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Preface

Purpose

The book is designed as a main textbook in advanced undergraduate courses

on microeconomics, information economics, and industrial organization or as a

supplementary textbook in the first-year graduate course on microeconomic theory.

The book distinguishes itself from other textbooks in that it focuses on an in-depth

treatment of a few core topics, rather than on a complete self-contained overview

of the entire field of microeconomics.

Another distinct feature is that the book breaks with tradition and completely

ignores the standard competitive analysis, and instead focuses on the more modern

themes of imperfect competition, uncertainty and incomplete information, auctions,

and incentives.

Prerequisites

The core sections of the book should be accessible to students with a working

knowledge of intermediate microeconomics. Mathematical prerequisites are at an

introductory/intermediate level, though openness towards mathematical thinking

is essential. Given these prerequisites, a good part of the book should be well

suited as a main textbook in advanced microeconomics, industrial organization, or

information economics.

In an advanced undergraduate class one would make a selection from the core

material and stay away from supplementary and more demanding topics marked

"*". The variety of issues leaves the instructor with a wide range of choices. Of

course, in a graduate class one should include the starred sections, which are

a substantial part of the book, depending upon the instructor's interests in the

selection of topics.

By making different selections, the book can be used as textbook in microeco-

nomics or in courses with an emphasis on industrial organization, information

economics, applications of game theory, or auctions and incentives. THE book

is also of potential interest to students and researchers who want to study certain

topics independently, as an introduction to their research.



xiv Preface

Outline of the Book

Chapter 1 (Monopoly) is ideally suited for the first sessions of the micro se-

quence because it starts with intermediate-level material that can be skimmed

through quickly, and then gradually turns to more advanced topics and methods

such as a simple version of the incomplete-information theory of price discrimi-

nation, the durable-goods monopoly problem, and bargaining. I usually start out

the micro sequence with this material because students find it accessible from their

undergraduate background and appealing to economic common sense.

Chapter 2 (Regulation of Monopoly) is a more specialized topic that one would

not necessarily treat in the micro sequence. However, the sections on normative

theories of regulation should be considered for inclusion because they offer a nice

and simple introduction to the modern mechanism design approach.

Chapter 3 (Oligopoly and Industrial Organization) contains some core micro

sequence material plus a great deal of supplementary material for use in a spe-

cialized course on industrial organization. In the micro sequence I use only the

first two sections plus Section 3.5. However, in a course that emphasizes industrial

organization one would cover also cover in detail Sections 3.3 and 3.6.

Chapters 4, 5, and 6 (Risk, Stochastic Dominance, and Risk Aversion) intro-

duce basic concepts and results of stochastic dominance rankings of probability

distributions and present the theory of comparative statics of risk. This material is

useful in many decision problems under uncertainty, though some of details may

be too involved for a standard micro sequence.

The exposition of the basic theory is followed by a sample of fully worked-

out applications of the comparative statics of risk, drawn form various areas in

economics - from portfolio selection to labor supply, entry in oligopolistic markets,

auctions, and the ranking of income distributions.

In the micro sequence I usually go over most of Chapter 4, then select two or

three applications from Chapter 5, and cover the core sections (without "*") of

Chapter 6. In a course on information economics, I cover Chapter 6 in full detail.

Chapter 7 (Matching: The Marriage Problem) opens the detailed coverage of

incomplete information. The topic is two-sided matching of the members of two

distinct groups, and the focus is on marriage.

In a standard micro sequence one will probably not use this material, and some

people may find its inclusion a bit extravagant. However, in my own teaching I

tend to use this brief chapter as "warm-up" material, ideally after a semester break.

The topic is somewhat entertaining, and although the exposition is not loaded with

technicalities, it has rigor and beauty.

Chapter 8 (Auctions) gives a comprehensive introduction to auction theory and

surveys a great deal of the auction literature.1 Auctions are increasingly important

1 This chapter is an extended version of my survey, Wolfstetter (1996).
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as a market mechanism, and auction theory is an ideal topic to exercise many of

the tools and tricks of modern economic theory. This is why I strongly recommend

it for inclusion in the micro sequence.

Many of the competing texts do not cover auctions at all or in sufficient detail. Of

course, in the micro sequence one should not cover the entire chapter. One should

use Sections 8.1-8.4 and 8.6, and leave the other material for a more specialized

course.

Chapter 9 (Hidden Information and Averse Selection) surveys adverse-selection

models and elaborates some standard applications, from insurance to labor, credit,

price discrimination, and education. Most of the material is at a fairly elementary

level, except the analysis of price discrimination. The latter generalizes the two-type

model of hidden information and second-degree price discrimination in Chapter 1

to a continuum of types.

In the micro sequence I usually go quickly over the basic material, and then spend

time exercising more advanced techniques using the example of price discrimination

with a continuum of customer types.

Chapter 10 (Hidden Information and Signaling) surveys signaling models,

using the famous education game, shows how signaling games are plagued by

multiplicity-of-equilibria problems, and evaluates various proposed equilibrium

refinements. Again, in the micro sequence I cover all core sections of this chapter.

Chapter 11 (Hidden Action and Moral Hazard) gives an introduction to the

principal-agent problem and its various ramifications. Two basic models are

distinguished: the risk-vs. -incentives model and the limited-liability model. The

simplicity of the latter makes it a good framework for the analysis of the

interrelationship between optimal contracts and optimal monitoring. Attention is

also paid to the renegotiation problem and possible solutions to the disturbing lack

of renegotiation-proofness of standard optimal contracts.

Nowadays, most micro courses include some coverage of the principal-agent

problem. In an advanced undergraduate course one would probably only use the

two-state, two-efforts models, whereas in a graduate course one should cover at

least one of the generalizations, and possibly the analysis of optimal monitoring.

Chapter 12 (Rank-Order Tournaments) explains and debates incentive systems

that are based on relative performance measures. This introduces the reader into

the important area of principal-agent relationships between one principal and many

agents.

Technical Supplements The book comes with several technical supplements (ap-

pendixes) that review basic concepts and results of nonlinear optimization theory

(Appendixes A and B), convexity and generalizations (Appendix C), and expected

values and order statistics (Appendix C). The emphasis is on basic concepts and

results, mostly without proofs. These surveys should be useful for the working

economist, even though the material is not required for the other parts of the book.
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Most graduate programs have specialized math courses and assign one of the

many excellent textbooks on optimization theory. The technical supplements in-

cluded here are by no means a substitute for such a text.

Complementary Texts In recent years many good texts were published that one

might combine with the present book. When I teach the graduate micro sequence,

industrial organization, applied game theory, and auctions and incentives, I also

assign parts of Fudenberg and Tirole (1991), Varian (1992), Kreps (1990), Tirole

(1989), Milgrom and Roberts (1992), andMas-Colell, Whinston, and Green (1995).

Why No Competitive Analysis? I close with a word of explanation for the

absence of competitive analysis in this text. Over the years of teaching the micro

sequence I found myself putting less and less emphasis on the relatively uninspiring

competitive analysis, which is well covered in Varian (1992) and in other texts. This

reflects not just my own preferences, but a general shift of emphasis in research.

This fact, combined with the availability of good texts on competitive analysis,

made me decide to put together a micro text that excludes competitive analysis

altogether.
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Parti

Imperfect Competition





1

Monopoly

The best of all monopoly profits is a quiet life.
Sir John Hicks

1.1 Introduction

In this chapter we analyze the supply and pricing decisions of a pure, single-

product monopolist facing a large number of price-taking buyers. We take the firm's

choice of product as given and assume that consumers know all about product

characteristics and quality. Moreover, we assume that the monopolist's market

is sufficiently self-contained to allow us to neglect the strategic interdependency

between markets. The strategic interdependency between markets is the subject

matter of the theory of oligopoly with product differentiation.

Monopolies do exist. In the early days of photocopying, Rank Xerox was the

exclusive supplier - some still use "xeroxing" as a synonym for "photocopying."

Postal and rail services are (or have been) monopolized (things are changing fast in

these sectors), and so are public utilities (gas and electricity) and computer operating

systems, to name just a few. One can even find inconspicuous products that are

subject to monopolization. For example, in Germany matches were exclusively

supplied by a single Swedish supplier who had acquired a monopoly license from

the German government during World War I, when the German government was

hard pressed for foreign currencies. Similarly, gambling licenses are often issued

by states to raise revenue. Moreover, there are many local monopolies, like the

single hardware store in a small community, the bus line exclusively served by

Greyhound, or the flight route, say from Ithaca to New York City, served by a single

airline.

As these examples suggest, monopolization has a lot to do with the size of a

market, but also with licensing, patent protection, and regulation - supported by law.

If entry into a monopolized market is not prohibited, a monopoly has little chance

to survive unless the market is too small to support more than one firm. Monopoly

profits attract new entrants. And even if entry is prohibited, eventually patent rights

expire, or rival firms spend resources to develop similar products and technologies or

even to gain political influence to raid the monopoly license. Therefore, a monopoly
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is always temporary unless it is continuously renewed through innovations, patents,

or political lobbying.

Monopolies - Weak and Strong A monopolist has exclusive control of a market.

But to what extent a monopoly is actually turned into a fat profit depends upon

several factors, in particular:

• the possibility of price discrimination,
• the closeness to competing markets,
• the ability to make credible commitments.

A strong monopolist has full control over his choice of price function. He can

set linear or nonlinear prices, he can even charge different prices to different buy-

ers. In other words, the strong monopolist can use all his imagination to design

sophisticated pricing schemes to pocket the entire gain from trade, restricted only

by consumers' willingness to pay. No one will ever doubt the credibility of his

announced pricing policy.

