hi.

4. If flag == false, return Hopt.

5. Generate neighbors for Hopt by checking each node in Hopt according to Heuristic 1
and 2. Add all these neighbors to Hlist.

6. If Hlist is empty, return Hopt; Otherwise, goto step 2.

Fig. 5. Greedy Hierarchy Search Algorithm

hierarchy, we generate promising neighboring hierarchies and evaluate the hierar-
chy on some data to get its performance statistics. The hierarchy with maximum
likelihood increase is thus selected. This procedure repeats until no neighboring
hierarchy with likelihood increase could be found. The Greedy Hierarchy Search
Algorithm is given in Figure 5.

4.3 A Top-Down Approach

We noticed in our experiments (see Section 5) that the Greedy Hierarchy Search
Algorithm, though effective, did plenty of redundant work in each step to search
for neighboring hierarchies. Actually, two neighboring hierarchies would share most
operations to find their neighbors. In other words, if one operation results in an
improvement for current hierarchy, it’s likely to yield improvement on a neighboring
hierarchy as well. Therefore, it is not necessary to check all the operations in each
step. Instead, we propose to traverse the hierarchy using a top-down approach and
check each node to search for better hierarchies.

As we know, the nodes at upper level affect more in the classification process and
thus should be considered with higher priority. This is equivalent to a preference
to check the shallowest nodes first in search of promising nodes to expand.

Our top-down approach (TopDown) consists of multiple iterations (Figure 6).
For each search iteration, we have the following procedures:

1. Identification of the node to check.

2. Identification of promising neighboring hierarchies concerning a node.

3. Identification of the best neighbor.

4. Update of current best hierarchy.

We discuss each procedure below.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 11

Input:
H0: Predefined hierarchy
T : Training data
V : Validation set
δ: Stopping criterion

Output:
Hbest: the approximate best hierarchy

Algorithm:
1 Spre = 0; Hbest = H0;
2 Sbest=evaluateHierarch(H0,M ,V);
3 Oflag = false;
4 while (Sbest − Spre > δ)
5 Nlist={all nodes in Hbest};
6 repeat

7 Node=getNodeToCheck(Nlist);
8 Hlist=generateNeighbors(Node,Oflag);
9 [H, S]=findBest(Hlist);
10 if S > Sbest

11 Spre = Sbest; Sbest = S; Hbest = H;
12 updateNodeList(Nlist, Hbest, Node);
13 end

14 until Nlist == null ;
15 Oflag = ¬Oflag;
16 end

17 return Hbest

Fig. 6. Top-Down Hierarchy Search Algorithm

4.3.1 Identification of the node to check. Clearly, the nodes at the upper level
affect more in the classification process and should be considered with higher pri-
ority. Therefore, we maintain a list of nodes in the hierarchy. At each iteration, we
pop the node with the shallowest depth and remove it from the list to avoid future
consideration (refer to Figure 7 getNodeToCheck for details).

4.3.2 Identification of promising neighbors. Since the number of neighbors of
one hierarchy could be huge, rather than considering all the nodes in the tree to
generate the hierarchy, we focus on performing operations to one specific node in the
hierarchy. Three elementary operations have different priorities. In order to sever
the wrong parent-child relations, we need to first promote the node. Thereafter,
merging and demoting are employed to adapt the hierarchy more specifically con-
sistent for hierarchical classification. So we always check promoting a node first to
avoid getting stuck under a wrong parent node. Therefore, in one iteration, we just
check the promising hierarchies by performing promoting operations. In another
iteration, we just check the hierarchies by performing demoting or merging.

When we perform merging or demoting on one node, it is not necessary for us
to try all the possible pairs of nodes under the same parent. We can just focus on
the category which is most similar to the node we currently check. Therefore, for
one node, we just pick the sibling node with highest ambiguity score and generate
possible good neighbors by merging these two nodes or by demoting one node to

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Lei Tang, et al.

Procedure: getNodeToCheck()
Input: Nlist, A list of nodes in a hierarchy
Output: Node, the node to check

check all the nodes in the list;
set Node to the node with the highest level;
remove Node from the list Nlist;
return Node;

Procedure: generateNeighors();
Input: N , the node to check;

Oflag, the operation flag to denote promote
operation or merge/demote operation.

Output: Clist,a list of promising hierarchy neighbors
if Oflag == false

Hcand =hierarchy by promoting N ;
Clist = {Hcand};

else
Nsimilar =the most ambiguous sibling node for N ;
H1 =hierarchy by merging N and Nsimilar;
H2 =hierarchy by demoting N as Nsimilar’s child;
H3 =hierarchy by demoting Nsimilar as N ’s child;
Clist = {H1, H2, H3};
remove invalid hierarchies from Clist;

end
return Clist;

Procedure: updateNodeList();
Input: Nlist, the node list needs to check;

H, the hierarchy representing the operation;
Node, the node being checked;

Output: an updated node list Nlist

switch (H.operation)
case promote: N=Node’s grandparent;

add all N ’s descendants to Nlist;
break;

case merge:
case demote: N=Node’s parent;

add all N ’s descendants to Nlist;
break;

end
return Nlist;

Fig. 7. Procedure definitions

the other. Notice that not all the neighboring hierarchies are valid. If one leaf
node becomes a non-leaf node, it is invalid as categories are the leaf nodes in this
work. These invalid hierarchies must be removed from consideration. The detailed
procedure generateNeighbors is in Figure 7.

4.3.3 Identification of the best neighbor. This procedure compares all the promis-
ing neighboring hierarchies and find the best one among them. Given a list of
hierarchies, we just build a hierarchical model based on each hierarchy, and then

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 13

evaluate it on the validation data to obtain some classification statistics (in partic-
ular, macro-averaged recall in our work). The best hierarchy and the corresponding
statistics are returned (Line 9 in Figure 6).

