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Abstract. We discuss the general theory of D-branes on Calabi-Yaus, recent results

from the theory of boundary states, and new results on the spectrum of branes on the

quintic CY. (Contribution to the proceedings of Strings ’99 in Potsdam, Germany.)

1. Introduction

The present contribution consists of three parts. The first is a general summary of the

theory of D-branes on Calabi-Yau; the second summarizes the works [5, 9] which connect

the boundary state approach with large volume results; the third summarizes new results

on lines of marginal stability on the quintic found in June 1999. The transparencies for

this talk (which emphasize different parts of the material) are also available at [1].

For background material on “D-geometry,” see [11]. This term refers to the study

of how the conventional geometry which describes branes in supergravity is generalized

in the context of D-branes. As a point of departure we could consider any of the

geometrical pictures which branes give us for the various terms in an effective action.

Perhaps the simplest example is the following: the moduli space of a 0-brane at a point

in a CY3 is the CY3 itself; the moduli space metric is just the Ricci-flat metric on the

CY3.

Examples of the “unconventional” geometry we have in mind include the following:

(i) Stringy and quantum corrections will generally modify conventional geometric

predictions. In particular, we can ask how a D-brane world volume action is affected

by“stringy” (ls) corrections. An example is to find the moduli space metric for the

D0-brane at a point; this provides a canonical non-Ricci flat metric for each point

in CY moduli space. Qualitative effects visible at finite ls include T-duality and

mirror symmetry; we will discuss the latter below.

(ii) Perturbative string compactification can be defined non-geometrically, by specifying

an appropriate internal CFT. Some examples (such as Gepner models) turn out to

have geometric interpretations, and this definition provides a concrete way to work

in the “highly stringy” regime. Others such as asymmetric orbifolds do not have

http://arxiv.org/abs/hep-th/9910170v2
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known geometric interpretations; studying D-branes on these spaces will probably

lead either to finding such interpretations or showing why they do not exist.

(iii) D-brane world-volume theories include open strings stretching between pairs of

branes, which in many cases provide alternate gauge theory origins for what are

gravitational effects in the large distance limit. Orbifold resolution by quiver

theories are an example in which non-trivial topology is reproduced as a classical

gauge theory moduli space. The short distance gravitational interactions between

D-branes are replaced by quantum gauge theory dynamics. In special cases (in

the large N limit or for quantities protected by supersymmetry) this is believed

to reproduce supergravity, but more generally provides another way of defining its

stringy generalization.

(iv) Noncommutative gauge theory arises on D-brane world-volumes in appropriate

limits of string theory, such as compactification on a small torus with fixed

background B field, or in Minkowski space with large B field. It seems quite likely

that similar theories are relevant in curved backgrounds; finding concrete examples

is an important problem for future work.

This is by no means a complete list but perhaps includes the most interesting points

discovered so far. As each of them would form a topic in its own right, for the rest of

the review we will focus on the following meta-question: to what extent do these effects

lead to qualitative changes in the brane physics – and thus cannot be ignored? The

way to study this question is to frame the alternative (null) hypothesis: the qualitative

properties of brane theories (especially, the low energy effective action, dimension of

the moduli space, types of singularities and so on) are the same as predicted by naive

geometric considerations – and test it in examples. We will refer to this as the “geometric

hypothesis” and make it more precise below.

2. D-branes on Calabi-Yaus

Quite a lot is known about D-branes in flat space (Minkowski or toroidal

compactifications) and in K3 compactifications, where type II-heterotic duality and the

large supersymmetry already suffice to give a good picture. The geometric hypothesis

appears to be essentially true in these cases – the brane spectrum and moduli spaces

can be described as the spectrum and moduli spaces of semistable coherent sheaves

(a generalization of vector bundle which allows singularities corresponding to pointlike

instantons) [25].

D-branes on Calabi-Yau threefolds are not so well understood and look quite

interesting for a number of reasons. Physically, supersymmetry preserving branes

will have N = 1, d = 4 gauge theories on the world-volume which may be directly

relevant for phenomenology. They generalize the strong coupling limit of heterotic

string compactification but in some ways appear simpler than the (0, 2) sigma models

which appear there. Many questions can be addressed using the highly developed theory

of N = 2 supersymmetry and mirror symmetry.
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An important difference with the cases of higher supersymmetry is that the

spectrum of branes can depend on the particular vacuum (point in moduli space) under

discussion. For example, in pure SU(2) gauge theory, we know that the strong coupling

spectrum is quite different from the semiclassical spectrum; the purely electric “W

bosons” are not present. Given N = 2 supersymmetry this dependence of spectrum

on moduli is highly constrained: as is well known, the BPS spectrum can change only

on lines of marginal stability defined by the condition Im Z(Q1)/Z(Q2) = 0. Thus the

problem of finding the spectrum of wrapped branes on CY and deciding whether it

too changes at string scales is non-trivial but accessible, as we will discuss in the next

sections.

