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Abstract: Topical drug delivery to the posterior segment of the eye is a very complex challenge.
However, topical delivery is highly desired, to achieve an easy-to-use treatment option for retinal
diseases. In this review, we focus on the drug characteristics that are relevant to succeed in this
challenge. An overview on the ocular barriers that need to be overcome and some relevant animal
models to study ocular pharmacokinetics are given. Furthermore, a summary of substances that were
able to reach the posterior segment after eye drop application is provided, as well as an outline of
investigated delivery systems to improve ocular drug delivery. Some promising results of substances
delivered to the retina suggest that topical treatment of retinal diseases might be possible in the
future, which warrants further research.

Keywords: ocular drug delivery; ocular pharmacokinetics; ocular barriers; permeability; drug
characteristics; retinal diseases

1. Introduction

Topical delivery is the safest and easiest method to apply ocular medication, as it can
be applied non-invasively by the patients themselves. Nevertheless, the drug absorbance
and permeability are low and, as a consequence, the drug concentration in the eye drops is
very high and can lead to side effects [1,2].

Diseases of the anterior segment are generally treated with eye drops. Topical treat-
ment of retinal diseases is also desired, as commonly used injections require frequent
application by a specialized ophthalmologist and are associated with various side effects.
However, topical drug application faces various obstacles, especially if the drug needs to
reach the posterior segment. Besides eye drops, topical application via hydrogels, consist-
ing of a network of natural or synthetic polymer chains, is also possible [3]. For glaucoma
treatment, the application of hydrogel, in the form of contact lenses, has been investigated.
Timolol containing nanoparticles were loaded onto contact lenses and showed timolol
release and IOP reduction over 5 days [4]. In situ gels are hydrogels applied as solutions,
which can quickly transition from sol-to-gel due to chemical and/or physical crosslink-
ing [5]. The short duration of action, as well as the rapid excretion rate, is often the limiting
factor with conventional eye drops. In situ gel systems may provide a potential solution to
these problems. However, it is still unclear what influence the in situ gels have on sustained
release behavior and tissue distribution in the eye. A recent study on ocular drug delivery
of thermosensitive in situ gels, loaded with betaxolol hydrochloride, showed prolonged
drug release [6]. Most of the ocular hydrogel research, however, is focusing on intravitreal
injections to obtain sustained drug release from a reservoir in the vitreous, and a recent
overview was given by Blessing et al. [3]. Another option for achieving prolonged posterior
segment delivery are inserts and implants. An overview on new developments was given
by Castro-Balado et al. [7]. As those applications still require an invasive procedure, they
are not included in this review. Our focus is solely on eye drops as the most common,
non-invasive application method.
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In this review, we will focus on eye drop medication against glaucoma and age-related
macular degeneration (AMD), since those diseases are among the leading causes for blind-
ness worldwide. With increasing age, the prevalence of both diseases rises tremendously [8].
In a large meta-analysis of the last two decades, the prevalence of primary open angle
glaucoma ranges from 0.4% at age < 40 to 9.2% at age > 80, with an overall global prevalence
of 2.4% [9]. Another large meta-analysis showed the overall prevalence of AMD in the age
group of 45–85 to be at 8.69%, ranging from 3.49% at age 45–49 to 24.96% at age 80–85 [10].
Due to the aging population, the number of patients suffering from AMD and glaucoma
will reach 288 million [10] and 111.8 million [8] in 2040, respectively.

Glaucoma comprises a group of neurodegenerative diseases, leading to optic nerve
damage and retinal ganglion cell death, which ultimately results in vision loss [11,12]. Most
forms of glaucoma are associated with an increased intraocular pressure (IOP) [13]. IOP
is currently the main line of therapy to slow down the neurodegenerative progression of
the disease [14]. Therefore, IOP unrelated therapies are increasingly investigated for the
treatment of glaucoma to stop neurodegeneration [15].

AMD is a multifactorial disease influenced by genetic disposition, life style factors,
and, especially, aging [16,17]. Although the early forms of AMD are typically without
symptoms, the two late forms, atrophic and exudative AMD, cause slow (atrophic) or
rapid (exudative) vision deterioration and result in severe visual impairment and even
legal blindness [18]. In spite of the introduction of the anti-vascular endothelial growth
factor (VEGF) therapy, which can slow the progression of exudative AMD, the therapeutic
options for AMD are far from satisfactory [19]. No therapeutic options exist to slow or
halt the progression from early to late AMD, and treatment possibilities for the early or
atrophic forms of AMD are lacking. Improving and prolonging treatment efficacy, as
well as reducing the number of injections needed, is the goal of several new therapeutic
developments, including targeting additional pathways, combination therapy, and new
drug delivery systems [20].

In this review, our focus is on non-invasive topical drug delivery. We will first provide
an overview of the ocular barriers that a topically applied drug has to overcome to reach the
back of the eye, as well as the different absorption pathways that a drug can take (Section 2).
Additionally, an insight into the animal models used for ocular drug delivery studies is
given and compared to the human morphology (Section 3). Next, several examples of anti-
glaucoma and -AMD drugs, which did show successful delivery to the posterior segment
after topical application, are presented (Section 4), as well as some promising drug delivery
systems that are applied to improve topical delivery to the back of the eye (Section 5).

2. Barriers of Topical Delivery to the Posterior Segment of the Eye and the Influence of
Drug Characteristics

To reach the posterior segment of the eye, a topically applied medication has to cross
various barriers. A schematic overview of drug absorption and elimination is given in
Figure 1. Drug penetration is hindered by static, as well as dynamic impediments. Static
obstacles include the various layers of the ocular tissues (cornea, conjunctiva, sclera, and
retina), as well as the vascular blood-retinal and blood-aqueous barriers [21]. Tear dilution,
lymphatic clearance, efflux pumps, and choroidal, as well as conjunctival blood flow, are
among the dynamic parameters responsible for impeded drug delivery [22].

2.1. Penetration of the Precorneal Layer

The first barrier, which already washes away up to 99% of the active ingredient, is the
precorneal layer, the tear film. The tear film consists of three components: the lipid layer (which
prevents evaporation), aqueous layer, and underlying mucosal layer (which is composed of a
variety of soluble and membrane-bound mucins). Whereby, according to the latest findings,
the last two are combined to form an aqueous mucous layer [23]. This tear film, as well as
the blinking of the eyelid, effectively prevent the penetration of substances and result in only
1–5% of the applied drug remaining on the ocular surface for a sufficiently long time to become



Pharmaceutics 2022, 14, 134 3 of 21

effective there [1]. However, a large part of the flushed out drugs can be reabsorbed by the nasal
mucous membrane, which is the reason for systemic side effects [2]. Due to the amphiphilic
properties of the tear film, purely hydrophobic, as well as purely hydrophilic substances, have a
particularly difficult time penetrating this barrier.
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2.2. Corneal or Conjunctival Absorption

Absorption into the eye of topically administered drugs may occur through the cornea
and/or conjunctival epithelium. Following corneal absorption, drugs may reach the tissues
of the posterior segment of the eye by passing through the anterior segment. After drug
absorption into the conjunctiva, the vitreous and retina can be reached, either by diffusion
through the sclera or cornea or via clearance into the systemic circulation [21].