4.3.4 Update of current best hierarchy. After we obtain the best hierarchy in
the neighbor list, we could compare it with the current best hierarchy. If the
classification statistic is better than the current one, we replace the current best
hierarchy with the best hierarchy just found and update the list of nodes to check.
Otherwise, the hierarchy remains unchanged, and we continue with the next node
(Lines 10-13 in Figure 6).

Each time we change the hierarchy, we have to update the list of nodes to check
(refer to updateNodeList in Figure 7). We actually just push to the list all the
nodes that will be affected by the operation. Suppose N is the node being checked.
If the hierarchy is obtained by promoting, all the children of N ’s grandparent
should be rechecked. We can revisit the cases in Figure 3. H2 is generated by
promoting node 6 in H1. If H2 is just a subtree in a huge taxonomy, then all the
other nodes’ classifiers except the descendants of node 1 remains unchanged. So we
just push all the descendants of node 1 into the list. Similarly, when we perform
merging and demoting we just need to push all the descendants of N ’s parent to
the list. Therefore, as we perform demoting and merging to node 3 in H1 resulting
in H3 and H4, respectively, only the subtree of node 1 will be affected. All the
changes are local and we just update the nodes that is affected by the modification.
Furthermore, as we use top-down approach to traverse the tree, whenever there’s
a change at one node, its children will not be affected. This avoids unnecessary
checking of nodes.

The detailed algorithm is presented in Figure 6. In summary, the algorithm
basically consists of multiple iterations. In each iteration, we check each node of the
taxonomy in a top-down approach and generate promising hierarchies (neighbors)
according to an operation flag. Since promoting should perform first, in Figure 6,
we set the flag to false at the initial iteration (Line 3). Then the operation flag is
switched to true at the end of one iteration (Line 15), so that in the next iteration,
we merge two nodes or demote one node to deepen the hierarchy. This pairwise
iterations will keep going until the performance improvement on the validation set
is lower than the predefined δ.

The major difference of TopDown and Greedy approaches is efficiency. As for
the Greedy approach, we have to check all the possible operations to all the nodes,
whereas TopDown considers only one node in each search step while traversing the
possible neighboring hierarchies. The efficiency difference will be reported in the
experiment part.

5. EXPERIMENTS AND ANALYSIS

Since the classification performance indicates the efficacy of a taxonomy for group
profiling, here we use classification performance as a quality measure of a topic
taxonomy. We conduct experiments on some real-world data sets to show the effec-
tiveness of the proposed algorithms. These data sets are provided by an Internet
company. One is about the topics of social study (Soc) shared by many small
groups; the other focuses on children’s interests (Kids). Topics in both data sets

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Lei Tang, et al.

Table I. Real-World Data Description
Soc Kids

#leaf-level topics 69 244

#nodes in topic taxonomy 83 299

Height of topic taxonomy 4 5

#instances 5248 15795

#terms 34003 48115

are organized into corresponding taxonomies. Text and meta information is ex-
tracted from web pages. After removing common stop words, a vector space model
is applied to represent web pages. Table I summarizes the information about the
two data sets. These two data sets contain a large number of categories and the
class distribution is highly imbalanced as observed in Figure 8. Therefore, accuracy
is not a good evaluation measure as it is biased toward the major class [Tang and
Liu 2005]. Instead, we use macro-averaged recall and F-measure as our evaluation
measure.

5.1 Experiment Settings

We perform 10-fold cross validation to both data sets. In each fold, we apply both
Greedy approach and TopDown approach to the training data with a predefined
hierarchy. After we obtain the adjusted hierarchy, we build hierarchical models
based on training data by selecting various numbers of features at each node. The
model is then evaluated on the test data. The average results in terms of macro
recall and macro F-measure are reported.

When we apply our hierarchy adjusting algorithm to the training data, the crite-
rion to evaluate the quality of a hierarchy is macro-averaged recall. 500 features are
selected using information gain [Yang and Pedersen 1997] to build the hierarchi-
cal model. To gain efficiency, the classifier at each node we exploited is multi-class
multinomial näıve Bayes classifier [McCallum and Nigam 1998]. The data fragmen-
tation problem becomes serious with a large number of categories. For instance,
some categories in Soc data have fewer than 10 instances. Keeping a portion of
training data as the validation set makes the learning unstable and might lose gen-
eralization capability. Here, we set the validation set the same as the training data
to guide the hierarchy modification. Independent validation sets can be a better
option if sufficient training data is available. The stopping criterion for hierarchy
adaptation is until no classification performance can be improved on the training
data5. By some empirical pilot study, we set ξ in Heuristic 4.2 to 0 and γ in
Heuristic 4.4 to 0.01. Cross validation can be exploited here to set the parameters.

In order to examine if a predefined semantics-based taxonomy can provide useful
prior knowledge for search, we also compared with the “start from scratch” ap-
proach: ignore the predefined taxonomy and do hierarchical clustering on training
data to obtain the taxonomy. We did a preliminary study to compare a divisive
clustering approach in [Punera et al. 2005] with an agglomerative clustering algo-
rithm in [Chuang and Chien 2004] (discussed in Section 6.2), and found that the
latter (HAC+P) is not comparable to the former for our application. The difficulty

5The overfitting problem with this setting is studied later.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 15

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

450

500

N
u
m

b
e
r

o
f
In

s
ta

n
c
e
s

(a) Soc Data

0 50 100 150 200 250
0

100

200

300

400

500

600

700

N
u
m

b
e
r

o
f
In

s
ta

n
c
e
s

(b) Kids Data

Fig. 8. Class Distribution

lies at choosing proper critical parameters of HAC+P like the dimensionality to
calculate the similarity, the number of maximum depth and the preferred number
of clusters of each node. Therefore, we just use the former clustering approach as
the baseline in our experiment.