Supersymmetric (1/2 BPS) branes on a CY3 are divided into A and B branes

depending on the boundary condition on the U(1) currents in the (2, 2) superconformal

algebra (which determines which part of the world-sheet supersymmetry they preserve)

[32]: either QL = +QR or QL = −QR is a consistent choice. The notation comes from

topological field theory – an A brane is one whose open strings naturally couple to A-

twisted topological theory and the Kähler moduli, while a B brane couples to complex

structure moduli. Mirror symmetry will exchange the two – the spectrum and world-

sheet theories of A branes on a CY M is isomorphic to that of the B branes on its

mirror W.

If we consider branes defined by Dirichlet and Neumann boundary conditions in

the non-linear sigma model with CY3 target, the B branes are 2p-branes wrapped on

holomorphic cycles and carrying holomorphic vector bundles (this is the case with direct

analogy to the heterotic string), while the A branes are 3-branes wrapped on what are

called special Lagrangian submanifolds (or sL-submanifolds; more below) [2]. At first

this notation may seem backwards given the discussion in the previous paragraph, since

the 2p-cycles and the masses of B branes are controlled by Kähler moduli (and thus

are calculable in the A-twisted topological closed string theory), while the 3-cycles and

masses of A branes are controlled by complex structure moduli. Nevertheless it is correct

– in going from the open to closed string channel the boundary conditions on the U(1)

current change sign, interchanging A and B twistings.

This switch has important consequences, especially if we combine it with the

known properties of CY sigma models. Specifically, the B twisted models receive no

quantum corrections, while A twisted models receive world-sheet instanton corrections.

Physically, this means that the N = 2 prepotential in compactified IIb theory, which

depends only on complex structure moduli, is classically exact. This means that whereas

B brane masses receive world-sheet instanton corrections, the large volume results for

central charges and masses of A branes are already exact (this fact and mirror symmetry

can then be used to determine B masses).

This means that lines of marginal stability for A branes are the same as in the large

volume limit, and this fact strongly suggests that the spectrum of A branes is determined

entirely by classical geometric considerations. Since we have not argued that the world-

volume theory itself does not receive stringy corrections (indeed we expect it to), this
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might seem to be an unjustified leap of faith at this point. Nevertheless there is a good

argument for it, which we now summarize.

The classical geometric prediction is that each A brane is a 3-brane wrapped on a

sL-submanifold. Now a sL-submanifold Σ of a CY n-fold is a Lagrangian submanifold

with respect to the Kähler form: ω|Σ = 0, satisfying an additional constraint involving

the holomorphic n-form: there exists a constant θ such that

Im eiθΩ|Σ = 0. (2.1)

The constant θ determines which of the original N = 2 supersymmetries remains

unbroken; two branes of different θ together break all supersymmetry.

While Lagrangian submanifolds are “floppy,” specified locally by an arbitrary

function (in canonical coordinates, pi = ∂f/∂xi), the special Lagrangian condition

determines this function up to a finite dimensional moduli space, which for a smooth

CY has been shown to be smooth and of real dimension b1 = dimH1(Σ,R) [30]. A

D-brane configuration is specified by Σ and a flat U(1) gauge connection, leading to

a moduli space of complex dimension b1, which before taking stringy corrections into

account is a torus fibration.

Interesting examples of sL-submanifolds of R6 are known, but not too many are

known for CY’s. The only general construction known is as the fixed point of an

involution, i.e. Im zi = 0 in a CICY. Even necessary or sufficient conditions for

candidate cycles to support sL-submanifolds are not known. The subject is still rather

new however and interest has picked up dramatically as a consequence of the proposal of

Strominger, Yau and Zaslow that the mirror W to a CY M is just the moduli space of

the D3-brane on M mirror to the D0 on W, which will be some (appropriately chosen)

T 3. [39] A number of papers have shown the existence of T 3 fibrations on particular

CY’s which can in principle be deformed to special Lagrangian fibrations. [22]

The question of how deformations of the CY itself affect the spectrum of sL-

submanifolds has recently been studied by Joyce. [26] The part of this story relevant

for complex structure deformations (also summarized in [27]) is as follows.

The natural geometric description of transitions between 3-brane configurations in

six dimensions is for two intersecting 3-branes to intercommute, producing a single

3-brane, or the reverse. In the large volume limit, this process can be studied in

the neighborhood of the intersection point, and the relevant question is: out of all

configurations ΣΘ in R6 which asymptote to two planes Σ1 and Σ2 at fixed angles Θ,

is the minimal volume surface the union of the two planes, or something else, and if so

what?

This question was answered some years ago by use of calibrated geometry [24]

and the result is known as the “angle theorem”: let Σ1 be the first plane and Σ̄2 the

orientation reversal of the second plane; out of SO(2n) rotations turning Σ1 into Σ̄2

take the eigenvalues eiθi and let θ =
∑

θi. If the minimal such θ is greater than or equal

to π, the volume cannot be reduced; while if θ < π it can.