At physiological pH the cornea behaves as a negatively-charged membrane, there-
fore positively-charged molecules penetrate more easily than negatively-charged com-
pounds [24]. The multilayered structure of the cornea further complicates the uptake of
active substances. The epithelial cell layer has lipophilic properties and is generally the
rate-limiting barrier to transcorneal transport. The underlying stroma is hydrophilic and
the endothelial layer below is lipophilic [25]. Lipophilic drugs take the transcellular route
through the corneal epithelium, whereas hydrophilic compounds cross the epithelial barrier
via the paracellular pathway. Paracellular permeation is limited by the paracellular pore
diameter. The corneal epithelium only allows hydrophilic compounds with a size < 500 Da
to permeate due to its paracellular pore diameter of 2.0 nm ± 0.2. Whereas the conjunc-
tiva allows permeation of molecules of size 5–10 kDa, due to its paracellular pore size of
3.0 nm ± 1.6 [26] (Table 1).

Absorption through the cornea and conjunctiva is easier for lipophilic drugs. The lipophilic
drug propranolol, for example, is absorbed 5–10-fold greater than sotalol, a hydrophilic drug
with the same molecular weight [27]. Lipophilic compounds with lipid/water partition co-
efficients (LogD values) of 2–3 are considered optimal for corneal permeation. Compounds
with even higher values (logD > 3) show lower permeability, due to slower desorption from
the lipophilic epithelium to the hydrophilic stroma. Therefore, different lipophilicity is not the
determining factor for the corneal permeability of highly lipophilic pilocarpine prodrugs, but
rather the conversion rate of the prodrug to the more hydrophilic parent drug, which allows an
easier transfer from the epithelium to the stroma [28].

Besides passive diffusion, active transport also plays a role in drug penetration of the
cornea. As hydrophilic drugs only show low passive diffusion across the cornea, the impact of
active transport may be more pronounced, compared to lipophilic drugs. For lipophilic drugs,
the transfer from the epithelium to the stroma is the limiting step; therefore, the efflux transport
in the basolateral side of the epithelium has a higher impact. Nevertheless, since drug absorption
via transporters is saturable, passive diffusion is possibly the dominating mechanism [29].
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Table 1. Influence of drug characteristics on transport of topically applied drugs across ocular tissues.

Ocular Tissues Size and Radius of the Drug Charge of the Drug
Drug Characteristics

Lipophilic Hydrophilic

Cornea <500 Da
Easier penetration of
positively-charged

molecules

Transcellular, 5–10× greater
absorption than hydrophilic drugs,

transfer from epithelium to
stroma -> rate-limiting

Paracellular
<500 Da

Low passive diffusion

Conjunctiva 5–10 kDa Easier than for hydrophilic
compounds

Mainly through
conjunctiva (9–17 times

larger surface
area than cornea)

Sclera
<70 kDa, better permeability

of globular proteins vs.
linear dextrans

Passage of
negatively-charged solutes

is facilitated

RPE-choroid and sclera are equal
barriers

Easier penetration than
lipophilic compounds,

RPE is rate-limiting

Vitreous
<500 nm

Easier diffusion of small
molecules

Negatively-charged
particles diffuse better
than cationic particles

Easier than for hydrophilic
compounds Longer half-life

Even though the conjunctiva is more permeable than the cornea, the presence of efflux
pumps impedes substance transport via this pathway. In addition, the existing vascularization
of the conjunctiva, as well as the episcleral, leads to a removal via the systemic circulation.
The bioavailability of drugs in the anterior chamber is, therefore, at best 5% [30]. Several
macromolecule transporters (for amino acids, nucleosides, d-glucose, monocarboxylate, and
dipeptides) are expressed in the conjunctiva that may be relevant for ocular drug delivery. The
amino acid transporter ATB0,+, for example, recognizes almost all amino acids, making it a
feasible target for amino acid derivatives (including prodrugs) [31].

2.3. Permeation through the Intraocular Tissues

After crossing the cornea and reaching the aqueous humor, the drug diffuses to
the surrounding intraocular tissues and vitreous humor [32]. Further barriers for drug
permeation are the removal via the aqueous humor and the intracellular degradation of
active substances by metabolizing enzymes, such as glutathione [33]. Diffusion across the
vitreous is easier for small molecules [34]. However, as the mesh size of the vitreous is
estimated at 500 nm, size is not the limiting factor for particle diffusion [35]. The influence
of charge on particle diffusion is much more pronounced [36]. Since negatively-charged
hyaluronic acid and glycosaminoglycan proteins exist in the vitreous body, negatively-
charged particles, such as polylactic co-glycolic acid (PLGA) or human serum albumin,
diffuse better than cationic particles [35,37,38]. To improve the migration of positively-
charged particles through the vitreous, attempts are being made to coat them with polymers,
such as polyethylene glycol (PEG) and hyaluronic acid [39–41]. Another dominating factor
influencing the passage through the vitreous body and, consequently, the intraocular half-life
is the lipophilic properties of a substance. Hydrophilic and large compounds remain in the
vitreous for a longer time and are typically removed via anterior elimination [42]. Whereas small
and lipophilic molecules mainly take the posterior route, as they can easily cross the retina [43].
Pitkänen et al. discovered that lipophilic β-blockers passed the outer blood-retinal-barrier much
more efficiently than more hydrophilic β-blockers of similar size [44].

Besides the transcorneal diffusion through the anterior chamber to the vitreous and
retina, topically applied drugs can also enter the systemic circulation and reach the retina
via retinal vasculatures [45]. This periocular drug absorption includes diffusion of the
drug through the conjunctiva to the Tenon’s capsule and, further, through the sclera and
choroid to the retina. Although most of the administered dose is removed into the systemic
circulation [46] (Figure 1).

Scleral permeability is strongly dependent on molecular weight and radius. Smaller
molecules are more permeable than bigger ones. The sclera can be crossed by molecules up
to a size of roughly 70 kDa [47]. Similarly, globular proteins have a better permeability than
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linear dextrans of the same molecular weight. [48]. Some lipophilic drugs can enter the
posterior segment directly by lateral scleral diffusion and subsequently penetrate Bruch’s
membrane and the RPE [46]. Hydrophilic compounds can easily penetrate the sclera, as it
consists of porous spaces within a collagen aqueous network [48]. At physiological pH the
matrix structure of proteoglycans is negatively charged, which facilitates the permeation of
negatively-charged compounds through the sclera [49]. For hydrophilic compounds taking
the transscleral route, the RPE is most likely the rate-limiting factor. Whereas RPE-choroid
and sclera represent comparable barriers for lipophilic drugs [44] (Table 1).