In contrast, the weak monopolist is restricted to linear prices.1 He cannot even

price-discriminate between consumers.

Monopolists come in all shades, between the extremes of weak and strong. For

example, a monopolist may be constrained to set linear prices, but he may be

able to price-discriminate between some well-identified groups of consumers. Or

a monopolist may be restricted to set a menu of nonlinear prices, like the ones

you are offered by your long-distance telephone company and your public utilities

suppliers.

In the following pages you will learn more about these and other variations of

the monopoly theme. We will not only analyze the monopolist's decision problem

under various pricing constraints, but also attempt to explain what gives rise to

these constraints from basic assumptions on technology, transaction costs, and

information structures.

We begin with the simplest analysis of the weak monopoly, also known as

Cournot monopoly, in homage to the French economist Antoine Augustin Cournot

(1801-1877), who laid the foundations for the mathematical analysis of non-

competitive markets. Most of this analysis should be familiar from your under-

graduate training. Therefore, you may quickly skim through these first pages,

except where we cover the relationship between rent seeking and the social loss

of monopoly, the durable-goods monopoly problem, and the analysis of regulatory

mechanisms.

Finally, keep in mind that there are really two opposite ways to model pure

monopoly. The most common approach - exclusively adopted in this chapter -

describes the monopolist as facing a given market demand function and ignores

potential actions and reactions by the suppliers of related products. The other,

opposite approach faces the strategic interdependency of markets head on and

views monopolist pricing as an application of the theory of oligopoly with product

1 A price function V is called linear if it has the form V{x) := px, where p > 0 is the unit price.
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differentiation. While we stick, in this chapter, to the conventional approach, you

should nevertheless keep in mind that there are many examples where oligopoly

theory gives the best clues to the monopolist's decisions.2

1.2 Cournot Monopoly - Weak Monopoly

We begin with the weak or Cournot monopolist who can only set a linear price

function that applies equally to all customers. The demand function, defined on

the unit price p, is denoted by X(p), and the cost function, defined on output x,

by C{x). Both X(p) and C(x) are twice continuously differentiable; also, X(p)

is strict monotone decreasing, and C(x) strict monotone increasing. The inverse

demand function, defined on total sales JC, exists (due to the monotonicity of X{p))

and is denoted by P(x). The rule underlying this notation is that capital letters like

X and P denote functions, whereas the corresponding lowercase letters x and p

denote supply and unit price.

In a nutshell, the Cournot monopolist views the market demand function as his

menu of price-quantity choices from which he picks that pair that maximizes his

profit. We will now characterize the optimal choice.

At the outset, notice that there are two ways to state the monopolist's decision

problem: one, in terms of the demand function:

max px — C(x), s.t. X{p) — x > 0, p, x > 0,

and the other in terms of the inverse demand function:

max
P,x

px - C(JC), s.t. P(x) - p > 0, /?, x > 0.

Obviously, the two are equivalent. Therefore, the choice is exclusively one of con-

venience. We choose the latter. Also, notice that the constraint is binding (the

monopolist would forgo profits if he did sell a given quantity below the price cus-

tomers are willing to pay). Therefore, the monopolist's decision problem can be

reduced to the unconstrained program:

max TT(JC) := R(x) - C(x), (1.1)

where R denotes the revenue function:

R(x) := P(x)x. (1.2)

1.2.1 Cournot Point

Suppose, for the time being, that X and C are continuously differentiable on R+,

that revenue R(x) is bounded, and that profit is strictly concave.3 Then the decision

2 Of course, also the opposite may hold, where standard monopoly theory gives the best clues to oligopolistic
pricing. This is the case when reaction functions are horizontal.
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Figure 1.1. Cournot Point.

problem is well behaved, and we know that there exists a unique solution that can

be found by solving the Kuhn-Tucker conditions:4

nf(x) := R'(x) - C\x) < 0 and xn\x) = 0, x > 0. (1.3)

In principle, one may have a corner solution (x = 0). But if P(0) — C'(0) > 0,

an interior solution is assured, which is characterized by the familiar condition of

equality between marginal revenue and marginal cost, Rf(x) = Cf(x). Denote the

solution by x , p := P(x ). The graph of the solution is called the Cournot

point and illustrated in Figure 1.1.

Example 1.1 Suppose P(x) \—a- bx, a, b > 0, and C(x) := \x2, x e [0, a/b].

Then profit is a strictly concave function of output, n(x) := ax — bx2 — \x2. From

the Kuhn-Tucker condition one obtains

= a-2bx -x. (1.4)

Therefore, the Cournot point is (xM = a/{\ + 2b), pM = a(l + b)/{\ + 2b)),

and the maximum (or indirect) profit function is n*(a, b) := a2/(2(l + 2b)).

Obviously, the monopolist's optimal price exceeds the marginal cost. But by

how much? The answer depends upon how strongly demand responds to price.

If demand is fairly inelastic, the monopolist has a lot of leeway; he can charge a

high markup without suffering much loss of demand. But if demand responds very

strongly to a price hike, the best the monopolist can do is to stay close to marginal

cost pricing. This suggests a strong link between monopoly power and the price

responsiveness of demand.

3 Concavity of the revenue and convexity of the cost function - at least one of them strict - are sufficient, but not
necessary.

4 In case you are unsure about this, prove the following: 1) strong concavity implies strict concavity; 2) if a solution
exists, strict concavity implies uniqueness; 3) the Weierstrass theorem implies the existence of a solution (you
have to ask: is the feasible set closed and bounded?); 4) the Kuhn-Tucker theorem implies that every solution
solves the Kuhn-Tucker conditions, and vice versa. Consult Appendixes C and D.
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P(x)

Figure 1.2. Relationship between Marginal Revenue and Price Elasticity \e\ = p/(p — p),
R\x) = p-(p-p).

The conventional measure of price responsiveness of demand is the price elas-

ticity of demand:

s(p) := X\p)
X(p)

(1.5)

We now use this measure to give a precise statement of the conjectured explanation

of monopoly power.

As you probably recall from undergraduate micro, marginal revenue is linked to

the price elasticity of demand as follows (see also Figure 1.2):5

R'(x) = P'(x)x + P(x)

= P(x) [l +

= P(x) 1 +

X'(P(x))P(x)

1

= P(x)

s(P(x))

•e(P(xm
s(P(x)) J

(1.6)

Therefore, marginal revenue is positive if and only if demand responsiveness is

high, in the sense that the price elasticity of demand is less than — 1.

Using this relationship together with the Kuhn-Tucker condition (1.3) for an

interior solution, one obtains the following optimal markup rule:

P(x) =
\+s(P(x))

(1.7)

5 Note, by the definition of the inverse one has P(X(p)) = p; hence, P\X{p))X'{p) = 1.
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Another frequently used variation of this form is the Lerner index of monopo-

lization:

p W - c ' w = ' , (,.8)
P(x) s(P(x))

These convenient forms should also remind you that the Cournot point always

occurs where the price elasticity of demand is less than minus one, that is, where

an increase in output raises revenue.

Monopoly and Markup Pricing

In the applied literature on industrial organization it is claimed that monopolistic

firms often stick to a rigid markup pricing rule. This practice is sometimes cited

as contradicting basic principles of microeconomics. Notice, however, that (1.7)

is consistent with a constant markup. All it takes is a constant elasticity demand

function and constant marginal cost.

Another issue in this literature concerns the problem of measurement. Usually,

one has no reliable data on firms' cost functions. So how can one ever measure even

such a simple thing as the Lerner index? As in other applications, a lot of ingenuity

is called for to get around this lack of data.

A nice example for this kind of ingenuity can be found in Peter Temin's study

of the German steel cartel in imperial Germany prior to World War I (see Temin

(1976)). He noticed that the cartel sold steel also on the competitive world market.

Temin concluded that the world-market price, properly converted using the then

current exchange rate, should be a good estimate of the steel cartel's marginal cost.

And he proceeded to use this estimate to compute the Lerner index. Make sure you

understand the economic reasoning behind this trick.

Monopoly and Cost-Push Inflation

In economic policy debates it is sometimes claimed that monopolists contribute to

the spiraling of cost-push inflation because - unlike competitive firms - monopolists

apply a markup factor greater than 1. To discuss this assertion, it may be useful if

you plot the markup factor s/(l + s) for all e < — 1. Notice that it is always greater

than 1, increasing in £, and approaching 1 as s goes to minus infinity and infinity

as s approaches —1.

Software Pirates and Copy Protection

As a brief digression, consider a slightly unusual Cournot monopoly: the software

house that faces competition from illegal copies and in response contemplates

introducing copy protection.

Legally, the copying of software is theft. Nevertheless, it is widespread, even

among otherwise law-abiding citizens. Software houses complain that illegal copies

rob them of the fruits of their labor and pose a major threat to the industry.

Suppose copy protection is available at negligible cost. Should the monopolist

apply it, and if so, how many copies should he permit? A copy-protected program

can only be copied N > 0 times, and copies cannot be copied again. Therefore,

each original copy can be made into N + I user copies.
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To discuss the optimal copy protection, we assume that there is a perfect sec-

ondary market for illegal copies. For simplicity, users are taken to be indifferent

between legal and illegal user copies, and marginal costs of copying are taken to

be constant.

Given these admittedly extreme assumptions, the software market is only feasible

with some copy protection. Without it, each original copy would be copied again

and again until the price equaled the marginal cost of copying. Anticipating this, no

customer would be willing to pay more than the marginal cost of copying, and the

software producer would go out of business because he knew that he could never

recoup the fixed cost of software development.

