
TOPICS IN DISCRETE OPTIMIZATION:

MODELS, COMPLEXITY AND ALGORITHMS

A Thesis
Presented to

The Academic Faculty

by

Qie He

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology
December 2013

Copyright c© 2013 by Qie He



TOPICS IN DISCRETE OPTIMIZATION:

MODELS, COMPLEXITY AND ALGORITHMS

Approved by:

Dr. Shabbir Ahmed, Co-advisor
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Dr. Santanu S. Dey
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Dr. George L. Nemhauser, Co-advisor
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Dr. Robin Thomas
School of Mathematics
Georgia Institute of Technology

Dr. William J. Cook
Department of Combinatorics and
Optimization
University of Waterloo

Date Approved: July 30, 2013



To my parents.

iii



ACKNOWLEDGEMENTS

Many have told me that the most important piece of a dissertation is the acknowledgment

part (not including my advisers). I cannot agree with them more. So...

I am extremely thankful to my advisers, George and Shabbir, for their constant support

and guidance in every aspect of my graduate studies. Working with them continuously

opens up my mind, and most importantly, helps me gain more convictions on what I love

to do. Thanks also to Bill Cook, Santanu Dey and Robin Thomas for serving on my thesis

committee.

I am deeply grateful for a lot of help received during my PhD studies. I want to

thank Alex Shapiro and Hayriye Ayhan, for bearing my elementary questions on probability

theory. Laurence Wolsey, for teaching me lot-sizing and always being so generous to answer

my questions timely. Joel Sokol, for kindly letting me work with him in my first semester

at Tech, which made the transition of studying in a new country much easier. Bill Cook,

Robin Thomas, Hayriye Ayhan, Santanu Dey and Chen Zhou, for all the support and

advices during my job search. Gary Parker, for being such a great program director, and

the staff members in ISyE: Pam Morrison, Anita Race, Harry Sharp and Mark Reese, for

making everything in the department much easier.

Research and learning become much more fun thanks to the discussions with fellow

students in ISyE and the ACO program: Daniel Dadush, Xuefeng Gao, Cristobal Guzman,
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SUMMARY

Discrete optimization problems arise in nearly every field of scientific and engineering

interest. The pursuit of solutions for individual problem provides a better understanding of

each problem’s intrinsic complexity as well as the power and limits of the developed mod-

els of computation. On a more practical level, many discrete optimization problems are

modeled and solved as mixed-integer programs. The art of modeling and the development

of general mixed-integer program (MIP) solvers have great influence on finding satisfying

solutions efficiently in practice. The prevalent presence of dynamics and uncertainties im-

poses even greater challenges on both tasks. In this thesis, we examine several discrete

optimization problems through the perspectives of modeling, complexity and algorithms.

Cutting planes play a central role in the theory and computation of MIP. In Chapter 2,

we propose the first probabilistic model to compare the strength of the traditional split cut

and one type of newly developed two-row cut. We consider a two-row MIP with two integer

variables, which is essentially a relaxation of the general MIP. The model is of particular

interest since some of the facet-defining inequalities of the integer hull are not the traditional

split cuts. It turns out that each non-trivial facet-defining inequality of the integer hull of

this relaxation can be obtained from either a split, a triangle or a quadrilateral. These

cuts are called split cuts, triangle cuts and quadrilateral cuts, respectively. It has been

shown that the triangle closure and quadrilateral closure is strictly contained in the split

closure, respectively, but in computation there is no clear evidence that these triangle

or quadrilateral cuts always perform better than split cuts (sometimes even worse). To

understand the mismatch between the theoretical strength and computational effectiveness

of the new families of cuts, we propose a probabilistic model to compare the strength of

the split cut and one type of triangle cut. Specifically, we address the following question:

what is the likelihood that a split cut will dominate with respect to cut coefficients or cut

off more volume from the linear programming (LP) relaxation than a type 1 triangle cut
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for an arbitrary instance of the two-row MIP given a specific probability distribution of the

problem parameters? Our analysis reveals that, for the given distribution of the instances,

such likelihood is high. The analysis also suggests some guidelines on when type 1 triangle

cuts are likely to be more effective than split cuts and vice versa.

In Chapter 3, we study a minimum concave cost network flow problem over a grid net-

work (CFG). A grid network has vertices corresponding to a two-dimensional square lattice

and horizontal and vertical arcs. In many applications, one dimension of the network models

the temporal dynamics (time periods) and the other models the spatial locations (echelons).

Concave cost functions are used to model economies of scale or a cost structure with a fixed

setup cost. CFG models many practical problems in green recycling, production planning

and transportation. We assume that the concave cost function is given by a function-value

oracle for each arc. We give a polynomial-time algorithm to solve this problem when the

number of echelons is fixed. We show that the problem is NP-hard when the number of

echelons is an input parameter. We also extend our result to CFG with backward and

upward arcs, which models backlogging and return of products respectively in supply chain

management. Our result unifies the complexity results for the lot-sizing problem and several

variants (multi-echelon, backlogging) in production planning and the pure remanufacturing

problem in green recycling, and gives the first polynomial-time algorithm for some prob-

lems whose complexities were not known before. In addition, our technique based on path

decomposition of extreme flows provides a unified framework to analyze the complexity of

various lot-sizing models.

Finally, in Chapter 4, we examine how much complexity randomness will bring to a sim-

ple combinatorial optimization problem. We study a problem called the sell or hold problem

(SHP). SHP is to sell k out of n indivisible assets over two stages, with known first-stage

prices and random second-stage prices, to maximize the total expected revenue. SHP can

be essentially formulated as a two-stage stochastic program with first-stage binary decision

variables and second-stage continuous recourse variables. Although the deterministic ver-

sion of SHP is trivial to solve, we show that SHP is NP-hard when the second-stage prices

are realized as a finite set of scenarios. We show that SHP is polynomially solvable when

ix



the number of scenarios in the second stage is constant. A max{1/2, k/n}-approximation

algorithm is presented for the scenario-based SHP.
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CHAPTER I

INTRODUCTION

The scope of this thesis is to investigate several discrete optimization problems through

the perspectives of modeling, complexity and algorithms. Discrete optimization problems

search for a best solution under certain criteria among a finite or countable set of feasible

solutions. When the feasible solutions possess additional combinatorial structures, mostly

related to graphs and set systems, these problems are also called combinatorial optimization

problems. Combinatorial optimization arises in nearly every field of scientific and engineer-

ing interest, including many well-known problems such as the min cut problem, matching,

the knapsack problem and the traveling salesman problem (TSP). The most important open

question in combinatorial optimization is the infamous P=NP conjecture, asking whether

a decision problem for which each “yes” instance has a certificate that can be verified in

polynomial time can also be solved in polynomial time. The persistent absence of a positive

answer inspires people to resort to various approximation algorithms for NP-hard prob-

lems [96]. Beyond the theoretical interest, a practical way to solve these problems is to

formulate them as integer programming (IP) problems, and use a standard “solver” for the

general IP models to find an optimal solution. It is not surprising that no solver in practice

is computationally efficient for every input IP model. To help improve the performance

of the solver for a particular problem, one usually needs to heavily exploit the combina-

torial structure of the problem to strengthen the IP formulation. The intertwinement of

combinatorial optimization and IP spawns the field of polyhedral combinatorics [32, 89].

As a generic modeling framework, IP has been a vigorous area since its inception in the

1950s. The theoretical and computational studies of IP have been advanced greatly in the

past five decades [88, 82, 102, 74]. One method to solve a general IP model is the ingenious

cutting-plane method, which was proposed by Ralph Gomory in 1958 [62, 63] and shown to

terminate in a finite number of steps. Despite its theoretical elegance, the computational
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efficacy of the cutting-plane method is best exploited by incorporating it in a branch-

and-cut framework. Probably the most challenging question related to the cutting-plane

method is: how can we generate strong cuts in an efficient way? There has been extensive

studies revolving around this question from both theoretical and practical perspectives,

such as efficient ways to generate cuts (including the Chvátal-Gomory cut [62, 30], Gomory

mixed integer (GMI) cut [63], Mixed integer rounding (MIR) cut [83], and lift-and-project

cut [9, 10]), characterization of the minimal and extremal valid functions from the group

relaxation [59, 60, 61], strengthening cuts by additional information [11, 100, 101, 64, 65, 4]

and the comparisons of various cut families [33, 39]. Note that in this thesis the terms “cuts”,

“cutting planes” and “valid inequalities” are used interchangeably, and “valid functions”

are used for different types of infinite relaxations for the IP model. Although there are

many ways to generate cuts for general IP models, it has been shown that the generic

cuts currently used in commercial solvers, such as CPLEX, GUROBI and XPRESS, are

essentially equivalent in terms of so-called elementary cut closure [33]. Furthermore they

can all be seen as cuts derived from certain split disjunctions [31], and generated from a

2-slope one-dimensional valid function [61]. However for some IP instances, there are valid

inequalities that can not be generated in such a way [31, 78]. It was not until recently

that people have had a deeper understanding of these new families of cuts. The major

breakthrough is due to a rediscovery of the one-to-one correspondence between the cut

(valid function) and the lattice-free convex set (which does not contain any integer point in

its interior) for some simple-structured IP model [3]. This nice geometric characterization

provides a way to study the strength of the cuts in term of the corresponding lattice-free

convex set. In particular, the maximal lattice-free convex set with nonempty interior in R2

is well understood and can only be a split, a triangle or a quadrilateral [79]. There have

been extensive studies on conditions on when these cuts are facet-defining [34], the closure

and rank comparison of different cut families [13, 45, 48], how to strengthen these cuts with

additional information such as integrality constraints on some variables, non-negativity and

other linear constraints [50, 51, 15, 58] and computational experiments on the new families

of cuts [54, 13, 47]. Inspired by the results in R2, several groups have also carried ongoing
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research on deriving cuts from lattice-free convex set in higher dimensions [27, 16, 7], cuts

from more general disjunctions such as a cross disjunction, a crooked cross disjunction [37,

40] and a multi-branch split disjunction [78, 38], generalized intersection cut [12], and strong

valid functions for two and higher dimensional infinite group relaxations [49, 35, 20, 18, 19].

To understand how strong these new cuts are, we propose in Chapter 2 the first probabilistic

model to compare the strength of the traditional split cuts and one type of newly developed

two-row cuts.

Multistage decision making is a central topic in operations research and management

science. A few combinatorial optimization problems, such as lot-sizing, inventory control

and dynamic pricing, are cast in the fashion of planning or allocating limited resources over

a number of stages, thereby naturally fall into this category. Many others, despite the lack of

an explicit concept of “stage” in the problem statement, can be recast as multistage decision

making problems, such as the shortest path problem, the knapsack problem and TSP.

Besides the aforementioned IP model (or more generally the mathematical programming

(MP) model), dynamic programming (DP), proposed by Richard Bellman [21], is another

powerful modeling tool and solution approach for multistage decision making. Under the

deterministic and discrete-time setting where the problem data at each stage are known to be

certain, the MP and DP models should agree with each other, in that the optimal solutions

obtained by solving each model should be the same under the same criteria. Meanwhile, due

to the different emphasis from the modeling perspective, independent theory and solution

methods have been developed for MP and DP, which in turn enjoy their own generality

and limitations. Deterministic MP models the whole problem in a static way, and exploits

time dynamics during the search for optimal solutions (such as decomposition of the model

through stages). The design of efficient algorithms for general MP models usually relies on

the existence of a duality theory, or a certificate that can be used efficiently to check the

optimality of obtained solutions. On the other hand, DP is built upon a dynamic system

with properly chosen state and action variables, and the optimal “policy” is characterized by

the Bellman equation. Despite its theoretical modeling power, DP suffers from a well-known

phenomenon called the curse of dimensionality, which states that the running time of solving
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the Bellman equation grows exponentially in the dimension of the state space, rendering

DP intractable for many problems in practice. Connections between the two models have

been explored in order to overcome the the limitations of one model by characteristics of

the other. (1) Use DP as a modeling tool, approximate the optimal value function of DP by

a class of prescribed functions with simple structure, and then solve the Bellman equation

by a large-sized linear programming [41, 42]. (2) Derive extended formulations of the MP

formulation from a DP algorithm [81, 80], which is used in turn to show the tightness of

various MP formulations. This idea is applied extensively in the context of the lot-sizing

problems [84] and more general fixed-charge network flow problems [86]. (3) Use DP within

a branch-and-bound framework to solve the MP model. DP can either serve as a heuristic

to solve subproblems of small sizes in the branch-and-bound tree, or provide a lower bound

for the MP formulation by relaxing the state space [29, 91]. In Chapter 3, we explore a

connection between MP and DP models to derive an efficient algorithm for the minimum

concave cost flow problem over a grid network. The main idea is to exploit the algebraic

and combinatorial structure of the optimal solution from the MP formulation to alleviate

the curse of dimensionality for the DP formulation.

Although MP and DP reach the same end under the deterministic setting, various multi-

stage decision making models diverge when uncertainty is taken into account. The presence

of uncertainty elicits different perspectives on how uncertainty is modeled and quantified,

how the dynamics of decision making interact with the uncertainty, and how the “opti-

mal” solution (decision, policy) is defined. Following these perspectives, a few models have

been proposed, including multistage stochastic programs [26, 90], Markov decision pro-

cesses [85, 24], multistage robust optimization [22, 25] and stochastic optimal control [23],

with various degrees of tractability and generality. In this thesis, we are particularly inter-

ested in the multistage stochastic integer programs (SIP), where uncertainty is modeled as

a discrete-time stochastic process {ξt}Tt=1 with ξt being a random vector whose realization

is revealed at stage t. Decisions are made over T stages with certain components of the de-

cision vector required to be integers. The objective is to optimize some risk functional such

as expectation or conditional value at risk. The difficulty of SIP is multifold: the evaluation
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of the objective functional usually requires the calculation of a multi-dimensional integral,

which is computational intractable in general; the number of decision variables grows ex-

ponentially in the number of stages; the presence of integer decision variables brings more

nonlinearity and non-convexity into the model. One condition that could possibly lead to

tractable SIP is that ξt only has a finite support for each stage t. Then the uncertainty

information structure can be interpreted as a scenario tree, and SIP can be reduced to an

equivalent deterministic IP, which is called the extensive form of the SIP. Motivated to

examine the complexity of this particular SIP model, we study in Chapter 4 a two-stage

stochastic combinatorial problem with a finite number of scenarios and a simple cardinality

constraint, for which the deterministic version of the problem is trivial.

As discussed above, we pursue the three perspectives of discrete optimization problems

in this thesis. Our main contributions are:

1. In Chapter 2, we propose the first probabilistic model to compare the strength of the

traditional split cut and one type of newly developed two-row cut. We consider a

two-row mixed-integer program (MIP) with two integer variables, which is essentially

a relaxation of the general MIP. Then any valid inequality for this relaxation will

also be valid for the general MIP. The model is of particular interest since some of the

facet-defining inequalities of the integer hull are not the traditional split cuts. It turns

out that each non-trivial facet-defining inequality of the integer hull of this relaxation

can be obtained from either a split, a triangle or a quadrilateral. These cuts are

called split cuts, triangle cuts and quadrilateral cuts, respectively. It has been shown

that the triangle closure and quadrilateral closure is strictly contained in the split

closure, respectively, but in computation there is no clear evidence that these triangle

or quadrilateral cuts always perform better than split cuts (sometimes even worse).

To understand the mismatch between the theoretical strength and computational

effectiveness of the new families of cuts, we propose a probabilistic model to compare

the strength of the split cut and one type of triangle cut. Specifically, we address the

following question: what is the likelihood that a split cut will dominate with respect

to cut coefficients or cut off more volume from the linear programming (LP) relaxation
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than a type 1 triangle cut for an arbitrary instance of the two-row MIP given a specific

probability distribution of the problem parameters? Our analysis reveals that, for the

given distribution of the instances, such likelihood is high. The analysis also suggests

some guidelines on when type 1 triangle cuts are likely to be more effective than split

cuts and vice versa.

2. In Chapter 3, we study a minimum concave cost network flow problem over a grid net-

work (CFG). A grid network has vertices corresponding to a two-dimensional square

lattice and horizontal and vertical arcs. In many applications, one dimension of the

network models the temporal dynamics (time periods) and the other models the spa-

tial locations (echelons). Concave cost functions are used to model economies of scale

or a cost structure with a fixed setup cost. CFG models many practical problems in

green recycling, production planning and transportation. We assume that the concave

cost function is given by a function-value oracle for each arc. We give a polynomial-

time algorithm to solve this problem when the number of echelons is fixed. We show

that the problem is NP-hard when the number of echelons is an input parameter. We

also extend our result to CFG with backward and upward arcs, which models back-

logging and return of products respectively in supply chain management. Our result

unifies the complexity results for the lot-sizing problem and several variants (multi-

echelon, backlogging) in production planning and the pure remanufacturing problem

in green recycling, and gives the first polynomial-time algorithm for some problems

whose complexities were not known before. In addition, our technique based on path

decomposition of extreme flows provides a unified framework to analyze the complex-

ity of various lot-sizing models.

3. In Chapter 4, we are interested in how much complexity randomness will bring to a

simple combinatorial optimization problem. We study a problem called the sell or hold

problem (SHP). SHP is to sell k out of n indivisible assets over two stages, with known

first-stage prices and random second-stage prices, to maximize the total expected

revenue. SHP can be essentially formulated as a two-stage stochastic program with
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first-stage binary decision variables and second-stage continuous recourse variables.

Although the deterministic version of SHP is trivial to solve, we show that SHP is

NP-hard when the second-stage prices are realized as a finite set of scenarios. We

show that SHP is polynomially solvable when the number of scenarios in the second

stage is constant. A max{1/2, k/n}-approximation algorithm is presented for the

scenario-based SHP.
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CHAPTER II

A PROBABILISTIC COMPARISON OF SPLIT AND TYPE 1

TRIANGLE CUTS FOR TWO ROW MIXED-INTEGER PROGRAMS

2.1 Introduction

This chapter is concerned with valid inequalities for a two-row mixed-integer program (MIP)

with two integer variables of the form

x = f +
k

∑

j=1

rjyj

x ∈ Z2, yj ≥ 0,

(1)

where f ∈ Q2 \ Z2 and rj ∈ Q2 \ {0} for all j. Let X denote the set of solutions to (1). It

has been shown (e.g., Andersen et al. [3]) that any valid inequality for conv(X) that cuts

off the infeasible point (x, y) = (f, 0) is an intersection cut (Balas [8]), corresponding to a

convex set L ∈ R2 with int(L) ∩ Z2 = ∅ (i.e., integer-free or lattice-free) and f ∈ int(L).

Such a cut is of the form
k

∑

j=1

ψL(r
j)yj ≥ 1 , (2)

where ψL : Q2 7→ R is given by

ψL(r) =











0 r ∈ rec.cone(L)

1
λ

λ > 0, f + λr ∈ boundary(L).
(3)

Furthermore, minimal inequalities of the form (2) can be derived from maximal integer-

free sets in R2 with non-empty interior. As shown in Figure 1, such sets are of one of the

following types (Lovász [79]):

• A split S: c ≤ ax1 + bx2 ≤ c+ 1, where a, b, c ∈ Z and gcd(a, b) = 1;

• A triangle with an integer point in the relative interior of each of the edges; these can

be further classified in to one of the following three types (Dey and Wolsey [50]):
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Split Type 1 triangle Type 2 triangle Type 3 triangle Quadrilateral

Figure 1: The integer-free bodies in R2 with non-empty interior

– A type 1 triangle T1: a triangle with integer vertices and exactly one integer

point in the relative interior of each edge.