Melanin binding can also effect drug distribution and lead to increased drug concen-
trations in RPE and choroid. This may, on one hand, reduce receptor binding of the drug;
however, on the other hand, melanin binding could prolong drug effects, due to sustained
drug release from the melanin depot [50,51].

3. Model Systems to Study Drug Delivery to the Retina

To study the absorption of new drugs or delivery systems, different animal models
are used. The goal of those preclinical investigations is to predict the clinical performance
of the drug candidates. To this end, the characteristics of the model systems have to be
carefully considered and compared to the human situation.

Choosing the suitable preclinical model is of utmost importance, as shown by repeated
failures of topically applied drugs in clinical investigations, in spite of promising preclinical
data in rodents [52]. Animal models used in ocular drug delivery studies include mice,
rats, rabbits, monkeys, and sometimes dogs and pigs [45]. There are various characteristics
that can be taken into account. The bioavailability of topically applied drugs at the back of
the eye can be influenced, among other factors, by differences in the thickness of cornea
and sclera, axial length, and vitreous volume. The human vitreous volume as an example
is one thousand times larger than in rodents, which may have a strong influence on the
intraocular concentration of small molecule drugs applied via eye drops [45].

In the following section, we will outline only a few important parameters and compare
the eyes of mice, rabbits, and pigs to the human eye (Table 2).

Table 2. Ocular characteristics of commonly used preclinical models vs. the human eye (modified
and supplemented according to Wang et al. [45]).

Parameter Mice Rabbit Pig Human

Blink intervals
[blinks per minute] 300 [53] 360 [53] 10 [54] 5 [53]

Central corneal thickness [µm] 123–134 [55] 349–384 [56] 543–797 [57] 548 ± 35 [58]

Anterior chamber depth/ocular axis [mm] 0.1 [45] 0.16 [45] 1.77 ± 0.27 [59] 3.05 [45]

Anterior chamber volume [µL] 2.39–3.08 [60] ~250 [45] ~260 [61] ~170 [62]

Aqueous humor production [µL/min] 0.18 ± 0.05 [63] 1.46 ± 1.71 [64] 3–4 * [65] 2.4 ± 0.6 [66]

Vitreous volume [µL] 4.4 ± 0.7 [67] ~1400 [68] 3300 [69] ~4400 [70]

Mean Retinal thickness [µm] 204 [71]
Vascular area

163–340, avascular
area 142–168 [72]

300 [73] 310 [73]

Average RGC density [cells/mm2] 4000 [74] 6000 [74] 5700 [74]

* aqueous flow rate.

Mice are the most commonly used species, presumably owing to cost effectiveness,
availability of genetically modified strains, and short reproduction cycles [75,76]. However,
some data indicate that the small eyes of rodents are not well suited to predict the clinical
efficacy of topical drugs [77,78].

Mice eyes have a central corneal thickness of 123–134µm, which is one-fifth to one-
fourth of the human cornea (548 µm). The anterior chamber is 0.1 µm deep (factor 30 shorter
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than the human anterior chamber) and has a volume of around 2.5 µL (little more than
1 percent of the human anterior chamber volume). The difference in vitreous volume is
even more pronounced, with the vitreous volume in mice being factor 1000 smaller than
in humans (4.4 µL vs. 4400 µL). The cone-based performance in the mouse retina is also
not representative for the mammalian retina, with a rod-to-cone ratio of only 97:3 [79,80].
Furthermore, the mouse retina is devoid of a macula or similar retinal region, with a high
density of cones, retinal ganglion, and bipolar cells [81].

Ocular pharmacokinetic studies are mostly done in rabbits. Compared to the small rodents,
the rabbit eye is much closer to the human situation. Corneal thickness is 349 µm (compared
to 548 µm) and, although the anterior chamber depth is only 0.16 µm (compared to 3.05 µm),
the anterior chamber volume is more comparable (250 vs. 170 µL). The vitreous volume in
rabbit is one-third of the human vitreous (1400 vs. 4400 µL). The retinal thickness is in the
same range (at least in the vascular area). While some authors claim the rabbit is a poor model
of the human eye, due to the differences in vitreous volumes and vitreous diffusional path
length [82,83], others state that for intravitreal pharmacokinetics the rabbit model is clinically
predictable, as intravitreal distribution and clearance is quite comparable between rabbits and
humans [84]. Rabbits are known to have a visual streak (VS), in which the density of rod and
cone photoreceptors, retinal ganglion, and amacrine cells is highest [85]. The neural retina of
the rabbit is rather hypoxic and, as only a small area shows any retinal circulation, mainly
dependent on choroidal circulation [86]. In contrast to the human eye, optic nerve fibers in the
rabbit are already myelinated in the retina [87].

Besides studies in non-human primates, which come with a lot of ethical and financial
concerns, the porcine eye resembles the human situation quite well. Regarding morphology,
size, and vascularization, human and porcine eyes are comparable [88,89]. The central corneal
thickness is in the same range (543–797 µm in pigs vs. 548 ± 35 µm in humans). The anterior
chamber depth is one-half to two-thirds, compared to humans (1.77 ± 0.27 vs. 3.05), whereas
the anterior chamber volume is roughly 50% bigger, 260 vs. 170 µL. The vitreous volume is
3300 µL vs. 4400 µL in humans. The retinae of humans and pigs are quite comparable, 300 µm
thickness in pig vs. 310 µm thickness in humans [73]. Further, the porcine retina is a suitable
model for retinal research, as the photoreceptor mosaic of pigs and humans is quite similar. The
porcine retina is well provided with cones, an expansive vascular tree, and an area sufficiently
devoid of blood vessels, to suggest an area centralis near the posterior pole [54]. To study human
retinal diseases and drug delivery to the retina porcine (and similarly bovine) eyes and retinal
explants are increasingly applied [90,91]. Developing ex vivo models from these waste products
of the food industry offers the chance to overcome shortcomings of the currently used in vivo
models, while, at the same time, reducing the number of animal experiments [73,90]. Peynshaert
et al., for example, recently developed a bovine retinal explant model with an intact vitreoretinal
interface, where retinal penetration, following intravitreal injection, can be studied [91,92].

4. Retinal Delivery of Different Medical Compounds

As mentioned in the previous chapters, drug delivery to the retina after topical admin-
istration faces various barriers. Nevertheless, a certain variety of compounds have shown
successful topical delivery to the posterior segment in preclinical models, and some have
already been investigated in clinical trials (Table 3).