An obvious solution is full copy protection (N = 0) combined with the Cournot

point (pM, xM). However, this is not the only solution. Indeed, the software pro-

ducer can be "generous" and permit any number of copies between 0 and xM — 1

without any loss in profit. All he needs to do is to make sure that N does not exceed

xM — 1 and that the price is linked to the number of permitted copies in such a

way that each original copy is priced at N + 1 times the Cournot equilibrium price,

(N + l)pM.

Given this pricing-plus-copy-protection rule, each customer anticipates that the

price per user copy will be equal to the Cournot equilibrium price pM\ exactly

xM/(N + 1) original copies are sold; each original copy is copied N times; exactly

xM user copies are supplied; and profits and consumer surplus are the same as under

full copy protection.

At this point you may object that only few software houses have introduced

copy protection;6 nevertheless, the industry is thriving. So what is missing in our

story?

One important point is that copy protection is costly, yet offers only temporary

protection. Sooner or later, the code will be broken; there are far too many skilled

"hackers" to make it last. Another important point is that illegal copies are often

imperfect substitutes, for example because handbooks come in odd sizes (not easily

fit for photocopying) or because illegal copies may be contaminated with computer

viruses. Instead of adding complicated copy protection devices, the monopolist

may actually plant his own virus-contaminated copies in the second-hand market.

Alas, computer viruses are probably the best copy protection.

Leviathan, Hyperinflation, and the Cournot Point

We have said that monopoly has a lot to do with monopoly licensing, granted and

enforced by the legislator. Of course, governments are particularly inclined to grant

such licenses to their own bodies. This suggests that some of the best applications

of the theory of monopoly should be found in the public sector of the economy.

A nice example that you may also come across in macroeconomics concerns

the inflation tax theory of inflation and its application to the economic history of

hyperinflations. A simple three-ingredient macro model will explain this link (the

classic reference is Cagan (1956)).

6 Lotus is one of the few large software houses that rely on copy protection.
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1. The government has a monopoly in printing money, and it can coerce the public to use it

by declaring it fiat money. Consider a government that finances all its real expenditures

G by running the printing press. Let p be the price index, let Ms be the stock of high-

powered money, and suppose there are no demand deposits. Then the government's

budget constraint is

pG = AMS (budget constraint). (1.9)

2. Suppose the demand for real money balances Md/p is a monotone decreasing and

continuously differentiable function of the rate of inflation7 p,

Md

= 0 (p) (demand for money). (1.10)

P

3. Assume the simple quantity theory of inflation,

A/? AMS AMd

p := — = — = —— (quantity theory of money). (1.11)
p Ms Md

Putting all three pieces together, it follows that the real expenditures that can be

financed by running the printing press are a function of the rate of inflation:
G(p) = p<Kp). (1.12)

The government has the exclusive right to issue money, and it can force people to

accept this money in exchange for goods and services (this is the origin of the term

"fiat money"). However, even though it can set the speed of the printing press, the

real expenditures that it can finance in this manner are severely limited. Therefore,

the inflation tax is only a limited substitute for conventional taxes.

To determine these limits, simply compute the Cournot-point rate of inflation pM,

defined as the maximizer of G(p) over p. Since the government's maximization

problem is equivalent to that of a Cournot monopolist subject to zero marginal

costs, it follows immediately that real government expenditures reach a maximum

at that rate of inflation where the elasticity of the demand for real money balances

s is equal to — 1:

J^ l. (1.13)(t)\p)J^ l.
<KP)

Of course, this revenue-maximizing rate of inflation imposes a deadweight loss

upon society, just like any other Cournot monopoly. The socially optimal rate of

inflation is obviously equal to zero. However, alternative methods of taxation tend

to impose their own deadweight loss, in addition to often high costs of collecting

taxes. Keeping these considerations in mind, it may very well be that some inflation

is optimal, depending upon tax morale and other institutional issues. Different

countries with their different institutions may very well have different optimal

inflation rates. Incidentally, these considerations are the background of current

discussions on optimal currency areas.

7 In macroeconomics it is often assumed that the demand for real money balances is a strict monotone decreasing
function of the nominal interest rate. The latter is usually strongly correlated with the rate of inflation.
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Table 1.1. German hyperinflation 1923

11

Month

January
January
January
July
August
September
October
November

1921
1922
1923
1923
1923
1923
1923
1923

Exchange rate,
monthly average
(Mark/$)

64
191

17,972
353,412

4,620,455
98,860,000

25,260,208,000
4,200,000,000,000

Source: Stolper (1964).

Another interesting application of the inflation tax concerns the theory of hyper-

inflations, like the one in Weimar Germany in 1923 (or most recently in Serbia, after

the breakup of Yugoslavia). There, a government was in desperate need for funds,

due to a fatal combination of events, from the exorbitantly high demands for repara-

tions imposed by the Versailles treaty (aggravated by the French occupation of the

Ruhr area in 1923) to a parliament torn between cooperation and conflict. Unable to

finance its expenditures to any significant degree by explicit taxes, the government

took recourse to the printing press. But the faster it set its speed, the fewer real

expenditures it could finance in this manner. The result was a rapidly exploding

rate of inflation, reflected in the catastrophic devaluation of the mark relative to the

dollar reported in Table 1.1, and a complete breakdown of government financing.8

Some Comparative Statics

How does the Cournot point change if marginal cost or demand function shift?

As always, such questions are meaningful only if uniqueness of the Cournot point

is assumed. This is one reason why comparative statics is always pursued in a

framework of relatively strong assumptions.

As an example, suppose C is a continuously differentiable function of a cost pa-

rameter a in such a way that higher a represents higher marginal costs: Cxa (x,a) >

0. Also assume that the profit function is strongly concave in output and that the

Cournot point is an interior solution.9 Then, the optimal output is a differentiable

function of a, described by the function x*(a). And we can pursue comparative

statics using calculus.

We now show that the monopolist's supply is strict monotone decreasing in a:

x* (a) <0 . For this purpose, insert the solution function x*(a) into the Kuhn-

8 At one point, the Reichsbank employed 300 paper manufacturers and 2,000 printing presses, day and night.
9 Recall that strong concavity is strict concavity plus the requirement that the determinant of the Hessian matrix of

the profit function (which is here simply the second derivative of this function) does not vanish. Strong concavity
is always invoked if one wants to make sure that the solution functions are differentiable in the exogenous
parameter, which is a prerequisite for the calculus approach to comparative statics.
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Tucker condition (1.3), and one obtains the identity

nf
x(x*(a), a) := R'(x*(a)) - C'x(x*(a), a) = 0. (1.14)

Differentiating it with respect to a gives, after a bit of rearranging,

, = -<,(**(«),«) = C%,(**(«),«)

*£(**(«),(*) / ?^*(a ) ) -C^(^*(a ) , a )

This proves that the monopolist's optimal supply is strictly monotone decreasing

in the marginal cost parameter, as asserted.

Two Technical Problems

We close the analysis of the Cournot point with two slightly technical problems.

The first one concerns the existence of the Cournot point in the face of plausible

discontinuities of demand or cost functions. The second explains how you should

proceed if the profit function is not strictly concave. If you are in full control of your

undergraduate micro, you may skip this exposition and move directly to Section

8 Q 1.O.Z.

An Existence Puzzle Suppose demand is unit elastic (e = — 1 for all x > 0), and

the cost function is strictly convex with positive profits at some outputs. Then the

profit function is strictly concave. Yet, the monopolist's decision problem has no

solution.

The explanation is very simple. First, notice that revenue is constant for all

positive x whereas cost is strictly increasing. Therefore, profit goes up as x is

reduced (less output means higher profit), except if x is reduced all the way down

to x = 0. Second, notice that there is no smallest positive rational number (there is

no smallest positive output). Combine both observations, and it follows that there

is no profit-maximizing choice of x. So which of our assumptions has failed?

As you check the assumptions one by one, you will see that almost all of them are

satisfied. The only exception is the continuity of the revenue function, which is vio-

lated at precisely one point (x = 0).10 This seemingly minor deviation changes it all.

The discontinuity of the demand function at x — 0 is something that one would

not like to rule out. For example, applied economists often work with constant

elasticity demand functions, all of which share this discontinuity property.

Another frequently encountered discontinuity that should not be excluded con-

cerns the cost function. Recall, costs are usually decomposed into fixed and variable,

where fixed costs are defined as lim^^o C{x). Some fixed costs are reversible (or

quasifixed), and some are irreversible or sunk. Whenever some fixed costs are re-

versible, one has C(0) < lirn^o C(x), so that the cost function has a discontinuity

at x = 0. In the face of it there is always a reasonable chance that the corner point

x — 0 may be optimal. Therefore, watch out for a corner solution.

So, what shall you do if the demand or the cost function has such a discontinuity,

and how can one assure existence of the Cournot point even in these cases? As in

10 This discontinuity rules out the application of the Weierstrass theorem, which was invoked in the proof of
existence of the Cournot point sketched in footnote 4.
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other applications, a safe procedure is to break up the search for a solution into three

steps: 1) search for a solution in the restricted domain E + + (an interior solution);

2) evaluate profit at the corner point x — 0; 3) choose the solution (either corner or

interior) with the highest profit.

Since this procedure is cumbersome, one would of course like to know in which

case existence of an interior solution is guaranteed so that the procedure can be

stopped after round 1). A simple and often used sufficient condition is the following:

c) - C'(x)] > 0, lim [R'(x) - Cf(x)] < 0. (1.16)
X+OQ

[
+OQ

Make sure that you understand why this condition is indeed sufficient.