5.2 Performance on Real-World Data

Figures 9 and 10 demonstrate the performance of different methods plus the stan-
dard deviation. The curves of “Clustering” and “Original” denote the performance
of the clustering approach and that based on the original hierarchies, respectively.
There is a clear association between the performance and the number of categories.
It is reasonable to expect that the recall and F-measure are not very high as we
have 69 categories in Soc and 244 classes in Kids. The semantics-based hierarchy
eventuates better hierarchical classification performance than the clustering-based
hierarchy. This set of results also indicates that the prior knowledge embedded in
a taxonomy is useful in classification.

Comparatively, our algorithms, which start from a given hierarchy, achieve sig-
nificant improvement over the original taxonomy on both data sets. This is more
obvious when the number of categories is large whereas the features being selected
are few. Both TopDown and Greedy approach are comparable and can automat-
ically adjust the content taxonomies for more accurate classifiers. There is no
significant difference between the two in terms of classification performance.

An interesting observation in the experimental results is that the differences in
performance of the different hierarchies diminish with the increasing number of
selected features (Figure 9). When the number of selected features is small (e.g.,
500), a better hierarchy can significantly outperforms a worse hierarchy. When
the number of features becomes large, performance difference diminishes. In other
words, the loss in accuracy in a bad hierarchy could be partially compensated by
selecting more features. This is because the subcategories of a good hierarchy share
many features, but the subcategories of a bad one do not. For a good hierarchy,
a small set of features is often sufficient to distinguish one category from another.
When more features are selected, they are either redundant or irrelevant, causing
potential performance deterioration. Since subcategories of a bad hierarchy do not

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Lei Tang, et al.

500 1000 2000 5000 7500 10000
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Feature Number

M
a
c
ro

 R
e
c
a
ll

TopDown

Greedy

Original

Clustering

500 1000 2000 5000 7500 10000
0.32

0.34

0.36

0.38

0.4

0.42

0.44

Feature Number

M
a
ro

 F
−

m
e
a
s
u
re

TopDown

Greedy

Original

Clustering

Fig. 9. Performance on Soc Data

500 1000 2000 5000 7500 10000
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Feature Number

M
a
c
ro

 R
e
c
a
ll

TopDown

Greedy

Original

Clustering

500 1000 2000 5000 7500 10000
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Feature Number

M
a
ro

 F
−

m
e
a
s
u
re

TopDown

Greedy

Original

Clustering

Fig. 10. Performance on Kids Data

share many terms, the increasing number of features can help better represent the
parent category. An important implication is that more features should be selected
for a hierarchy with lexically dissimilar subcategories than one with lexically similar
subcategories. However, when the taxonomy size is large, changing the taxonomy is
more effective for performance improvement than selecting more features (Figure 10
and later on the Google directory benchmark data shown in Figure 14).

5.3 Greedy vs. TopDown Approach

Though no significant classification difference is observed between Greedy and Top-
Down approaches, the time complexity of the two differs. For näıve Bayes classifier,
both the training time and test time are linear in terms of the number of instances
and dimensionality. For each category, we could summarize the statistics of terms
given the category using just one vector. Then, building a hierarchical model just
costs O(cid) where ci is the number of internal nodes in the hierarchy, and d is the
dimensionality. However, evaluation still costs O(hnd) where h is the average height
of the hierarchy and n is the number of instances in the validation data. So the
total number of evaluations determines the computational cost of our algorithms.

Tables II and III present the total number of evaluations for each method. When
the number of nodes in the hierarchy varies from 83 in Soc to 299 in Kids, that is,
an increase by around 4 times, the number of hierarchy evaluations for the greedy
approach multiplies by around 10923.6

616.9
≈ 18 times. But for Top-down approach,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 17

Table II. Greedy Performance Statistics
Dataset Evaluations Operations Candidates

Soc 616.9 ± 241.9 18.9 ± 6.7 32.3 ± 1.8

Kids 10923.6 ± 2098.9 64.2 ± 13.0 170.3 ± 4.1

Table III. TopDown Performance Statistics
Dataset Evaluations Operations Iterations

Soc 539.8 ± 191.9 48.5 ± 12.6 5.6 ± 1.8

Kids 3343.5 ± 665.1 197.9 ± 26.5 9.7 ± 1.6

the factor is 3343.5
539.8

≈ 6 times. This huge difference can also be derived from the
following theoretical analysis.

For the Greedy approach, at each search iteration, the number of hierarchy
neighbors is O(c) where c is the number of nodes in the tree. If we finally perform p
operations, the number of evaluations is O(cp). The time complexity of Greedy ap-
proach is O(cp·hnd). Table II shows the average number of evaluations, operations,
and hierarchy candidates of each iteration on Soc and Kids data. As the number
of nodes in the hierarchy increases, both operations to reach a local optimum and
the average number of candidates rises dramatically, which is approximately pro-
portional to the number of the nodes in the hierarchy. Hence, the greedy approach
runs approximately O(c2 · hnd) in time.

For the TopDown approach, Tables III exhibits some statistics: the number
of iterations, evaluations and elementary operations. Differently, the number of
candidates is not presented as this algorithm generates at most 3 candidates in
each search step. Let c denote the number of nodes in the hierarchy, then a node
can never be checked more than c times in one iteration. In the worst case, each time
we update the nodes list after checking a new node, we have to recheck the previous
checked nodes. Then, the worst time complexity for one iteration is O(c2 · hnd).