The surface of lower volume can be approximately described by use of an exact
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sL-submanifold solution in R6 with the prescribed asymptotics, which exists in the case

θ = π. One can try use this solution to lower the volume by orienting it to cross both

of Σ1 and Σ2 near the intersection point; if it does so, the finite region between the

intersections is guaranteed to have lower volume than the original planes. This will be

possible exactly when θ < π.

The angle theorem tells us which of two configurations is stable in terms of a local

geometric condition (the same as the string theory condition for the intersection point

to have an associated tachyon [3]), but the geometric picture furthermore implies that

this can be tested just knowing the central charges for the two branes. This is because

the relative angle is known given the phase of pullback of Ω (locally dz1 ∧ dz2 ∧ dz3) to

each brane, and Ω must have constant phase on each brane. Thus decays take place just

when Z(Q1) and Z(Q2) are colinear – this is exactly the standard marginal stability

condition. These considerations tell us a little more – namely, which state (the single

brane, or two branes) is stable on which side of the marginal stability line.

This geometrical picture of A brane decay and stability fits with the constraints

following from the exact stringy prepotential and thus, despite the fact that other

consequences of this geometrical picture may well be false for substringy branes, it

is consistent to imagine that the spectrum is the geometric one. This is in contrast to

the B description of the spectrum which must be modified by the stringy corrections

to the prepotential. This is the first example of what we will call below the “modified

geometric hypothesis.”

All of this tells us quite a bit about the dependence of the spectrum of 3-branes

on the CY moduli, but does not substitute for the need to have some results on the

spectrum in at least some part of moduli space. Since so little is known about 3-branes

at present we instead take this from the large volume limit of the B brane spectrum as

many mathematical results towards classifying holomorphic cycles and vector bundles

are known.

The most basic of these is the following. Given a holomorphic vector bundle,

the Donaldson-Uhlenbeck-Yau theorem gives necessary and sufficient conditions for the

existence of a Yang-Mills connection preserving supersymmetry: it must be semistable.

This is a somewhat complicated condition involving all holomorphic subbundles, but a

simpler necessary condition is known which depends on the Chern character of the

bundle (which corresponds to D-brane charge as Q6−2k ≡ chk(F ), the 2k form in

Tr eF/2π) and the Kähler class:
∫

(Q6Q2 +
1

2
Q2

4) ∧ ω ≥ 0. (2.2)

On manifolds with b1,1 > 1 this describes an explicit dependence of the spectrum on the

Kähler class, as has been discussed by Sharpe. [37]

Since the prepotential determining the central charges of B branes receives world-

sheet instanton corrections, it is fairly certain that this mathematical stability condition

is modified in the stringy regime. This is quite interesting as it would mean that the

condition for a bundle to be usable in superstring compactification is not always the
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geometrical condition which has been implicitly assumed in the past.

Given a specific supersymmetric brane, we can try to derive its world-volume

effective action and general considerations suggest that the simplest quantities to start

with are the holomorphic ones: the superpotential and gauge kinetic term. The latter

corresponds to the dilaton and in CY compactifications with zero NS field strength this

only becomes non-trivial at string loop level (this is one of the invariants defined in

[4]). However a superpotential can appear at tree level and indeed for multiple parallel

branes we expect a generalization of the tr Z1[Z2, Z3] superpotential of 3-branes in flat

space. There are also known examples of superpotentials for single branes (see [5] for a

discussion).

A plausible counterpart of the nonrenormalization theorem for the N = 2

prepotential is the following: the superpotential, being essentially a topological quantity

in open string theory, depends only on the moduli of the appropriate twisted theory. [5]

Specifically, an A brane superpotential depends only on Kähler moduli, while a B brane

superpotential depends only on complex structure moduli, and furthermore is equal to

the large volume result.

This comes close to showing that a B brane moduli space is the same as in the

large volume limit, but not quite – the potential can also contain D terms. These would

naturally depend on the Kähler moduli, as in the example of quiver theories. A natural

generalization of the preceding conjecture is that these could be determined in the large

volume limit from the A brane point of view.

As explained in [27], the D terms are related to the stability question. A world-

volume description of the decay process of Joyce starts with the two intersecting 3-branes

and U(1) × U(1) gauge theory; the intersection comes with a chiral multiplet charged

under both U(1)’s, and the dependence on complex structure moduli comes through

an FI term for the relative U(1). As one goes through the transition one goes from a

supersymmetry breaking ground state with unbroken U(1)× U(1) to a supersymmetry

preserving ground state with broken relative U(1). ‡

An analogous statement was already known on the B side. [37] Equality in

(2.2) defines a boundary within the Kähler cone on which stability degenerates to

semistability. This means that the connection on the brane becomes reducible, and

an enhanced gauge symmetry appears, a phenomenon which in N = 1 theory can only

arise from D terms as above. We see that this qualitative picture survives the stringy

corrections, but the precise location of the boundary is different, in a way determined

by the A picture geometry.