Example 1.2 Suppose the demand function has a constant elasticity e < — 1. Then

it must have the form X(p) = ap£ (show this), so that the inverse demand function

is P(x) = (x/a)1/6. Twice differentiate the revenue function R(x) := P(x)x, and

you see that the revenue function is strictly concave. Now add the assumption that

the cost function is convex and that condition (1.16) holds. Then the Cournot point

has a unique interior solution.

The Cournot Point without Concavity Let us get another technical problem out

of the way: characterizing the Cournot point if the profit function is not strictly

concave. Concavity, as a local property, assures that a stationary point is indeed

a maximum, and strict concavity, as a global property, assures uniqueness. But

concavity is far too strong a requirement.

A popular weaker requirement is quasiconcavity. But, as a global property, qua-

siconcavity is often difficult to confirm or reject. As in other optimization problems,

if a maximization problem is not concave (that is, if either the objective function is

not concave or the constraint set is not convex), it is often a better procedure to look

for some transformation of variables that leads to a concave problem. The trouble

is, however, that there are no simple rules and that you have to be imaginative to

find a transformation that does the job.11

In many applications one can safely assume that the cost function is convex.

But one may feel less comfortable assuming concavity of the revenue function. So

you may wonder whether one could not assume instead that the revenue function

is quasiconcave and then obtain a quasiconcave profit function, which is really

enough for a well-behaved decision problem. The answer is no. Just recall that the

sum of a concave and a quasiconcave function need not be quasiconcave. Consult

Appendix C if you are not entirely sure about this matter.

So what shall you do if the profit function is continuous but not quasiconcave in

output or in any conceivable transformation of this variable? Well, you cannot avoid

the tedious job of checking out all stationary points and all corners. Of course, only

those stationary points can qualify where the profit function is (locally) concave.

Therefore, you need only consider those stationary points at which the second-order

11 An example of such a transformation of variables is spelled out in detail in Section C.8 of Appendix C.
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or local concavity condition

TT\X) := R"(x) - C"{x) < 0 (second-order condition) (1.17)

is satisfied. But you may still be left with fairly extensive computations to compare

the profits at the remaining stationary and corner points.

Example 1.3 Suppose the cost function is S-shaped (strictly concave for low and

strictly convex for high outputs), and suppose demand is linear. Then the profit

function has two stationary points. But the profit function is only locally concave at

the one point with the higher output. Therefore, only one stationary point survives

the second-order or local concavity condition. However, this point need not be

a profit maximum either. Indeed, if fixed costs are sufficiently high, it is always

optimal to close down the firm and choose the corner point x = 0.12 Draw a diagram

to illustrate this case.

1.2.2 Deadweight Loss of Monopoly

Compared to a competitive firm, the Cournot monopolist earns higher profits (if he

did not, the price would have to be equal to the marginal cost at the Cournot point).

This shows that monopoly power redistributes welfare from buyers to sellers. But

redistribution alone does not indicate any loss of social welfare, in the sense of the

Pareto criterion. However, since the Cournot monopolist can only extract more from

the consumers' willingness to pay by charging a higher unit price, the monopolist

reduces welfare, unless demand is completely inelastic.

If the unit price rises above the competitive level, the consumers who continue

to buy at the now higher price suffer a loss in consumer surplus that is however

exactly offset by the seller's gain. However, those who quit buying at the higher

price suffer a loss not offset by any gain to the seller. This deadweight loss of

Cournot monopoly is illustrated in Figure 1.3, by the shaded area D.

As always, a deviation from the welfare optimum suggests that, with a bit of

imagination, one can design Pareto-improving trades. For example, starting from

the Cournot point, the monopolist could propose to his customers to supply an

additional JC* — xM units in exchange for an additional payment equal to the cost

increment (measured by the area under the marginal cost function between xM and

**), plus some small bonus. Miraculously, both buyers and sellers would be better

off. However, the weak Cournot monopolist cannot take advantage of these gains

from trade, because he is restricted to simple linear pricing schemes, for reasons

that will have to be explained from basic assumptions concerning technology and

information structures.

Conceptually, the deadweight loss of monopoly is the same as the deadweight

loss of taxation. In the Middle Ages, it was popular to tax real estate on the basis

of the size of windows. Due to the conspicuously high price of glass, the size of

12 It is useful to distinguish two cases: 1) Suppose the average cost is higher than the price at the qualifying
stationary point. Then the corner point x = 0 is definitely optimal if fixed costs are reversible (not sunk).
2) Suppose the average variable cost is higher than the price at the qualifying stationary point. Then x = 0 is
optimal even if fixed costs are irreversible (sunk).
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Figure 1.3. Deadweight Loss of Monopoly.

windows was correlated with wealth. Just as consumers reduce their demand when

a monopolist raises the unit price, medieval citizens responded to the window tax

by reducing the size of windows. In the end, they paid their taxes in any case. But

on top of the direct reduction of wealth due to taxation, they sat in the dark - a

visible example of the deadweight loss of taxation.

Can a government reduce or even eliminate that deadweight loss by means of cor-

rective taxes? If the government has complete information about cost and demand

functions, the task is easily accomplished. For example, a simple linear subsidy

based on output - a negative excise tax - will do the job. The intuition is simple.

An output subsidy smoothly reduces the effective marginal cost. By result (1.15),

it follows immediately that the subsidy increases the Cournot equilibrium output.

Therefore, one only needs to set the subsidy at the right level, and the monopolist

is induced to produce the socially optimal level of output.

An obvious objection is that such a subsidy makes the monopolist even richer.

However, this side effect of the output subsidy scheme can easily be eliminated by

adding an appropriate lump-sum tax into the package.

To compute the appropriate subsidy rate and lump-sum tax, you should proceed

as follows. In a first step, solve the monopolist's decision problem, given a subsidy

rate s per output unit and a lump-sum tax T. Of course, the lump-sum tax does not

affect the optimal output, but the subsidy does. Then, impose the requirement that

the optimal output be equal to the competitive output xM, implicitly defined by the

condition P(xM) = C\xM). After a bit of rearranging the first-order condition you

will find that the subsidy rate has to be set as follows:

-C\xM) „
s =

s(P(xM))

Finally, make the subsidy self-financing by setting the lump-sum tax equal to

(1.18)

T = sxM (1.19)

It is as simple as that.13

13 An even simpler mechanism is to impose sufficiently high penalties on any deviation from marginal cost pricing.
This just shows that the regulation of monopoly is a trivial task if the regulator has complete information.
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However, in most applications the regulation of Cournot monopoly is consid-

erably more difficult. The main reason is that monopolists usually have private

information about costs and sometimes even about their demand function. This

raises a challenging mechanism design problem. We will address this issue in some

detail in Section 2.3 of the next chapter.

Another problem has to do with the fact that monopolies are often the product

of government regulation. It is hard to imagine that those agencies that restrict

entry and thus permit monopolization will also tightly monitor these monopolies

and direct them toward maximizing social welfare. And indeed, many economists

are inclined to view regulation as industry-dominated and directed primarily to the

industry's benefit. As Stigler (1971) put it: " . . . as a rule, regulation is acquired by

the industry and is designed and operated primarily for its benefit."

1.2.3 Social Loss of Monopoly and Rent Seeking

The deadweight loss of monopoly D in Figure 1.3, however, tends to underestimate

the social loss of monopoly. As Posner (1975) observed:

The existence of an opportunity to obtain monopoly profits will attract re-

sources into efforts to obtain monopolies, and the opportunity costs of those

resources are social costs of monopoly too.

Under idealized conditions, the additional loss of monopoly is exactly equal to

the monopoly profit measured by the area M in Figure 1.3. Therefore, the social

cost of monopoly is the sum of the deadweight loss D and the monopoly profit M.

The additional loss may easily outweigh the traditional deadweight loss. For

example, if consumers are identical and demand is perfectly inelastic, the dead-

weight loss vanishes, but the monopoly profit is as large as consumers' aggregate

willingness to pay. This suggests that the additional cost component deserves close

scrutiny.

The key assumption underlying the proposed inclusion of the monopoly profit

as part of the social loss of monopoly is that obtaining a monopoly is itself a

competitive activity. Even though there is perhaps no competition in the market,

there is almost always competition/^ the market. The contestants spend resources

to such an extent that, at the margin, the cost of obtaining the monopoly is exactly

equal to the expected profit of being a monopolist. For if a monopoly could be

acquired at a bargain, others would try to take it away until no net gain could be

made. As a result, monopoly profits tend to be transformed into costs, and the social

cost of monopoly is made equal to D plus M.

A simple argument illustrates this point. Suppose n identical firms spend re-

sources, each at the level of the expected value z, to obtain a lucrative monopoly

with the monopoly profit itM > 0. Then each firm has a \/n chance to win nM. In

equilibrium n and z are such that the expected value of the profit from participating

the contest is equal to zero:

-nM -z = 0. (1.20)
n
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Therefore, the monopoly profit is exactly equal to the overall cost of competition

for the market,

nM = nz, (1.21)

as asserted.14

Assuming competition for the market is reasonable in many applications. For

example, if monopoly is based on patents, many firms can enter the patent race for

this monopoly.15 Or if monopoly is based on public licensing, many firms can enter

into the political lobbying or perhaps even bribery necessary to obtain a license or

raid an existing one.16

1.2.4 Monopoly and Innovation

Schumpeter (1975) pointed out that in perfectly competitive markets the benefits

of innovation are not cashed in by the innovator, but are immediately competed

away by other firms. Therefore, competitive firms have no incentive to invest in

innovations. In contrast, a monopolist can easily translate cost reductions and quality

improvements into higher profits. This suggests that some degree of monopoly is a

prerequisite for innovation.