– A type 2 triangle T2: a triangle with more than one integer point on one edge

and exactly one integer point in the relative interior of each of the other two

edges.

– A type 3 triangle T3: a triangle with exactly one integer point in the relative

interior of each edge and non-integral vertices.

• A quadrilateral Q with exactly one integer point in the relative interior of each edge

such that the four integer points form a parallelogram of area one.

Inequalities of the form (2) corresponding to the above sets are called split, (type 1, 2 or

3) triangle, and quadrilateral cuts, respectively. From the maximality of the above integer-

free sets, it follows that any non-trivial facet-defining inequality of conv(X) is either a split,

triangle or quadrilateral cut [3, 34].

Split cuts are the classical GMI or MIR cuts [82]. Recently there has been a great deal

of activity in comparing triangle and quadrilateral cuts to split cuts for two-row MIPs.

Basu et al. [14] compared the rank-1 closure (the convex set obtained by adding in a

single round all possible cuts from the family) corresponding to the three cuts classes.

They showed that the triangle closure (considering all three types of triangle cuts) and

the quadrilateral closure are contained in the split closure, suggesting that triangle and

quadrilateral cuts are in some sense stronger than split cuts. Dey [48] showed that type

2, type 3 triangle cuts and quadrilateral cuts have a finite split ranks (i.e., such a cut can

be constructed via a finite sequence of split cuts) while only type 1 triangle cuts can have

infinite split rank. However, empirical studies demonstrating the success of triangle and

9



quadrilateral cuts in comparison to split (or GMI) cuts have been limited. Espinoza [54]

reported some success with intersection cuts generated from some classes of integer-free

triangles and quadrilaterals. Basu et al. [13] considered strengthened versions of a class of

type 2 triangle cuts and showed that combining these cuts with GMI cuts give somewhat

better performance than GMI cuts alone. Dey et al. [46] presented computational results on

randomly generated multi-knapsack instances and showed that a subclass of type 2 triangle

cuts can close more gap than GMI cuts.

We present a probabilistic comparison of type 1 triangle cuts and split cuts. Specifically

we address the question: what is the likelihood that a split cut will dominate with respect to

cut coefficients or cut off more volume from the linear programming relaxation than a type

1 triangle cut for an arbitrary instance of the two-row MIP (1) given a specific probability

distribution of the problem parameters? Our analysis reveals that, for the given distribution

of the instances, such likelihood is high. The analysis also suggests some guidelines on when

type 1 triangle cuts are likely to be more effective than split cuts and vice versa. The result

in this chapter is a joint work with Shabbir Ahmed and George Nemhauser and appeared

in [71].

2.2 Setup

In this section, we discuss the distributional model for instances of the two-row MIP (1)

and the two metrics used in our probabilistic comparison of type 1 triangle and split cuts.

Without loss of generality, (by translating x by ⌊f⌋ and scaling yj by ‖rj‖2) we can

assume that 0 ≤ fi < 1 for i = 1, 2 and ‖rj‖2 = 1 for all j in (1). Then rj1 = cos θj and

rj2 = sin θj where θj is the angle between rj and the positive x1-axis.

The input model: We consider instances of (1) where f is a realization of a random vector

f that is uniformly distributed with support U := (0, 1)2, i.e., the open unit square in the

plane, and θj is a realization of a random variable θj that is uniformly distributed over

[0, 2π) for all j. (When f is on the boundary of cl(U), the coefficients for some split and

type 1 triangle cuts can be +∞, causing technical issues in their comparison.) Moreover,
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f ,θ1, . . . ,θk are independent random variables.

Under this probabilistic input model, the cut corresponding to the integer-free body L

is of the form
k

∑

j=1

ψL(f ,θj)yj ≥ 1, (4)

where the cut coefficient ψL(f ,θj) of variable yj is a random variable depending on f and

θj and is given by (3). Our analysis compares the random cut (4) when the set L is a split

or a type 1 triangle. To guarantee that f ∈ int(L) with probability one, we only consider

integer-free splits and type 1 triangles that contain U . This ensures that the inequality (4)

corresponding to L cuts off the infeasible point (f, 0) for every realization f of f . There are

only two splits containing U (the valid inequality corresponds to the GMI cut for each row

of system (1)) and there are only four type 1 triangles containing U , with one of the four

vertices of U as its right-angle vertex (see Figure 2).

S1

S2

x1

x2

(a) Two simple splits (b) Four type 1 triangles

x1

x2

(0,0) (0,0)(1,0) (1,0)

(0,1) (0,1)

T1

T2

T3

T4

Figure 2: The integer-free bodies selected for comparison

There are various criteria for comparing cuts. We choose two criteria suitable for com-

paring two individual cuts rather than cut families. The first one is based on cut dominance.

Definition 1. Suppose C1 :
∑k

j=1 ajyj ≥ 1 and C2 :
∑k

j=1 bjyj ≥ 1 are two distinct valid

inequalities for system (1), then C1 dominates C2 if aj ≤ bj for j = 1, · · · , k with at least

one of the inequalities being strict. We use C1 ≻D C2 to denote that C1 dominates C2.

If C1 ≻D C2, then C2 is implied by C1. The second criteria is based on the volume cut off
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by the cuts from the linear relaxation.

Definition 2. Suppose C1 :
∑k

j=1 ajyj ≥ 1 and C2 :
∑k

j=1 bjyj ≥ 1 are two distinct valid

inequalities for system (1). Let XLP be the linear relaxation of (1). Then C1 ≻V C2 if C1

cuts off more volume than C2 from XLP , i.e.

vol(XLP ∩ {(x, y) :
k

∑

j=1

ajyj ≤ 1}) > vol(XLP ∩ {(x, y) :
k

∑

j=1

bjyj ≤ 1}).

We probabilistically compare split and type 1 triangle cuts with respect to these two metrics.

2.3 Conditional Probabilities with respect to f

We first analyze the conditional probabilities of split cuts dominating and cutting off more

volume than triangle cuts with respect to the fractional point f . This analysis helps with

computing the total probabilities in Section 2.4, and also provides some insight into values

of f for which type 1 triangle cuts are likely to be better than split cuts and vice versa.

2.3.1 Cut coefficient comparison

Without loss of generality, we select one split from the two splits and one type 1 triangle

from the four type 1 triangles in Figure 2. The analysis easily extends to the other splits

and type 1 triangles by symmetry. The chosen split S1 and type 1 triangle T1 are shown

in Figure 3. The split S1 is defined by AD and BC and the type 1 triangle T1 is defined

by △AEF . Suppose that CS1
is the split cut for S1 and CT1 is the triangle cut for T1,

and recall that ψS1
(f ,θj) and ψT1(f ,θj) are the corresponding (random) cut coefficients for

variable yj . We use Pr[ψT1
(f ,θj) < ψS1(f ,θj)|f] to denote the conditional probability of

the event ψT1(f ,θj) < ψS1
(f ,θj) when f = f .

Lemma 1. For each j = 1, · · · , k, Pr[ψT1
(f ,θj) < ψS1(f ,θj)|f] = α(f), Pr[ψS1(f ,θj) =

ψT1
(f ,θj)|f] = β(f) and Pr[ψS1(f ,θj) < ψT1

(f ,θj)|f] = γ(f), where

α(f) =
arccos f2(f2−1)+(1−f1)2√

[f2
2
+(1−f1)2][(1−f2)2+(1−f1)2]

2π
, β(f) =

arccos
f21+f

2
2−2f2√

[f2
1
+f2

2
][f2

1
+(2−f2)2]

2π
,

γ(f) =
arccos

f21+f
2
2−f1√

[f2
1
+f2

2
][(1−f1)2+f22 ]

+ arccos
f21+f

2
2−f1−3f2+2√

[(1−f2)2+(1−f1)2][f21+(2−f2)2]

2π
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Proof. Since θj (j = 1, · · · , k) are i.i.d., we only need to prove the result for some j. For

simplicity, we supress the index j here and prove it for some ray r =







cos θ

sin θ






.

A

D C

B E

M N

x1

x2

O

F

R

The split S1

The triangle T1

Figure 3: Computing Pr[ψS(f ,θ) < ψT1(f ,θ)]

As shown in Figure 3, U is the unit square with vertices A,B,C and D and O is the

fractional point f . Let OR be the ray defined by f + λr. Let OM be the line parallel to

the x1-axis that intersects S and T1 at M and N respectively. Then θ is the angle between

OM and OR in the counterclockwise direction. Let the symbol ∠ denote an angle less

than π. Since the probability density function of θ is 1
2π I(θ ∈ [0, 2π)), by the law of total

probability,

Pr[ψS1(f ,θ) < ψT1
(f ,θ)|f] =

∫ 2π

0

I(ψS1(f, θ) < ψT1
(f, θ))

2π
dθ, (5)

where I(A) is the indicator function of event A.

By (3), ψS1
(f, θ) = 1

λS1

, where f + λS1







cos θ

sin θ






∈ boundary(S), and ψT1(f, θ) =

1
λT1

where f + λT1







cos θ

sin θ






∈ boundary(T1). Therefore, ψS1

(f, θ) < ψT1(f, θ) if the ray

f + λ







cos θ

sin θ






hits the boundary of T1 first, and ψT1(f, θ) < ψS1

(f, θ) if the ray f +

λ







cos θ

sin θ






hits the boundary of S1 first. When θ ∈ [0,∠MOC) or θ ∈ (2π−∠MOB, 2π),
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OR is contained in the cone bounded by OB and OC, and hits the boundary of S first, so

ψT1(f, θ) < ψS1
(f, θ). Similarly, when θ ∈ (∠MOC,∠MOF ) or θ ∈ (2π − ∠MOA, 2π −

∠MOB), ψS1
(f, θ) < ψT1(f, θ); when θ ∈ [∠MOF, 2π − ∠MOA] or θ is equal to ∠MOC

or 2π − ∠MOB, ψS1
(f, θ) = ψT1(f, θ). Therefore, by (5),

Pr[ψS1(f ,θ) < ψT1
(f ,θ)|f] = ∠AOB+ ∠COF

2π
, Pr[ψS1(f ,θ) = ψT1

(f ,θ)|f] = ∠AOF

2π
,

Pr[ψT1
(f ,θ) < ψS1(f ,θ)|f] =

∠BOC

2π
.

In △BOC, |OB| =
√

(1− f1)2 + f22 , |OC| =
√

(1− f1)2 + (1− f2)2 and |BC| = 1. By the

law of cosines,

cos∠BOC =
|OB|2 + |OC|2 − |BC|2

2|OB||OC|

=
f2(f2 − 1) + (1− f1)

2

√

[f22 + (1− f1)2][(1− f2)2 + (1− f1)2]
= 2πα(f).

Therefore,

Pr[ψT1
(f ,θ) < ψS1(f ,θ)|f] = α(f).

Similarly, ∠AOF = 2πβ(f) and ∠AOB + ∠COF = 2πγ(f). Therefore,

Pr[ψS1(f ,θ) = ψT1
(f ,θ)|f] = β(f), Pr[ψS1(f ,θ) < ψT1

(f ,θ)|f] = γ(f).

Lemma 1 provides the probabilities that a single coefficient of the split cut CS1
is smaller

than, equal to, and larger than that of the triangle cut CT1 as a function of f . To compare

the other split and type 1 triangles in Figure 2, we only need to change f1 to 1 − f1 or f2

to 1− f2 in α(f), β(f) and γ(f) by symmetry. The following theorem gives the conditional

probability that the split cut CS1
dominates the triangle cut CT1 with respect to f and the

number of continuous variables k.

Theorem 1.

Pr[CS1 ≻D CT1
|f] = [β(f) + γ(f)]k − [β(f)]k.
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Proof.

Pr[CS1 ≻D CT1
|f]

= Pr[ψS1(f ,θj) ≤ ψT1
(f ,θj), ∀j|f]− Pr[ψS1(f ,θj) = ψT1

(f ,θj), ∀j|f]

= Pr[ψS1(f ,θj) ≤ ψT1
(f ,θj)|f]k − Pr[ψS1(f ,θj) = ψT1

(f ,θj)|f]k

= [β(f) + γ(f)]k − [β(f)]k,

where the second equality follows from the assumption that θj (j = 1, · · · , k) are i.i.d..

Given integer-free bodies L1 and L2, let

RD(L1, L2) = {f ∈ U : Pr[CL1
≻D CL2

|f] > Pr[CL2
≻D CL1

|f]}.

The following corollary follows from Theorem 1.

Corollary 1.

RD(S1, T1) = {f ∈ U : γ(f) > α(f)} and RD(T1, S1) = {f ∈ U : α(f) > γ(f)}.

By symmetry, after appropriately translating f , we can similarly describe the regions

RD(Si, Tj) and RD(Tj , Si) for i = 1, 2 and j = 1, 2, 3, 4 corresponding to any of the two splits

and four type 1 triangles in Figure 2. Figures 4(a) and 4(b) show the regions ∩4
j=1RD(S1, Tj)

and ∩4
j=1RD(S2, Tj), respectively shaded in black. The white regions in these figures in-

dicate ∪4
j=1RD(Tj , S1) and ∪4

j=1RD(Tj , S2), respectively. Since the union of the two black

regions covers the unit square, there is no f for which a type 1 triangle cut CT satisfies that

Pr[CT ≻D CSi |f] > Pr[CSi ≻D CT|f] (i = 1, 2). It follows from the discussion above that

if we are only allowed to add one cut, when f ∈ ∩4
j=1RD(S1, Tj), we would select S1, and

when f ∈ ∪4
j=1RD(Tj , S1), we would select S2.

2.3.2 Volume comparison

In this section, we compare cuts based on the volume cut off from the linear relaxation of

system (1). First we describe how the volume cut off is computed.
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(a) The region ∩
4
j=1RD(S1, Tj) (b) The region ∩

4
j=1RD(S2, Tj)

Figure 4: The region.

Suppose that C :
∑k

j=1 ajyj ≥ 1, with aj ≥ 0 for all j, is a valid inequality for

system (1). Consider the linear relaxation of (1)

x = f +
k

∑

j=1

rjyj

x ∈ R2, yj ≥ 0.

(6)

Let XLP be the set of feasible solutions of system (6) and

SC = XLP ∩ {(x, y) :
k

∑

j=1

ajyj ≤ 1}.

Let vol(SC) denote the volume of the polyhedron SC , which is also the volume cut off from

S by the valid inequality C. The following lemma gives the volume of SC .

Lemma 2.

vol(SC) =











+∞ if ∃j such that aj = 0

α

n!
∏k

j=1 aj
otherwise,

(7)

where α is a constant depending on the rays r1, · · · , rk.

Proof. When aj = 0 for some j, SC is an unbounded polyhedron, and vol(SC) = +∞.

When aj > 0 for all j, SC is a k-dimensional polytope containing (f, 0). Let

Projy(SC) = {y ∈ Rk : ∃x ∈ R2 such that (x, y) ∈ SC}
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be the projection of SC onto the y space. Projy(SC) is a k-dimensional simplex with 0,

1
a1
e1, . . . , 1

ak
ek as its (k + 1) vertices, where ej is the j-th unit vector. Therefore,

vol(Projy(SC)) =
1

n!

1

a1
· · · 1

ak
=

1

n!
∏k
j=1 aj

.

Each point in SC is just an affine transformation of a point in the simplex Projy(SC), so

vol(SC) and vol(Projy(SC)) only differ by a factor α depending on the rays r1, · · · , rk. Thus

vol(SC) =
α

n!
∏k

j=1 aj
.

By Lemma 2, it suffices to compute the product of cut coefficients when we compare cuts

based on the volume cut off from the linear relaxation.

Now consider the split S1 and type 1 triangle T1 as in Section 2.3.1. As before, the

analysis easily extends to another pair of split and type 1 triangle bodies by symmetry.

Note that for fixed f ∈ (0, 1)2, ψT1(f,θj) > 0 with probability one. Moreover, since θj is

continuously distributed, Pr[∃j s.t. ψS1(f,θj) = 0] = Pr[∃j s.t. θj = π
2 or 3π

2 ] = 0.

Theorem 2.

Pr[CS1 ≻V CT1
|f] = Pr[

k
∑

j=1

ln
ψS1(f,θj)

ψT1
(f,θj)

< 0].

Proof. From Definition 2, Lemma 2 and the fact that ψS1
(f,θj) > 0 and ψT1(f,θj) > 0

with probability one, we have that

Pr[CS1 ≻V CT1 |f ] = Pr[vol(SCS1
) > vol(SCT1

)|f]

= Pr[
α

n!
∏k

j=1 ψS1(f,θj)
>

α

n!
∏k

j=1 ψT1
(f,θj)

] = Pr[
k

∑

j=1

ln
ψS1(f,θj)

ψT1
(f,θj)

< 0].

Next we analyze the asymptotic behavior of the probability Pr[CS1 ≻V CT1
|f] as the number

of continuous variables k increases. Before presenting further results, we give two technical

lemmas.

Lemma 3.
∫ π

2

0
ln cosxdx = −π ln 2

2
and

∫ π
2

0
(ln cosx)2dx <∞.
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Proof. By substitution of variables,
∫

π
2

0 ln cosxdx =
∫

π
2

0 ln sinxdx. Then,

∫ π
2

0
ln sinxdx =

∫ π
2

0
ln(2 sin

x

2
cos

x

2
)dx

=

∫ π
2

0
ln 2dx+

∫ π
2

0
ln sin

x

2
dx+

∫ π
2

0
ln cos

x

2
dx

=
π ln 2

2
+ 2

∫ π
4

0
ln sin ydy + 2

∫ π
4

0
ln cos zdz

=
π ln 2

2
+ 2

∫ π
4

0
ln sin ydy + 2

∫ π
2

π
4

ln sin ydy

=
π ln 2

2
+ 2

∫ π
2

0
ln sin ydy

Therefore,
∫

π
2

0 ln sinxdx = −π ln 2
2 .

By substitution of variables,
∫

π
2

0 (ln cosx)2dx =
∫

π
2

0 (ln sinx)2dx. Since 0 ≤ sinx ≤ x for

0 ≤ x ≤ π
2 , then 0 ≤ (ln sinx)2 ≤ (lnx)2. Moreover,

∫

(lnx)2dx = x(lnx)2−2x lnx+2x+d,

where d is a constant. Thus,
∫

π
2

0 (lnx)2dx = π
2 (ln

π
2 )

2 − π ln π
2 + π < ∞. Therefore,

∫
π
2

0 (ln sinx)2dx is finite.

To simplify the notation, let Xj(f) = ln
ψS1

(f,θj )

ψT1
(f,θj )

for every j = 1, . . . , k. Note that for a

fixed f ∈ (0, 1)2, the random variable Xj(f) is uniquely determined by θj . The assumption

that θj , for j = 1, . . . , k, are i.i.d. implies that Xj(f), for j = 1, . . . , k, are also i.i.d.. Let

µf = E[Xj(f)] and σ
2
f = Var[Xj(f)] for any j = 1, . . . , k.

Lemma 4.

|µf | <∞ and σ2f <∞.