The upshot of the discussion is that mirror symmetry leads to a natural conjecture

for a modified or “mirror geometric hypothesis” – some brane questions are geometric

‡ As in [6] this configuration can be shown by a probe analysis to be equivalent to a single 3-brane

produced by intercommutation. [17] A difference with the case of 2-branes considered there is that

the resulting 3-brane is not actually special Lagrangian. This is possible because near the transition

it has a large extrinsic curvature and this is evidence that the detailed form of the special Lagrangian

condition gets α′ corrections.
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in the A picture, and others are geometric in the B picture. As is well known the

prepotential in the complex structure sector is determined geometrically; this determines

A brane central charges and stability and strongly motivates the claim that the spectrum

of branes can be understood geometrically in the A picture. We can add to this the

claim that the superpotential in the B twisted model is classical; this means that brane

moduli spaces are largely determined by the geometry of the B picture. Finally, it may

be possible to determine the D terms in the A picture and complete the story.

So far as I know, these conjectures are consistent with the evidence, but require

much more testing. The most interesting tests are in the stringy regime, as we discuss

next.

3. Boundary states and branes

Exactly solvable CFT’s were a fruitful source of insight into compactification of

closed string theory and are now beginning to teach us about branes in these

compactifications. The fundamental notion is that of “boundary state,” a CFT

description of a boundary condition as a linear functional on the closed string Hilbert

space. Reparameterization invariance and supersymmetry can be easily implemented

by imposing operator constraints. One must then impose the condition that all annulus

partition functions (associated with pairs of boundary states) have an open string Hilbert

space interpretation (the multiplicities are integers); this condition was proposed by

Cardy and can be solved for rational CFT’s. D-brane ground states correspond to such

boundary states (not much is known about the non-rational case; possibly additional

unknown constraints must be satisfied).

The simplest and most studied models are orbifolds and orientifolds. In this case the

general boundary state approach can be shown to reduce to the world-sheet prescription

proposed in [12] – one introduces image D-branes on the cover and quotients by a

simultaneous space-time and gauge action. The case of strings and branes near a

single orbifold or orientifold singularity is particularly easy and one obtains quiver gauge

theories as world-volume theories. For C3/Γ these have been much studied and among

the noteworthy results are the following:

(i) The resolution of these singularities is described in quiver gauge theory by FI terms

coupling to Kähler moduli. [13, 35] If multiple resolutions with different topology

are mathematically possible, they all appear to be accessible physically. [20]

(ii) The resulting metrics are not Ricci flat. [14, 35] Although some caveats were made

in that work, it can be shown that this statement is true at string tree level. [17]

(iii) The quiver theory depends on the choice of representation of Γ; the basic case is

the regular representation, while non-regular representations correspond to branes

wrapped around exceptional cycles (or “fractional branes”). [8]

(iv) If we take D3-branes to get a 3+1 theory, the regular representation is distinguished

by having zero beta function in the large N limit.[29]
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(v) These theories have supergravity duals corresponding to the quotients AdS5 ×

S5/Γ.[28]

Recently Diaconescu and Gomis have studied the case of C3/Z3 in detail.[9] Besides

checking the equivalence between the boundary state approach and the proposal of [12],

they determined the mapping between fractional branes and wrapped branes in the

large volume limit, using techniques we will describe below. Additional summary of this

example can be found in [1].

We now turn to Gepner models and the work [5]. Gepner models provide CFT

models which are equivalent to CY compactification at special points in moduli space of

enhanced discrete symmetry. The study of boundary states in these models was initiated

by Recknagel and Schomerus [34]; they classified the subset of boundary states which

can be obtained by separate boundary conditions in the individual N = 2 minimal

model factors, for which Cardy’s techniques apply. (See also [23], as well as [19] which

uses the Landau-Ginsburg approach.)

Let us briefly summarize the spectrum of branes one obtains and the main result

used in the analysis of [5] – the intersection form between two branes. Cardy’s

analysis (for diagonal modular invariant) produces boundary conditions in one-to-

one correspondance with closed string primary fields; the spectrum of open strings

with two such boundary conditions a and b is generated by primary fields in one-to-

one correspondance with those on the right hand side of the (Verlinde) fusion rules

φaφb → N c
abφc.

The Ak N = 2 minimal model can be obtained as a deformation of the SU(2)k
WZW model, and its primary fields φlm are labelled similarly, by two integers 0 ≤ l ≤ k

(the SU(2) representation label) and 0 ≤ m < 2k + 4 (the charge under the U(1) of

N = 2) up to a Z2 identification (l, m) ∼= (k − l, m + k + 2). The fusion rules are the

product of U(1) fusion rules (i.e. Zk+2 charge conservation) with SU(2)k fusion rules.