Although monopoly induces innovation, it does not give rise to socially optimal

innovations. Consider an innovation that reduces marginal cost by $1. The maxi-

mum social benefit of that innovation is reached if and only if the price is lowered

by $1. However, by doing this, the monopolist would give away the entire gain to

his customers. Therefore, the monopolist's price reduction must be less than $1,

which in turn destroys some of the potential social benefits of innovation.

Patents

The failure of competitive markets to provide incentives to innovate gives some

justification for a system of patents that grants the innovator a transferable monopoly

for a certain period of time. However, Arrow (1962) observed that if one firm is

awarded a patent, the incentives to innovate are not the same as in an ideal world.

In order to see this, consider a competitive industry with product price po equal

to marginal cost Cg. A new technology is discovered that reduces the marginal

cost to C[ < CQ. The innovation is patented, and the owner of the patent becomes

a monopolist for all prices below po. Of course, the new price cannot be above

po because of potential competition from firms equipped with the old technology.

Therefore, if the unconstrained Cournot monopoly price pM is above po, the patent

holder will set the new price just marginally below /?o, leading to a monopoly profit

equal to the shaded area in Figure 1.4, whereas if pM is below /?o, the patent holder

14 Typically, the underlying "rent seeking" game has an equilibrium in mixed strategies, which is why z was inter-
preted as an expected value.

15 Incidentally, Plant (1934) criticized the patent system precisely on the ground that it draws greater resources
into inventions than into activities that yield only competitive returns.

16 The case of bribery poses an intriguing problem. At first glance, one is inclined to argue that bribery is purely
redistributional and therefore cannot qualify as a social loss component. However, if a political office is the
recipient of substantial bribes, it is itself a lucrative monopoly, subject to its own competition for office. As a
result, people will spend resources, for example in education, to be put in office and stay in office. Ultimately,
it is these costs associated with competition for office that represent the social loss of monopoly.
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Figure 1.4. Innovation with Patent if /?f > po.
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Figure 1.5. Innovation with Patent if pM
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will lower the price to pM and the monopoly profit is given by the shaded area in

Figure 1.5. In either case, the incentive to innovate is clearly lower than in an ideal

world, simply because the patent holder is unable to capture the entire increment

in consumer surplus.

One can also see from the examples of Figures 1.4-1.5 that if a firm has a

monopoly already at the beginning, it has less incentive to innovate than if the firm

starts out in a competitive market. This is due to the fact that a competitive firm that

acquires a patent not only captures the benefit of a cost reduction, but also gains

market power by becoming a temporary monopolist.

To cover one of the two cases in greater detail, consider the example of Figure

1.4, which is elaborated in Figure 1.6. There, the following holds: If the initial state

is already a monopoly, the gain from innovation Gm is measured by the area (see

Figure 1.6)

Gm := B + C + D - (A + B) (monopoly),
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P(x)

Figure 1.6. Incentives to Innovate Are Reduced Once a Firm Is a Monopoly.

whereas, starting from competition, the gain is

Gc := D + E (competition).

Of course,

B + C < A + B and hence C < A,

because A + B is the maximum profit at the marginal cost function Cf
0 (see Figure

1.6). Therefore,

Gc - Gm = E - (C - A) > E > 0,

as asserted.

This result suggests that the patent system poses a dilemma: On the one hand, the

patent system sets strong incentives to innovate by granting a temporary monopoly,

but once a monopoly has been established patents become less effective.

Duration of Patents

The duration of patents varies, ranging from 16 to 20 years. In France certain

types of patents are given shorter terms if the inventions have an overall general

usefulness. Incidentally, the U.S. grants patents to the party that is first to invent,

whereas most European countries award to the party that is first to file. Also, in

many countries, including France, Germany, and the U.K., the patent holder must

pay an annual renewal fee to maintain the patent.

Sleeping Patents

Gilbert and Newbery (1982) pointed out that an incumbent monopolist has a

stronger incentive to innovate than potential entrants. This is due to the fact that the

profits from maintaining a monopoly are usually greater than the profits an entrant

could make by sharing the market with the incumbent monopolist.

An extreme case of defending a monopoly through the patent system is the

accumulation of patents not to use them, but to prevent potential competitors from
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obtaining them ("sleeping patents"). One way to avoid such abuses of the patent

system is to force the patentee to let others use the invention (see Carlton and Perloff

(1990, p. 662 ff.)).

Prizes and Innovations

Prizes are well-known incentives in academic research. However, governments can

also employ prizes to spur applied inventions as an alternative to the patent sys-

tem. There are several prominent examples where prizes have been successfully

employed.

For example, in 1713 substantial prizes were offered in England to reward the

discovery of the measurement of longitude at sea. The first substantial prize of

£3,000 was won by Mayer for his method of accurately predicting the position

of the moon, which allowed the computation of a ship's longitude. Later, John

Harrison developed the first chronometer, for which he was able to claim the prize

of £20,000. By 1815, the remarkable sum of £101,000 had been awarded.

As another example, in 1795 Napoleon Bonaparte offered a prize of 12,000

francs for a method of food preservation to be employed by the military. Fifteen

years later Nicolas Appert received the prize for his method of food canning (see

Wright (1983)).

Speculation as an Alternative to Patents

The patent system often fails to provide effective protection of property rights.

Imitation, reverse engineering, and inventing around patents are just some examples

of the erosion of property rights in innovations.

There is, however, another way in which firms can profit from innovations,

without monopoly or patent protection. This is the opportunity to speculate on the

relative price changes that are caused by successful innovations.

As an example, Hirshleifer (1971) cites Eli Whitney's invention of the cotton

gin. Although the cotton gin was patented, Whitney was not very successful in

enforcing the patent. But he could have benefited from his invention in a different

way. Since the cost saving due to the gin increased the value of the land on which

cotton is grown, Whitney could have captured some of the rent generated by his

invention by speculating on the price of cotton-growing land.

There are, of course, some problems with this approach. Wealth constraints and

the risks involved may pose some limitations. But you should not overlook its ad-

vantages. In any case, there are many innovations that are intrinsically excluded

from patent protection. Think of the large area of financial, organizational, eco-

nomic, legal, and political innovations - from the invention of zero coupons or

poison-pill securities to corporate and political governance structures.

Internal Financing of Innovations

It is often claimed that, due to moral hazard, the innovating firm must bear a

substantial share of the development cost. A firm that earns monopoly profits is,

presumably, better able to undertake internal financing than a competitive firm.

Moreover, borrowing requires disclosure of information about the innovation, which
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in turn may leak out to rival firms and destroy the advantage the firm attempted to

gain. This adds yet another reason for internal financing and hence monopoly.

1.2.5 Monopoly and Product Quality

A Cournot monopolist supplies insufficient output relative to the welfare optimum.

Can one extrapolate and claim that a Cournot monopolist supplies also insufficient

quality?

In order to answer this question, suppose quality can be described by a single

index, measured by the real-valued variable q. Let cost and inverse demand be

functions of output x and quality q, denoted by C(JC, q) and P(x,q), and let C be

monotone increasing in x and q, and P decreasing in x and increasing in q. Also,

choose C and P in such a way that the profit

7t(x, q) := P(x, q)x - C(x, q)

and total surplus

T(x,q):= P(x,q)dx - P(x,q)x+n(x,q)= P(x,q)dx - C(x,q)
Jo Jo

are strictly concave.17 Then the choice of output and quality can be described by

first-order conditions.

We compare the welfare-optimal output and quality (xP0, qP0) with the gener-

alized Cournot point (xM,qM). The welfare optimum maximizes total surplus,

whereas the Cournot point maximizes profit. Assuming interior solutions, the

Cournot point solves the first-order conditions

it1 '— P + P'x — C' — 0 (I 21)

n'q := Pqx - C; = 0 (1.23)

whereas the welfare optimum solves

Tq := J* P'q(x, q) d~x-C'q= 0. (1.25)

From (1.25) it is immediately obvious that the monopolist's choice of quality is

locally inefficient if and only if the effect of a quality increment on the marginal

willingness to pay differs across average and marginal customers:

1 fx

- I P'(x,q)dx =̂  P'{x,q) (local inefficiency condition).
x Jo q q

Therefore, strict monotonicity of P'q in x is always sufficient for a locally inefficient

choice of quality, as summarized by the following proposition.

Proposition 1.1 (Local Inefficiency) The Cournot monopolist endows his output

xM with insufficient quality if P" < 0 and with excessive quality if P" > 0.18

17 A sufficient condition is that C is strictly convex and P concave.
18 This result was observed for the first time by Spence (1975). See also the follow-up article by Sheshinski (1976).
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Proof Suppose P" < 0. Evaluated at the Cournot point (JCM, gM),onehas7r' = 0

and therefore, by (1.25),

> x{P'q - P'q) (by P£x < 0)

= 0.

This proves that, at the Cournot point, welfare could be increased if quality were

raised. Therefore, quality is locally too low. The proof of the other case is

similar. •

These results indicate that the Cournot monopolist chooses inefficient quality.

But they do not tell you anything about the global comparison of qM and qP0.

The latter is also influenced by the gap between the two outputs, xM and xP0, in

addition to the gap between the effects of quality on the marginal willingness to

pay of the average and the marginal customer.

Altogether, the global inefficiency gap of quality (qM — qP0) has the same sign

as the local gap summarized in the above proposition if the output gap (xM — xP0)

is relatively small. However, if the output gap (xM — xPO) is substantial, the

monopolist may actually provide more than the socially optimal level of quality

(qM > qP0), even if the monopolist's quality level is locally insufficient because

P'q is strictly monotone decreasing in x.