Proof. To simplify the notation, let

Xk(f) =

∑k
j=1Xj(f)

k
, µf = E[lnψS1

(f,θj)]− E[lnψT1(f,θj)].

By (3), ψT1(f,θj) is bounded and strictly positive for fixed f ∈ (0, 1)2. Thus lnψT1(f,θj)

is bounded and E[lnψT1(f,θj)] is finite. By (3), ψS1
(f, θj) =

1
λS1

where f +λS1







cos θj

sin θj







hits the boundary of the split S1. Thus, f1+λS1
cos θj = 1 when θj ∈ [0, π2 ) and θj ∈ (3π2 , 2π),

and f1 + λS1
cos θj = 0 when θj ∈ (π2 ,

3π
2 ). Therefore, ψS1

(f, θj) =
cos θj
1−f1

when θj ∈ [0, π2 )
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and θj ∈ (3π2 , 2π), and ψS1
(f, θj) = − cos θj

f1
when θj ∈ (π2 ,

3π
2 ). The probability density

function of θj is 1
2π I(θj ∈ [0, 2π)). Therefore,

E[lnψS1
(f,θj)] =

∫ 2π

0
lnψS1

(f, θj)
1

2π
dθj

=
1

2π
[

∫ π
2

0
ln

cos θj
1− f1

dθj +

∫ 3π
2

π
2

ln
− cos θj
f1

dθj +

∫ 2π

3π
2

ln
cos θj
1− f1

dθj ]

=
1

2π
[

∫ π
2

0
ln cos θjdθj −

∫ π
2

0
ln(1− f1)dθj +

∫ 3π
2

π
2

ln(− cos θj)dθj

−
∫ 3π

2

π
2

ln f1dθj +

∫ 2π

3π
2

ln cos θjdθj −
∫ 2π

3π
2

ln(1− f1)dθj ]

=
1

2π
[4

∫ π
2

0
ln cos θjdθj − π ln f1(1− f1)]

By Lemma 3,
∫

π
2

0 ln cos θjdθj = −π ln 2
2 . Therefore, E[lnψS1

(f,θj)] is finite and µf <∞.

It only remains to verify that σf is finite. Since σ2f = E[(Xj(f))
2] − µ2f , we need to verify

that E[(Xj(f))
2] is finite.

E[(Xj(f))
2] = E[(ln

ψS1
(f,θj)

ψT1(f,θj)
)2]

= E[(lnψS1
(f,θj))

2]− 2E[lnψS1
(f,θj) lnψT1(f,θj)] + E[(lnψT1(f,θj))

2].

Since we have shown that lnψT1(f,θj) is bounded and E[lnψS1
(f,θj)] is finite for fixed f ,

the last two terms in the above equation are finite. For the first term E[(lnψS1
(f,θj))

2],

substitute the formula for lnψS1
(f, θj) and expand it as an integration,

E[(lnψS1
(f,θj))

2]

=

∫ π
2

0
(ln

cos θj
1− f1

)2
1

2π
dθj +

∫ 3π
2

π
2

(ln
− cos θj
f1

)2
1

2π
dθj +

∫ 2π

3π
2

(ln
cos θj
1− f1

)2
1

2π
dθj

=
1

2π
[4

∫ π
2

0
(ln cos θj)

2dθj − 4 ln f1(1− f1)

∫ π
2

0
ln cos θjdθj

+ π(ln(1− f1))
2 + π(ln f1)

2]

By Lemma 3,
∫

π
2

0 (ln cos θj)
2dθj and

∫
π
2

0 ln cos θjdθj are both finite. Thus,

E[(lnψS1
(f,θj))

2] <∞.

Therefore, Var(Xj) is finite.
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Now we present the asymptotic result on the probability that a split cut cuts off more

volume than a type 1 triangle cut as the number of continuous variables increases.

Theorem 3.

lim
k→∞

Pr[CS1 ≻V CT1
|f] =























1 if µf < 0

1/2 if µf = 0

0 if µf > 0.

Proof. From Theorem 2, we know Pr[CS1 ≻V CT1
|f] = Pr[

∑k
j=1Xj(f) < 0]. Since Xj(f)

(j = 1, . . . , k) are i.i.d., we can apply the Weak Law of Large Numbers and the Central

Limit Theorem. Let Xk(f) =
∑k

j=1Xj (f)

k
. Since |µf | is finite (Lemma 4), by the Weak Law

of Large Numbers, lim
k→∞

Pr[|Xk(f) − µf | < ǫ] = 1 for any ǫ > 0. We consider three cases:

µf < 0, µf > 0 and µf = 0.

(1) µf < 0. Choose ǫ = −µf
2
. Then

Pr[

k
∑

j=1

Xj(f) < 0] = Pr[Xk(f) < 0] ≥ Pr[Xk(f)− µf < ǫ] ≥ Pr[|Xk(f)− µf | < ǫ].

Thus, lim inf
k→∞

Pr[

k
∑

j=1

Xj(f) < 0] ≥ lim inf
k→∞

Pr[|Xk(f)− µf | < ǫ] = lim
k→∞

Pr[|Xk(f)− µf | < ǫ] =

1. Since lim sup
k→∞

Pr[
k

∑

j=1

Xj(f) < 0] ≤ 1, lim
k→∞

Pr[
k

∑

j=1

Xj(f) < 0] = 1.

(2) µf > 0. Choose ǫ =
µf
2
. Then

Pr[
k

∑

j=1

Xj(f) < 0] = Pr[Xk(f) < 0] ≤ Pr[Xk(f)− µf < −ǫ] ≤ Pr[|Xk(f)− µf | > ǫ].

Thus, lim sup
k→∞

Pr[
k

∑

j=1

Xj(f) < 0] ≤ lim sup
k→∞

Pr[|Xk(f) − µf | > ǫ] = lim
k→∞

Pr[|Xk(f) − µf | >

ǫ] = 0. Since lim inf
k→∞

Pr[

k
∑

j=1

Xj < 0] ≥ 0, Pr[

k
∑

j=1

Xj(f) < 0] = 0.

(3) µf = 0. From Lemma 4, σ2f is finite. By the Central Limit Theorem,
Xk(f)− µf

σf/
√
k

converges to the standard normal random variable N (0, 1) in distribution. Thus

lim
k→∞

Pr[

k
∑

j=1

Xj < 0] = lim
k→∞

Pr[
Xk(f)− µf

σf/
√
k

< 0] =
1

2
.
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Define RV (S1, T1) = {f ∈ U : µf < 0} and RV (T1, S1) = {f ∈ U : µf > 0}. Then,

RV (S1, T1) indicates the region where the split cut CS1
cuts off more volume than the type

1 triangle cut CT1 with probability close to 1 when k is large, and RV (T1, S1) indicates

the region where the type 1 triangle cut CT1 cuts off more volume than the split cut CS1

with probability close to 1 when k is large. Even though θj has a simple distribution,

it is difficult to analytically compute µf . However we can estimate µf by Monte Carlo

simulation for a given value of f , and identify the regions RV (S1, T1) and RV (T1, S1). The

black and white regions in Figure 5 indicate RV (S1, T1) and RV (T1, S1), respectively. These

have been identified as follows. First we randomly generate 105 fractional points f in U ;

then for each f , we independently generate 1000 θj uniformly from [0, 2π) and check if the

sample mean of ln
ψS1

(f,θj)

ψT1
(f,θj)

is less or greater than zero to identify if the corresponding f is

in RV (S1, T1) or RV (T1, S1). The area of the black region is approximately 0.9. Unless f1

is close to 1, the split cut CS1
cuts off more volume than the type 1 triangle cut CT1 with

probability close to 1 when k is large, and therefore CS1
is preferred.

Figure 5: The shape of RV (S1, T1) and RV (T1, S1).
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2.4 Total Probabilities

In this section, we use the conditional probabilities from the previous section to compute

coefficient dominance and volume cut off probabilities for split and type 1 triangle cuts

when f is random. As before, we focus on the split cut CS1
and the type 1 triangle cut

CT1 and note that the analysis and conclusions extend to another pair of split and type 1

triangle bodies by symmetry. The total probability analysis provides some insight on how

these cuts are likely to perform when no information about the instance is available.

2.4.1 Cut coefficient comparison

By the law of total probability,

Pr[CS1 ≻D CT1
] = Pr[ψS1(f ,θj) < ψT1

(f ,θj), ∀j]

=

∮

U

Pr[ψS1(f ,θj) < ψT1
(f ,θj), ∀j|f]dΦ(f)

=

∮

U

{Pr[ψS1(f ,θj) < ψT1
(f ,θj)|f]}kdΦ(f),

where Φ(f) is the cumulative distribution function of f and the last equality follows from the

fact that θj are i.i.d. for j = 1, . . . , k. Recall that the conditional probability Pr[ψS1(f ,θj) <

ψT1
(f ,θj)|f] is given in Lemma 1. The following theorem describes the performance of the

split cut CS1
and type 1 triangle cut CT1 when there is only one continuous variable.

Theorem 4. If k = 1 then

Pr[CS1 ≻D CT1
] ≈ 0.426 > 0.25 = Pr[CT1

≻D CS1 ].

Proof. Note that ∠BOC, ∠AOB and ∠COF are shown in Figure 3. Then

Pr[CT1
≻D CS1 ] =

∮

U
Pr[ψT1

(f ,θ) < ψS1(f ,θ)]dΦ(f) =

∮

U

∠BOC

2π
dΦ(f).

Similarly,

Pr[CS1 ≻D CT1
] =

∮

U

∠AOB+ ∠COF

2π
dΦ(f).

The proof then follows from Lemma 5.
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Lemma 5.

∮

U

∠BOC

2π
dΦ(f) =

∮

U

∠COD

2π
dΦ(f) =

∮

U

∠DOA

2π
dΦ(f) =

∮

U

∠AOB

2π
dΦ(f) = 0.25,

and
∮

U

∠COF

2π
dΦ(f) ≈ 0.176.

Proof. Indeed, since Φ is uniformly distributed over U ,

∮

U

∠COD

2π
dΦ(f) = lim

ǫ→0

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

∠COD

2π
df1df2

In △COD, |OC| =
√

(1− f1)2 + (1− f2)2, |OD| =
√

f21 + (1− f2)2 and |CD| = 1. By the

law of cosines,

cos∠COD =
|OD|2 + |OC|2 − |CD|2

2|OD||OC| =
f1(f1 − 1) + (1− f2)

2

√

[f21 + (1− f2)2][(1− f1)2 + (1− f2)2]

Therefore, ∠COD = arccos f1(f1−1)+(1−f2)2√
[f2

1
+(1−f2)2][(1−f1)2+(1−f2)2]

. Similarly,

∠BOC = arccos
f2(f2 − 1) + (1− f1)

2

√

[f22 + (1− f1)2][(1− f2)2 + (1− f1)2]
.

By substitution of variables,

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

∠COD

2π
df1df2

=

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

arccos f1(f1−1)+(1−f2)2√
[f2

1
+(1−f2)2][(1−f1)2+(1−f2)2]

2π
df1df2

f1=1−g2,f2=g1−→ =

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

arccos g2(g2−1)+(1−g1)2√
[(1−g2)2+(1−g1)2][g22+(1−g1)2]

2π
dg2dg1

=

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

arccos g2(g2−1)+(1−g1)2√
[g2

2
+(1−g1)2][(1−g2)2+(1−g1)2]

2π
dg1dg2

g1=f1,g2=f2−→ =

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

arccos f2(f2−1)+(1−f1)2√
[f2

2
+(1−f1)2][(1−f2)2+(1−f1)2]

2π
df1df2

=

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

∠BOC

2π
df1df2

Similarly, we can show

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

∠DOA

2π
df1df2 =

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

∠AOB

2π
df1df2 =

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

∠BOC

2π
df1df2
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Therefore,

4

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

∠BOC

2π
df1df2

=

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

∠BOC + ∠COD + ∠DOA+ ∠AOB

2π
df1df2

=

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

2π

2π
df1df2

= (1− 2ǫ)2

Thus,
∮

U
∠BOC

2π dΦ(f) = 0.25.

Now we compute
∮

U
∠COF

2π dΦ(f).
∮

U

∠COF

2π
dΦ(f) = lim

ǫ→0

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

∠COF

2π
df1df2

= lim
ǫ→0

∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ

arccos
f21+f

2
2−f1−3f2+2√

[(1−f2)2+(1−f1)2][f21+(2−f2)2]

2π
df1df2 ≈ 0.176.

In the final step, we used the Matlab function ‘dblquad’ with ǫ = 10−8 for the numerical

calculation.

Now we consider the case k > 1.

Theorem 5. For any k, Pr[CS1 ≻D CT1
] > Pr[CT1

≻D CS1 ].

Proof.

Pr[CS1 ≻D CT1
] =

∮

U

(
∠AOB + ∠COF

2π
)kdΦ(f)

>

∮

U

(
∠AOB

2π
)kdΦ(f) =

∮

U

(
∠BOC

2π
)kdΦ(f)

= Pr[CT1
≻D CS1 ].

The second equality follows from symmetry since f is uniformly distributed in (0, 1)2.

Theorem 5 states that a single split cut is more likely to dominate a single type 1 triangle

cut under our probabilistic model no matter how many continuous variables there are in sys-

tem (1). We also use Monte Carlo simulation to estimate the magnitude of the probabilities

that one cut dominates another. The result is shown in Figure 6.

From Figure 6, although Pr[CS1 ≻D CT1
] > Pr[CT1

≻D CS1 ] for all k, both probabilities

are very small when k ≥ 5 indicating that it is unlikely that one cut totally dominates

another when there are many continuous variables.
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Figure 6: Pr[CS1 ≻D CT1
] and Pr[CT1

≻D CS1 ]
wrt the number of rays k.

2.4.2 Volume comparison

In this section we estimate Pr[CS1 ≻V CT1
] with respect to the number of continuous

variables k. Recall that Pr[CS1
≻V CT1 ] = Pr[

k
∏

j=1

ψS1(f ,θj)

ψT1
(f ,θj)

< 1]. We use Monte Carlo

simulation to estimate the above probabilities as follows. For each k ∈ {1, . . . , 1000}, we

randomly generate N = 105 samples of f1, f2, θ1, · · · , θk according to our probabilistic input

model. The probability Pr[
k
∏

j=1

ψS(f ,θj)

ψT1(f ,θj)
< 1] is then estimated by the proportion of the N

samples with
k
∏

j=1

ψS(f ,θj)

ψT1(f ,θj)
< 1. The estimated probabilities with respect to k are shown

in Figure 7. The estimated probability that CS1
cuts off more volume from the linear

relaxation than CT1 increases as the number of continuous variables increases, converging

to approximately 0.9. To explain this, note that

lim
k→∞

Pr[CS1 ≻V CT1
] = lim

k→∞

∮

U
Pr[CS1 ≻V CT1

|f]dΦ(f).
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Since Pr[CS1 ≻V CT1
|f] is bounded, by interchanging limit and integral and applying The-

orem 3 we have

lim
k→∞

Pr[CS1 ≻V CT1
] =

∮

U
lim
k→∞

Pr[CS1 ≻V CT1
|f]dΦ(f)

=

∮

U

{I(µf < 0) +
1

2
I(µf = 0)}dΦ(f) ≥

∮

U

I(µf < 0)dΦ(f) = Pr[f ∈ RV(S1,T1)],

where I(A) is the indicator function of event A and RV (S1, T1) is defined in Section 2.3.2.

Figure 7 presents Pr[CS1 ≻V CT1
] with respect to the number of continuous variables k

(in two different scales). Recall that, as observed in Figure 5, the area of RV (S1, T1) is

approximately 0.9, which coincides with the observation in Figure 7. We can conclude CS1

is more likely to cut off more volume than CT1 when k is not too small given any instance

of (1) with parameters distributed according to our probabilistic input model.
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Figure 7: Estimated Pr[
∏k

j=1
ψS(f ,θj )

ψT1
(f ,θj )

< 1] with respect to k.

2.5 Conclusions and future work

In this chapter, we proposed a probabilistic model to compare split cuts and type 1 triangle

cuts. The analysis can be extended to other classes of facet-defining intersection cuts where

the corresponding integer-free body contains the unit square, such as type 2 triangles and

quadrilaterals containing U . In particular, for the comparison of volume cut off, similar

results as in Theorem 2, Lemma 4 and Theorem 3 can be derived, since the type 2 triangles

and quadrilaterals are all bounded and the corresponding cut coefficients are strictly greater

than zero. Although it might be difficult to compute the associated probabilities analyti-

cally, we can still estimate the probability numerically and obtain regions of f where one
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cut dominates another or cuts off more volume. The analysis for type 3 triangles is much

less obvious since such a triangle does not contain U . Another interesting question is how to

extend our probabilistic analysis on cut comparisons to the model with explicit bounds on

the y variables. In this model, the region cut off from the LP relaxation by an individual cut

is not always a simplex, and therefore the volume comparison becomes more complicated.

It would also be interesting to study how to extend our analysis on volume comparison

to multiple rounds of cuts. Finally we note that, recently, two groups, Del Pia et al. [44]

and Basu et al. [17], have also conducted probabilistic analyses of the strength of various

families of two-row cuts, using different probabilistic models and comparison criteria.
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CHAPTER III

MINIMUM CONCAVE COST FLOW OVER A GRID NETWORK

3.1 Introduction

We study the minimum concave cost flow problem over a grid network (CFG). A grid

network G = (V,A) is a directed acyclic graph with the node set

V = {vl,t|l ∈ {0, . . . , L}, t ∈ {1, . . . , T}}

and the arc set

A ={(vl,t, vl,t+1)|l ∈ {0, . . . , L}, t ∈ {1, . . . , T − 1}}∪

{(vl,t, vl+1,t)|l ∈ {0, . . . , L− 1}, t ∈ {1, . . . , T}}

as show in Figure 8. The nodes and/or arcs have associated numerical values such as

supplies/demands, costs and capacities. We refer to the two subscripts l and t as the

indices of echelon and time period, respectively, so the grid network we study has L + 1

echelons and T time periods.

v0,1

v1,1

v
L−1,1

v
L ,1

v0,2

v1,2

v
l , t

v
L−1,2

v
L ,2

v0,T−1 v0,T

v1,T−1 v1,T

v
L−1,T−1 v

L−1,T

v
L ,T−1 v

L ,T

v
l , 1

v
l , T

... ...

... ...

Figure 8: The grid network

28



Given a grid network G, CFG is to find a vector x ∈ R|A| to

min
∑

a∈A ca(xa)

s.t.
∑

a∈δ+(v) xa −
∑

a∈δ−(v) xa = b(v), ∀v ∈ V,

xa ≥ 0, ∀a ∈ A,

(8)

where ca is the cost function for arc a, b(v) is the supply at node v, and δ+(v) and δ−(v)

are the set of outgoing and incoming arcs at node v, respectively. The node v is called a

source if b(v) > 0, a sink if b(v) < 0, and a transshipment node if b(v) = 0. We assume that

for each a ∈ A, the cost function ca is a general nonnegative concave function represented

by a value oracle.

The main contributions of this chapter are the following.

1. If all sources are at one echelon and all sinks are at L echelons with L fixed, then CFG

can be solved in polynomial time in T and the number of queries of a function-value

oracle,

2. If all sources are at one echelon and all sinks are at L echelons with L as an input

parameter, then CFG is NP-hard.

3. The above complexity results can be extended to CFG with backward arcs in the grid

network.