However, the bound above is loose. As we traverse the taxonomy top down
and all the hierarchy changes are local, the worst case can seldom happen on a
semantically reasonable hierarchy. In reality, we observe that on average, a node
will be checked no more than twice in one iteration. As shown in Table III, the
average number of evaluations of one iteration is 539.8/5.6 = 96.39. The number
of nodes in the original hierarchy is 83, hence, each node will be checked roughly
96.39/83

.
= 1.16 < 2 times. Similarly, on Kids data, each node will be checked

roughly 3343.5/(9.7 ∗ 299)
.
= 1.15 < 2 times in one iteration. Hence, empirically,

the time of one iteration should be roughly O(2chnd) = O(chnd). In practice, the
number of iterations is bounded by a small constant I. We show in Sec. 5.4 that
I = 2 is a good choice for TopDown. Hence, the total time complexity of our
algorithm is O(Ic · hnd), i.e., linear.

5.4 Robustness

In our original TopDown approach, we keep modifying hierarchy until no classi-
fication improvement could be observed on training data. However, it is unclear
whether the final hierarchy might over-fit the training data. Thus, we build hi-
erarchical classification models on the training data based on the hierarchy after
each iteration in TopDown and test them on the test data. We show the trend

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Lei Tang, et al.

Fig. 11. Over-fitting on Soc Fig. 12. Over-fitting on Kids

500 1000 2000 5000 7500 10000
0.43

0.44

0.45

0.46

0.47

Feature Number

M
a
c
ro

 R
e
c
a
ll

Soc Data

Multiple Iterations

2 Iterations

Greedy Approach

500 1000 2000 5000 7500 10000

0.35

0.4

0.45

Feature Number

M
a
c
ro

 R
e
c
a
ll

Kids Data

Multiple Iterations

2 Iterations

Greedy Approach

Fig. 13. Multiple vs. 2 Iterations

500 1000 2000 5000 7500 10000
0.1

0.2

0.3

0.4

Feature Number

M
a

ro
 F

−
m

e
a

s
u

re

TopDown

Greedy

Original

500 1000 2000 5000 7500 10000
0.1

0.2

0.3

0.4

Feature Number

M
a

c
ro

 R
e

c
a

ll

TopDown

Greedy

Original

Fig. 14. Performance on Google Directory

Table IV. Efficiency Comparison
Data Iterations Evaluations Operations

Soc 2 211.8 ± 18.3 38.5 ± 6.9
Multiple (5.6±1.8) 539.8 ± 191.9 48.5 ± 12.6

Kids 2 784.9 ± 28.0 136.3 ± 11.7
Multiple (9.7±1.6) 3343.5 ± 665.1 197.9 ± 26.5

in terms of average performance on both Soc and Kids in Figures 11 and 12, re-
spectively. Iteration 0 denotes the performance of the original hierarchy. Clearly,
the performance on the testing data does not necessarily improve as the iteration
number increases. Soc and Kids achieve the maximum after 2 and 5 iterations,
respectively. The largest jump between consecutive iterations occurs at the first 2
iterations. Then, the performance stabilizes for both cases.

Based on this observation, we suggest for TopDown to iterate twice to save com-
putational cost and obtain a robust taxonomy. Notice that the number of iterations
in TopDown varies depending each fold (as seen in Table III). Figure 13 compares
the performance of our algorithm with multiple iterations and mere two iterations.
On Soc, running our algorithm just 2 iterations results in a more robust hierarchy
compared with many iterations. On Kids, we also obtain a hierarchy as good as
the one obtained following the original TopDown algorithm.

Meanwhile, the computational time is reduced sharply. The average number of
evaluations and operations are shown in Table IV. The majority of the hierarchy

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 19

modifications (operations) is done after just 2 iterations. But the average number of
evaluations decreases significantly. As argued in the previous section, the key issue
to the time complexity of our algorithm is the number of evaluations. By reducing
the number of evaluations, the computational time is significantly reduced.

The time complexity difference between TopDown with 2 iterations and Greedy
is more easily observed when the taxonomy size is large. To verify this, a partial
taxonomy of the Google directory is selected as a benchmark data set. We select
a partial taxonomy from category computers, remove those categories with too few
documents and finally obtain a taxonomy with 978 leaf nodes (categories) and in
total 1207 nodes (including internal nodes) with 31197 documents.

We applied our proposed two approaches (Greedy and TopDown with only 2
iterations) to the data set. Unfortunately, the Greedy approach is still compu-
tationally too expensive for such a large data set to get a final solution. Thus,
instead of letting the Greedy method “run forever”, we interrupt it when Greedy
runs twice the time as TopDown does, and the obtained hierarchy is then used as
the Greedy’s taxonomy. Figure 14 demonstrates the average result of 10-fold cross
validation. Clearly, TopDown with 2 iterations is more accurate and efficient than
Greedy. Note that the number of categories is very large here (978 classes). Hence,
a tiny numerical improvement is indeed significant with respect to a large number
of categories. This is also indicated by small standard deviations in the figure.

5.5 Dynamic Change of Taxonomies

In the previous experiments, we have shown that taxonomy adaptation can help to
improve accuracy for topic identification. The content change in new incoming data
is detected by our method to adapt the taxonomy to reflect the change. Since the
taxonomy for real-world applications is so large, it is cumbersome to be included
for illustration. In addition, the taxonomy evolvement is usually slow and extensive
human efforts are required to verify taxonomy adaptation due to the changes of a
very large-scale data. An alternative to verify taxonomy adaption is to perform a
controlled experiment in which we know a priori the obvious content changes in
the data and observe how a taxonomy adapts to the changing data. This controlled
experiment can illustrate clearly the effect of dynamic changes of taxonomies.