Before implementing the GSO projection, the Gepner model boundary conditions

are labelled by a set of such integers, and are all A boundary states (since they

correspond to left-right symmetric fields). The GSO projection then restricts the closed

string spectrum to (odd) integer total U(1) charge
∑

m, while twisted states with

mL 6= mR are added. The restriction has the effect of reducing the number of distinct

A boundary states, while the twisted sectors provide new candidate B boundary states.

The final result for the (3)5 model is that all boundary states are labelled by a set

of five Li ∈ {0, 1}; the A boundary states are also labelled by five Mi satisfying one

relation and form representations of Z4
5 × S5 discrete symmetry, while the B boundary

states have a singleM label and represent a Z5 discrete symmetry. These are the known

discrete symmetries of the CFT at the Gepner point; it is known to be equivalent to

the Fermat quintic
∑5
i=1 Z

5
i = 0 in P4 with manifest Z4

5 symmetry, at a special point in

Kähler moduli space with quantum Z5 symmetry.

The modified geometric hypothesis of section 2 would imply that these A branes

are exactly the sL-submanifolds of the Fermat quintic and we can test this idea for the
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known sL-submanifolds. These are obtained by taking a real section Im e2πimi/5Zi = 0:

topologically these are RP3’s, which fall into the same representation of Z4
5 ×S5 as two

sets of boundary states: those with all Li = 0 and those with all Li = 1. How can we

tell which (if either) is their counterpart?

A strong check of any proposed identification is that the geometric intersection

number of a pair of 3-branes must agree with the quantity Tr ab(−1)F in this sector of

the open string theory. [15] This can be seen by considering electric-magnetic charge

quantization in the resulting d = 4 theory. This computation is a special case of those

in [34] and it turns out the Li = 1 states match this intersection form, while the Li = 0

states do not (they presumably correspond to some other sL-submanifolds). So far this

is in agreement with both the original and the modified geometric hypothesis.

However, one also finds that the Li = 1 brane world-volumes have a massless

chiral multiplet, and this disagrees with the geometric prediction of [30]. As discussed

in [5] it is likely that this is lifted by a superpotential, but even so this contradicts

the strongest form of the geometric hypothesis, in which both this massless field and

the superpotential would have matched. It does not contradict the modified geometric

hypothesis, which allows the A brane superpotential to depend on the Kähler form,

and furthermore shows that massive fields in the large volume limit can come down to

become (linearized) moduli. Such effects and even jumping of the dimension of moduli

space are known to be possible in the B picture; perhaps this superpotential would be

manifest in a mirror description.

Turning to the B branes, we have more intuition for which of these exist in the

large volume limit: namely the condition (2.2) must be satisfied (if Q6 6= 0; there is an

analogous statement if Q6 = 0 but Q4 6= 0). Although bundles on the quintic are by

no means classified, various considerations suggest that generic charge vectors for which

the discriminant (the left hand side of (2.2)) is sufficiently large will be associated to

stable bundles.

Thus it is interesting to express the charges of the B boundary states in large volume

terms, and compare. A precise form of this comparison is to choose a path in Kähler

moduli space from the Gepner point to the large volume limit, and use the flat Sp(2r,Z)

connection provided by special geometry to transport the charge lattices between the

two regimes.

The Kähler moduli space and prepotential for the quintic is of course well known

from the famous work of Candelas et. al. [7] which computed the periods of the three-

form on the mirror. To review the structure of this moduli space: it is a Riemann sphere

with three singularities, a large volume limit at z → ∞, the Gepner point with a Z5

quotient singularity at z = 0, and finally a “conifold” singularity at z = 1 at which

a three-cycle of the mirror degenerates (has zero period). It turns out [7, 21] that on

the original quintic this is precisely the central charge of the “pure” (trivial gauge field)

six-brane. The periods Πi(z) can be obtained as solutions of Picard-Fuchs ODE’s or

more explicitly as series expansions around each singularity, with radius of convergence

determined by the locations of the others.
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Two concrete results are now needed from this analysis. First, the mirror map gives

us an appropriate basis for the large volume limit – central charges of the individual

2p-branes. Second, given that the central charge of a brane with charge vector Qi is

Z = QiΠi(z), the transition functions of the flat connection on the charge lattice are

simply the linear transformations between different bases Πi(z) adapted to different

regions of moduli space (these are connection formulas for generalized hypergeometric

functions). This tells us what the 2p-brane central charges will be at the Gepner point.

In principle these could already be compared with a precise computation of the

central charges of our boundary states, but such a comparison will run into tricky

problems of normalization. The best way to study the charges of D-branes – as was

done in the very first example [33] – is to instead compute the interaction between two

D-branes in the open string channel, as this is canonically normalized (it is a partition

function). Indeed the simplest quantity of this type is the intersection form Tr ab(−1)F

discussed above and thus the simplest way to proceed is to express the known large

volume intersection form in terms of a natural basis at the Gepner point (one which

represents the quantum Z5 symmetry in a simple way) and compare this intersection

form with the intersection forms of the boundary states.