4. If there are upward arcs in the grid network, then CFG is NP-hard for any fixed L ≥ 2.

Part of the results in this chapter (Section 3.2) has been submitted to Mathematical Pro-

gramming [73].

The minimum concave cost network flow problem (MCCNFP) is NP-hard in general, as

shown by a reduction from the subset sum problem [66], with a few known polynomially

solvable special cases. There are two polynomially-solvable cases closely related to the

problem we study. Zangwill [103] gave a polynomial-time DP algorithm for the multi-

echelon lot-sizing problem, which can be formulated as a CFG with a single source and one

echelon of sinks. Erickson et al. [53] proposed a DP algorithm for the general MCCNFP

and showed that their algorithm runs in polynomial time when the graph is planar and all
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sources and sinks lie on a constant number of faces of the graph. The grid network is a planar

graph, but in general the sources and sinks in CFG are not on a constant number of faces.

Our result unifies the complexity results of the uncapacitated lot-sizing problem (ULS) and

many of its variants including the multi-echelon case in Zangwill [103] and two-echelon lot-

sizing problem with intermediate demands in Zhang et al. [104], and gives new complexity

results for the multi-echelon ULS with arbitrary intermediate demand and multi-echelon

pure remanufacturing problem with arbitrary intermediate demand. We provide two DP

models for CFG with the component of the state vector being the inflow into some node and

flow over some horizontal arc, respectively. We then derive a new characterization for the

optimal flow in a grid network with multiple sources. The characterization leads to polytime

DP algorithms, and also provides some insight on the optimal inventory and production

quantities in a production planning setting. Our analysis was motivated by Zangwill’s

characterization of the optimal flow for the multi-echelon ULS. However, the presence of

multiple sources introduces much more complexity on the structure of the optimal flow. Note

that our result and the algorithm in Erickson et al. [53] both generalize the complexity result

for multi-echelon ULS without intermediate demand, but we give new complexity results

for CFG with arbitrary intermediate demand.

Apart from its theoretical interest, polynomial solvability of special cases of MCCNFP

offers possibilities of deriving a tight or compact extended formulation for the original

problem, which can help to solve the problem efficiently. For example, there is a general

technique for deriving a compact extended formulation from a polytime DP algorithm in

Martin [81, 80]. As a first step of the study, the main focus of this chapter is to discover gen-

eral network topology over which the concave minimization problem can be efficiently solved,

with few assumptions on the concave function itself. We are particularly interested in grid

networks, which appear frequently as the underlying network structure or sub-structure in

numerous business and engineering problems, such as the integrated supply chain manage-

ment problem with coordination between manufacturer, distribution centers and retailers

(Kaminsky and Simchi-Levi [75] and van Hoesel et al. [95]), production planning in a verti-

cal production line (Pochet and Wolsey [84]), and remanufacturing and recycling problems
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in reverse logistics (Dekker et al. [43]), where the temporal dynamics of the system are mod-

eled in one dimension of the grid network and the sequential actions in space are modeled

in the other. The following three examples show how CFG generalizes other models.

The ULS model. The classical ULS is to determine an optimal production schedule

given a sequence of deterministic non-stationary demand d1, . . . , dT over T time periods

with fixed setup cost αt, unit production cost βt and inventory holding cost it at period

t ∈ {1, . . . , T}.

The ULS is a special case of CFG with L = 1, b(v0,1) =
∑T

t=1 dt, b(v1,t) = −dt for t ∈

{1, . . . , T}, b(v) = 0 for any other node v ∈ V , and the cost function

ca(xa) =























αtI({xa > 0}) + βtxa, a = (v0,t, v1,t), t ∈ {1, . . . , T},

itxa, a = (v1,t, v1,t+1), t ∈ {1, . . . , T − 1},

0, a = (v0,t, v0,t+1), t ∈ {1, . . . , T − 1},

(9)

where I({xa > 0}) is an indicator function whose value is 1 if xa > 0 and 0 otherwise.

Variants of ULS, such as assuming the production and holding costs to be general concave

functions, the presence of multiple echelons and intermediate demands, can be also formu-

lated as CFG. ULS with backlogging can also be formulated as CFG by adding additional

backward arcs into the grid network.

The pure remanufacturing model. Over T periods, a company recycles used prod-

ucts with quantities p1, . . . , pT and remanufactures then into new products to satisfy the

demands d1, . . . , dT . The pure remanufacturing problem is to find an optimal production

schedule to minimize the total production and holding costs, given the remanufacturing cost

function αt, the holding cost functions i0,t and i1,t for used and new products, respectively.

The model appears as a basic model in reverse logistics (Dekker et al. [43]). Although in

van den Heuvel et al. [94] the model is shown to be equivalent to the ULS with inventory

upper bounds when i0,t and i1,t are both linear functions, the transformation is not appli-

cable when i0,t and i1,t are general concave functions. In fact, the model is more general

since ULS can be seen as a special case of this model by letting p1 =
∑T

t=1 di and pt = 0

for 2 ≤ t ≤ T . The pure remanufacturing model is a special case of CFG with L = 1,
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b(v0,t) = pt and b(v1,t) = −dt for t ∈ {1, . . . , T}, and the cost function

ca(xa) =























αt(xa), a = (v0,t, v1,t), t ∈ {1, . . . , T},

i0,t(xa), a = (v0,t, v0,t+1), t ∈ {1, . . . , T − 1},

i1,t(xa), a = (v1,t, v1,t+1), t ∈ {1, . . . , T − 1}.

(10)

To the best of our knowledge, the complexity of this problem was not known when there

are multiple echelons with intermediate demands and general concave cost functions. In

this chapter, we show that the problem is polynomially solvable when there are a constant

number of echelons of intermediate demands, and NP-hard when the number of echelons of

intermediate demands is an input parameter.

Production planning in a rolling horizon model. In a rolling horizon model for

production planning where decisions are made periodically within a given time horizon,

the presence of initial inventory is inevitable. However, the traditional setting for the lot-

sizing problems assumes that the initial inventory is 0 at each echelon. The purpose of

this critical assumption is more theoretical than practical, since it makes the underlying

network a single-source network and greatly simplifies the analysis. When there are fixed

initial inventory at each echelon in a multi-echelon setting, the analysis of the structure

of the optimal solutions becomes cumbersome and difficult, as shown in van Hoesel et

al. [95]. In fact, the rolling horizon model with initial inventory can be easily dealt with by

transforming it to an equivalent CFG with L− 1 additional time periods. Suppose that in

the rolling horizon model the initial inventory at echelon l is Il for 1 ≤ l ≤ L. As shown in

Figure 9, by attaching L − 1 time periods before period 1, setting the supplies of the new

sources at echelon 0 to be IL, IL−1, . . . , I1 and the cost to be large enough for each bold

arc and 0 otherwise, the rolling horizon model with initial inventory is transformed into an

equivalent CFG.

We end the introduction by reviewing MCCNFPs that can be solved in polynomial

time. Most of them fall into the category of lot-sizing problems. The classical ULS model

was first solved by Wagner and Whitin [99] in O(T 2) time with DP, and the complexity

was later improved to O(T lnT ) in Aggarwal and Park [1], Federgruen and Tzur [55] and

Wagelmans et al. [98]. Zangwill [103] gave a DP algorithm for the multi-echelon ULS with
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Figure 9: An equivalent CFG for the rolling horizon model with initial inventory

demands in the last echelon, and his algorithm was later shown to run in O(LT 4) time for

the L-echelon case in van den Heuvel et al. [95]. Other polynomial solvable variants include

the constant capacitated lot-sizing problem (Florian and Klein [57]), ULS with backlogging,

ULS with inventory upper bounds (Atamtürk and Küçükyavuz [6, 5]), a multi-echelon ULS

with constant production capacities at the first echelon (van den Heuvel et al. [95]), and

recently a two-echelon ULS with intermediate demands (Zhang et al. [104]). Pochet and

Wolsey [84] provides a detailed study of lot-sizing models that can be solved in polytime.

Besides the lot-sizing problem, polynomially solvable cases include a single-source concave

network flow problem with a single nonlinear arc cost (Guisewite and Pardalos [67]), the

network flow problem with a fixed number of sources and nonlinear arc costs (Tuy et al. [92]),

and a production-transportation network flow problem where the concave cost function is

defined on only a constant number of variables (Tuy et al. [93]).

3.2 CFG with at most two echelons of sinks.

In this section, we provide a DP framework for CFG with the component of the state

variable being the inflow into each node, and show that CFG with at most two echelons of

sinks can be solved in polynomial time when the total number of echelons is fixed.
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3.2.1 The DP framework

We assume that the number of echelons L is a constant and L≪ T , which is reasonable in

practice since L is usually known in advance and we are more interested in the complexity

of CFG with respect to the number of time periods T . We propose to solve CFG by

using a discrete time DP. The difficulty is that the state space at each stage of a natural

DP formulation is an uncountable set. However, by analyzing the structure of the extreme

points of the feasible set of (8), we are able to refine the state space to a set of size polynomial

in T . For ease of exposition, we call the arcs of the form (vl,t, vl,t+1) the forward arcs and

the arcs of the form (vl,t, vl+1,t) the downward arcs. To be consistent with the index of

echelon in the lot-sizing model, we assume in our model that the first echelon is echelon 0.

The elements of the DP are as follows.

1. Decision stages. There are L+ T stages, and the nodes with l+ t = k are at stage k,

as shown in Figure 10.

2. States. Define the state sk at stage k to be a vector whose component ski denotes

the amounts of inflow into some node vl,t with l + t = k. For example, s1 is a scalar

that denotes the inflow into node v0,1 and s2 is a two-dimensional vector whose first

component is the inflow into node v1,1 and second component is the inflow into node

v0,2. In general, when k ≤ L+ 1, sk is a k-dimensional vector whose components are

the amounts of inflow into nodes vk−1,1, vk−2,2, . . . , v0,k; when L + 1 ≤ k ≤ T , sk is

a (L + 1)-dimensional vector whose components are the amount of inflow into nodes

vL,k−L, vL−1,k−L+1, . . . , v0,k; when k ≥ T +1, sk is a (L+T +1−k)-dimensional vector

whose components are the amounts of inflow into nodes vL,k−L, . . . , vk−T,T .

3. Decision variables (or actions). Let the decision variable uk at stage k be a vector

whose components are the amount of flow sent out by nodes at stage k through

downward arcs. For example, u1 is a scalar which denotes the flow sent along the

arc (v0,1, v1,1) and u2 is a two-dimensional vector whose first component is the flow

on arc (v1,1, v2,1) and second component is the flow on arc (v0,2, v1,2). In general,

when k ≤ L + 1, uk is a k-dimensional vector whose components are flows on arcs
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(vk−1,1, vk,1), (vk−2,2, vk−1,2),. . .,(v0,k, v1,k); when L+1 ≤ k ≤ T , uk is a L-dimensional

vector whose components are flows on arcs (vL−1,k+1−L, vL,k+1−L), . . ., (v0,k, v1,k);

when T +1 ≤ k ≤ L+T −1, uk is a (L+T −k)-dimensional vector whose components

are flows on arcs (vL−1,k+1−L, vL,k+1−L), . . ., (vk−T,T , vk+1−T,T ).

4. The system equations. The state sk+1 at stage k+1 can be easily calculated by the flow

balance constraints once the state sk and the decision variable uk are known. Let the

system equations be sk+1 = Hk(s
k,uk), where Hk is the affine function representing

the flow balance constraints for nodes at stage k + 1.

5. The cost function. The cost at stage k is the sum of all costs incurred by the downward

arcs and forward arcs connecting nodes at stage k and nodes at stage k+ 1, so it is a

function of uk and sk. We use the function rk(s
k,uk) to denote the cost incurred at

stage k.

v0,1

v1,1

v
L ,1

v0,T

Stage 1

Stage 2

Stage k

Stage k+1

v
k−1,1

v
k , 1

v0, k v0, k+1

v
1, k

v
k−2,2

v
k−1,2

v
L ,T

Stage L+T

v
0,2

Stage L+T-1

Stage 3

v
L−1,T

Figure 10: The dynamic programming formulation of CFG

Then CFG is formulated as a discrete time DP problem with the linear system sk+1 =

Hk(s
k,uk) and cost function rk over L+ T stages. This DP formulation is difficult to solve

directly since the state space at stage k is an uncountable set in general. However, by (8)
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CFG is equivalent to minimizing a concave function over the flow polyhedron PF := {x ∈

R|A||x satisfies constraints in (8)}. It is well known that there exists an optimal solution

which is an extreme point of PF if PF is not empty. Therefore in the DP formulation, it

suffices to consider those states corresponding to the extreme points of PF , the number of

which is finite. To argue that this DP formulation can be solved in polynomial time, it

remains to show that the cardinality of the state space at each stage is polynomial in T .

Since the dimension of the state vector at each stage is at most L+ 1, the task is reduced

to show that each component of the state vector, namely the inflow into each node under

all extreme points of PF , can take on a finite set of values whose cardinality is polynomial

in T .

Before proceeding to characterize the inflow under all extreme points, we introduce

some terminology and notation which will be used throughout the chapter. Let G = (V,A)

be a directed graph or digraph. A path in G is an alternating sequence of distinct nodes

and arcs {v1, a1, v2, a2, . . . , vl} with ai = (vi−1, vi) for 1 ≤ i ≤ l − 1. A cycle is a path

{v1, a1, v2, a2, . . . , vl} together with the arc (vl, v1). The concepts of path and cycle in

an undirected graph are similar to their directed versions except without specifying arc

directions. We will use the same term “path” or “cycle” to refer to the object in a directed

or undirected graph when the context is clear. The induced subgraph of G by the arc set

A′ ⊆ A is the subgraph G′ = (V ′, A′) where V ′ consists of nodes incident to any arc in

A′. A vector f ∈ R|A| is called a flow in G if f satisfies the constraints in (8). A flow f is

called an extreme flow if it is an extreme point of the underlying flow polyhedron PF . For

any flow f , let Af = {a ∈ A|fa > 0} be the set of arcs with nonzero flow. Let Gf denote

the subgraph of G induced by the arc set Af . The underlying undirected graph of Gf is an

undirected graph obtained by replacing all directed arcs of Gf with undirected edges.

We begin to characterize the extreme flows with the following proposition.

Proposition 1. Each extreme flow f in G can be decomposed into flows along paths each

of which starts at one source and ends at one sink. In such a decomposition, there is at

most one path with positive flow between each source-sink pair.
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Proof. Every flow can be decomposed into flows along paths and cycles, where each path

starts from a source and ends at a sink; see Ahuja et al. [2]. When f is an extreme flow, the

underlying undirected graph of Gf does not contain any cycles, so in any flow decomposition

there will be no cycle with positive flow and at most one path with positive flow between

each source-sink pair.

Proposition 1 provides an alternative way to calculate the inflow into a node under an

extreme flow f rather than summing up the flows over incoming arcs of that node: first

decompose f into flows along paths between source-sink pairs, and then the inflow into a

node is the summation of flows along paths that contain that node under that decomposition.

For example, part (a) of Figure 11 is a CFG with L = 2 and T = 3 and part (b) is one

extreme flow. To calculate the inflow into the central node (which is 9), we can use either

the flow decomposition in part (c) to obtain 9 = 3 + 3 + 3, or the flow decomposition in

part (d) to obtain 9 = 3 + 6.

Note that the flow decomposition is not unique for the extreme flow f . Our remaining

job is to choose a particular flow decomposition under which it is easy to argue that the

inflow can only attain a polynomial number of values.

3.2.2 CFG with sources at echelon 0 and sinks at echelon L.

We illustrate the idea of choosing the particular flow decomposition by a special case of

CFG, where all sources are at echelon 0, all sinks are at echelon L and all other nodes are

transshipment nodes. We call this case CFG-1. As mentioned earlier, CFG-1 generalizes

the multi-echelon ULS, and is a special case of planar graphs with sources and sinks lying

in a fixed number of faces studied in Erickson et al. [53]. For CFG-1, the inflow into any

node under all extreme flows has a nice closed-form formula which generalizes the result for

the multi-echelon ULS in Zangwill [103].

We introduce some notation first. Let the supply at node v0,t be pt and the demand

at node vL,t be dt for every t ∈ {1, . . . , T}. Let Pt =
∑t

i=1 pi and Dt =
∑t

i=1 di be the

cumulative supply and demand up to period t ∈ {1, . . . , T}, respectively. Without loss of

generality, we can always assume that PT = DT . Let Γ = ∪Tt=1{Dt, Pt} ∪ {0}. Then Γ
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Figure 11: An example showing two flow decompositions for the same extreme flow.
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contains at most 2T elements. The main technical result of this section is given below and

we prove it later in the section.

Theorem 6. For CFG-1, the inflow into any node in G under all extreme flows is γ2− γ1,

where γ1, γ2 ∈ Γ with γ2 ≥ γ1.

Remark 1. Consider the multi-echelon ULS where the supply p1 =
∑T

t=1 dt, p2 = . . . =

pT = 0. The set Γ = {D1, D2, . . . , DT }. By applying Theorem 6, the possible values for the

inflow into any node under all extreme flows are Dt2 −Dt1 =
∑t2

i=t1+1 di with t1 ≤ t2, a key

result derived by Zangwill [103] in designing his DP algorithm for the multi-echelon ULS.

Theorem 7. For fixed L, CFG-1 can be solved in polynomial time in T and the number of

queries of a function-value oracle.

Proof. By Theorem 6, the inflow into any node can attain O(T 2) values under all extreme

flows in CFG-1. Then in the DP formulation for CFG-1, the cardinality of the state space

at each stage is O(T 2L), so there are O(T 4L) available actions at each stage. Since the DP

has L + T stages, CFG-1 can be formulated as a shortest path problem over an acyclic

graph with O(T 4L+1) arcs, which can be solved in O(T 4L+1) time; see Ahuja et al. [2].

In the remainder of this section, we prove Theorem 6. As mentioned before, the idea

is to choose a particular flow decomposition under which the inflow calculation is simple.

By Proposition 1, there is at most one path with positive flow between any source-sink pair

under any flow decomposition for a give extreme flow f . Define λf (i, j) to be the amount of

flow sent along the path between the source v0,i and the sink vL,j under some decomposition

for f (set λf (i, j) = 0 if there is no path from v0,i to vL,j in Gf ), and consider the vector

λf = (λf (1, 1), . . . , λf (1, T ), λf (2, 1), . . . , λf (2, T ), . . . , λf (T, 1), . . . , λf (T, T )).

Then each flow decomposition for f can be represented by a vector λf . For example, the flow

decompositions in part (c) and (d) of Figure 11 can be represented by (5, 3, 0, 0, 3, 3, 0, 0, 4)

and (5, 0, 3, 0, 6, 0, 0, 0, 4), respectively. In the inflow calculation, we will choose the flow

decomposition whose representation vector is the lexicographically largest among all flow

39



v l
1
, t
1

v l
1
, t
2

v l
2
, t
3

v l
2
, t
4

Q
1

Q
2

Figure 12: The two paths Q1 and Q2 must intersect.

decomposition vectors. Such a vector must exist since the set of all flow decomposition

vectors is closed and bounded from above. We first give a formal definition of the lexico-

graphical order between two vectors.