Pharmacokinetics and distribution can be influenced by different size of the drugs and
pH. Corneal penetration can be enhanced by increasing the lipophilicity of the compound.
Prodrugs like Latanoprost and Travoprost take advantage of this effect. They contain
ester groups, which increases their lipophilicity and, thereby, the uptake into the cornea,
where the prodrugs are then metabolized into the active drugs by esterase enzymes [93].
Compared to small molecules, biologics face greater hurdles in topical absorption due to
their size. However, they also require only a lower target concentration, as they exhibit
higher affinities for their target [52].
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Table 3. Overview of topically applied drugs reaching the posterior segment in preclinical investigations.

Compound Characteristics Size Physiological
Charge logP * Preclinical Investigations Cmax Retina Ref.

Drugs tested for glaucoma treatment

Dorzolamide
(hydrochloride)

inhibitor of carbonic
anhydrase 324.4 Da (360.9 Da) 1 Dorzolamide: −0.15

Japanese white rabbits: 1 drop of 1%
dorzolamide hydrochloride eyedrops -> Cmax

after 1 h
3.79 µg/g [94]

Brimonidine Alpha2-adrenergic
agonist 292.13 Da 1 1.37

Monkeys: 14 days 0.5% brimonidine twice
daily (35 µL drop -> 8.4 µCi, 119µg Brim) ->

Cmax of radioactivity in choroid/retina
Rabbits: twice daily 14 days 0.5% solution

(35 µL drop -> 2 µCi, 113 µg Brim) -> Cmax of
radioactivity in choroid/retina

Monkeys: 30.600 µg-Eq/g
Rabbits: 20.8 µg-Eq/g [95]

Betaxolol Selektiver ß-Blocker 307.4 Da 1 2.81

Humans: 0.25% betaxolol twice daily for
28 days or longer -> 1290 ± 1170 ng/g in the

choroid
Monkeys: 0.25% betaxolol twice daily

unilaterally for 30 days

Humans: 71.4 ± 41.8 ng/g
Monkeys: 121 ng/g [96]

Netardusil ROCK-inhibitor 453 Da 1 4.73 Rabbits: single drop (35 µL of 14C-netarsudil
0.02% -> Cmax of in Retina-choroid 80 (left) or 50 (right) ng ∗ eq/g [97]

Memantine (HCL) Antagonist
to nmDA-Receptors 179.2 Da (215.76 Da) 1 Memantine: 3.5

(hmdb.ca)

Arterially perfused bovine eye model: 4 mL of
9.27 mM memantine hydrochloride solution
placed in reservoir on the eye (8.002 µg) ->
Cmax retina 2046 ng/g vitreous 442 ng/g,

Choroid/RPE 3894 ng/g after 9 h of perfusion

2046 ng/g [98]

Drugs tested for AMD treatment

Bevacizumab

recombinant
humanized monoclonal

antibody, inhibits
VEGF-A

149 kDa Negatively-charged
at pH 7.4 [99]

Unknown (known to be
lipophilic)

Pigmented rabbits: Bevacizumab eye drops
(1.25 mg/0.05 mL six times daily for the first
7 days) -> 18.2 ± 4.2 ng/g in retina/choroid

18.2 ± 4.2 ng/g in
retina/choroid [100]

ESBA105
anti-TNF-alpha

single-chain antibody
fragment

26 kDa - -

Rabbits: 10 mg/mL ESBA105, 50 µL eyedrop ->
1 day hourly drops up to 10 h (up to 5 mg/day)

-> Cmax: vitreous humor (295 ng/mL),
neuroretina (214 ng/mL) and RPE-choroid

(263 ng/mL)
multi-day treatment: 9.6 mg/mL, 5 drops per

day up to 6 days (up to 15 mg/6 days) ->
Cmax: RPE-choroid (1298 ng/mL) vitreous

humor (580 ng/mL) and neuroretina
(917 ng/mL)

Single drop: 214 ng/mL
Multi-day treatment:

917 ng/mL
[101]
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Table 3. Cont.

Compound Characteristics Size Physiological
Charge logP * Preclinical Investigations Cmax Retina Ref.

Innovative small molecules

GAL-101
(MRZ-99030)

B-Amyloid aggregation
modulator, dipeptide 289 Da Computed logP-1.1

Monkeys: single eye drop -> >100 nM in the
retina, via sclera and choroid >100 nM [102]

SF-0166 integrin αVβ3
antagonist 475.5 Da Computed logP 2.7

Rabbits: Single eye drop of 50 µL 5% SF-0166
(2.5 mg/eye) -> Cmax retina-choroid

5103 ng/g
5103 ng/g in retina-choroid [103]

Squalamine lactate

Inhibitor of VEGF,
PDGF, and bFGF

through intracellular
mechanism

718.04 Da 2 Squalamine: 3.24

Laser-induced CNV rat model -> systemically
administered squalamine lactate -> partially
reduced choroidal neovascular membrane

development
No PK

[104]

Inhibitors of receptor tyrosine kinases

TG100801, inactive
prodrug of
TG100572

inhibits Src kinases and
selected receptor
tyrosine kinases

580.1 Da (476) 1 7.64

Laser-induced CNV mouse model-> single
10 µL drop of 1% TG100801: Cmax (TG100801)
-> 242 nM (retina), 1680 nM (Sclera/choroid);
Cmax (TG100572) -> 97 nM (retina), 2460 nM

(Sclera/Choroid);
Dutch belted rabbits- > 1 40 µL drop of 0.6%

TG100801: nach 2 h TG100801 -> 46 nM
(retina), 34 nM (Choroid), TG100572 -> 41 nM

(retina), 169 nM (choroid)

Mouse: TG100572 -> 97 nM
Rabbit: TG100572 -> 41 nM [105]

pazopanib

targets multiple
receptor tyrosine

kinases such as VEGF
receptors

437.5 Da 0 3.55

Laser-induced CNV rat model -> twice daily
topical eye drop treatment -> decreased

leakage from photocoagulated lesions by 89.5%
(p < 0.001); inhibited thickness of the

developed CNV lesions by 71.7% (p < 0.001)
No PK

[77]

Acrizanib
(LHA510)

small-molecule
VEGFR-2 inhibitor 445.40 Da 1 2.93

PK: brown Norway rats tid for 10 days (4 µL x
0.3% suspension) and 1 drop on day 11 ->

Cmax 1910 nM (retina)
1910 nM [106]

PAN-90806 VEGFR2 tyrosine kinase
inhibitor 532.4 Da 0 Computed logP 3.7

Topical administration led to significant and
sustained drug levels in retina and choroid, as
well as suppression of neovascularization in

various models

[107]