We close with a simple example in which the local and the global inefficiency

gap have the same sign.

Example 1.4 Suppose P(x,q) := (1 - x)q and C(x,q) = \q2. Then both

profit and total surplus are strictly concave in x and q. Therefore, (xM, qM) and

(xP0, qP0) can be found by solving the above first-order conditions:

1.3 Price-Discriminating or Strong Monopoly

A strong monopoly is not required to charge all customers the same linear price

function, but may price-discriminate and set nonlinear prices or discriminate be-

tween individuals or groups of customers.

Price discrimination is often defined to be present if the same good is sold at

different prices to different customers. In this vein Joan Robinson defined it as "the

act of selling the same article, produced under single control, at different prices to

different buyers" (Robinson (1933)).

However, this definition tends to fail if one interprets the "same good" too loosely.

When delivery costs differ, as for example in the delivery of clay bricks, different
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prices may have nothing to do with price discrimination, whereas equal prices are

discriminatory. On the other hand, the definition tends to become void of meaningful

applications if one views two goods as the "same" only if they share the same

physical characteristics and are available at the same time, place, and state of

nature, as is common in general equilibrium theory.

In view of these difficulties it is preferable to adopt a pragmatic notion of price

discrimination. The emphasis should be on the monopolist's motive to base the

price on customers' willingness to pay rather than simply on cost. The typical

price difference between hardcover and paperback books and between first- and

second-class flights is a case in point. In both instances the price difference cannot

be explained by the difference in cost alone. Instead, it reflects predominantly an

attempt to charge buyers according to their willingness to pay. It is this pattern that

qualifies observed price differences as discriminatory.

1.3.1 First-Degree Price Discrimination

First-degree price discrimination occurs if the monopolist charges different prices

both across units and across individual customers. Ever since Pigou (1920),19 it has

been common to equate first-degree price discrimination with perfect discrimination

where the monopolist generates the maximal gain from trade and captures all of

it. But this identification leaves out the possibility of imperfect first-degree price

discrimination.

A perfectly discriminating monopoly must know the marginal willingness to pay

of each potential customer, prevent customers from engaging in arbitrage transac-

tions, and unambiguously convey to customers that it is pointless to haggle. Within

this general framework the monopolist can succeed with one of two simple pricing

schemes.

One way to go is a customized take-it-or-leave-it-sales plan

S (:={(7},x,),(0,0)}. (1.26)

There, each customer / is offered to either buy the stipulated JC/ units for the total

price 7/, or leave it (0, 0). To capture the maximum gain, the monopolist only needs

to offer the efficient quantities, implicitly defined by the "price = marginal cost"

requirement (where X := ]T • Xj)

Pi(xi) = C'(X) for all /, (1.27)

and set 7} equal to /'s maximum willingness to pay for x/.

Another way is to offer customized two-part tariffs

S<:={(ti,fi), (0,0)} (1.28)

that prescribe a certain unit price t[ plus a lump-sum price ft. In order to capture

19 Pigou (1920) introduced the standard distinction between first-, second-, and third-degree price discrimination.
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the maximum gain, t[ needs to be set equal to the marginal cost Cf(J2j •*/)>

fi at the level where the total price equals /'s maximum willingness to pay. Then

allow each customer to buy as many units as he likes, unless he chooses the no-buy

option (0,0).

The two methods of sale are equivalent as long as complete information and

exclusion of arbitrage prevail.

An immediate implication of optimal first-degree price discrimination is that it

maximizes social surplus. Hence, one arrives at the somewhat paradoxical con-

clusion that the strong monopolist gives rise to efficiency of output, whereas the

monopolist that exercises restraint and adopts a uniform linear price function con-

tributes to a welfare loss.

However, keep in mind that higher monopoly profits give rise to more waste-

ful expenditures in the course of the competition for the market. In Section 1.2.3

we showed that monopoly profit is a good statistic of this underlying waste. This

suggests that first-degree price discrimination is the least efficient among all con-

ceivable market forms. True, once a monopoly position has been acquired, perfect

price discrimination maximizes the social surplus. But the entire social gain is com-

pletely eaten up by wasteful expenditures in the course of the preceding competition

for the market.

1.3.2 Second-Degree Price Discrimination

Second-degree price discrimination occurs if unit prices vary with the number of

units bought, but all customers are subject to the same nonlinear price function. It

is by far the most frequently observed form of price discrimination.

For example, many products are sold in different-sized packages at a quan-

tity discount, airlines offer frequent-flyer bonuses, and public utilities and amuse-

ment parks alike charge two-part tariffs. The opposite of a quantity discount - a

quantity premium - also occurs. For example, supermarkets often impose a three-

per-customer rule on discount priced items, where customers are charged the regular

price except for the first three units.

The main reason for the popularity of second-degree price discrimination is the

lack of precise information about individual customers' willingness to pay. Since

it is so important, we cover it in detail in Section 1.4 and again, at a more advanced

level, in Section 9.5.1. The particularly nice feature of models based on incomplete

information is that they give an endogenous explanation of second-degree price

discrimination.

1.3.3 Third-Degree Price Discrimination

Third-degree price discrimination occurs if different submarkets are charged differ-

ent linear price functions. Each customer pays a constant unit price, but unit prices

differ across submarkets.
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Table 1.2. Relative markups of selected cars, year 1990
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Model

Nissan Micra
Fiat Tipo
Toyota Corolla
VW Golf
Mercedes 190
BMW 7 series

Belgium

8.1
8.4
9.7
9.3

14.3
15.7

Markup (%)

France

23.1
9.2

19.6
10.3
14.4
15.7

Germany

8.9
9.0

13.0
12.2
17.2
14.7

Italy

36.1
20.8
24.2
11.0
15.6
19.0

U.K.

12.5
9.1

13.6
10.0
12.3
21.5

Source: Verboven (1996).

Common examples of third-degree price discrimination are senior-citizen and

student discounts, lower prices at certain shopping hours (such as the "happy hour"

in bars and restaurants), the infamous coupons in U.S. supermarkets, and intertem-

poral price discrimination.

Another example is price discrimination across national markets, as in the

European car market. Table 1.2 compares the markup on costs for a sample of

cars across some European countries. The spread of markups is remarkably high.

The table also suggests that loyalty is a true "luxury"; the Italians are fond of their

Fiats and the Germans of their VW Golf (in the U.S. known as Rabbit) - and they

pay extra for this national brand loyalty.

Of course, the optimal third-degree price discrimination is a straightforward

extension of the standard Cournot monopoly solution. It simply extends the Cournot

markup rule to each and every submarket /:

(1.29)

(st : price elasticity of demand in submarket i).

Of course, a full account of price discrimination cannot be given in terms of price

alone. Pricing is interconnected with product design, quality, and product bundling.

Often product design is a prerequisite of price discrimination. As a particularly

extreme example, Scherer (1980) reports that a manufacturer considered adding

arsenic to his industrial plastic molding powder methyl methacrylate in order to

prevent its use in denture manufacture.20

Third-degree price discrimination comes up again in our discussion of the time

inconsistency of optimal intertemporal price discrimination, also known as the

durable-goods monopoly problem, and later in the book when we deal with optimal

auctions.

20 This method of separating markets is also common in taxation. For example, diesel fuel can be used to heat
your home or to run a diesel-engine-powered automobile. In Europe both uses are widespread. Governments
wanted to tax engine fuel at a higher rate than heating fuel. This was made feasible by adding a substance to
heating fuel that generates an obnoxious fume if burnt in an engine.
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1.3.4 Limits of Price Discrimination

The possibilities of price discrimination are limited for at least three reasons:

1. arbitrage,

2. hidden information,
3. limited commitment power.

If different prices are charged across units or across customers, arbitrage trans-

actions tend to be profitable. For example, if all customers are charged the same

two-part tariff, customers can gain if they buy through an intermediary. This saves

participating customers all except one lump-sum fee.

As a rule, the possibility of arbitrage erodes price discrimination. But, due to

transaction costs, it does not usually rule it out altogether. The European car market

is a case in point. In German newspapers one sees ads for low-priced "reimports"

of new German cars. Car manufacturers run their own campaigns to warn potential

buyers of reimports against alleged fraud. The combination of fear and bother seems

to scare away most customers.

Moreover, there are many products where arbitrage is intrinsically difficult to

achieve. Did you never wish you could send someone else to the dentist to have

your teeth drilled? There are many examples of products and services where a

transfer of ownership is seriously inhibited. Therefore, price discrimination has

many applications, and indeed it flourishes in real-world markets.

The second limitation, hidden information, has to do with the fact that the mo-

nopolist typically does not know the marginal willingness to pay of each and every

customer. The statistical distribution of customers' characteristics may be fairly

well known. But when customers walk in, it is difficult to identify their type.

The third limitation has to do with limited commitment power and the credibil-

ity of threats. If a monopolist makes a take-it-or-leave-it offer, the leave-it threat

may pose a problem. Suppose a customer has refused the initial offer and starts

haggling. Then the monopolist is tempted to enter negotiations in order to avoid

the loss of a profitable customer. When both sides of a transaction gain, both tend

to have some bargaining power. The seller can capture the entire gain from trade

only if he can make a reliable commitment to always break off negotiations after

an offer has been refused. But such commitment is difficult to achieve. In some

cases delegation is effective (just try to negotiate the price of a bar of soap in a

department store), but if the gains are substantial, one can always ask to see the

manager.