It turns out that the resulting boundary state charges are simple when expressed

using the basis first postulated by Candelas – the zero-brane period and its Z5 images.

The states of minimal charge are the five Li = 0 states; one of these turns out to be the

pure six-brane 〈6B| ≡ ( 1 0 0 0 ), and to get the others we just need to know the

Z5 monodromy in the large volume basis, which is given in [7]. In the conventions of [5]

it is§

g ≡ (Q6 Q4 Q2 Q0 ) → (Q6 Q4 Q2 Q0 )













−4 −1 −8 5

−3 1 5 3

1 0 −1 1

−1 0 0 1













(3.1)

and thus the others are 〈6B|gM . The charges for states with L =
∑

Li > 0 can be

derived from these by using the fusion rules: essentially, they are 〈Q6|(1 + g)LgM .

One surprise of the result is that the D0-brane is not present (as a rational boundary

state; this is not to say that it does not exist at the Gepner point). It appears that this

is also consistent with the geometric hypothesis in the following sense: any location we

might pick for the D0 would break some of Z4
5, but all of the rational B boundary states

are singlets under Z4
5, so we should not find the D0 in this analysis.‖

Looking at the charges of all of the boundary states, they appear to be consistent

with the original geometric hypothesis, at least in the weak sense that they are all

consistent with (2.2). Not too much more is known about vector bundles on the quintic

so it is hard to be more precise.

§ Note that these are conventions in which the charge vectors include the factor
√

Â, which are not

the conventions of (2.2). The latter are also given in [5]; they are the ones in which the large volume

monodromy is simple but charges are not necessarily integral.
‖ It appears that other Gepner models can contain the D0 as a boundary state.[10]
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On the other hand, the monodromy (3.1) in general can take solutions of (2.2) into

non-solutions, making it highly implausible that it is a symmetry of the entire brane

spectrum. This is reminiscent of related phenomena in the study of N = 2 gauge theory,

and we turn to this analogy.

4. Marginal stability on the quintic

As we saw in the previous section, the D0-brane is not a rational boundary state for the

Gepner quintic. This leads one to wonder whether it exists in the stringy regime at all,

and more generally how much the spectrum of branes varies as we move around.

In generic N = 2, d = 4 theories, the spectrum of BPS states depends on the

moduli, but it varies in a highly constrained way. A state of charge Q will generically

be stable under variations of the moduli, but there exist can lines of marginal stability

(or “jumping lines”), on which the state can decay to BPS states of charge Q1 and Q2,

if the condition

|Z(Q)| = |Z(Q1)|+ |Z(Q2)| (4.1)

is satisfied. Here Z(Q) = Q · Π(z) is the central charge in terms of a vector of periods

Π(z) at a point z in moduli space; for the A branes these are the periods of the three-form

Π =
∫

Ω (normalized to
∫

Ω ∧ Ω̄ = 1).

The most familiar examples are supersymmetric gauge theories, which have been

studied in great detail. For example, pure SU(2) N = 2 gauge theory (the original

Seiberg-Witten solution) has a line of marginal stability which goes through the massless

monopole and dyon points and separates the strong and weak coupling limits. The

strong coupling BPS spectrum consists only of the monopole and dyon, the two

states responsible for the singularities. This phenomenon was necessary as otherwise

monodromies around the massless monopole point would produce states with arbitrarily

large electric charge, which are not present in the known semiclassical spectrum.

Besides the known semiclassical spectrum, a number of constraints follow from

the solution for the prepotential and justify this result. The primary constraint is the

physical correspondance between singularities and massless states [38]: if Z(Q) vanishes

at some z, either there is a corresponding singularity which we can think of as coming

from integrating out this state at nearby points, or else the state must not exist at z. If

it exists at some z′, there must be a line of marginal stability separating z and z′. This

is quite strong as it turns out that the ratio of the two periods aD/a assumes all possible

real values (in all the asymptotically free SU(2) theories in fact) and thus every charge

can be constrained. One sees this most easily by combining the result (easily verified

numerically) that Im aD/a changes sign between weak and strong coupling regimes with

the SL(2,Z) transformation properties of aD/a (which force the line Im aD/a = 0 to

connect the massless monopole and dyon points).

Our earlier observation that the Z5 monodromy obtained by encircling the Gepner

point in the quintic does not fit well with the known constraints on the large volume
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spectrum is our first suggestion that similar phenomena will obtain here. There is also a

qualitative similarity to the change of sign of Im aD/a. Let the conifold point be zc = 1:

here the six-brane becomes massless, Π6 ∼ z − zc. Although the other periods are not

analytic here, they are still continuous: Π ∼ (z − zc) log(z − zc) + regular. Thus just as

in gauge theory, Im Π6/Π0 changes sign as we go through this point.