* predicted physiological charge and logP obtained from https://go.drugbank.com (accessed on 21 December 2021); computed logP obtained from https://pubchem.ncbi.nlm.nih.gov
(accessed on 21 December 2021); in red: tested in clinical trials.

https://go.drugbank.com
https://pubchem.ncbi.nlm.nih.gov
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4.1. Anti-Glaucoma Drugs

Several glaucoma drugs have shown to reach the back of the eye. Dorzolamide
hydrochloride was topically applied in Japanese white rabbits. After only 15 min, the
drug concentration in the anterior segment of the eye and retina increased significantly
and peaked within an hour. This indicates efficient migration of the drug between ocular
tissues. It can, therefore, be assumed that carbonate anhydrase activity is immediately
suppressed by dorzolamide and that the drug is rapidly distributed in the ocular tract
after local administration. [94]. Topical delivery of brimonidine to rabbits and monkeys
yielded retinal drug levels sufficient to activate alpha2-adrenergic receptors [95]. Similarly,
Betaxolol could be delivered to the retina of patients with glaucoma and cynomolgus
monkeys [96].

Netarsudil, a Rho-associated protein kinase inhibitor, was developed as novel treat-
ment option for glaucoma. In preclinical studies, large intra ocular pressure (IOP) re-
ductions were obtained in rabbits and monkeys, and a favorable pharmacokinetic profile
was shown. In distribution studies in rabbits with a single topical dose (35 µL) of 0.02%
14C-netarsudil, a Cmax of radioactivity of 80 (left eye) and 50 (right eye) ng ∗ eq/g was
reached in the retina [97]. In December 2017, after completing various clinical trials, Ne-
tarsudil was approved by the FDA for the treatment of open-angle glaucoma or ocular
hypertension [108].

Memantine HCL, an antagonist to NMDA-receptors used for the treatment of Alzheimer’s
disease, has neuroprotective properties and might be beneficial in the treatment of glau-
coma. In an arterially perfused bovine eye model, memantine was observed to accumulate
in the posterior segment. Koeberle et al. hypothesized that melanin-binding may support
sustaining significant concentrations in the retina [98].

4.2. Anti-AMD Drugs

The greatest desire in ophthalmic drug-delivery development is to identify a topi-
cal treatment option for retinal diseases like age-related macular degeneration (AMD).
Currently, anti-VEGF antibodies are applied intravitreally to inhibit choroidal neovascular-
ization in patients with AMD [109]. Because of their molecular weight of roughly 150 kDa,
topical delivery is highly challenging. After topical application of the VEGF-A inhibitor be-
vacizumab in pigmented rabbits (1.25 mg/0.05 mL six times daily for the first 7 days), only
a small level of bevacizumab was detected in the iris/ciliary body and retina/choroid, not
sufficient for a therapeutical effect [100]. In contrast to that, the anti-TNF-alpha single-chain
antibody fragment ESBA105, with a molecular weight of only 26 kDa, was distributed to all
ocular tissues, following topical application, reaching a retinal concentration of 214 ng/mL
after single application and 917 ng/mL after multi-day treatment in rabbits. Systemic drug
exposure was reported to be very low [101].

Besides antibodies and antibody fragments, several innovative small molecules and in-
hibitors of receptor tyrosine kinases have been investigated for their posterior segment delivery.

4.2.1. Innovative Small Molecules

Several small molecule eye drops have shown to reach the posterior segment and
were able to develop their effect against choroidal neovascularization (CNV) in preclinical
models. In the following section, we outline the promising candidates that were further
investigated in clinical trials.

One promising approach is targeting misfolded Amyloid β aggregation, to prevent
their neurotoxic effect. Russ et al. have shown that a single topical delivery of GAL-101, a
small molecule inhibitor of Aβ, sustained concentrations >100 nm in the retina of monkeys
for >2 h. Daily eye drops in a glaucoma rat model achieved >90% neuroprotection [102].
Phase I trials for geographic atrophy have successfully been completed [110].

Recent investigations have demonstrated promising results for drugs targeting arginyl-
glycyl-apartic acid (RGD)-binding integrins in ocular tissues [111]. One of those drugs
is the integrin αVβ3 antagonist SF-0166 (OcuTerra Therapeutics, Boston, MA, USA; for-
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merly SciFluor Life Sciences, Inc., Boston, MA, USA). Preclinical investigations in rabbits
showed a good pharmacokinetic profile, and the efficacy results of topical administration in
laser-induced and VEGF-induced CNV rabbit models were comparable to a bevacizumab
injection [103]. Furthermore, biological effects and good tolerability have been shown
in early clinical trials with diabetic macular edema [112] and neovascular AMD patients,
which underlines the potential of targeting RGD-binding integrins, to develop a next-
generation therapy for retinal diseases [111].

Most of the investigated therapeutical approaches, however, failed to confirm a posi-
tive preclinical outcome. Squalamine lactate, a very promising inhibitor of angiogenesis
by a novel intracellular mechanism, was able to reduce choroidal neovascularization in
a laser-injury model in the rat when applied intravenously [104]. An eye drop formula-
tion of 0.2% squalamine lactate (OHR-102) was later launched by Ohr Pharmaceutical Inc.
(New York, NY, USA). In a Phase II trial (NCT01678963), this formulation, with improved
trans-scleral permeability and increased choroidal retention, showed a trend towards better
visual acuity in patients with all types of naïve neovascular lesions. Subsequent Phase III
trials (NCT02727881) failed to meet the primary endpoint [110].

4.2.2. Inhibitors of Receptor Tyrosine Kinases

TG100801 is an inactive prodrug that generates TG100572 by de-esterification, which
inhibits Src kinases and selected receptor tyrosine kinases. Topical TG100801 significantly
suppressed laser-induced CNV in mice and reduced fluorescein leakage from the vascula-
ture and retinal thickening, measured by optical coherence tomography in a rat model of
retinal vein occlusion [105]. TG100801 could not demonstrate efficacy when investigated in
AMD patients (ClinicalTrials. gov identifier: NCT00509548).

Pazopanib is a tyrosine kinase inhibitor that inhibits angiogenesis. To test the inhibitory
effect of pazopanib on experimental choroidal neovascularization (CNV), CNV was induced
in rats by laser coagulation of Bruch’s membrane. Twice daily topical treatment with
pazopanib significantly (p < 0.001) reduced leakage from photocoagulated lesions by 89.5%
and significantly reduced the thickness of the resulting CNV lesions by 71.7% (p < 0.001).
In addition, VEGF immunoreactivity was decreased, compared with control eyes [77].
When tested in humans, the compound attained to improve best-corrected visual acuity
in a Phase II trial, including patients with sub-foveal CNV secondary to AMD [113]. In
a subsequent Phase IIb trial, pazopanib did not show additional benefit, compared to
ranibizumab injections and, thereby, failed to meet its primary endpoint [114].