To prepare for the controlled experiment, we crawled 1800 Web pages with 8
categories from a publicly available web site. The 8 categories are organized into
a semantic-sound hierarchy in Figure 15(a) as the initial taxonomy. The data set
is split into three folds (Folds 1, 2, and 3) to represent the snapshots collected at
different time stamps. We then switch the content of class Movies with that of
Politics in Fold 2. This way, we force the obvious change to happen and see if
the taxonomy can adapt to the change. When Fold 1 is presented, the taxonomy
of Figure 15(a) is changed to the one in Figure 15(b). Then Fold 2 is presented,
as the contents of Movies and Politics are switched in this fold, the taxonomy is
adapted to that in Figure 15(c). Notice that the position of Movie and Politics are
swapped in the new taxonomy, and the taxonomy adapts to the change. Movies and
Economics now belong to the same parent node indicating the similarity in their
contents. Similarly, Politics becomes a sibling node of Music as expected. When
Fold 3, in which the content is consistent with the category labels as in Fold 1, is
presented, the taxonomy changes again to that in Figure 15(d) to reflect the change

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Lei Tang, et al.

SportsBasketball
Football
Politics

Economics

Movies

Music

Video Game
Word Game Game

Social Study

Arts

I

II

Root

(a)

Basketball

Football

Politics

Economics

Movies

Music

Video Game

Word Game

Social Study

Game

Root

(b)

Football

Basketball
Movies

Economics

Politics

Music

Video Game

Word Game

Social Study

Game

Root

(c)

Football

Basketball

Movies

Music

Politics

Economics

Video Game

Word Game

Arts

Game

Root

I

(d)

Fig. 15. Dynamic Changes of Taxonomies

in data from Fold 2 to Fold 3. Movies and Music are coupled again, and Politics
and Economics are siblings. Clearly, the content changes in data are reflected in
the corresponding taxonomies. We notice that Sports and Games are somehow
mixed in all the three taxonomies. This could be attributed to the variance of each
data fold.

6. RELATED WORK

Group profiling has been studied extensively in terms of customer relationship mod-
eling [Bounsaythip and Rinta-Runsala 2001; Adomavicius and Tuzhilin 2001; Shaw
et al. 2001; Chen et al. 2005]. In those works, a typical process is to apply an
association rule algorithm [Agrawal et al. 1993] to mine interesting patterns from
customer transactions. Based on the customer segmentation (group), some inter-
esting patterns can be found in this group for future marketing. Our work adopts
a different process than the typical customer profiling. Focusing on online groups
such as Blogosphere or online Internet surfing activities, we adopt topic taxonomy
to profile groups instead of potential patterns shared by customer transactions. The
data we collect is mainly topics/tags and documents instead of customer informa-
tion and transaction records. Our profiles actually act like concise summaries for
individual online groups.

We propose taxonomy adaptation to achieve dynamic group profiling. In this
process, a hierarchical classification model is employed, and a better taxonomy is
attained after adaptation given a provided taxonomy. Thus, we briefly survey the
work on state-of-the-art hierarchical classification and taxonomy generation.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 21

6.1 Hierarchical Classification

A topic taxonomy can be used as a base for a divide-and-conquer strategy. A
classifier is built independently at each internal node of the hierarchy using all the
documents of the subcategories of this category, and a document is labeled using
these classifiers to greedily select sub-branches until we reach a leaf node, or certain
constraints are satisfied (e.g., the score should be larger than a threshold [Dumais
and Chen 2000] or the predictions of adjacent levels should be consistent [Wibowo
and Williams 2002]). Feature selection is often performed at each node before
constructing a classifier [Chakrabarti et al. 1998; Liu and Motoda 2007].

To build the hierarchical model, different base classifiers are employed including
association rules [Wang et al. 1999], näıve Bayes classifiers [Koller and Sahami 1997],
neural networks [Weigend et al. 1999; Ruiz and Srinivasan 1999], and support vector
machines [Dumais and Chen 2000; Sun and Lim 2001; Liu et al. 2005]. As the greedy
approach for classification might be too optimistic, researchers propose to traverse
all the possible paths from the root to the leaves. In [Dumais and Chen 2000], the
authors use a sigmoid function to map the prediction of a support vector machine
at each node to a probability and then multiply these probabilities along one path.
The path with the highest probability is selected. Another way is to set a threshold
at each level and just take those branches when the corresponding prediction’s
score is larger than the threshold. It is demonstrated that a hierarchical model
marginally outperforms a flat(non-hierarchical) model. And these two methods
show little difference. In [Koller and Sahami 1997], a greedy approach with näıve
Bayes classifiers is exploited and a significant accuracy improvement is observed.

One advantage of the hierarchy-based approach is its efficiency in training and
testing, especially for a very large taxonomy [Yang et al. 2003; Liu et al. 2005].
Hierarchical models make it easy to modify and expand a taxonomy, like add one
sub-category, delete one category, or merge several categories into one. For each
modification, it is not necessary to update the classifiers of all the nodes since the
classifiers are built independently. We just need to update a small portion of the
classifiers. So the hierarchical approach is preferred when facing a large taxonomy.

Hierarchies can also be used to assign different misclassification costs. Recently,
new hierarchical classification based on margin theory and kernel methods are in-
troduced [Dekel et al. 2004; Cesa-Bianchi et al. 2006b; Tsochantaridis et al. 2004;
Cai and Hofmann 2004; Rousu et al. 2005; Cesa-Bianchi et al. 2006a]. The main
idea behind these methods is to map the document features or document-label
features to a high-dimensional space so that a defined margin can be maximized.
Variegated loss functions (misclassification costs) are obtained from the hierarchy.
This loss function is incorporated into the margin formulation and then some tricks
(variable/constraint selection, maintaining a working set, incremental conditional
gradient ascent) are used for optimization. In [Cesa-Bianchi et al. 2006b; Tsochan-
taridis et al. 2004; Cai and Hofmann 2004; Rousu et al. 2005], the output space is a
sequence of categories rather than just a label. All the possible paths from the root
to leaves in the hierarchy are considered during training and the goal is to find an
optimal sequence which maximizes the margin. A concomitant of these methods’
superior performance is their unbearable computational cost for training. There
are some other methods which use hierarchies for statistical smoothing and require

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Lei Tang, et al.