This starts to suggest that the gauge theory picture with its drastic change in

the spectrum might also be possible here. Unfortunately few of the other elements of

the story there have been developed for the quintic (or indeed any CY) moduli space.

In particular, the appropriate analogs of SL(2,Z) and the fundamental region are not

known, making it difficult to get a good global picture of the moduli space.

The boundary state results show us that the answer will not be as simple as that

for gauge theory – the spectrum will not collapse simply to the states which can become

massless. We should also not assume that all of the boundary states exist at large

volume.

To study this one can simply follow all of the central charges for boundary states

out from the Gepner point to the large volume limit, to see what happens. One expects

more marginal stability lines in the neighborhood of the conifold point, so to minimize

the possibilities for decay we choose the trajectory z real and negative opposite to it in

moduli space. We then numerically integrated the Picard-Fuchs equations (and checked

the results against the series expansions of [7]) to get the periods and thus the BPS

masses.

Using these to compute the masses of BPS branes with the charges of all rational

boundary states produces a surprise: one of them has its period go through zero! In

other words, there exists a BPS state at the Gepner point whose mass appears to go to

zero at a non-singular point X in moduli space. (Readers who want proof that this is not

an error of numerics or conventions will find a semi-qualitative proof in the appendix.)

This in itself is not inconsistent as long as there exists a line of marginal stability

separating the point X from the Gepner point. At this point we run into one of the main

difficulties in studying these questions for CY: there are an infinite number of candidate

marginal stability lines, and we need more knowledge about the BPS spectrum to decide

which are real (i.e. the decay takes place, which requires the states of charge Q1 and

Q2 to actually exist on the line). This is closely related to the fact that at a generic

point in moduli space, there exist charges Q such that |Z(Q)| < ǫ for any positive ǫ, no

matter how small. Consider the Gepner point: there the periods are the fifth roots of

unity, so the set of Z(Q) is a Z5 symmetric lattice embedded in the complex plane.

Although we have not as yet found the true marginal stability lines, we can at least

try to postulate a pair of charges Q1 and Q2 into which the problematic state can decay

and whose masses do not cross zero on the way to large volume. This is not hard to

do, and thus the existence of such a marginal stability line seems perfectly plausible –

there seems no reason to doubt the consistency of the theory.

Thus we have proof of the existence of at least one marginal stability line; given

that we have two points at which Z(Q) vanishes for “simple” charges Q it is quite likely
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that many other true marginal stability lines pass through these points.

An even stronger consideration of this type is to follow large volume branes to the

Gepner point: it is easy to find charge vectors satisfying (2.2) whose period goes through

zero on this axis. If it is true that these generally correspond to stable bundles, we have

many more examples.

All this starts to be significant evidence for the claim that the BPS spectrum is

rather different in the stringy regime.

4.1. A note on attractor points

A question related to marginal stability but somewhat simpler has arisen in the study

of BPS black holes in CY compactification. It has been shown [18] that the entropy of

such black holes is governed by the “attractor mechanism.” Given a black hole of large

charge Q, the consistency condition for a covariantly constant spinor is a first order

equation which is just gradient flow on the moduli space to a minimum of the quantity

S(z) = |Q · Π(z)|; the entropy is the minimal value Smin(Q).

For some Q, it is possible that Smin(Q) = 0. In the previously known examples

(such as the state which goes massless at the conifold point), the state existed at the

minimizing point in moduli space and produced a singularity in the moduli space metric,

modifying the discussion. What we have found here is a Q for which the discussion above

leads to a contradiction (as noted in [31]) – the attractor equation breaks down (has

no sensible solution) before reaching the horizon, so this is not a failure of supergravity.

Indeed, this could be interpreted as an argument that such black holes cannot exist, and

an observation consistent with this idea is that (at least in some cases) the condition

Smin(Q) = 0 reduces to the negation of (2.2) in the large volume limit on the quintic,

However, we have found a particle with (small) charge Q and Smin(Q) = 0 at the

Gepner point, so we have a paradox. We can take N of these particles and put them

into a small region of space, using only total energy Nm + ǫ. For N sufficiently large,

one would certainly expect that they form a black hole NQ, for which the previous

argument applies.

What is going on ? The resolution will almost certainly use the fact that – as a

single brane – the object in question was unstable at the minimizing point. One scenario

is that the final stable object is a bound state of two black holes of charges NQ1 and

NQ2 with a hard core repulsive potential. [16] This would evade the previously cited

argument, which assumed a spherically symmetric configuration.

It seems likely that more surprises along this line await us.

5. Conclusions and further directions

D-branes have played a central role in the study of superstring and M theory duality.

Quite a lot has been understood about compactifications with enhanced supersymmetry,

but eventually we will need to deal with the physical cases of N = 0 (and hopefully
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N = 1!) supersymmetry in four dimensions.