Acrizanib, a VEGFR2 inhibitor, showed impressive in vivo efficacy in the mouse
CNV model, by leading to complete inhibition of neovascularization. Three times daily
administration of 4 µL × 1.0% suspension/eye in the rat CNV model also resulted in 90%
inhibition of neovascular area [106]. When investigated in a clinical trial Acrizanib failed to
demonstrate efficacy, compared to anti-VEGF injections [115].

Another VEGFR2 inhibitor, which reaches the retina and choroid via the trans-scleral
route, is PAN-90806, by the company PanOptica, Inc. (Mount Arlington, NJ, USA). Pre-
clinical studies demonstrated sustained drug levels in choroid and retina, as well as the
suppression of the formation of new abnormal blood vessels. In the Phase I/II trials, the
PAN-90806 eye drops were applied as monotherapy in patients with neovascular AMD
(once daily for 12 weeks), 51% of which did not need a rescue injection during trial or one
month post-treatment [107]. Further clinical investigation is needed to confirm this data.

There will be many reasons for the failure in clinical investigations, but the lack of
sufficient investigations in a larger species might be one of them. As has been shown for
regorafenib and pazopanib, the drug concentrations in the choroid and retina, after topical
application in rabbits and monkeys, were much lower than those in rats and, therefore, not
sufficient to inhibit angiogenesis [116].

In interpreting efficacy and distribution data, it has to be taken into account that
systemic distribution to the posterior segment, following topical drug application, may
vary due to blood volume of the investigated species. Considering the smaller blood
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volume of rabbits vs. humans (~0.12 l vs. ~5 l), drug levels in the posterior tissues may
reach values that cannot be transferred to humans. Therefore, Rodrigues et al. advised to
take drug levels and/or efficacy data in the untreated contralateral eye into account when
evaluating drug distribution [52].

From these examples, showing promising preclinical data but often failing in clinical
studies, it is evident that further improvements are needed. Delivery systems, such as
nanoparticles, offer the chance to enhance uptake and permeation of drugs to get a sufficient
amount of drug to the retina to be effective there.

5. Delivery Systems and Formulation Approaches to Improve Topical Delivery to the Retina

Numerous drug-delivery systems have been investigated, in order to achieve effective
drug concentrations in the posterior segment of the eye by topical application (Table 4).
Nanoparticles are increasingly applied as drug-delivery systems, on one hand, to enhance
the bioavailability of drugs, by increasing their absorption or facilitating their passage
through the tissue and, on the other hand, to achieve controlled release of the drug [117].
Polymeric materials have great potential as NP precursors, since their properties can easily
be tailored through derivatization of biopolymers or preparation of synthetic polymers,
according to drug delivery needs [118]. Drug uptake can also be improved via formulation
development approaches, such as the addition of enhancers of viscosity and permeability,
as well as prodrug design [119]. In the following chapter, different drug delivery and
formulation approaches, based on amino acids/peptides, lipids, DNA, and carbohydrates,
will be presented. Figure 2 offers an overview of the delivery systems presented in Section 5,
including the drugs that are transported and ocular diseases that are addressed.

Table 4. Overview on drug delivery systems for topical delivery to the posterior segment.

Delivery System (Drug) Size Characteristics Pharmacokinetics Further Results Ref.

Amino acid/Peptid-based drug delivery

Valine-hemisuccinate ester
prodrug: Val-HS (THC)

THC-Val-HS
513.6 Da; THC

314.2 Da

Higher aqueous
solubility, higher

polar surface area,
improved logD

(pH 7.4)

Rabbits: 2x daily for 5 days
50 µL THC-Val-HS in

Tocrisolve emulsion (300 µg
THC) -> THC-Val-HS:

15.5 ng/50 mg retina-choroid,
THC: 5.2 ng/50 mg

retina-choroid after 1 h

IOP-lowering
equivalent to

pilocarpine in a
rabbit glaucoma

model

[120]

Cell-penetrating peptide
(CPP) HIV transactivator of
transcription (TAT) (acidic

fibroblast growth factor
(aFGF))

Tat-aFGF-His:
~17.3-kDa

TAT is positively
charged (11 amino

acids:
GRKKRRQRRRC)

[121]

Rats: 40 µL drop (2 µg
TAT-aFGF-His) -> His+ cells

peaked after 30 min, still
detectable after 8 h in the

retina (mainly retinal
ganglion cells)

Strong protection
against

ischemia-reperfusion
injury in rats

[122]

CPP TAT (calpain inhibitory
peptide)

-> Tat-µCl

Tat-µCl: 2857.37 Da
(23 amino acids)

TAT is positively
charged (11 amino

acids:
GRKKRRQRRRC)

[121]

Rats: 7 days twice daily
(20 µL of 1 mM Tat-µCl) ->

Cmax 15.3 pg/µg protein in
the retina 1 h after last drop

Tat-µCl was diffusely
distributed

throughout the retina
[123]

CPP polyarginine-6
(bevacizumab)

(5[6]-
carboxyfluorescein-
RRRRRR-COOH)

Rat: single 20 µL eye drop of
bevacizumab (25 µg/µL) ->

Cmax 1.65 ± 0.26 in the retina
after 40 min;

Porcine eyes: 20 µL drop
(25 µg/µL) -> 0.10 ± 0.03 µg

per retina

Mouse model of
CNV: CPP and

bevacizumab eye
drops (twice daily
5 µL for 10 days)

significantly reduced
CNV lesions,

comparable to
anti-VEGF injection

[124]
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Table 4. Cont.

Delivery System (Drug) Size Characteristics Pharmacokinetics Further Results Ref.