Definition 3. Given two vectors µ, ν ∈ Rn, µ is lexicographically larger than ν, denoted

by µ ≻ ν, if there exists i ∈ {1, . . . , n} such that µj = νj for j ≤ i − 1 and µi > νi;

µ is lexicographically no smaller than ν, denoted by µ � ν, if µ ≻ ν or µ = ν; µ is

lexicographically smaller than (no larger than) ν, denoted by µ ≺ (�)ν, if −µ ≻ (�)− ν.

Let πf be the lexicographically largest vector among all flow decomposition vectors for

f . For the example in Figure 11, the representation vector of the flow decomposition in

part (c) is lexicographically largest for the extreme flow in part (b). We make the following

simple observation, which will be useful to prove some nice properties of πf .

Observation 1. As illustrated in Figure 12, given a grid network G and four nodes vl1,t1,

vl1,t2, vl2,t3 and vl2,t4 in G with l1 < l2, t1 ≤ t2 and t3 ≤ t4, let Q1 be any path from vl1,t1

to vl2,t4 and Q2 be any path from vl1,t2 to vl2,t3. Then Q1 and Q2 must intersect.

Now we begin to characterize the flow decomposition πf .

Proposition 2.

1. For any i1 < i2 and j1 < j2, πf (i1, j2) · πf (i2, j1) = 0.

2. If πf (i1, j1) > 0 and πf (i1, j2) > 0 with j1 < j2 − 1, then πf (i1, j) = dj for any

j ∈ {j1 + 1, . . . , j2 − 1}.
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3. If πf (i1, j1) > 0 and πf (i2, j1) > 0 with i1 < i2 − 1, then πf (i, j1) = pi for any

i ∈ {i1 + 1, . . . , i2 − 1}.

Proof. 1. Suppose that there exist i1 < i2 and j1 < j2 such that πf (i1, j2) ·πf (i2, j1) > 0.

By Observation 1, the path from v0,i1 to vL,j2 must intersect with the path from v0,i2

to vL,j1 . If πf (i1, j2) ≥ πf (i2, j1), create a vector π̃f in the following way: π̃f (i1, j1) =

πf (i1, j1) + πf (i2, j1), π̃f (i1, j2) = πf (i1, j2) − πf (i2, j1), π̃f (i2, j1) = 0, π̃f (i2, j2) =

πf (i2, j2) + πf (i2, j1) and π̃f (i, j) = πf (i, j) for other (i, j) pairs. The vector π̃f

represents another flow decomposition of f with π̃f ≻ πf , a contradiction to the fact

that πf is the lexicographically largest flow decomposition vector. Similarly there is

a contradiction when πf (i2, j1) ≥ πf (i1, j2).

2. Since πf (i1, j1) > 0, by statement 1 πf (i, j) = 0 for any i < i1 and j > j1. Since

πf (i1, j2) > 0, by statement 1 πf (i, j) = 0 for any i > i1 and j < j2. Thus πf (i, j) = 0

for each j ∈ {j1 + 1, . . . , j2 − 1} and i 6= i1. Then πf (i1, j) = dj for any j ∈ {j1 +

1, . . . , j2 − 1} by the flow balance constraints.

3. Follows from a similar argument as in the proof of statement 2.

Proposition 2 shows that under this particular flow decomposition πf , supply at each

period is decomposed to satisfy demand from consecutive periods (statement 2), demand

at each period is decomposed to be fulfilled by supply from consecutive periods (statement

3), and demand at an early period is always served as much as possible by supply at an

early period (follows from statement 1).

In fact, the value of πf can be computed exactly. As shown in Figure 13, put all the

cumulative demand and supply points on the real line. Let Ei,j = [Pi−1, Pi]∩ [Dj−1, Dj ] for

i, j ∈ {1, . . . , T} and ∆i,j = |Ei,j | denote the length of the interval Ei,j .

Proposition 3. The vector πf is fixed for any extreme flow f , and πf (i, j) = ∆i,j for

1 ≤ i, j ≤ T .
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Proof. The proof is based on induction on the pair (i, j). For the base case where (i, j) =

(1, 1), πf (1, 1) = d1 since the sink vL,1 can only be reached from the source v0,1. Meanwhile,

P1 ≥ D1 if CFG-1 is feasible. Then ∆1,1 = d1 by the definition of ∆1,1. We have πf (1, 1) =

∆1,1.

Now suppose that πf (i, j) = ∆i,j holds for all pairs (i, j) � (i1, j1). If j1 = T , the next

lexicographically larger pair is (i1 + 1, 1). Since there is no path from v0,i1+1 to vL,1,

πf (i1 + 1, 1) = 0. Since Pi1 ≥ P1 ≥ D1, ∆i1+1,1 = |[Pi1 , Pi1+1] ∩ [0, D1]| = 0. Then

πf (i1 + 1, 1) = ∆i1+1,1. If j1 < T , the next lexicographically larger pair is (i1, j1 + 1). We

will show that πf (i1, j1 + 1) = ∆i1,j1+1 in four different cases. WLOG, we assume that the

supply pt > 0 and demand dt > 0 for 1 ≤ t ≤ T . Recall that ∆i,j = 0 implies that either

Pi−1 ≥ Dj or Dj−1 ≥ Pi and ∆i,j > 0 implies that Pi−1 < Dj or Dj−1 < Pi.

1. If ∆i1,j1 > 0 and ∆i1,j1+1 = 0, by the definition of ∆i,j we have Dj1−1 < Pi1 ≤ Dj1 .

Then

pi1 = |[Pi1−1, Pi1 ]| = |[Pi1−1, Pi1 ] ∩ ∪j1j=1[Dj−1, Dj ]| =
j1
∑

j=1

∆i1,j =

j1
∑

j=1

πf (i1, j).

The third equality follows from the definition of ∆i,j and the last equality follows from

the induction hypothesis. By the flow balance constraint at the node v0,i1 , we have

πf (i1, j1 + 1) = 0. Then πf (i1, j1 + 1) = ∆i1,j1+1.

2. If ∆i1,j1 > 0 and ∆i1,j1+1 > 0, by the definition of ∆i,j we have Pi1−1 < Dj1 < Pi1 .

(a) If Pi1 > Dj1+1, then ∆i1,j1+1 = dj1+1. Meanwhile,

T
∑

j=j1+1

πf (i1, j) = pi1 −
j1
∑

j=1

πf (i1, j) = pi1 −
j1
∑

j=1

∆i1,j > ∆i1,j1+1 = dj1+1. (11)
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The first equality is the flow balance constraint at the node v0,i1 and the inequal-

ity follows from the assumption that Pi1 > Dj1+1. Since πf (i1, j1 + 1) ≤ dj1+1,

by (11) there must exists j > j1 + 1 such that πf (i1, j) > 0. By applying state-

ment 2 in Proposition 2 with πf (i1, j1) > 0, we have πf (i1, j1+1) = dj1+1. Then

πf (i1, j1 + 1) = ∆i1,j1+1.

(b) If Pi1 ≤ Dj1+1, pi1 =
∑j1+1

j=1 ∆i1,j . Then
∑T

j=j1+1 πf (i1, j) = pi1−
∑j1

j=1 πf (i1, j) =

∆i1,j1+1. If πf (i1, j1+1) < ∆i1,j1+1, then ∃j > j1+1 such that πf (i1, j) > 0. By

applying statement 2 in Proposition 2 with πf (i1, j1) > 0, πf (i1, j1 + 1) = dj1+1.

Then πf (i1, j1 + 1) ≥ ∆i1,j1+1, a contradiction.

3. If ∆i1,j1 = 0 and ∆i1,j1+1 = 0, either Pi1−1 ≥ Dj1+1 or Dj1−1 ≥ Pi1 . If Pi1−1 ≥

Dj1+1, dj1+1 =
∑i1−1

i=1 ∆i,j1+1 =
∑i1−1

i=1 πf (i, j1 + 1). Then πf (i1, j1 + 1) = 0 by the

flow balance constraint at node vL,j1+1. If Dj1−1 ≥ Pi1 , then pi1 =
∑j1−1

j=1 ∆i1,j =

∑j1−1
j=1 πf (i1, j). Then πf (i1, j1 + 1) = 0 by the flow conservation constraint at node

v0,i1 .

4. If ∆i1,j1 = 0 and ∆i1,j1+1 > 0, then Dj1 ≤ Pi1−1 < Dj1+1.

(a) If Pi1 > Dj1+1, dj1+1 =
∑i1

i=1∆i,j1+1 =
∑i1−1

i=1 πf (i, j1 + 1) + ∆i1,j1+1. Since

dj1+1 =
∑T

i=1 πf (i, j1 + 1),
∑T

i=i1
πf (i, j1 + 1) = ∆i1,j1+1. Suppose that ∃i > i1

such that πf (i, j1+1) > 0. Since Pi1 > Dj1+1, ∃j > j1+1 such that πf (i1, j) > 0.

We find i > i1 and j > j1+1 such that πf (i, j1+1) ·πf (i1, j) > 0, a contradiction

to statement 1 in Proposition 2. Then πf (i, j1 + 1) = 0 for all i > i1 and

πf (i1, j1 + 1) = ∆i1,j1+1.

(b) If Pi1 ≤ Dj1+1, we have Dj1 ≤ Pi1−1 ≤ Pi1 ≤ Dj1+1. Then ∆i1,j1+1 = pi1 and

∆i1,j = 0 for each j ≤ j1, so πf (i1, j) = 0 for any j ≤ j1 by the induction

hypothesis. Then pi1 =
∑T

j=j1+1 πf (i1, j). If πf (i1, j1+1) < ∆i1,j1+1 = pi1 , then

∃j > j1 + 1 such that πf (i1, j) > 0 by the flow conservation constraint at node

v0,i1 and ∃i > i1 such that πf (i, j1+1) > 0 by the flow conservation constraint at

node vL,j1+1. We find i > i1 and j > j1 +1 such that πf (i, j1 +1) · πf (i1, j) > 0,

a contradiction to statement 1 in Proposition 2. Then πf (i1, j1 + 1) = ∆i1,j1+1.
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Proposition 3 is somewhat surprising. It states that the amount of flow sent between

each source-sink pair is a constant under this particular flow decomposition, no matter what

the flow f is. Thus we have an invariant quantity among all extreme flows, which is key to

showing that the inflow can only attain a polynomial number of values in T . We present

one more result before proving Theorem 6.

Proposition 4. Given any extreme flow f , let Q1 be a path from vl1,t1 to vl2,t3 and Q2 be

a path from vl1,t2 to vl2,t4 in Gf with l1 < l2, t1 ≤ t2 and t3 ≤ t4. If Q1 and Q2 both contain

vl,t, then any path from vl1,i to vl2,j in Gf with t1 ≤ i ≤ t2 and t3 ≤ j ≤ t4 also contains

the node vl,t.

Proof. Proof by contradiction. As shown in Figure 14, the node vl,t is contained in the path

from vl1,t1 to vl2,t3 and the path from vl1,t2 to vl2,t4 in Gf . Suppose that there exists some

pair (i, j) with t1 ≤ i ≤ t2 and t3 ≤ j ≤ t4 such that the path from vl1,i to vl2,j bypasses

the node vl,t. Then the path must contain some node vl,u with either u < t or u > t. If

u < t, by Observation 1, the path from vl1,t1 to vl,t must intersect with the path from vl1,i

to vl,u, and the path from vl,t to vl2,t3 must intersect with the path vl,u to vl2,j in Gf . The

two intersections create a cycle in the underlying undirected graph of Gf , a contradiction.

The argument is essentially the same if u > t.

Proof of Theorem 6. Given an extreme flow f , the inflow to node vl,t can be calculated under

the flow decomposition πf as a summation of flows along paths that contain vl,t. Let (i1, j1)

and (i2, j2) be the lexicographically smallest and largest pairs (i, j) such that πf (i, j) > 0

and the path from v0,i to vL,j in Gf contain vl,t. Since i1 ≤ i2 and πf (i1, j1), πf (i2, j2) > 0,

by statement 1 of Proposition 2 we have j1 ≤ j2. By applying Proposition 4 with l1 = 0

and l2 = L, any path from v0,i to vL,j in Gf with i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2 will also

contain vl,t. In addition, since πf (i1, j1) > 0 and πf (i2, j2) > 0, πf (i, j) = 0 for any (i, j)
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Figure 14: The cycle created in Gf if the path from vl1,i to vl2,j bypasses the node vl,t.

pair such that i > i1, j < j1 or i < i2, j > j2. Therefore,

Inflow into vl,t =
∑i2

i=i1

∑j2
j=j1

πf (i, j) =
∑i2

i=i1

∑j2
j=j1

∆i,j

=
∑

(i,j)�(i2,j2)
∆i,j −

∑

(i,j)≺(i1,j1)
∆i,j

= min{Pi2 , Dj2} −max{Pi1−1, Dj1−1}

= γ2 − γ1,

where γ1, γ2 ∈ Γ and γ2 ≥ γ1. The penultimate equality follows from the definition of

∆i,j .

3.2.3 CFG with sources at echelon 0 and two echelons of sinks.

We consider the case of CFG where there are T sources at echelon 0 and two echelons of

sinks, which we call CFG-2. CFG-2 generalizes the two-echelon ULS with intermediate

demands in Zhang et al. [104] and two-echelon pure remanufacturing problems with inter-

mediate demands. It is significantly harder to prove the polynomiality of the inflow values

in CFG-2 than that of CFG-1, since there is no such invariant quantity πf as in CFG-1.

Our strategy is for each extreme flow in CFG-2 to calculate the inflow under a flow decom-

position that satisfies certain properties similar to the properties of πf in Proposition 2. In

this way we are able to show that the inflow into any node can attain only a polynomial

number of values under all extreme flows in CFG-2.
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To simplify the analysis, we assume that in CFG-2 the sinks are at the last two echelons,

echelon L− 1 and echelon L. When sinks are at other two echelons, the flow decomposition

needs to be adjusted accordingly, but the inflow calculation and the complexity result are

not affected. Let the supply at source v0,t be pt and the demand at sink vl,t be dl,t for

t ∈ {1, . . . , T} and l ∈ {L−1, L}. Let Pt =
∑t

i=1 pi be the cumulative supply up to period t

as in CFG-1 and Dl,t =
∑t

i=1 dl,i be the cumulative demand up to period t at echelon l for

l = L−1, L. As in CFG-1, each flow decomposition for an extreme flow f can be represented

by a vector whose components are the amount of flow sent along the paths between source-

sink pairs. The difference is that we need three indices instead of two for a source-sink pair

in CFG-2. Let µf (i, j, l) denote the amount of flow along the path from the source v0,i to

the sink vl,j in Gf under some flow decomposition. Then each flow decomposition for f can

be represented by a vector

µf = (µf (1, 1, L), µf (1, 1, L− 1), µf (1, 2, L), µf (1, 2, L− 1), . . . , µf (T, T, L), µf (T, T, L− 1)).

Let χf be the lexicographically largest vector among all flow decomposition vectors for the

extreme flow f . Then χf satisfies some properties similar to those of πf in CFG-1.

Proposition 5.

1. For any i1 < i2, j1 < j2 and l ∈ {L− 1, L}, χf (i1, j2, l) · χf (i2, j1, l) = 0.

2. If χf (i1, j1, l) > 0 and χf (i1, j2, l) > 0 with j1 < j2 − 1 and l ∈ {L − 1, L}, then

χf (i1, j, l) = dl,j for any j ∈ {j1 + 1, . . . , j2 − 1}.

Proof. Similar to the proof of Proposition 2.

Note that there is no similar result in CFG-2 to the statement 3 of Proposition 2. Given

a sink vL,j1 , even if χf (i1, j1, L), χf (i2, j1, L) > 0 with i1 < i2, χf (i, j1, L) can be 0 instead

of pi for i1 < i < i2, since the source v0,i can satisfy demand only on echelon L− 1. Let

XL = ∪j{DL,j} ∪ ∪i,j{Pi −DL−1,j},

XL−1 = ∪j{DL−1,j} ∪ ∪i,j{Pi −DL,j} ∪ ∪i,j,k{Pi +DL−1,j − Pk}.
(12)
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Proposition 6. For CFG-2, the inflow into any node under any extreme flow is

L
∑

m=L−1

(γm,2 − γm,1),

where γm,1, γm,2 ∈ Xm with γm,2 ≥ γm,1 and m ∈ {L− 1, L}.

Proof. Given an extreme flow f , the inflow into vl,t can be calculated under the flow de-

composition χf as a summation of flows along paths that contain vl,t. Let (i1, j1, L) and

(i2, j2, L) be the lexicographically smallest and largest (i, j, L) tuples such that χf (i, j, L) >

0 and the path from source v0,i to sink vL,j contains vl,t in Gf . Let (i3, j3, L − 1) and

(i4, j4, L − 1) be the lexicographically smallest and largest (i, j, L − 1) tuples such that

χf (i, j, L− 1) > 0 and the path from source v0,i to sink vL−1,j contains vl,t in Gf . Then by

an argument similar to the one used in the proof of Theorem 6,

Inflow into vl,t =

i2
∑

i=i1

j2
∑

j=j1

χf (i, j, L) +

i4
∑

i=i3

j4
∑

j=j3

χf (i, j, L− 1)

=





∑

(i,j,L)�(i2,j2,L)

χf (i, j, L)−
∑

(i,j,L)≺(i1,j1,L)

χf (i, j, L)



+





∑

(i,j,L)�(i4,j4,L−1)

χf (i, j, L− 1)−
∑

(i,j,L−1)≺(i3,j3,L−1)

χf (i, j, L− 1)





It remains to show that the term
∑

(i,j,m)�(i′,j′,m) χf (i, j,m) ∈ Xm for any i′, j′ and

m = L− 1, L. The proof is based on induction on i′.

The base case i′ = 1. Since
∑

(i,j,m)�(1,j′,m) χf (i, j,m) =
∑j′

j=1 χf (1, j,m) for m ∈

{L−1, L}, we have to show that
∑j′

j=1 χf (1, j, L− 1) ∈ XL−1 and
∑j′

j=1 χf (1, j, L) ∈ XL for

any j′ under any extreme flow f . First fix the extreme flow f , let α be the largest time index

j such that χf (1, j, L− 1) > 0 and β be the largest time index j such that χf (1, j, L) > 0.

Then
∑j′

j=1 χf (1, j, L− 1) =
∑j′

j=1 dL−1,j = DL−1,j′ for any j
′ < α and

∑j′

j=1 χf (1, j, L) =

∑j′

j=1 dL,j = DL,j′ for any j′ < β, according to statement 2 in Proposition 5. It remains

to show that
∑α

j=1 χf (1, j, L− 1) ∈ XL−1 and
∑β

j=1 χf (1, j, L) ∈ XL. By the flow balance

constraint at node v0,1, we have

p1 =

α
∑

j=1

χf (1, j, L− 1) +

β
∑

j=1

χf (1, j, L). (13)
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If either
∑α

j=1 χf (1, j, L− 1) = DL−1,α or
∑β

j=1 χf (1, j, L) = DL,β , then we are done. Oth-

erwise we must have
∑α

j=1 χf (1, j, L− 1) < DL−1,α and
∑β

j=1 χf (1, j, L) < DL,β , implying

that both the demand dL−1,α and demand dL,β are only partially satisfied by the supply p1.