A large class of N = 1 supersymmetric string compactifications can be obtained by

using D-branes on Calabi-Yaus. Many of these are related to known constructions (F

theory or the strong coupling limit of heterotic strings) but what I have tried to show

here is that we can make further progress by using special properties of the weak type

II string coupling limit, namely the close relation between D-brane theories which fill

different parts of Minkowski space (e.g. D3 and D0-branes), and the powerful tools of

mirror symmetry and exactly solvable CFT.

A reasonable goal for the current work is to settle the geometric hypothesis

and modified geometric hypothesis as described here – namely, to show that the

superpotential and D terms depend only on complex and Kähler data for B branes

(the reverse for A branes) and answer the following questions:

(i) Are all A branes 3-branes wrapped on sL-submanifold’s, even for a stringy CY ?

Are all marginal stability lines and decays described by the local intercommutation

of 3-branes ?

(ii) If so, do the mirror symmetry predictions for the spectrum of B branes agree

with geometric predictions at large volume? What does the semistability condition

translate into in the A picture ?

(iii) Is the spectrum of B branes on stringy CY’s very different from the large volume

spectrum (as the results here suggest) ? If so, is it finite or perhaps characterized

by simple inequalities analogous to (2.2) ?

(iv) Is knowledge of the large volume spectrum and the exact prepotential enough to

determine the spectrum throughout moduli space (using consistency arguments of

the sort which worked for supersymmetric gauge theory) ?

(v) Can we make a complete statement about the potential and moduli space on these

branes (presumably combining B picture information to get the superpotential and

A picture to get the D terms) ?

(vi) Can we extend this picture to finite string coupling, perhaps by making contact

with the heterotic string limits of the same models ?

A longer term goal will be to understand terms in the effective action which are

not so strongly constrained by supersymmetry, such as the D0-metric on a CY.

Perhaps interesting non-supersymmetric models can be obtained by considering

non-BPS space-filling brane configurations, along the lines of [36, 27].
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Appendix

We give a semi-qualitative argument for the vanishing period, using the results for the

periods of the mirror to the quintic in [7]. They are functions of a complex modulus

ψ which covers the Riemann sphere with three punctures. ψ → ∞ is the large volume

limit, with t = B + iV = − 5

2πi
log(5ψ). ψ = 1 is the conifold point, and ψ = 0 is the

Gepner point. ψ → αψ with α = e2πi/5 is the Z5 quantum symmetry of the Gepner

point – it leads to the same bulk theory but acts as an Sp(4,Z) monodromy on the

brane spectrum.

Candelas et al. use a basis ωk(ψ) where ω0 is the 0-brane period in the large

volume limit and the others are its images under the Z5. of the Gepner point. These

are multi-valued on the ψ plane and thus it is necessary to take care with the domains

of definition.

There are three lines along which the periods have simple reality properties. We

define the line A to be ψ = x real with x > 1, the line B as ψ = x real satisfying

0 ≤ x < 1, and the line C as ψ = e2πi/10x with x real and positive.

From the explicit series expansions for the periods it is easy to check the following

qualitative properties:

(i) Near the Gepner point, ωj(ψ) → −α2+jCψ with C = Γ(1/5)/Γ(4/5)4 a positive

real constant.

(ii) In the large volume limit, ωj(ψ) ∼ Sj3

6
t3 where Sj3 = 0, 5,−15, 15,−5 for j =

0, 1, 2, 3, 4.

(iii) Along B we have (ωj(x))
∗ = ω1−j(x) and along C we have (ωj(α

1/2x))∗ =

ω−j(α
1/2x) (this must be checked using both large and small volume expansions).

From [5], one can check that the period

ΠX = ω1 − ω4 (5.1)

is the central charge of a B boundary state L1 = 1, Li = 0 for i > 1.

We now argue that ΠX will have a zero along the axis C. From (iii) we see that

ΠX is purely imaginary along this axis, so if the imaginary part changes sign between

the Gepner and large volume limits it must have a zero. This can be checked explicitly

given the limiting behaviors we quoted.

A way to see that this was inevitable is to consider the behavior of the six-

brane period Π6 = ω1 − ω0 on the loop ABC in moduli space. At large volume,

Π6 ∼ψ∼α1/2
∞

5

6
t3 ∼ 5

6
− iV 3 so it comes in from negative imaginary infinity towards

zero. Along A and B Π6 is purely imaginary and as we know it crosses zero at ψ = 1

(the conifold point) and comes out the other side, to reach its value at the Gepner point

Π6(ψ) ∼ψ∼0 C(α
2 − α3)ψ = C2i sin π

5
ψ. As we come back along the axis C, we know

that the six-brane does not become massless anywhere, so Π6 must move off into the

complex plane to avoid the origin, finally joining the same asymptotics Π6 ∼ −5/6iV 3

we had at large positive ψ.
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This behavior implies that Π6 must cross the real axis at some point, and since ω0

is real all along C, ω1 must become real at this point.
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