Lipid-based drug delivery

Annexin V liposomes
(bevacizumab)

Mean diameter of
163 nm

On interaction with
PS containing

membranes, annexin
V is reported to form

higher order
structures that induce

formation of
actin-independent
endocytic vesicles

[125]

Rats: Single 30 µL drop
(13 mg/mL Avastin) ->

127 ng/g in the posterior eye;
Rabbit: 30 µL (25 mg/mL

Avastin) once daily for 5 days
-> 18 ng/g in retina/choroid

[126]

Annexin V liposomes
(TGF-ß1)

Mean particle size
157 nm

Surface charge of
liposomes became

more negative with
annexin V

Rabbits: 30 µL twice in 5 min
(125 ng/mL TGF-ß1) -> Cmax
114.7 pg/mL in the vitreous

[127]

Solid lipid nanoparticles SLN
(Indomethacin);

Nanostructured lipid carriers
NLC (indomethacin)

Particle size: IN-SLN
226 ± 5 nm

IN-NLC 227 ± 11 nm

Colloidal
nanoparticulate
dispersions ->

biocompatible and
mucoadhesive

Rabbits: Two x 50 µL eye
drops -> retinal-choroidal

IN-concentrations of
227 ng/g with IN-SLN und

893 ng/g with IN-NLC

Improved
transcorneal

permeability and
retention

characteristics of IN

[128]

DNA-based drug delivery

Lipid DNA-Nanoparticles
(Brimonidine) NP alone: 10 nm

Amphiphil, lipophilic
core, and hydrophilic

corona;
Aptameric and

hydrophobic drug
loading

Higher IOP reduction
than Briminodine
alone in DBA/2J

mice

[129]

Lipid DNA-Nanoparticles
(Travoprost) NP alone: 10 nm

Amphiphil, lipophilic
core, and hydrophilic

corona;
Aptameric drug

loading

Albino rats: single drop of
Trav-NP or Trav (80 µM) ->

travoprost after 1 h:
434.9 pg/mg (Trav-NP)

compared to 230.3 pg/mg
(Trav)

[130]

Carbohydrate-based drug delivery

Sodium carprate and
hydroxypropyl

methylcellulose solution
(28 kDa antibody fragment ->

specificity for the rat
CD4 molecule)

28 kDa

Solution with
penetration enhancer
0.5% sodium caprate

and viscosity
enhancer 1.5%
hydroxypropyl
methylcellulose

Rabbits: 50 µL eye drops at
20 min intervals over 12 h ->

50–150 ng/mL in the vitreous
[131]

γ-cyclodextrin (CD)
(dexamethasone)

nanoparticle

100–300 nm
drug/CD complexes

CD: 1–2 kDa

Shaped like
truncated cones, with
a hydrophilic outer

surface and a
somewhat lipophilic

central cavity

Rabbits: 1.5% dex-
amethasone/γCD eye drops
(50 µL) 3 doses in left eye for

15 days -> left eye:
201 ± 48 ng/g, right eye:

64 ± 12 ng/g in the retina

[132]

Chitosan oligosaccharide
(CSO) nanomicelles

(dexamethasone)
100 nm

CSO + Valylvaline
(VV) + stearic acid

(SA); VV is targeting
PepT-1 -> faster

crossing of
conjunctival and
scleral barriers

Rabbits: 3 × 50µL
CSO-VV-SA -> at 0.5 and 1 h

Dex conc. reached
therapeutic levels (>200 ng/g)

in sclera-choroid-retina

Higher ocular
retention time

compared with
traditional eye drops

[133]
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Figure 2. Schematic presentation of drug delivery (DD) systems and formulation approaches to
improve topical delivery to the back of the eye. (A) Drug delivery systems presented in this re-
view. (B) Drugs that were transported by those delivery systems. (C) Diseases that are addressed
with the DD system and drug. The molecular structures were obtained from https://pubchem.
ncbi.nlm.nih.gov (accessed on 21 December 2021). Abbreviations: THC—tetrahydrocannabinol;
aFGF—acidic fibroblast growth factor; µCL—calpain inhibitory peptide; Bev—bevacizumab;
IR—retinal ischemia/reperfusion; PR deg—photoreceptor degeneration; AMD—age-related mac-
ular degeneration; IN—indomethacin; DR—diabetic retinopathy; TGF-β1—transforming growth
factor beta 1; Brim—brimonidine; Trav—travoprost; scFv—single-chain variable-domain fragment;
Dex—dexamethasone. Created with BioRender.com (accessed on 21 December 2021).

5.1. Amino Acid/Peptid-Based Drug Delivery

To overcome the anterior segment of the eye, there are many formulation approaches.
Recently, cannabinoids, such as tetrahydrocannabinol (THC), have been applied as anti-
glaucoma drugs for their IOP lowering effect. However, THC eye drops have poor ability to
cross the cornea, due to their high logP value (6.42) and low aqueous solubility (1–2 µg/mL).
To overcome this low bioavailability, a valine-hemisuccinate (Val-HS) ester prodrug has
been developed. THC-Val-HS achieved significantly higher transcorneal permeability,
mainly due to its larger polar surface area, relatively lower logD 7.4, and increased aqueous
solubility. Adelli et al. showed significantly higher THC concentrations in the anterior
segment of the eye by THC-Val-HS-loaded topical eye drops in anesthetized rabbits. Com-
pared with marketed pilocarpine HCl and timolol maleate eye drops, the intraocular
pressure-lowering effect of THC-Val-HS was equivalent to that of pilocarpine [120]. In
further development efforts, the prodrug was formulated in a nanoemulsion (NE), which
led to a prolonged IOP lowering effect. In normotensive rabbits, the THC-Val-HS-NE
showed a better effect than commercial timolol or latanoprost [134].

Another formulation approach for the topical delivery of proteins and peptides are
cell-penetrating peptides (CPPs). Herein, using the CPP HIV transactivator of transcription
(TAT), Wang et al. delivered acidic fibroblast growth factor (FGF) to rat retina after a single
topical administration (2 µg in a 40 µL solution). TAT-aFGF-His proteins were detectable
in the retina for at least eight hours and mediated strong protection against ischemia-

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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reperfusion injury compared to the aFGF-His and PBS treated groups: the inner retinal
layer structure was better maintained, retinal ganglion cell apoptosis was reduced, and
retinal function improved [122].

Ozaki et al. topically delivered a calpain inhibitory peptide (which protects pho-
toreceptors in retinal dystrophic rats) conjugated with TAT to the posterior segment of
the rat eye. Application of 20 µL of 1 mM Tat-µCL twice daily for seven days yielded a
concentration of 15.3 pg/µg protein one hour after the final instillation [123].

Cogan et al. also succeeded in achieving therapeutic concentrations in the posterior
segment of the rat eye by combining bevacizumab with polyarginine-6, another CPP.
After a single 20 µL eye drop of bevacizumab (25 µg/µL), a maximum concentration of
1.65 ± 0.26 µg/mL was detected in the retina at 40 min after application. In ex vivo studies
on porcine eyes, a single 20 µL eye drop of bevacizumab (25 µg/µL), complexed with CPP,
yielded a concentration of 10.68 ± 3.57 µg/mL in the vitreous and 0.10 ± 0.03 µg per retina,
which is within the therapeutic range for humans (10–200 µg/mL) [124].