1.4 Hidden Information and Price Discrimination

Second-degree price discrimination is the most widely observed kind of price dis-

crimination. We now take a closer look at it and elaborate on a model that explains

why this kind of discrimination emerges, and how it should be done.21

21 Here we present a two-type version of the continuous-type model by Maskin and Riley (1984a).
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Consider a profit-maximizing monopolist who faces two types of customers with

known payoff functions in equal proportions.22 Arbitrage transactions between

customers are not feasible. Therefore, the monopolist may price-discriminate.

However, the pricing problem is complicated by the fact that customers' type is

their private or hidden information. The monopolist knows all payoff functions; but

he cannot tell customers apart (he does not know who is type 1 and who is type 2).

Therefore, price discrimination requires a somewhat sophisticated sorting device.

The market game is structured as follows:

1. The monopolist sets a uniform nonlinear price function in the form of a menu of price-

quantity combinations, (T, x), called the sales plan, from which each customer is free

to select one:

S:={(TuXl), (r2 ,*2),(0,0)}. (1.30)

The (0, 0) combination is included because market transactions are voluntary; customers

are free to abstain from buying. Of course, x\,X2 > 0.

2. Customers observe the sales plan and pick that price-quantity combination that maxi-

mizes their payoff. Payments are made, and the market game ends.

Without loss of generality, the component (T\, x\) is designated for customer 1,

and (T2, X2) for customer 2 (incentive compatibility).

Of course, the monopolist could also live with a sales plan where, for example,

customer 2 picks (jti, 7\) and 1 picks (*2, T2), as long as he makes no error in pre-

dicting customers' rational choice. But then incentive compatibility can be restored

simply by relabeling the components of the sales plan. Moreover, one can show that

any other format of sales plans is equivalent to a sales plan of the kind considered

here. Therefore, the restriction to incentive-compatible sales plans is without loss

of generality. This is the essence of the well-known revelation principle.2*

Assumptions Five assumptions are made:

Al (Cost function). Unit costs are constant and normalized to 0.

A2 (Payofffunctions). The monopolist maximizes profit24

and customers maximize consumer surplus:

£//(JC, T) := / Pt(y)dy - T for i = 1,2, (1.32)
Jo

where Pt(x) denotes /'s marginal willingness to pay for x.

A3 (Declining marginal willingness to pay). Pi(x) is continuously differentiable with

P{(x) < 0; also Pt(0) > 0, and Pt(x) = 0, for some JC, / e {1, 2}.

A4 (Single crossing). For all x

P2(x) > P{(x). (1.33)

22 Equal proportions are invoked only in order to avoid a glut of notation and obvious case distinctions.
23 A detailed exposition and proof of this principle is given in Section 8.5.2.
24 Alternative interpretation: there is only one customer; this customer is either type 1 or type 2 with equal chance;

the monopolist maximizes expected profit.
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T*

T2

T*

Figure 1.7. Customers' Indifference Curves.

A5 (Concavity). For all x

2P[(x) < (1.34)

A4 is called the single-crossing assumption for the following reason: Pick an

arbitrary point in (x, T) space, say JCJ\ T*, and draw the two types' indifference

curves that pass through this point. Since the slope of the indifference curves is

equal to Pi(x), A4 assures that these curves cross only once at this given point, as

illustrated in Figure 1.7.

And A5 is called "concavity" because it assures the strict concavity of the ob-

jective function, as we show later on.

Optimal Sales Plan

The optimal sales plan maximizes n subject to the participation constraints

)) = 0, (1.35)

)) = 0 (1.36)

and the incentive constraints

U2(x2,T2)>U2(xuT1).

(1.37)

(1.38)

Conditions (1.35) and (1.37) assure that the component of the sales plan desig-

nated for customer 1, (x\, T\), is dominated neither by the (0, 0) nor by the (x2, T2)

option. Similarly, conditions (1.36) and (1.38) assure that (x2, T2) is dominated

neither by (0, 0) nor by (JCI, T\).
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Some Preliminaries

Luckily, the program can be simplified by eliminating two constraints. Indeed,

among the participation constraints only the lower type's participation constraint

(1.35) binds, and among the incentive constraints only the upper type's incentive

constraint (1.38) binds. (A constraint does not bind if eliminating it from the opti-

mization program does not affect the solution.) Therefore it is claimed that one can

eliminate constraints (1.36) and (1.37) without loss of generality.

What makes us come to this conclusion? At this point, just take it as a working

hypothesis. Of course, it is only justified if it turns out that the solution of the thus

restricted optimization program also satisfies the eliminated constraints - which

will be confirmed later on.

1.4.1 Solution of the Restricted Program

The restricted program - restricted by eliminating constraints (1.36) and (1.37) -

can be further simplified due to the following results.

Lemma 1.1 The optimal sales plan exhibits

Ti= r Pi(y)dy, (1.39)
Jo

P2(y)dy. (1.40)i:
Proof We have noted (but not yet proved) that the upper type's incentive constraint

and the lower type's participation constraints are binding. If a constraint binds, then

it is satisfied with equality at the optimal sales plan. Therefore, (1.35) entails (1.39).

Using this result concerning T\ if (1.38) and (1.35) bind, one has

, T2) -U2(xuTx)

= r Pl(y)dy + r P2(y)dy - T2, (1.41)
J0 Jxi

which entails (1.40), as asserted. •

These price functions have a nice interpretation:

1. The low type is charged his maximum willingness to pay for x\.

2. The high type pays the same for the first x\ units plus his own maximum willingness to

pay for the additional x2 — x\ units. Therefore, the high type makes a net gain if x\ > 0,

simply because he obtains the first x\ units at a bargain price.

In view of Lemma 1.1 we can now eliminate the T-variables in the monopolist's

objective function and state the restricted program in the form of the unconstrained

optimization problem (except for nonnegativity)

(l r Pi(y) dy + T P2(y) dy) . (1.42)
V Jo Jxx J

max i(y) y
0 V Jo Jxx
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The Kuhn-Tucker conditions of the restricted program are

0(*i):=2Pi(*i)-P2(*i)<O and 0(*i)*i=O, (1.43)

P2(x2) < 0 and P2(x2)x2 = 0. (1.44)

The T's are obtained by inserting the optimal x's into (1.39), (1.40).

As you can confirm easily, A5 assures the strict concavity of the objective func-

tion. It also entails that 0(JCI) is strict monotone decreasing with 0(x) < 0 for

some x. This assures that (1.43) has a unique solution; however, since 0(JC) may be

negative everywhere, one may get the corner solution x\ = 0. Also, P2 is declin-

ing, with P2(0) > 0. Therefore, (1.44) has the unique solution x2 > 0, implicitly

defined by P2(x2) = 0.

1.4.2 The Optimal Sales Plan

Proposition 1.2 The optimal sales plan exhibits

P2(x2) = 0, x2 > 0 (no distortion at top), (i)

x2 > x\, T2 > T\ (monotonicity), (ii)

^i(*i) > 0 (distortion at bottom), (iii)

U\ (x\, T\) = 0 (no surplus at bottom), (iv)

U2(x2, T2) > 0 with > <£=>• JCI > 0 (surplus at top unless x\ = 0). (v)

The optimal prices are computed in (1.39) and (1.40).

Proof First we characterize the solution of the restricted program (1.42) and then

show that it also solves the unrestricted program.

We have already shown that the Kuhn-Tucker conditions have a unique solution

that exhibits x2 > 0 and x\ > 0.

(i): Follows immediately from the fact that P2(x2) = 0, x2 > 0 and the fact that

marginal cost is constant and has been normalized to zero.

(ii): By Lemma 1.1 the T's have the asserted monotonicity property if and only if

it holds for the x's. We first prove weak monotonicity: Suppose x\ > x2, contrary

to what is asserted. Since x2 > 0, one has also x\ > 0. Therefore, (1.43) is satisfied

with equality, and one has, using the single-crossing assumption A4,

0 = 2Pl(x1)-P2(xl)

< 2P2(xi) - P2(xi)

But this contradicts (i). Therefore, x2 > x\. Finally, note that if it were possible to

have x = x\ = x2 > 0, one would need to have P2(x) = P\(x) = 0 for some x,

which contradicts A4. Therefore, the monotonicity is strict.
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(iii): If JCI =0 , one has PI(JCI) > 0, by A3. And if JCI > 0, condition (1.43) com-

bined with monotonicity (ii) entails, due to x2 > x\,

In either case the low customer gets less than the efficient quantity, P\(x\) > 0

(distortion at bottom).

(iv): Ui(xu T\) = 0 is obvious from (1.39). And U2(x2, T2)>0, with strict

inequality if x\ > 0, follows immediately from (1.40) and monotonicity.

(v): Finally, we need to confirm that the restricted program also satisfies the two

omitted constraints (1.36) and (1.37). The omitted participation constraint (1.36)

is obviously satisfied by (v). And the omitted incentive constraint (1.37) holds for

the following reasoning (the last step uses the monotonicity property x2 > x\ and

the single-crossing assumption A4):

Ui(x2, T2) -Ui(x1,Tl)= I Pi(y)dy - (T2 - Ti)

= P(Pi(y)-P2(y))dy

This completes the proof. •

1.4.3 Why it Pays to "Distort" Efficiency

Why is it optimal to deviate from efficiency in dealing with the low type but not

the high type? The intuition is simple. The high type has to be kept indifferent

between (x2, T2) and (JCI , T\). This is achieved by charging the high type the price

T\ for the first x\ units and a price equal to his maximum willingness to pay for

x2 — x\ units. From this observation it follows immediately that profit is maxi-

mized by expanding x2 to a level where the marginal willingness to pay equals

the marginal cost, P2(x2) = 0 (see Figure 1.7). In turn, starting from P\(x\) = 0

(see point (JCJ\ T*) in that figure), a small reduction in x\ is costless in terms

of forgone profits from the low type (the marginal profit is zero at this starting

point). But, as a side effect, it extends the domain where the high type is charged

a price equal to his maximum willingness to pay. Altogether, it thus pays to intro-

duce a downward distortion at the bottom, illustrated by the two-star variables in

Figure 1.7.