Let k be the smallest time index i > 1 such that χf (i, β, L) > 0. It implies that under the

flow decomposition χf , supply pk is the first supply after p1 to satisfy the demand DL,β ,

and sources v0,2, . . . , v0,k−1 make no contribution to demands at echelon L, as shown in

Figure 15.

v0,1 v0, k−1 v0, k v0, n

v
L ,β

v
L−1,μ v

L−1, ν
v
L−1,α

Figure 15: The case that dL−1,α and dL,β are partially satisfied by p1.

Claim There exists some i1 ∈ {2, . . . , k − 1} and j1 ∈ {1, . . . , T} such that

∑

(i,j,L−1)�(i1,T,L−1)

χf (i, j, L− 1) = DL−1,j1 .

The claim indicates that under the flow decomposition χf , supply p1, . . . , pi1 are decomposed

to satisfy demand dL−1,1, . . . , dL−1,j1 at echelon L−1, demand dL,1, . . . , dL,β−1 at echelon L

and part of demand dL,β . In addition, p2, . . . , pi1 only satisfy the demand at echelon L− 1.

Then

Pi1 =
∑

(i,j,L−1)�(i1,T,L−1)

χf (i, j, L− 1) +

β
∑

j=1

χf (1, j, L). (14)

By the claim and (14),
∑β

j=1 χf (1, j, L) = Pi1 −DL−1,j1 ∈ XL. Then by (13),

α
∑

j=1

χf (1, j, L− 1) = p1 +DL−1,j1 − Pi1 ∈ XL−1.
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The proof of the claim is based on contradiction. Suppose that the claim does not hold,

then we show that there will be a cycle in the underlying undirected graph of Gf . If such

i1 and j1 in the claim do not exist, then under the flow decomposition χf each supply pi

(2 ≤ i ≤ k− 1) ends up only fulfilling part of some demand on echelon L− 1, which implies

that v0,i is connected to v0,i+1 through some sink on echelon L−1 since they both contribute

to the demand at that sink. The source v0,1 is connected to v0,2 through the sink vL−1,α

by the same reason. In addition, v0,k−1 is connected to v0,k through some sink on echelon

L− 1 as well due to the following reason. As shown in Figure 15, let µ be the largest time

index j such that χf (k − 1, µ, L− 1) > 0, which implies that v0,k−1 is connected to vL−1,µ

in Gf and there exists n > k − 1 such that χf (n, µ, L − 1) > 0. If n = k, then v0,k−1 and

v0,k are connected through the sink vL−1,µ. If n > k, then the path from v0,k to vL,β will

intersect with either the path from v0,k−1 to vL−1,µ or the path from v0,n to vL−1,µ. Either

case contradicts statement 1 of Proposition 5. Now v0,1 is connected to v0,k through two

different undirected paths, one through nodes v0,2, . . . , v0,k−1 and sinks at echelon L − 1,

the other through the sink vL,β at echelon L. Thus there is a cycle containing v0,1 and v0,k

in the underlying undirected graph of Gf . We proved here the claim.

The induction step. Suppose that
∑

(i,j,m)�(i′,j′,m) χf (i, j,m) ∈ Xm under all extreme

flows for any i′ ≤ q. We want to show that
∑

(i,j,m)�(q+1,j′,m) χf (i, j,m) ∈ Xm for each

j′ and m ∈ {L − 1, L}. The proof is similar as in the base case. Let α be the largest

time index j such that χf (q + 1, i, L − 1) > 0 and β be the largest time index j such that

χf (q + 1, j, L) > 0.

We first show that
∑

(i,j,L−1)�(q+1,j′,L−1) χf (i, j, L− 1) ∈ XL−1 each j′ < α.

1. If α is the only time index j such that χf (q+1, j, L−1) > 0, which indicates that the

supply pq+1 only contributes to demand dL−1,α on echelon L− 1, then for any j′ < α,

∑

(i,j,L−1)�(q+1,j′,L−1) χf (i, j, L− 1) =
∑

(i,j,L−1)�(q,T,L−1) χf (i, j, L− 1) ∈ XL−1.

2. If there are at least two j’s such that χf (q + 1, j, L − 1) > 0, then for each j′ < α,

∑

(i,j,L−1)�(q+1,j′,L−1) χf (i, j, L− 1) either equals
∑

(i,j,L−1)�(q,T,L−1) χf (i, j, L− 1) or

DL−1,j1 for some j1 on echelon L− 1.
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Similarly,
∑

(i,j,L)�(q+1,j′,L) χf (i, j, L) ∈ XL for each j′ < β.

Now it remains to show that the result holds for both
∑

(i,j,L−1)�(q+1,α,L−1) χf (i, j, L− 1)

and
∑

(i,j,L)�(q+1,β,L) χf (i, j, L). By the flow balance constraint,

Pq+1 =
∑

(i,j,L−1)�(q+1,α,L−1)

χf (i, j, L− 1) +
∑

(i,j,L)�(q+1,β,L)

χf (i, j, L). (15)

If either
∑

(i,j,L−1)�(q+1,α,L−1) χf (i, j, L− 1) = DL−1,α or
∑

(i,j,L)�(q+1,β,L) χf (1, j, L) =

DL,β , then we are done. Otherwise the demand dL−1,α and dL,β is partially satisfied by the

supply up to period q+1. By an argument similar to the one in the base case, we can show

that
∑

(i,j,L−1)�(q+1,α,L−1) χf (i, j, L− 1) ∈ XL−1 and
∑

(i,j,L)�(q+1,β,L) χf (1, j, L) ∈ XL.

Theorem 8. For fixed L, CFG-2 can be solved in polynomial time in T and the number of

queries of a function-value oracle.

Proof. By (12), the cardinality of XL−1 is O(T 3) and the cardinality of XL is O(T 2). By

Proposition 6, the inflow into any node is a summation of the difference of two elements in

XL−1 and the difference of two elements in XL, so it can attain O(T 3+3 · T 2+2) = O(T 10)

values under all extreme flows in CFG-2. Then in the DP formulation for CFG-2, the

cardinality of the state space at each stage is O(T 10L). Thus CFG-2 can be solved in

polynomial time by solving a shortest path problem over an acyclic network.

3.3 CFG with L echelons of sinks

After the results in section 3.2 were submitted as a paper to Mathematical Programming,

we discovered more general results that subsume the results already given, but for the sake

of completeness we decide to keep the original proofs in section 3.2 as well as give the

new results and proofs. In this section, we show that CFG with L echelons of sinks is

polynomially solvable with fixed L and NP-hard when L is an input parameter. We first

provide a new DP framework with the component of the state variable being the flow over

some horizontal arc, and then show that the cardinality of the state space is polynomial in

T based on the path decomposition of the extreme flow.
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3.3.1 The new DP framework.

We propose to solve CFG by using a new discrete time DP formulation. The elements of

the DP are as follows.

1. Decision stages. There are T + 1 stages which corresponds to time period t =

0, 1, . . . , T .

2. States. Define the state st at stage t to be a (L+1)-dimensional vector whose compo-

nent stl denotes the flow over the forward arc (vl,t, vl,t+1), or in practice the inventory

level at echelon l and time period t. We assume that each component of s0 and sT is

0. Note that the dimension of st can be reduced by one since the summation of the

components of st is always
∑L+1

l=0 b(vl,t) by flow balance constraints.

3. Decision variables (or actions). The decision variable ut at stage t is a L-dimensional

vector whose component utl denotes the flow over the downward arc (vl,t+1, vl+1,t+1),

or in practice the production level at echelon l and time period t+ 1.

4. The system equations. The state st+1 at stage t + 1 can be easily calculated by the

flow balance constraints of the nodes at time period t+ 1. Let the system equations

be st+1 = Ht(s
t,ut), where Ht is the affine function representing the flow balance

constraints for nodes at stage t+ 1.

5. The cost function. The cost at stage t is the sum of all costs incurred by the downward

arcs and forward arcs at that stage, or the sum of holding costs at the end of period t

and production costs at period t+ 1. Let rt(s
t,ut) denote the cost incurred at stage

t.

Then CFG is formulated as a discrete time DP problem with the linear system st+1 =

Ht(s
t,ut) and cost function rt over T + 1 stages. This DP formulation is also difficult to

solve directly, since the state space at stage t is an uncountable set in general. However by a

similar argument to that in Section 3.2, it suffices to consider those states corresponding to

the extreme points of PF , the number of which is finite. To argue that this DP formulation
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can be solved in polynomial time, it remains to show that the cardinality of the state space

at each stage is polynomial in T . Since the dimension of the state vector at each stage is

L + 1, the task is reduced to show that each component of the state vector, namely the

flow over each forward arc under all extreme points of PF , can take on a finite set of values

whose cardinality is polynomial in T . We first present a result that can be seen as the “arc”

version of Proposition 4.

Proposition 7. Given any extreme flow f , let Q1 be a path from vl1,t1 to vl2,t3 and Q2 be

a path from vl1,t2 to vl2,t4 in Gf with l1 < l2, t1 ≤ t2 and t3 ≤ t4. If Q1 and Q2 both contain

arc a, then any path from vl1,i to vl2,j in Gf with t1 ≤ i ≤ t2 and t3 ≤ j ≤ t4 also contains

the arc a.

Proof. Proof by contradiction. As shown in Figure 16, the arc a = (vl,t, vl,t+1) is contained

in the path from vl1,t1 to vl2,t3 and the path from vl1,t2 to vl2,t4 in Gf . Suppose that there

exists some pair (i, j) with t1 ≤ i ≤ t2 and t3 ≤ j ≤ t4 such that the path from vl1,i to

vl2,j bypasses the arc a. Then the path must contain some node vl,u with either u ≤ t or

u ≥ t + 1. If u ≤ t, by Observation 1, the path from vl1,t1 to vl,t must intersect with the

path from vl1,i to vl,u, and the path from vl,t+1 to vl2,t3 must intersect with the path vl,u to

vl2,j in Gf . The two intersections create a cycle in the underlying undirected graph of Gf ,

a contradiction. The argument is essentially the same if u ≥ t+ 1.

3.3.2 CFG with sources at echelon 0 and L echelons of sinks.

Now we consider the general case of CFG where sources are at echelon 0 and sinks are at

echelon 1 to echelon L. CFG generalizes the two-echelon ULS with intermediate demands

in Zhang et al. [104] and multi-echelon pure remanufacturing problems with intermediate

demands. Our proof strategy is for each extreme flow in CFG to calculate the flow over each

arc under a flow decomposition that satisfies certain properties similar to the properties of

πf in Proposition 2. In this way we are able to show that the flow over each forward arc

can attain only a polynomial number of values under all extreme flows in CFG.

Let the supply at source v0,t be pt and the demand at sink vl,t be dl,t for t ∈ {1, . . . , T}
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Figure 16: The cycle created in Gf if the path from vl1,i to vl2,j bypasses the arc a.

and l ∈ {1, . . . , L}. Let Pt =
∑t

i=1 pi be the cumulative supply up to period t and Dl,t =

∑t
i=1 dl,i be the cumulative demand up to period t at echelon l for l ∈ {1, . . . , L}. Given an

extreme flow f , let µf (i, j, l) denote the amount of flow along the path from the source v0,i

to the sink vl,j in Gf under some flow decomposition. Then each flow decomposition for f

can be represented by a vector

µf =(µf (1, 1, L), µf (1, 1, L− 1), . . . , µf (1, 1, 1),

µf (1, 2, L), µf (1, 2, L− 1), . . . , µf (1, 2, 1), . . . ,

µf (T, T, L), µf (T, T, L− 1), . . . , µf (T, T, 1)).

Let χf be the lexicographically largest vector among all flow decomposition vectors for the

extreme flow f . Then χf satisfies some properties similar to those of πf in CFG-1.

Proposition 8.

1. For any i1 < i2, j1 < j2 and l ∈ {1, . . . , L}, χf (i1, j2, l) · χf (i2, j1, l) = 0.

2. If χf (i1, j1, l) > 0 and χf (i1, j2, l) > 0 with j1 < j2 − 1, then χf (i1, j, l) = dl,j for any

j ∈ {j1 + 1, . . . , j2 − 1} and l ∈ {1, . . . , L}.

Note that there is no similar result to the statement 3 of Proposition 2. Given a sink

vL,j1 , even if χf (i1, j1, L), χf (i2, j1, L) > 0 with i1 < i2, χf (i, j1, L) can be 0 instead of pi

for i1 < i < i2, since the source v0,i can satisfy demand only at echelon 1 to echelon L− 1.
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Our main result in this section is as follows.

Proposition 9. For fixed L, CFG can be solved in polynomial time in T and the number

of queries of a function-value oracle.

The result follows from the proposition below and the DP algorithm proposed in this section.

Proposition 10. For fixed L, the number of values that the flow over each arc can attain

is polynomial in T under all extreme flows of CFG.

Proof. Given an extreme flow f , the inflow into any arc a ∈ A can be calculated under

the flow decomposition χf as a summation of flows along paths that contain arc a. Let

(ilb, j
l
b, l) and (ile, j

l
e, l) be the lexicographically smallest and largest (i, j, l) tuples such that

the path from source v0,i to sink vl,j contains arc a in Gf and χf (i, j, l) > 0. Without loss

of generality, we assume that arc a is a forward arc and a = (vm,t, vm,t+1). Then by an

argument similar to the one used in the proof of Theorem 6, the flow over arc a is

fa =
L
∑

l=m

∑

(il
b
,jl
b
)�(i,j)�(ile,j

l
e)

χf (i, j, l)

=
L
∑

l=m





∑

(i,j)�(ile,j
l
e)

χf (i, j, l)−
∑

(i,j)≺(il
b
,jl
b
)

χf (i, j, l)





(16)

If the following claim holds, then with equation (16) we are able to prove that fa can only

attain a polynomial number of values in T under all extreme flows for fixed L.

Claim 1 For fixed L, the number of values that
∑

(i,j)�(i′,j′) χf (i, j, l) can attain is polyno-

mial in T for any i′, j′ ∈ {1, . . . , T}, l ∈ {1, . . . , L} under all extreme flows.

Proof of Claim 1 We prove the claim by applying induction on the time index i′ . First we

prove the base case i′ = 1.

For i′ = 1, we have
∑

(i,j)�(i′,j′) χf (i, j, l) =
∑j′

j=1 χf (1, j, l). We need to show that the

number of values that
∑j′

j=1 χf (1, j, l) can attain is polynomial in T for any j′ and l. We

will prove this by induction on l.

1. The base case l = L. Our goal is to show that

j′
∑

j=1

χf (1, j, L) ∈ Y = {DL,w|1 ≤ w ≤ T} ∪ {Piu −
L−1
∑

l=1

Dl,ul |1 ≤ iu, u1, . . . , uL−1 ≤ T}
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for any j′ under any extreme flow f . Since the cardinality of Y is O(TL), then

∑j′

j=1 χf (1, j, L) can attain a polynomial number of values for any j′ under all extreme

flows.

Fix the extreme flow f , let j1,L = argmax{j|χf (1, j, L) > 0}. Then at echelon L,

source v0,1 contributes to sinks up to time period j1,L. By Proposition 8, χf (1, j, L) =

dL,j for j < j1,L. Then

j′
∑

j=1

χf (1, j, L) =











DL,j′ , j′ < j1,L
∑j1,L

j=1 χf (1, j, L), j′ ≥ j1,L.

If χf (1, j1,L, L) = dL,j1,L for the extreme flow f , then
∑j′

j=1 χf (1, j, L) = DL,j1,L for

all j′ ≥ j1,L. In this case, the number of values that
∑j′

j=1 χf (1, j, L) can attain is

O(T ) for all possible j′s.

It only remains to show that
∑j1,L

j=1 χf (1, j, L) can only attain values in set Y when

0 < χf (1, j1,L, L) < dL,j1,L . Since χf (1, j1,L, L) < dL,j1,L , the demand dL,j1,L needs to

be partially satisfied by sources in later time period. Let v0,ir be such source with ir

smallest, so ir is the smallest time index i > 1 such that χf (i, j1,L, L) > 0. Then we

have χf (i, j, L) = 0 for any 1 < i < ir, and the sources v0,2, v0,3, . . . , v0,ir−1 have no

contribution to any sink at echelon L. We will show the following claim holds.

Claim 2 Given any extreme flow f , if χf (1, j1,L, L) < dL,j1,L , there exists a time index

iu < ir such that
j1,L
∑

j=1

χf (1, j, L) = Piu −
L−1
∑

l=1

Dl,ul

for some u1, . . . , uL−1 ∈ {1, . . . , T}.

Proof of Claim 2. Let

ji,l = argmax{j|χf (i, j, l) > 0}

be the largest time index j such that χf (i, j, l) > 0 (set ji,l = 0 if χf (i, j, l) = 0 for

each j). Since sources v0,2, . . . , v0,ir−1 only contribute to sinks at echelon 1 to echelon

L − 1, by summing up the flow balance constraints for sources v0,1, v0,2, . . . , v0,i we

55



have

Pi =

j1,L
∑

j=1

χf (1, j, L) +

L−1
∑

l=1

∑

(i,j)�(i,ji,l)

χf (i, j, l),

for each i < ir. Then
∑j1,L

j=1 χf (1, j, L) = Pi −
∑L−1

l=1

∑

(i,j)�(i,ji,l)
χf (i, j, l). We

prove Claim 2 by contradiction. Suppose that the claim is not true, then we must

have for each k ∈ {1, . . . , ir − 1}, there exists at least one jk,l such that Dl,jk,l−1 <

∑

(i,j)�(k,jk,l)
χf (i, j, l) < Dl,jk,l . In this case there will be two distinctive paths from

source v0,1 to sink v0,ir in the underlying undirected graph of Gf , contradicting to the

fact that the underlying undirected graph of Gf is acyclic. (In the rest of the proof,

by “path” we mean the undirected path in the underlying undirected graph of Gf .)

The first path is the path from v0,1 to vL,j1,L since χf (1, j1,L, L) > 0, concatenated

by the path from v0,ir to vL,j1,L since χf (ir, j1,L, L) > 0. The second path does not

contain any node at echelon L, therefore different from the first one. The second path

is constructed as follows.

By assumption, there exists at least one j1,l1 for some l1 ∈ {1, . . . , L − 1} such that

Dl1,j1,l1−1 <
∑

(i,j)�(1,j1,l1 )
χf (i, j, l1) < Dl1,j1,l1

. Choose such a j1,l1 with the echelon

index l1 being the largest, as shown in Figure 17. Since χf (1, j1,l1 , l1) > 0 by the

definition of j1,l1 , there is a path from v0,1 to vl1,j1,l1 . Since χf (1, j1,l1 , l1) < dl1,j1,l1 ,

there exists a source v0,i2 with i2 > 1 such that χf (i2, j1,l1 , l1) > 0. Choose such a v0,i2

with i2 being the smallest, so sources v0,2, v0,3, . . . , v0,i2−1 only contribute to sinks at

echelon 1 to echelon l1 − 1. Then vl1,j1,l1 is connected to v0,i2 .

If i2 ≥ ir, it is not difficult to verify that the path from v0,1 to v0,i2 intersects with

the path from v0,ir to vL,j1,L , so we can construct a path from v0,1 to v0,ir containing

only nodes at echelon 0 to echelon l1. If i2 < ir, by assumption, there exists a ji2,l2 for

some l2 ∈ {1, . . . , L− 1} such that Dl2,ji2,l2−1 <
∑

(i,j)�(i2,ji2,l2 )
χf (i, j, l2) < Dl2,ji2,l2

.