5.2. Lipid-Based Drug Delivery Systems

Davis et al. detected physiologically relevant concentrations of bevacizumab in the
posterior segment of the eye in rats and rabbits. Here, the antibody was delivered using
liposomes functionalized with the anionic protein Annexin A5. A single 0.03 mL dose
(containing 13 mg/mL Avastin) yielded a bevacizumab concentration of 127 ng/g in the
posterior eye of rats. Application of 0.03 mL eye drops (25 mg/mL Avastin) once per day
for five days resulted in 18 ng/g in the rabbit retina/choroid [126]. The comparison of those
results to bevacizumab concentrations during clinical treatment with intravitreal injections
revealed that the topical liposomal delivery resulted in 3–5 orders of magnitude lower
bevacizumab concentrations. Which underlines that major improvements are necessary to
achieve clinically relevant results [135].

An Annexin 5 complemented liposome formulation was also used by Platania et al. to
deliver growth factor beta 1 topically to the vitreous of rabbits. After topical application
(two times within five minutes) of 30 µL eye drops (TGF-ß1 concentration of 125 ng/mL),
a maximum concentration of 114.7 ± 12.40 pg/mL was delivered to the vitreous (tmax
60 min) [127].

For the delivery of lipophilic drugs, Balguri et al. have designed various solid lipid
nanoparticles (SLN) and nanostructured lipid carriers (NLC), where liquid lipids are incor-
porated in the solid lipid structure. The delivery of the non-steroidal, anti-inflammatory
drug indomethacin (IN) was investigated in albino rabbits. Two doses of 50 µL eye drops
to conscious rabbits yielded retinal-choroidal IN-concentrations of 227 ng/g with IN-SLN
und 893 ng/g with IN-NLC [128].

5.3. Lipid DNA-Based Nanoparticles

Lipid DNA nanoparticles (NPs) are made of alkyl-modified oligonucleotides that rep-
resent amphiphilic molecules. Due to microphase separation, these NPs self-assemble into
micelles in an aqueous environment. The hydrophobic part (the lipid modifications) forms
the core, while the hydrophilic DNA sticks out of the micelle [136,137]. The NPs exhib-
ited relatively low critical micelle concentrations, demonstrating their stability in aqueous
surroundings [138]. NPs composed of amphiphilic DNA strands, that were composed
from twelve nucleotides, whereof four were lipid-modified with an alkyl chain, adhered
best to the ocular surface among different lipid NPs [138]. Brimonidine loading to these
lipid-modified DNA-NPs via hydrophobic interactions or using specific aptamers caused
improved affinity to the cornea. Maintaining drug release from the NPs. Brimonidine-NPs
significantly reduced intraocular pressure in live animals, more than pure brimonidine [129].
With the same delivery system, aptameric loading of travoprost was also achieved. Travo-
prost delivery with this NP system resulted in longer adhesion to the corneal surface,
enhanced uptake, efficacy, and biocompatibility. For example, after four hours, the amount
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delivered in the eyes of albino rats via these NPs was four times higher, compared to
pristine travoprost [130].

5.4. Carbohydrate-Based Drug Delivery Systems

A 28-kDa antibody fragment (in a solution supplemented with penetration and
viscosity enhancers) could be delivered to the vitreous of rabbits, at concentrations of
50–150 ng/mL 12 h, after topical administration of 50 µL eye drops (at 20 min intervals
over 12 h) containing 0.8–1.1 mg/mL protein. The antibody fragment was applied in a
solution with sodium carprate as penetration enhancer and hydroxypropyl methylcellulose
as viscosity enhancer [131].

γ-cyclodextrin-based (CD) nanoparticles have been developed, by the company Oculis
Switzerland (Lausanne, Switzerland), for the treatment of anterior and posterior segment
diseases. The cyclodextrins increase the solubility of lipophilic drugs and can enhance topi-
cal drug uptake, through constantly supplying dissolved drug molecules to the membrane
surface [139]. Multiday application of the anti-inflammatory corticosteroid dexamethasone-
loaded CD nanoparticles yielded high concentration in the retina of rabbits (201 ng/g in the
treated eye) [132]. In a clinical trial with DME patients, this formulation could significantly
improve visual acuity and result in decreased macular thickness, comparable to a posterior
subtenon injection of triamcinolone acetonide, a frequently-reported, off-label treatment
for DME [140]. Several other clinical studies using γCD eye drops have been conducted,
and the development is ongoing to find better treatment options for DME and postcataract
surgery inflammation [141].

Xu et al. reported the development of Chitosan oligosaccharide-valylvaline-stearic
acid (CSO-VV-SA) nanomicelles. CSO is responsible for increased retention at the ocular
surface, and VV is known to target the peptide transporter-1 (PepT-1), which can enhance
ocular uptake and penetration of conjunctival, as well as scleral tissue. In an in vivo study in
rabbits, therapeutic concentrations of dexamethasone were reached in retina-choroid-sclera
via CSO-VV-SA eye drop application [133].

6. Conclusions and Future Perspectives

Treating retinal diseases by applying simple eye drops is an attractive goal for oph-
thalmologists, patients, and the pharmaceutical industry likewise. The biggest challenge
in reaching this goal is to achieve sufficient drug bioavailability, while minimizing side
effects. Topical treatment of the posterior segment of the eye presents many anatomic and
physiologic hurdles. As a result, drug delivery via the eye is very complex. In many cases,
in vivo animal models are the most appropriate model to study the absorption of new
drugs or delivery systems and to best predict their clinical performance. However, novel
ex vivo and in silico models show compatible outcomes [73,142]. It is important that model
systems are carefully chosen, evaluated, and compared to the human situation.

Detailed physicochemical characterization of the compound and delivery system is
required to predict and evaluate ocular bioavailability and optimize the particle properties
accordingly. Additionally, production methods are becoming more and more elaborate,
with the goal to produce defined delivery systems, according to drug loading, size, shape,
and properties of the drug delivery systems. It is important to incorporate the requirements
for large scale production early in the development process to make sure the particles are
ready to be produced for later clinical investigations.

As topically delivered drugs take a long journey through the eye to reach the posterior
segment and different routes are possible, in the future, targeted delivery, for example, by
using aptamers, might be of importance to make sure the target cells/tissues are reached
and side effects are minimized. One way to go might be delivery systems comprising
of receptor targeting. Additionally, the development of innovative, new small molecule
therapeutics would be desirable, as the currently-applied antibody therapeutics are not
suitable for topical delivery, due to their size. Safety profiles of the particles are another
hurdle in bringing those new technologies from bench to bedside. The focus should lie
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on the development of biocompatible and biodegradable drug delivery systems with safe
degradation products.

Some promising preclinical studies, in which effective drug concentrations were
achieved in the posterior segment of the eye by topical application, were highlighted in
this review, suggesting that topical treatment of retinal diseases may be possible. However,
clinical trials showed that innovative drug-tailored delivery systems are needed for an
efficient retinal drug delivery.

In conclusion, innovative delivery systems and more clinical data are needed to
sufficiently understand and tailor retinal drug delivery via topical application.
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