EM or cross validation to tune the parameters [McCallum et al. 1998; Toutanova
et al. 2001; Veeramachaneni et al. 2005].

However, we notice that all the previous works paid little attention to the quality
of the taxonomy which we need to consider in real-world applications, especially
for dynamic group profiling of which topics might drift. This partly motivates us
to propose our methods for taxonomy adaptation.

6.2 Taxonomy Generation via Clustering

Some researchers propose to generate a taxonomy from data for document manage-
ment and classification. However, human beings are sometimes involved to aid the
construction of taxonomies [Zhang et al. 2004; Gates et al. 2005], making it rather
complicated to evaluate. Here, we concentrate on those methods constructing tax-
onomies automatically.

There are two directions for hierarchical clustering: agglomerative and divisive.
In [Aggarwal et al. 1999; Chuang and Chien 2004; Li and Zhu 2005], all employ a
hierarchical agglomerative clustering (HAC) approach. In [Aggarwal et al. 1999],
the centroids of each class are used as the initial seeds and then projected clustering
method is applied to build the hierarchy. During the process, the cluster with too
few documents is discarded. Thus, the taxonomy generated by this method might
have different categories than predefined. The authors evaluate their generated
taxonomies by some user study and find it is comparable to the Yahoo directory.
In [Li and Zhu 2005], a linear discriminant projection is applied to the data first and
then a hierarchical clustering method UPGMA [Jain and Dubes 1988] is exploited
to generate a dendrogram, which is a binary tree. For classification, the authors
change the dendrogram to a two-level tree according to the cluster coherence, and
hierarchical models yield classification improvement over flat models. But it is not
sufficiently justified why a two-level tree should be adopted. Meanwhile, [Chuang
and Chien 2004] proposes HAC+P which is similar to the previous approach. Es-
sentially, it adds one post-processing step to automatically change the binary tree
obtained from HAC, to a wide tree with multiple children.

Comparatively, the work in [Punera et al. 2005] falls into the category of divisive
hierarchical clustering. The authors generate a taxonomy with each node associated
with a list of categories. Each leaf node has only one category. This algorithm
basically uses two centroids of categories which are furthest as the initial seeds
and then applies Spherical K-Means [Dhillon et al. 2001] with k = 2 to divide the
cluster into 2 sub-clusters. Each category is assigned to one sub-cluster if most of
its documents belong to the sub-cluster (its ratio exceeds a predefined parameter).
Otherwise, this category is associated to both sub-clusters. Another difference of
this method from other HAC methods is that it will generate a taxonomy with one
category possibly occurring in multiple leaf nodes.

Some practitioners adopt the Bayesian approach to build a topic taxonomy for
text documents. The Cluster-Abstraction Model proposed in [Hofmann 1999], as-
sociates word distribution conditioned on classes for each node. The author uses a
variance of EM algorithm to do clustering. Similarly, Probabilistic Abstraction Hi-
erarchies presented in [Segal et al. 2001] also associates a class-specific probabilistic
model (CPM) to each node and use KL divergence to define the distance of cate-
gories. Then a hierarchy which minimizes the overall distance and maximizes the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 23

likelihood is presented. In [Blei et al. 2003], the nested Chinese restaurant process
is introduced as a prior for hierarchical extension to the latent Dirichlet allocation
model [Blei et al. 2003]. Some recent works [Blei and Lafferty 2006; Chakrabarti
et al. 2006; Airoldi et al. 2006] extend the clustering method to take into consider-
ation the dynamic change of topics in evolving data as well, but mostly focus on a
flat list of topics without taxonomy.

Most clustering approaches justify their taxonomies based on semantics. Se-
mantically sound taxonomy may not necessarily result in good classification perfor-
mance [Tang et al. 2006]. In addition, the update of a taxonomy based on clustering
is not efficient. The clustering algorithm has to rerun from scratch each time when
new data is collected. Our approach adapts a taxonomy automatically thus avoids
unnecessary, repeated work.

7. CONCLUSIONS AND FUTURE WORK

In order to dynamically profile various online groups and communities for other
tasks and potential applications, we propose a topic-taxonomy based profiling, as
it provides more contextual information with varied granularity yet requires fewer
terms to represent each group. However, a stable taxonomy fails to capture a
group’s interest shift reflected in changing data. Taxonomy adaptation is proposed
to allow a taxonomy to keep up with the evolving data.

We propose two effective data-driven approaches to modify a given taxonomy:
Greedy and TopDown. Experiments on the real-world data show that both algo-
rithms can adapt a hierarchy to achieve improved classification performance. No
significant difference in classification performance is observed between Greedy and
TopDown. But TopDown with only 2 iterations avoids overfitting and outperforms
Greedy dramatically in terms of time complexity and scalability. Our experiments
also show that taxonomy adaptation can dynamically capture the content change
in the evolving data.

This paper is a starting point for dynamic group profiling. Much work remains
to be done along this direction. Some lines of immediate future work include:

• In this work, we assume the leaf-level topics in the taxonomy to be constant. In
cases where a brand-new topic appears due to some recent new events, it would
require to combine this work with topic detection and tracking [Allan 2002] to
incorporate newly detected topics.

• Combining information epidemics [Gruhl et al. 2004] with our taxonomic rep-
resentation can likely provide more useful and comprehensive profiles for group
search and retrieval.