Choose such a ji2,l2 with l2 being the largest. We would like to show that there is

path from v0,i2 to vl2,ji2,l2 .

(a) Case l1 ≤ l2. We have
∑

(i,j)�(1,j1,l2 )
χf (1, j, l2) equals to some cumulative de-

mand at echelon l2 due to the choice of l1, and
∑

(i,j)�(i2,ji2,l2 )
χf (i, j, l2) is
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Figure 17: The circle that traverses nodes vL,j1,L ,vl1,j1,l2 , vl2,ji2,l2 and vl3,ji3,l3 .

not equal to any cumulative demand at echelon l2. Meanwhile, since sources

v0,2, . . . , v0,i2−1 make no contribution to the sinks at echelon l1, they make no

contribution to sinks at echelon l2, either. Then we must have χf (i2, ji2,l2 , l2) > 0,

and there is a path from v0,i2 to vl2,ji2,l2 .

(b) Case l1 > l2. If χf (i2, ji2,l2 , l2) = 0, by assumption
∑

(i,j)�(i2,ji2,l2 )
χf (i, j, l2) is

not equal to any cumulative demand Dl2,j , then there must exist i′1, i
′
2 such that

i′1 < i2 < i′2, χf (i
′
1, ji2,l2 , l2) > 0 and χf (i

′
2, ji2,l2 , l2) > 0. Then there is one path

from v0,i′
1
to vl2,ji2,l2 and another path from v0,i′

2
to vl2,ji2,l2 . One of them needs

to intersect the path from v0,i2 to vl1,j1,l1 . Therefore, there is a path from v0,i2

to vl2,ji2,l2 .

Since the demand at the sink vl2,ji2,l2 is not fulfilled by sources v0,1, . . . , v0,i2 , there

must exist a source v0,i3 with i3 > i2 such that χf (i3, ji2,l2 , l2) > 0. If i3 ≥ ir, then

the path from v0,1 to v0,i3 must intersect with the path from v0,ir to vL,j1,L , so we can

construct a path from v0,1 to v0,ir containing only nodes above echelon L. Otherwise
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if i3 < ir, there exists a ji3,l3 such that
∑

(i,j)�(i3,ji3,l3 )
χf (i, j, l3) does not equal to any

cumulative demand at echelon l3 and there is also a path from v0,i3 to vl3,ji3,l3 by the

similar argument. Continue this procedure until there is a source v0,ik with ik ≥ ir,

then we find a path from v0,1 to v0,ik through vl1,j1,l1 , v0,i2 , vl2,ji2,l2 , v0,i3 , . . . , v0,ik−1

containing nodes only at echelon 0 to echelon L − 1. This path must intersect with

the path from v0,ir to vL,j1,L . Thus there is always a second path from v0,1 to v0,ir

which does not contain any node at echelon L, contradicting to that the underlying

undirected graph of Gf is acyclic.

2. The induction step. Suppose that the number of values that
∑j′

j=1 χf (1, j, l) can attain

is polynomial in T for all j′ and l > l′, we would like to show that the result also holds

for l = l′.

(a) If χf (1, j1,l′ , l
′) = dl′,j1,l′ , then

j′
∑

j=1

χf (1, j, l
′) =











Dl′,j′ , j′ < j1,l′

Dl′,j1,l′
, j′ ≥ j1,l′ .

(b) If 0 < χf (1, j1,l′ , l
′) < dl′,j1,l′ , then

j′
∑

j=1

χf (1, j, l
′) =











Dl′,j′ , j′ < j1,l′

∑j1,l′

j=1 χf (1, j, l
′), j′ ≥ j1,l′ .

Let i′r be the smallest index i > 1 such that χf (i, j1,l′ , l
′) > 0, then we can show

that there exists some i′u < i′r and u1, u2, . . . , ul′−1 ∈ {1, . . . , T} such that

j1,l′
∑

j=1

χf (1, j, l
′) = Pi′u −

l′−1
∑

l=1

Dl,ul −
L
∑

l=l′+1

j1,l
∑

j=1

χf (1, j, l).

The validity of the above equality follows from a similar argument to the proof

of Claim 2. Then by the induction hypothesis, the number of values that

∑j1,l′

j=1 χf (1, j, l
′) can attain is polynomial in T under all extreme flows.

So far we have finished the proof for the base case i′ = 1. Now we proceed to the

induction step for i′ = k. Suppose that the number of values that
∑

(i,j)�(i′,j′) χf (i, j, l) can

attain is polynomial in T for all j′, l and i′ < k, we would like to show this is also the case
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for i′ = k. The proof is based on induction on the echelon index l similar to the proof of

the base case i′ = 1. Consider the base case l = L. Fix an extreme flow f , the result holds

in all three cases below.

1. χf (k, j, L) = 0 for all j. Or equivalently, the source v0,k makes no contribution to the

sinks on echelon L. Then
∑

(i,j)�(k,j′) χf (i, j, L) =
∑

(i,j)�(k−1,T ) χf (i, j, L), and the

result follows from the induction hypothesis.

2. χf (k, jk,L, L) > 0 and
∑

(i,j)�(k,jk,L)
χf (i, j, L) = DL,jk,L . Then

∑

(i,j)�(k,j′)

χf (i, j, L) =























∑

(i,j)�(k−1,T ) χf (i, j, L), j′ < jk,L, χf (k, j
′, L) = 0

DL,j′ , j′ < jk,L, χf (k, j
′, L) > 0

DL,jk,L , j′ ≥ jk,L.

Then the result follows from the induction hypothesis.

3. χf (k, jk,L, L) > 0 and
∑

(i,j)�(k,jk,L)
χf (i, j, L) < DL,jk,L .

∑

(i,j)�(k,j′)

χf (i, j, L) =























∑

(i,j)�(k−1,T ) χf (i, j, L), j′ < jk,L, χf (k, j
′, L) = 0

DL,j′ , j′ < jk,L, χf (k, j
′, L) > 0

∑

(i,j)�(k,jk,L)
χf (i, j, L), j′ ≥ jk,L.

By a similar proof to that of Claim 2, there exists some iu, u1, u2, . . . , uL−1 ∈ {1, . . . , T},

such that
∑

(i,j)�(k,jk,L)

χf (i, j, L) = Piu −
L−1
∑

l=1

Dl,ul .

The induction step for case i′ = k is similar to the proof of the induction step for the base

case i′ = 1.

Note that the parameter L being fixed is a critical condition in Proposition 10. As shown

in the following proposition, CFG is NP-hard if the number of echelons (L + 1) is also an

input parameter. Therefore, Proposition 10 is unlikely to hold without the condition that

L is fixed unless P=NP.

Proposition 11. CFG is NP-hard given the input L, T , supply vector b and the function-

value oracle for the cost over each arc.
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Proof. We provide a polynomial-time reduction to CFG from the partition problem. An

instance of the partition problem asks that given a set S of integers y1, . . . , yn whether

there exists a partition of S such that the sum of the numbers in each partition is equal

to
∑2

i=1 yi/2. We construct an instance of CFG and show that the minimum cost of that

instance of CFG is n if and only if the partition instance is a yes instance.

Consider a grid network with n+ 1 echelons, n+ 1 periods, two sources and n sinks, as

shown in Figure 18. Here L = n and T = n + 1. The two sources are v0,1 and v0,2 with

b(v0,1) = b(v0,2) =
∑n

i=1 yi/2. The n sinks are v1,2, v2,3, . . . , vn,n+1 with b(vi,i+1) = −yi for

i ∈ {1, . . . , n}. The cost function over each incoming arc for the sinks vi,i+1 is I(xa > 0),

i.e., the cost is 1 if the flow over the arc is strictly positive and 0 otherwise. The cost over

each of the rest arcs present in Figure 18 is always 0, and the cost over each arc not present

in Figure 18 is large enough so that the arc will never be used in any optimal flow (for

example, the cost function is constant with value 2n). The construction can be done in

polynomial time. Then one can verify that the minimum cost of this instance is n if and

only if the partition instance is a yes instance and the minimum cost is n+ 1 if and only if

partition instance is a no instance.

3.4 Extensions

We study two extensions of the CFG model. The first extension considers CFG with

backward arcs between two consecutive time periods at each echelon. The backward arcs

are used to model the option of backlogging in supply chain management. We call this

extension CFG-B.

Proposition 12. For fixed L, CFG-B can be solved in polynomial time in T and the number

of queries of a function-value oracle.

Proof. CFG-B can be formulated as a discrete-time DP with T + 1 stages, similar to the

one for CFG in Section 3.3. The only difference is that the state at stage t for CFG-B

includes not only the flow over each forward arc between time period t and t+ 1, but also

the flow over each backward arc between time period t and t + 1. The dimension of the

state becomes 2(L + 1), which is still constant for fixed L. We can show that the number

60



...

...

v0,1 v0,2 v0,3 v0,i+1 v0, n+1

v1,1

v2,1

v
i ,1

v1,2

v2,3

v
i ,i+1

v
n ,1 v

n , n+1

Figure 18: The instance of CFG.

of values that each horizontal arc can take under all extreme flows is polynomial in T by a

similar argument to that for CFG in Section 3.3. Then the cardinality of the state space at

each stage is polynomial in T , and CFG-B can be solved in polynomial time in T and the

number of queries of a function-value oracle.

The second extension considers CFG with upward arcs between two consecutive echelons

at each time period. The upward arcs are used to model the return of used products in

supply chain management. We call this extension CFG-U.

Proposition 13. CFG-U with at least three echelons is NP-hard.

Proof. We provide a polynomial-time reduction from the partition problem to CFG-U. An

instance of the partition problem asks that given a set S of integers y1, . . . , yn whether

there exists a partition of S such that the sum of the numbers in each partition is equal to

∑2
i=1 yi/2. We construct an instance of CFG-U and show that the minimum cost of that

instance of CFG is n if and only if the partition instance is a yes instance.

Consider a grid network with (L + 1) echelons (L ≥ 2), n + 1 periods, two sources
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and n sinks, as shown in Figure 19. Note that only echelon 0 to echelon 2 of the graph

is shown. All nodes below echelon 2 are transshipment nodes, and the cost over each arc

below echelon 2 is large enough so that the arc will never be used in any optimal flow (for

example, the cost function is constant with value 2n). The two sources are v0,1 and v0,2 with

b(v0,1) = b(v0,2) =
∑n

i=1 yi/2. The n sinks are v1,2, v1,3, . . . , v1,n+1 with b(v1,i+1) = −yi for

i ∈ {1, . . . , n}. The cost function over each of the downward arc a = (v0,t, v1,t) and upward

arc a = (v2,t, v1,t) for t = 1, . . . , n (the bold arcs in Figure 19) is I(xa > 0), i.e., the cost is

1 if the flow over the arc is strictly positive and 0 otherwise. The cost over the downward

arc (v0,1, v1,1) and upward (v1,1, v2,1) is always 0, the cost over each forward arc present in

Figure 19 is always 0, and the cost over each arc not present in Figure 19 is large enough

so that the arc will never be used in any optimal flow. The construction can be done in

polynomial time. Then one can verify that the minimum cost of this instance is n if and

only if the partition instance is a yes instance and the minimum cost is n+ 1 if and only if

partition instance is a no instance.

... ...

v0,1 v0,2 v0,i+1 v0, n+1

v1,1

v2,1

v1,2

v2,2 v2, n+1

v1,i+1

v2, i+1

v1, n+1

Figure 19: The instance of CFG-U.

3.5 Conclusions and future work

In this chapter, we studied the minimum concave cost flow problem over a grid network.

We proposed a polynomial-time algorithm for the problem when the sources are at the first

echelon and the sinks are at L echelons with L being fixed. Our result unifies the com-

plexity results for the lot-sizing problem and several variants (multi-echelon, backlogging)
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in production planning and the pure remanufacturing problem in green recycling, and gives

the first polynomial-time algorithm for some problems whose complexities were not known

before. The main technical contribution is discovering a particular path decomposition (the

lexicographically largest one), which provides a smart way to count the number of possi-

ble flow values over each arc under extreme flows and a unified framework to analyze the

complexity of various lot-sizing models. We also showed that several variants of CFG are

NP-hard, suggesting that the complexity of CFG depends on not only the underlying graph

topology but also the arc directions and the distribution of sources and sinks.

There are certainly more questions left open than we have answered in this chapter.

The study of MCCNFP can be further pursued in the following directions.

1. Computational complexity for other types of uncapcacited networks. Since the com-

putational complexity of CFG depends not only on the graph structure but also the arc

directions and distribution of sources and sinks, it will be interesting to see whether

CFG with only forward and downward arcs and a fixed number of echelons is still

polynomially solvable if we allow the distribution of sources and sinks to be arbitrary.

Our conjecture is that it is indeed the case, and a positive answer will generalize the

result of Proposition 9. It is also unknown if CFG with a single source is polynomially

solvable when the number of echelons is an input parameter.

2. Capacitated networks. Another important direction to explore is how we can gener-

alize the path decomposition of extreme flows in uncapacitated graphs to argue the

complexity of CFG with arc capacities. We know that some special cases of capac-

itated MCCNFP is polynomial solvable, such as the constant capacitated lot-sizing

problem.

3. Solving CFG with fixed-charge costs in practice. When the cost function is the fixed-

charge type, CFG can also be formulated as a MIP. Although our DP runs in poly-

nomial time, currently it is more realistic to use MIP solvers to attack CFG instances

of large size. It would be interesting to explore how to leverage the theoretical in-

sight gained in this chapter to derive stronger formulations and design more efficient
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algorithms for CFG.

4. CFG under uncertainty. In practice, the parameters of CFG, such as the supply and

demand at each time period and the cost over each arc, may not be known exactly.

It is a challenging task to build a high-fidelity model for CFG when uncertainty is

involved.
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CHAPTER IV

SELL OR HOLD: A SIMPLE TWO-STAGE STOCHASTIC

COMBINATORIAL OPTIMIZATION PROBLEM

4.1 Introduction

An investor owns n indivisible assets and wants to sell k of them by the end of next year.

The current market price for each asset is known. Next year’s market price for each asset

is random, but we assume that the distribution of the price vector is known in advance.

The investor needs to decide which assets to sell this year. Then after having observed next

year’s price vector, he needs to decide which of the remaining assets to sell subject to at

most k assets in total are sold. The investor’s goal is to maximize the sum of the revenue

obtained this year and the expected revenue of next year. We call this problem the sell or

hold problem (SHP).

Stochastic programming [36] is widely used to deal with decision problems with uncertain

data. When random parameters are introduced, many two-stage stochastic combinatorial

optimization problems become NP-hard even if the original deterministic decision problems

are easy. For example, the deterministic version of SHP is to decide which k out of n

assets to sell to maximize revenue, and the optimal strategy is simply to sell the k most

expensive ones. Several two-stage stochastic combinatorial optimization problems have been

studied in the literature, such as maximum weighted matching [76], shortest path, vertex

cover, bin packing, facility location, set covering [87], steiner trees [69, 70], and spanning

trees [52]. Various approximation algorithms based on techniques such as LP rounding, and

the primal-dual method have been proposed.

The SHP resembles a market trading problem, but our interest arises from trying to

understand the complexity brought about by adding a random element to a very simple

combinatorial optimization problem. Indeed we show that a trivial two-stage deterministic

problem becomes NP-hard by including a simple random component. Nevertheless we also
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show that some cases of the stochastic problem are solvable in polynomial time and give

approximation results for the general NP-hard problem. The remainder of this chapter

is organized as follows. Section 4.2 introduces two equivalent formulations for SHP. Sec-

tion 4.3 shows that SHP is NP-hard when the second-stage prices are discretely distributed.

Section 4.4 shows that SHP is polynomially solvable when the number of scenarios at the

second stage is constant. A simple max{1/2, k/n}-approximation algorithm and a tight

example are presented in Section 4.5. Section 4.6 concludes this chapter. The result in this

chapter is a joint work with with Shabbir Ahmed and George Nemhauser and appeared

in [72].

4.2 Two Formulations for SHP

4.2.1 A two-stage stochastic programming model

Let n be the total number of assets and k be the number of assets to sell. The current price

for asset i(1 ≤ i ≤ n) is ri and the next-year price is ci(ω), where c(ω) = (c1(ω), . . . , cn(ω))

is an n-dimensional random vector defined on a probability space (Ω,F , P ). WLOG, assume

that ri and ci(ω) are all nonnegative. Let xi = 1 (xi = 0) denote the decision to sell (hold)

asset i this year, and yi = 1 (yi = 0) denote the decision to sell (hold) asset i next year.

Then SHP can be formulated as a two-stage stochastic integer programming problem:

max
∑n

i=1 rixi + E[Q(x, c(ω))]

s.t.
∑n

i=1 xi ≤ k,

xi ∈ {0, 1}, i = 1, . . . , n,

(17)

where Q(x, c(ω)) is the second-stage value function:

Q(x, c(ω)) = max
∑n

i=1 ci(ω)yi

s.t.
∑n

i=1 yi = k −∑n
i=1 xi,

yi ≤ 1− xi, i = 1, . . . , n,

yi ∈ {0, 1}, i = 1, . . . , n.

(18)

Observe that in (18), the constraint matrix is totally unimodular (TU). Therefore, whenever

xi is integral for each i, the integrality restriction on yi is redundant. Due to the constraint

66



yi ≤ 1− xi, the constraint yi ≤ 1 is also redundant. Therefore,

Q(x, c(ω)) = max
∑n

i=1 ci(ω)yi

s.t.
∑n

i=1 yi = k −∑n
i=1 xi,

0 ≤ yi ≤ 1− xi, i = 1, . . . , n.

(19)

Note that Q(x, c(ω)) is a monotone non-increasing concave function of x for every fixed

c(ω) due to the strong duality theorem of linear programming.

4.2.2 A submodular maximization model

SHP can also be formulated as a non-monotone submodular maximization problem with a

cardinality constraint. Let S ⊆ N = {1, · · · , n} denote the set of assets to sell at the first

stage, the problem can be formulated as

max {f(S) : S ⊆ N, |S| ≤ k} , (20)

where f(S) =
∑

i∈S ri + E[g(S, c(ω))], g(S, c(ω)) is the optimal second-stage revenue when

the assets in S are sold at the first stage and the second-stage price vector is c(ω).

Theorem 9. f(S) is a submodular function.

Proof. Let gc(S) be the value of g(S, c(ω)) when c(ω) = c. We first show that gc(S) is

a submodular function. We will show the following inequality holds for any S ⊆ N and

q, r ∈ N \ S:

gc(S ∪ {r})− gc(S) ≥ gc(S ∪ {r, q})− gc(S ∪ {q}). (21)

Since no more than k items in total can be sold, gc(S) is well-defined only when |S| ≤ k.