• How to specify a proper pace and time window to update the taxonomy re-
quires more study for real-world applications. One simplest way is to update per
day/week/month. A more interesting direction is to trigger the update automat-
ically based on the content of newly collected documents.

Our profiles based on topic taxonomy provide a concise summary of various gran-
ularity for each online group. This kind of information is especially useful for group
identification, and group relationship visualization. Our proposed approach for tax-
onomy adaptation is particularly applicable for an environment where the changes

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Lei Tang, et al.

are reflected in data; our methods evolve a taxonomy by learning from the data
as shown in the “Hurricane” example. Besides dynamic group profiling, taxonomy
adaptation can also be used for some other potential applications, including auto-
matic newswire feeder classification where each user subscribes to multiple topics,
personalized email filtering and forwarding in which each user maintains a directory
to store emails, online bookmark organization system where a topic taxonomy is
maintained, and recommending systems and direct marketing.

8. ACKNOWLEDGMENTS

Lei Tang was partly supported by GPSA Research Grant of ASU.

REFERENCES

Adomavicius, G. and Tuzhilin, A. 2001. Using data mining methods to build customer profiles.
Computer 34, 2, 74–82.

Aggarwal, C. C., Gates, S. C., and Yu, P. S. 1999. On the merits of building categorization
systems by supervised clustering. In KDD ’99: Proceedings of the fifth ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining. ACM Press, New York, NY, USA,
352–356.

Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining association rules between sets of
items in large databases. SIGMOD Rec. 22, 2, 207–216.

Airoldi, E. M., Fienberg, S. E., Joutard, C., and Love, T. M. 2006. Discovering latent
patterns with hierarchical bayesian mixed-membership models. Tech. Rep. CMU-ML-06-101,
School of Computer Science,Carnegie Mellon University.

Allan, J. 2002. Introduction to topic detection and tracking. Kluwer Academic Publishers,
Norwell, MA, USA, 1–16.

Blei, D., Griffiths, T. L., Jordan, M. I., and Tenenbaum, J. B. 2003. Hierarchical topic models
and the nested chinese restaurant process. In Advances in Neural Information Processing

Systems 16, S. Thrun, L. Saul, and B. Schölkopf, Eds. MIT Press, Cambridge, MA.

Blei, D. M. and Lafferty, J. D. 2006. Dynamic topic models. In ICML ’06: Proceedings of the

23rd international conference on Machine learning. ACM Press, New York, NY, USA, 113–120.

Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003. Latent dirichlet allocation. J. Mach. Learn.

Res. 3, 993–1022.

Bounsaythip, C. and Rinta-Runsala, E. 2001. Overview of data mining for customer behavior
modeling. http://virtual.vtt.fi/inf/julkaisut/muut/2001/customerprofiling.pdf.

Cai, L. and Hofmann, T. 2004. Hierarchical document categorization with support vector ma-
chines. In CIKM ’04: Proceedings of the thirteenth ACM international conference on Informa-

tion and knowledge management. ACM Press, New York, NY, USA, 78–87.

Cesa-Bianchi, N., Gentile, C., and Zaniboni, L. 2006a. Hierarchical classification: combining
bayes with svm. In ICML ’06: Proceedings of the 23rd international conference on Machine

learning. ACM Press, New York, NY, USA, 177–184.

Cesa-Bianchi, N., Gentile, C., and Zaniboni, L. 2006b. Incremental algorithms for hierarchical
classification. J. Mach. Learn. Res. 7, 31–54.

Chakrabarti, D., Kumar, R., and Tomkins, A. 2006. Evolutionary clustering. In KDD ’06:

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM Press, New York, NY, USA, 554–560.

Chakrabarti, S., Dom, B., Agrawal, R., and Raghavan, P. 1998. Scalable feature selection,
classification and signature generation for organizing large text databases into hierarchical topic
taxonomies. The VLDB Journal 7, 3, 163–178.

Chen, M.-C., Chiu, A.-L., and Chang, H.-H. 2005. Mining changes in customer behavior in
retail marketing. Expert Systems with Applications 28, 773–781.

Chuang, S.-L. and Chien, L.-F. 2004. A practical web-based approach to generating topic
hierarchy for text segments. In CIKM ’04: Proceedings of the thirteenth ACM international

ACM Journal Name, Vol. V, No. N, Month 20YY.

Topic Taxonomy Adaptation · 25

conference on Information and knowledge management. ACM Press, New York, NY, USA,
127–136.

Dekel, O., Keshet, J., and Singer, Y. 2004. Large margin hierarchical classification. In ICML

’04: Proceedings of the twenty-first international conference on Machine learning. ACM Press,
New York, NY, USA, 27.

Dhillon, I. S., Fan, J., and Guan, Y. 2001. Efficient clustering of very large document collections.
In Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers.

Dumais, S. and Chen, H. 2000. Hierarchical classification of web content. In SIGIR ’00: Proceed-

ings of the 23rd annual international ACM SIGIR conference on Research and development

in information retrieval. ACM Press, New York, NY, USA, 256–263.

Forman, G. 2003. An extensive empirical study of feature selection metrics for text classification.
J. Mach. Learn. Res. 3, 1289–1305.

Gates, S. C., Teiken, W., and Cheng, K.-S. F. 2005. Taxonomies by the numbers: building high-
performance taxonomies. In CIKM ’05: Proceedings of the 14th ACM international conference

on Information and knowledge management. ACM Press, New York, NY, USA, 568–577.

Gruhl, D., Guha, R., Liben-Nowell, D., and Tomkins, A. 2004. Information diffusion through
blogspace. In WWW ’04: Proceedings of the 13th international conference on World Wide

Web. ACM Press, New York, NY, USA, 491–501.