When |S| ≥ k + 1, we assign the values of gc(S) in the following way. When |S| = k + 1,

let gc(S) = minr,q∈S{gc(S \ {r}) + gc(S \ {q}) − gc(S \ {r, q})}. Then define the values of

gc(S) sequentially for |S| = k + 2, k + 3, . . . , n in the same way. Therefore (21) is satisfied

automatically when |S| ≥ k − 1 according to the way gc(S) is defined. When |S| ≤ k − 2,

WLOG assume that S = {1, · · · , l} for some 1 ≤ l ≤ k − 2. We sort the rest of the

(n − l) items according to their prices at the second stage in nonincreasing order, i.e.,

cl+1 ≥ cl+2 ≥ . . . ≥ cn. Consider the following four cases.
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1. q ≥ k, r ≥ k. Observe that gc(S) =
∑k

i=l+1 ci and gc(S ∪ {r}) =
∑k−1

i=l+1 ci. Thus,

gc(S ∪ {r}) − gc(S) = −ck. Similarly, gc(S ∪ {r, q}) =
∑k−2

i=l+1 ci and gc(S ∪ {q}) =

∑k−1
i=l+1 ci. Thus, gc(S ∪ {r, q}) − gc(S ∪ {q}) = −ck−1. Since −ck ≥ −ck−1, (21) is

satisfied.

2. q ≥ k, r ≤ k. Observe that gc(S ∪ {r}) = ∑k
i=l+1,i 6=r ci. Thus, gc(S ∪ {r}) − gc(S) =

−cr. Similarly, gc(S∪{r, q}) = ∑k−1
i=l+1,l 6=r ci. Thus, gc(S∪{r, q})−gc(S∪{q}) = −cr.

Therefore, (21) is satisfied.

3. q ≤ k, r ≥ k. Observe that gc(S ∪ {r, q}) =
∑k−1

i=l+1,i 6=q ci and gc(S ∪ {q}) =

∑k
i=l+1,i 6=q ci. Thus, gc(S ∪ {r, q})− gc(S ∪ {q}) = −ck. While gc(S ∪ {r})− gc(S) =

−ck, (21) is satisfied.

4. q ≤ k, r ≤ k. Observe that gc(S ∪ {r}) = ∑k
i=l+1,i 6=r ci. Thus, gc(S ∪ {r}) − gc(S) =

−cr. Similarly, gc(S ∪ {r, q}) = ∑k
i=l+1,i 6=r,q ci and gc(S ∪ {q}) = ∑k

i=l+1,i 6=q ci. Thus,

gc(S ∪ {r, q})− gc(S ∪ {q}) = −cr. Therefore, (21) is satisfied.

Therefore, (21) is satisfied for any |S| ≤ k − 2 and q, r ∈ N \ S.

Since integration preserves submodularity, E[g(S, c(ω))] =
∫

Ω g(S, c(ω))dP (ω) is sub-

modular. The function f(S) is the sum of a modular function and a submodular function,

so it is also submodular.

Therefore, SHP can be formulated as a submodular maximization problem with a cardinality

constraint. Notice that f(S) is neither monotone nor symmetric. An intuitive explanation

for non-monotonicity is that selling more assets at the first stage does not guarantee more

or less revenue in total.

4.3 Complexity of SHP

Before addressing the complexity of SHP, we need to discuss how the input is represented,

i.e., how to encode the uncertain information of the second-stage price c(ω). In the rest of

the chapter, we mainly consider the case where c(ω) is an n-dimensional discrete random

vector with finite support. Assume that c(ω) could attain m values {cj}mj=1 where cj =

[c1j , . . . , cnj ]
T and Pr[c(ω) = cj ] = pj for 1 ≤ j ≤ m. Let yij = 1 (yij = 0) denote the
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decision to sell (hold) asset i at the second stage when c(ω) = cj . We call this case the

discrete sell or hold problem (DSHP). The expectation in (17) can be expressed as a finite

sum and DSHP can be formulated as the integer programming problem

max
∑n

i=1 rixi +
∑m

j=1 pj
∑n

i=1 cijyij

s.t.
∑n

i=1 xi +
∑n

i=1 yij = k, j = 1, . . . ,m,

xi + yij ≤ 1, i = 1, . . . , n, j = 1, . . . ,m,

xi ∈ {0, 1}, yij ≥ 0, i = 1, . . . , n, j = 1, · · · ,m.

(22)

Theorem 10. DSHP is NP-hard.

Proof. We show that DSHP is NP-hard by a polynomial reduction from the NP-hard unca-

pacitated facility location (UFL) problem. UFL is stated as follows. Let F = {1, . . . , n} be

a set of facilities and C = {1, . . . ,m} be a set of clients. Let fi be the setup cost of opening

facility i and dij be the transportation cost of assigning client j to facility i. The objective

is to find a subset I ⊆ F of facilities to open and a function φ : C → I assigning clients to

facilities such that the sum of setup cost and transportation cost is minimized.

Given an instance of UFL, we construct an instance of DSHP by letting {1, . . . , n} = F

be the set of assets to sell and {1, . . . ,m} = C be the set of scenarios at the second stage.

Let k = n−1 be the maximum number of assets that can be sold. Set pj = 1/m, cij = mdij

and ri = fi +
∑m

j=1 dij . Observe that we will sell as many items as we can at the second

stage since cij ≥ 0, so when k = n−1, there will be exactly one item unsold at each scenario.

Therefore, we can use a pair (I, ψ) to denote a feasible solution of DSHP, where I ⊆ F and

ψ : C → F \ I. A solution (I, ψ) means that assets in I are sold at the first stage and all

remaining assets but asset ψ(j) are sold in scenario j at the second stage.

Claim: (I, φ) is an optimal solution of UFL if and only if (F \ I, φ) is an optimal solution

of DSHP.
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The objective value of (F \ I, φ) in DSHP is

∑

i∈F\I

ri +
m
∑

j=1

pj(
∑

i∈I

cij − cφ(j)j)

=
∑

i∈F\I

(fi +
m
∑

j=1

dij) +
m
∑

j=1

pj [
∑

i∈I

(mdij)−mdφ(j)j ]

=
∑

i∈F

(fi +

m
∑

j=1

dij)−
∑

i∈I

(fi +

m
∑

j=1

dij) +

m
∑

j=1

∑

i∈I

dij −
m
∑

j=1

dφ(j)j

=
∑

i∈F

(fi +
m
∑

j=1

dij)− [
∑

i∈I

fi +

m
∑

j=1

dφ(j)j ].

The term
∑

i∈I fi+
∑m

j=1 dφ(j)j is exactly the objective value of the solution (I, φ) for UFL.

Therefore, the objective value of the solution (I, φ) for UFL is minimum if and only if the

objective value of the solution (F \ I, φ) for DSHP is maximum.

When c(ω) is a general random variable, the solution of SHP can be approximated by

the solutions of a sequence of DSHP by the sample average approximation method [90].

Convergence is guaranteed as the number of samples goes to infinity. In fact, we can always

aggregate scenarios such that the total number of scenarios is at most 2n. Since the optimal

second-stage decision for each scenario is to sell some of the most expensive remaining

assets, its value only depends on the order of the second-stage prices {ci(ω)}. Therefore,

we can aggregate those scenarios with the same price order into one scenario and adjust

the associated parameters accordingly. Suppose that l scenarios have the same price order,

then the aggregated scenario has probability
∑l

j=1 pj , and the second-stage price of asset i

in the aggregated scenario is
∑l

j=1 pjcij/(
∑l

j=1 pj).

4.4 Polynomially solvable cases

In this section, we give some special cases of SHP that can be solved in polynomial time.

We have shown that when k = n the optimal decision is to compare the first-stage price

and expected second-stage price of each asset and sell it at the higher price. When k is

a constant, the number of possible first-stage decisions is
(

n
k

)

= O(nk), so the problem

is polynomially solvable. Now we study the case when the number of scenarios m at the

second stage is constant.
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4.4.1 DSHP when m = 2

First consider m = 2, which has a special structure. By (22), the constraint is:





























































1 1

1 1

. . .
. . .

1 1

1 . . . . . . 1 1 . . . . . . 1

1 . . . . . . 1 1 . . . . . . 1

1 1

1 1

. . .
. . .

1 1



















































































































x1
...

xn

y11
...

yn1

y12
...

yn2























































≤















































1

...

1

k

k

1

...

1















































. (23)

Let A denote the constraint matrix. We name the constraints in (23) with right hand side

k and 1 the k-constraints and 1-constraints, respectively. The fact that we have relaxed

the two k-constraints to inequalities does not affect the optimal solutions due to the non-

negativity of the prices. Let PLP be the linear programming relaxation of (23). We first

present a proposition regarding the constraint matrix of DSHP when m = 2.

Proposition 14. The constraint matrix A is a network matrix.

Proof. Construct a directed tree (N,A1) and a digraph (N,A2) as shown in Figure 20. The

vertex set N = ∪ni=1Ui ∪ni=1 Vi ∪3
i=1 Wi. We will show that A is an arc-dipath incidence

matrix where the corresponding arcs are exactly arcs in A1 and the paths are given by the

endpoints of the arcs in A2. Let arcs in A1 correspond to the rows of A. In detail, (Ui,W1)

correspond to the i-th row of A for i = 1, . . . , n, (W1,W0) and (W0,W2) correspond to the

(n + 1)-th and (n + 2)-th row of A, and (W2, Vi) correspond to (n + 2 + i)-th row of A

for i = 1, . . . , n, respectively. Then each column of A is a characteristic vector of certain

path whose endpoints are given by arcs in A2. In detail, (Ui, Vi), (Ui,W0) and (W0, Vi)

correspond to the i-th, (n+ i)-th and (2n+ i)-th columns of A for i = 1, . . . , n, respectively.

Thus, A is a network matrix.
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V1

V2

.

.

.
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.

.

Figure 20: The digraph (N,A1) and (N,A2)

Corollary 2. DSHP with m = 2 is solvable in polynomial time.

Proof. Since A is a network matrix by Proposition 14 and the right-hand side of con-

straint (23) is integral, the polytope PLP with constraints (23) with all variables in [0, 1]

has all of its extreme points integral.

Remark 2. A linear program max{aTx|Ax ≤ b, x ≥ 0} where A is a network matrix can

be modeled as a network flow problem [82]. Thus we could solve DSHP when m = 2

by a network simplex algorithm. However, we are not aware of any simple combinatorial

algorithm that directly solves DSHP when m = 2.

When m ≥ 3 and n ≥ 3, A is not TU, since it contains the following submatrix

A =

































1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

1 1

































.

The first three columns correspond to decision variables x1, x2 and x3 at the first stage,

and the last three columns correspond to decision variables y11, y22 and y33 at the second

stage. The first three rows correspond to the k-constraints for three different scenarios at

the second stage, and the last three rows correspond to the 1-constraints for asset 1 at

scenario 1, asset 2 at scenario 2 and asset 3 at scenario 3. Since det(A) = 2, A is not TU.
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4.4.2 DSHP when m is constant

We present a technical lemma first.

Lemma 6. The integer programming (IP) problem (P ) : max{aTx|Bx ≤ b, x ∈ {0, 1}n},

where the matrix B has m rows and each entry of B is either 0, 1 or −1, can be solved in

O(n3
m
) time.

Proof. Since each entry of B is either 0 or ±1, B has at most M = 3m different columns.

Group the variables together if the corresponding columns in B are identical, then there are

at mostM groups. Suppose that there are nl variables in the l-th group. Assume that in the

objective function, the corresponding coefficients satisfy al1 ≥ al2 ≥ . . . ≥ alnl
. Then any

optimal solution of (P ) satisfies the condition xl1 ≥ xl2 ≥ . . . ≥ xlnl
. Thus there are at most

nl + 1 possible values for these variables of any optimal solution, i.e., xl1 = . . . = xlnl
= 0,

and xl1 = 1, xl2 . . . = xlnl
= 0,..., and xl1 = . . . = xlnl

= 1. Therefore, the number of

possible values for an optimal solution is bounded by

M
∏

l=1

(nl + 1) ≤ (

∑M
l=1 (nl + 1)

M
)M = (1 +

n

M
)M .

The last equality follows from the fact that
∑M

l=1 nl = n. Then the optimal solution can be

found by enumeration in O(nM ) = O(n3
m
) time.

Theorem 11. DSHP is polynomially solvable when m is constant.

Proof. The proof is divided into two steps: (a) DSHP can be decomposed into at most km

IPs, (b) each IP is polynomially solvable.

From (22), once x is fixed, the problem can be decomposed into m optimization problems:

Qj(x) = max
∑n

i=1 cijyij

s.t.
∑n

i=1 yij = k −∑n
i=1 xi,

0 ≤ yij ≤ 1− xi i = 1, . . . , n.

(24)

Problem (24) is a fractional knapsack problem with unit weight for each item. Suppose σj

is a permutation of {1, . . . , n} such that cσj(1)j ≥ cσj(2)j ≥ . . . ≥ cσj(n)j . Then the optimal
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solution of (24) is

yσj(i)j =























1− xσj(i) i < lj

k + 1− lj −
∑n

i=lj
xσj(i) i = lj

0 i > lj

(25)

where lj = min
{

s|∑s
i=1 (1− xσj(i)) ≥ k −∑n

i=1 xi

}

. Therefore,

Qj(x) =

n
∑

i=1

cσj(i)jyσj(i)j =

lj−1
∑

i=1

cσj(i)j(1− xσj(i)) + cσj(lj)j(k + 1− lj −
n
∑

i=lj

xσj(i))

The value of lj depends on the value of x, and the possible values lj could attain are

{1, . . . , k}. Hence from (24), Qj(x) is a concave piecewise linear function of x with at most

k pieces, and the objective function of DSHP

F (x) =
n
∑

i=1

rixi +
n
∑

j=1

pjQ
j(x)

is a piecewise linear function of x with at most km pieces. Therefore, DSHP can be decom-

posed into at most km IPs.

The domain of each piece when (l1, . . . , lm) = (a1, . . . , am) is determined by

aj−1
∑

i=1

(1− xσj(i)) < k −
n
∑

i=1

xj , j = 1, . . . ,m,

aj
∑

i=1

(1− xσj(i)) ≥ k −
n
∑

i=1

xj , j = 1, . . . ,m.

(26)

Since F (x) is concave, it is continuous in the interior of [0, 1]n. Changing the sign from “<”

to “≤” in (26) will not affect the optimal value of DSHP. Then optimizing F (x) over each

piece is formulated as

min F (x)

s.t.
∑aj−1

i=1 (1− xσj(i)) ≤ k −∑n
i=1 xj , j = 1, . . . ,m,

∑aj
i=1 (1− xσj(i)) ≥ k −∑n

i=1 xj , j = 1, . . . ,m,

∑n
i=1 xi ≤ k,

x ∈ {0, 1}n .

(27)

Problem (27) is an IP with 2m + 1 constraints, and each entry of the constraint matrix

is either 0, 1 or −1. By Lemma 6, each IP can be solved in O(n3
2m+1

) time. Therefore,
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DSHP can be solved in O(kmn3
2m+1

) time. When m is constant, DSHP is polynomially

solvable.

4.5 A max{k/n, 1/2}-approximation algorithm for DSHP

In Section 4.2 we have shown that SHP can be formulated as a submodular maximization

problem with a cardinality constraint. Recently, there has been many results on approxi-

mation algorithm for submodular maximization [28, 56, 68, 77, 97]. These algorithms could

be applied to our problem when they can deal with the additional cardinality constraint.

However, these algorithms are designed for general submodular functions given by a value

oracle, and therefore their performances are very weak. For example, it has been shown

that non-monotone submodular maximization with a matroid independence constraint is

hard to approximate to within a factor of (1/2+ ǫ) for any fixed ǫ > 0, unless P = NP [97].

In contrast, we explore the special structure of SHP and design a simple approximation

algorithm that achieves a better approximation ratio. Let c̄i = E[ci(ω)] denote the expected

price of asset i at the second stage.

Algorithm 1 Greedy heuristic 1

1: Set r̄i = max{ri, c̄i} for each asset i.
2: Sort r̄1, . . . , r̄n in nonincreasing order.
3: Let {i1, . . . , ik} be the top k assets in the list. If ril > c̄il , then sell asset il at the first

stage, l = 1, . . . , k.
4: For the second stage of each scenario, sort the prices of the remaining assets in nonin-

creasing order, and sell the top k− t assets, where t is the number of assets sold at the
first stage.

Proposition 15. Algorithm 1 is a k/n-approximation algorithm for DSHP.

Proof. Let OPT(I) be the optimal objective value for the instance I, and ALG1(I) be the

objective value of the solution produced by Algorithm 1. Then,

ALG1(I) ≥
k

∑

l=1

r̄il ≥
k

n

n
∑

i=1

r̄i ≥
k

n
OPT(I).

The last inequality follows from the fact that
∑n

i=1 r̄i is the optimal value of DSHP when

k = n.
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A tight example for Algorithm 1 is obtained by letting the price for each asset at the first

stage be r + ǫ. The second stage has n scenarios, each with probability 1/n. For scenario

1, the price for assets 1 to k is nr/k and the rest of the assets all have price 0. For scenario

2, the price for assets 2 to k + 1 is nr/k and the rest of the assets all have price 0. For

scenario j, the price for assets j to (j + k)(mod n) is nr/k and the rest of the assets have

price 0. The expected price for each asset at the second stage is r, which is less than its

first-stage price r + ǫ. Thus the solution of Algorithm 1 is to sell k items at the first stage,

and ALG1(I) = k(r + ǫ). However, the optimal solution is to sell nothing at the first stage

and sell the k most expensive assets at each scenario at the second stage. The optimal

objective value OPT = nr.

Algorithm 2 Greedy heuristic 2

1: Compute the profit R1 of selling the k most expensive assets in the first stage.
2: Compute the profit R2 of selling the k most expensive assets at each scenario at the

second stage.
3: If R1 ≥ R2, then sell the k most expensive assets in the first stage, otherwise sell the k

most expensive assets at each scenario at the second stage.

Proposition 16. Algorithm 2 is a 1/2-approximation algorithm for DSHP.

Proof. Let ALG2(I) be the objective value of the solution obtained by Algorithm 2. Then,

OPT(I) = first-stage profit + second-stage profit ≤ R1 +R2 ≤ 2ALG2(I).

A tight example for Algorithm 2 is obtained by letting k = 2. The first-stage price of

each asset is 0 except that the price for the first asset is r. The second stage has n − 1

scenarios, each with probability 1/(n − 1). For scenario j, the price of each asset is 0

except that the price for asset j + 1 is r. Then in Algorithm 2, R1 = R2 = r, and

ALG2(I) = max{R1, R2} = r. However, the optimal solution is to sell asset 1 at the first

stage, and sell asset j + 1 at scenario j at the second stage. Then OPT(I) = 2r.

Corollary 3. If we take the better of the two solutions output by Algorithm 1 and Algo-

rithm 2, the combined algorithm is a max{k/n, 1/2}-approximation algorithm.
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4.6 Conclusions and future work

In this chapter, we studied the sell or hold problem, a two-stage decision-making problem

under uncertainty. We presented two equivalent formulations for the problem: a two-

stage stochastic integer programming model, and a non-monotone submodular maximiza-

tion model with a cardinality constraint. We showed that the problem is NP-hard in general,

gave a max{1/2, k/n}-approximation algorithm, and identified several polynomially solv-

able special cases. The complexity result reveals that stochastic combinatorial optimization

problems can become very difficult even when the deterministic version is trivial to solve.

From the modeling perspective, one direction of future research is to consider a risk-

averse measure such as conditional value at risk as the objective instead of the risk-neutral

expectation functional. Another factor to take into account in practice is that usually

only historical data of the asset prices are available instead of the full information of the

underlying distribution. A distributional robust model would be more appropriate in this

situation. From the computational perspective, it would be worthwhile to derive strong

valid inequalities for the two-stage SIP formulation of SHP.
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