Hofmann, T. 1999. The cluster-abstraction model: Unsupervised learning of topic hierarchies
from text data. In IJCAI ’99: Proceedings of the Sixteenth International Joint Conference on

Artificial Intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 682–687.

Hwang, F. and Richards, D. 1992. The steiner tree problem. Annals of Discrete Mathematics 53.

Jain, A. K. and Dubes, R. C. 1988. Algorithms for clustering data. Prentice-Hall, Inc.

Koller, D. and Sahami, M. 1997. Hierarchically classifying documents using very few words.
In ICML ’97: Proceedings of the Fourteenth International Conference on Machine Learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 170–178.

Li, T. and Zhu, S. 2005. Hierarchical document classification using automatically generated
hierarchy. In SIAM International Data Mining Conference. Newport Beach, California, USA.

Liu, H. and Motoda, H., Eds. 2007. Computational Methods of Feature Selection. Chapman
and Hall/CRC Press.

Liu, H. and Yu, L. 2005. Toward integrating feature selection algorithms for classification and
clustering. IEEE Trans. on Knowledge and Data Engineering 17, 3, 1–12.

Liu, T.-Y., Yang, Y., Wan, H., Zeng, H.-J., Chen, Z., and Ma, W.-Y. 2005. Support vector
machines classification with a very large-scale taxonomy. SIGKDD Explor. Newsl. 7, 1, 36–43.

McCallum, A. and Nigam, K. 1998. A comparison of event models for naive bayes text classi-
fication. In In AAAI-98 Workshop on Learning for Text Categorization.

McCallum, A., Rosenfeld, R., Mitchell, T. M., and Ng, A. Y. 1998. Improving text clas-
sification by shrinkage in a hierarchy of classes. In ICML ’98: Proceedings of the Fifteenth

International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 359–367.

Punera, K., Rajan, S., and Ghosh, J. 2005. Automatically learning document taxonomies for
hierarchical classification. In WWW: Special interest tracks and posters of the 14th interna-

tional conference on World Wide Web. 1010–1011.

Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J. 2005. Learning hierarchical
multi-category text classification models. In ICML ’05: Proceedings of the 22nd international

conference on Machine learning. ACM Press, New York, NY, USA, 744–751.

Ruiz, M. E. and Srinivasan, P. 1999. Hierarchical neural networks for text categorization (poster
abstract). In SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR conference

on Research and development in information retrieval. ACM Press, New York, NY, USA,
281–282.

Segal, E., Koller, D., and Ormoneit, D. 2001. Probabilistic abstraction hierarchies. In Ad-

vances in Neural Information Processing Systems 14. MIT Press, Vancouver, British Columbia,
Canada, 913–920.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Lei Tang, et al.

Shaw, M. J., Subramaniam, C., Tan, G. W., and Welge, M. E. 2001. Knowledge management
and data mining for marketing. Decis. Support Syst. 31, 1, 127–137.

Sun, A. and Lim, E.-P. 2001. Hierarchical text classification and evaluation. In ICDM ’01:

Proceedings of the 2001 IEEE International Conference on Data Mining. IEEE Computer
Society, Washington, DC, USA, 521–528.

Tang, L. and Liu, H. 2005. Bias analysis in text classification for highly skewed data. In ICDM

’05: Proceedings of the Fifth IEEE International Conference on Data Mining. IEEE Computer
Society, Washington, DC, USA, 781–784.

Tang, L., Zhang, J., and Liu, H. 2006. Acclimatizing taxonomic semantics for hierarchical
content classification from semantics to data-driven taxonomy. In KDD ’06. ACM Press, New
York, NY, USA, 384–393.

Toutanova, K., Chen, F., Popat, K., and Hofmann, T. 2001. Text classification in a hierarchical
mixture model for small training sets. In CIKM ’01: Proceedings of the tenth international

conference on Information and knowledge management. ACM Press, New York, NY, USA,
105–113.

Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. 2004. Support vector machine
learning for interdependent and structured output spaces. In ICML ’04: Proceedings of the

twenty-first international conference on Machine learning. ACM Press, New York, NY, USA,
104.

Veeramachaneni, S., Sona, D., and Avesani, P. 2005. Hierarchical dirichlet model for document
classification. In ICML ’05: Proceedings of the 22nd international conference on Machine

learning. ACM Press, New York, NY, USA, 928–935.

Wang, K., Zhou, S., and Liew, S. C. 1999. Building hierarchical classifiers using class proximity.
In VLDB ’99: Proceedings of the 25th International Conference on Very Large Data Bases.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 363–374.

Weigend, A. S., Wiener, E. D., and Pedersen, J. O. 1999. Exploiting hierarchy in text
categorization. Inf. Retr. 1, 3, 193–216.

Wibowo, W. and Williams, H. E. 2002. Strategies for minimising errors in hierarchical web cat-
egorisation. In CIKM ’02: Proceedings of the eleventh international conference on Information

and knowledge management. ACM Press, New York, NY, USA, 525–531.

Yang, Y. and Pedersen, J. O. 1997. A comparative study on feature selection in text catego-
rization. In ICML ’97: Proceedings of the Fourteenth International Conference on Machine

Learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 412–420.

Yang, Y., Zhang, J., and Kisiel, B. 2003. A scalability analysis of classifiers in text categoriza-
tion. In SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR conference on

Research and development in informaion retrieval. ACM Press, New York, NY, USA, 96–103.

Zhang, L., Liu, S., Pan, Y., and Yang, L. 2004. Infoanalyzer: a computer-aided tool for build-
ing enterprise taxonomies. In CIKM ’04: Proceedings of the thirteenth ACM international

conference on Information and knowledge management. ACM Press, New York, NY, USA,
477–483.

Received February 2007; revised May 2007; accepted August 2007

ACM Journal Name, Vol. V, No. N, Month 20YY.