Both Figures 1.7 and 1.8 provide illustrations of these considerations. Note that

in Figure 1.8 the shaded area is the high type's consumer surplus, which can also

be viewed as forgone profit from type 2 (the explanation was already provided in

Lemma 1.1). That surplus is always lowered if one deviates from the efficient level

of x\.
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4>{x)

I 1 X2 = 2

Figure 1.8. Optimal Sorting with Two Customers if Pt(x) := 1 — x/i.

1.4.4 Sorting, Bunching, and Exclusion

Finally, note that it is not always optimal to serve both customers and, if we slightly

change the assumptions, it may not even be optimal to discriminate.

Altogether, the optimal price discrimination falls into one of three categories:

1. Sorting, with 0 < x\ < X2,T\ < T2.

2. Bunching, or no discrimination, with x\ = x2 > 0, T\ = T2.

3. Exclusion, or extreme discrimination, where only the high type is served at a price equal

to its maximum willingness to pay, with 0 = x\ < X2, T2 > T\ = 0.

Note carefully that Proposition 1.2 excludes only case 2.

Example 1.5 Here we illustrate these three cases.

1. Suppose Pt(x) := 1 — x/i, i = 1,2. Then the optimal price discrimination exhibits

sorting with x\ = | , T\ = | , X2 = 2, T2 = | , and, incidentally, exhibits a declining unit

price (quantity discount) T2/X2 = | < f = § = T\/x\.

2. Suppose Piix) := 0/(1 - JC), i = 1, 2, and 1 = 0\ < 02 < 2. Then it is optimal to

abstain from discrimination (bunching). Specifically, x\ = X2 = 1, T\ = T2 = \.

3. Suppose Pt(x) := i — JC, / = 1,2. Then it is optimal to serve only the high type

(exclusivity) and take away the entire surplus x\ = T\ = 0, x2 = 2, T2 = 2.

However, bunching is a pure borderline case and cannot occur generically. Why?

A necessary condition for bunching is that there exists a quantity £ > 0 for which

P2(§) = P\ (§) = 0 (which is, incidentally, ruled out by A4). This property cannot

survive parameter perturbations; hence, it is irrelevant.

Example 1.6 Modify Example 1.5(2) by setting 62 > 2. Then

is evidently not decreasing; hence, the monopolist's payoff is not concave. In that

case, the Kuhn-Tucker conditions have two solutions: 1) JCI = x2 = 1 and 2) x\ =

0, x2 = 1 (see Figure 1.9). Comparing payoffs shows that the unique maximizer

is the corner solution x\ = 0, x2 = 1 (exclusion).
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- 1

Figure 1.9. Nonconcavity: Pt(x) := Oi(l - x), Oi = \,02 = 3.

Digression: Two-Part Tariffs

A somewhat less effective price-discrimination scheme is to offer a menu of two-

part tariffs. A two-part tariff is an affine price function

Tt(x) := ttx + ft (1.45)

with the constant unit-price component t\ and the lump-sum component ft. This

pricing scheme is observed in many regulated industries, for example in public

utilities and in the taxi business.

The two-part tariff discriminating monopolist offers a sales plan,

S' := {fa, / i ) , (t2, fi), (0, 0)}, (1.46)

asks each customer to pick one component, and then lets each customer buy as

many units as he wishes, unless he chose the no-buy option (0, 0).

Using the revelation principle, one can again restrict attention to prices that

satisfy the corresponding participation and incentive constraints, and then compute

the optimal two-part tariffs. Again, only the low type's participation and the high

type's incentive constraint bind. Therefore, the solution procedure is quite similar.

Two-part tariffs are evidently less effective. The profit earned with a menu of

two-part tariffs can always be replicated by appropriately chosen price-quantity

combinations, but not vice versa. You may wish to confirm this by computing the

optimal two-part tariffs for the P((x) functions assumed in the complete sorting

case of Example 1.5 and show that two-part tariffs are less profitable.

Generalization*

The above generalizes in a straightforward manner to n > 2 types with the single-

crossing marginal willingness-to-pay functions

P\(y) < Pi(y) < • — < Pn(y), Vy. (1-47)

In particular, if complete sorting is optimal, one can show that the optimal price
discrimination exhibits
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1. zero consumer surplus for the lowest type only;
2. no distortion at the top only;
3. only local downward incentive constraints bind (customer i > 2 is indifferent between

(Tj, xt) and (7}_i, Jt/_i); all other price-quantity combinations in the optimal sales plan
are inferior).

Moreover, the optimal sales plan is then completely characterized by the follow-

ing rules:

(n + l - i)Pt(xi) = (n- i)Pi+i(Xi), i e { 1 , . . . , n - 1}, (1.48)

Pn(xn) = 0, (1.49)

? i= I* Pi(y)dy, (1.50)
Jo

Tt = U-i + T Pi(y)dy, i e {2,..., n}. (1.51)

The proof of these assertions is a fairly straightforward extension of the above

analysis of the two-types case.

Follow-up Reading

If you want to know more about second-degree price discrimination under incom-

plete information, take a look at our follow-up analysis in Chapter 9, Section 9.6,

where a continuum of types is assumed and more advanced techniques are em-

ployed.

1.5 Price Discrimination and Public Goods*

Monopolies tend to price-discriminate, but not all price discrimination is due to

monopoly. Public goods are a case in point. There, price discrimination is a prereq-

uisite for an efficient allocation, even if the supplier does not exercise monopoly

power.

Many public goods happen to be supplied by monopolies. Therefore, an intro-

duction to monopoly should include a few remarks on the relationship between

price discrimination and public goods.
Usually we consider private goods, which are defined by two properties:

1. rivalry in consumption: a good consumed by one agent is no longer available to others;
2. excludability.

However, some goods are nonrival in the sense that one person's consumption

does not reduce the amount available to others. And some goods are nonexcludable

because it is impossible or too costly to exclude customers. Goods that are both

nonrival and nonexcludable are often called common goods. However, it is useful

to distinguish more narrowly between public goods and club goods, as in the

classification in Table 1.3.

A good example of a nonrival good is the reception of a radio or TV broadcast.

In the absence of exclusion devices one has a public good. But if the broadcast is
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Table 1.3. Private, public and club goods

Rivalry

35

Excludability

Yes No

Private good Club good

No name Public good

Vi = 0.5

0 *• x

pi = -0 .5

Figure 1.10. Lindahl Prices for Pt(x) := i — x, i = 1, 2 and c = 0.

coded and only those who have a decoder can listen to or watch the broadcast, one

has a club good.

Lindahl Prices: Price Discrimination without Monopoly

Suppose there are two types of customers, as in Section 1.4, except that the good
is public rather than private, and suppose marginal cost is constant at the rate
0 < c < min{Pi(0), /^(O)}. What allocation is welfare-optimal? And can it be
implemented by a set of linear prices? These questions are standard exercises in
(undergraduate) microeconomics. The answers are:

1. Choose that output x* at which the sum of customers' marginal willingnesses to pay is
equal to marginal cost:25

2. Charge each customer a unit price pt equal to this customer's marginal willingness to

pay {Lindahlprices)-?6

An illustration is provided in Figure 1.10.

25 The efficiency conditions for public goods were introduced by Samuelson (1954).
26 Lindahl prices were introduced by Lindahl (1919).
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First-Degree Price Discrimination

Suppose the public good is provided by a monopoly. If the monopolist has com-

plete information concerning customers' marginal willingness to pay and if arbi-

trage transaction among customers are excluded, first-degree price discrimination

is feasible. As you can easily confirm, the profit-maximizing monopolist imple-

ments the welfare optimum by setting two-part tariffs with a unit price equal to the

Lindahl price and a lump-sum fee equal to customer's maximum consumer surplus.

Therefore, Lindahl prices are also part of first-degree price discrimination.

Second-Degree Price Discrimination

If the monopolist operates under incomplete information, as in the Section 1.4 on

hidden information and price discrimination, he cannot price discriminate, because

he cannot induce sorting by supplying different price-quantity packages. Therefore,

the monopolist either supplies both customers or exclusively customer 2, whichever

is more profitable, and earns the maximum profit:

n := max < max 2 I P\ (y) dy — ex, max / P2OO dy — cx\.
I x Jo x Jo )

However, if the good is a club good because exclusion is feasible, second-degree

price discrimination comes back. And the optimal price discrimination scheme is

characterized by the sales plan S := {(7\, x\), (T2, x2)} that solves

max(2 / l Pi(y)dy+ [ * P2(y)dy - cmaxfo, x2]] ,
*1'*2 V JO Jxi J

Jo
Pi(y)dy,

P2(y)dy.
Jxi

1.6 Intertemporal Price Discrimination

Third-degree price discrimination is frequently observed in markets for consumer

durables in the form of intertemporal price discrimination. For example, when

new computer hardware, digital video-telephone receivers, or even new books are

introduced, the seller typically starts out with a high unit price in order to skim the

impatient high-demand customers, and then gradually lowers the price.

The rules of optimal third-degree price discrimination are a straightforward ex-

tension of the Cournot monopoly rule, which was already summarized in Section

1.3.3. However, the application to intertemporal price discrimination for durable

goods poses an intriguing new problem: that of the time inconsistency of optimal

plans. In the face of this problem the standard formula for optimal third-degree

price discrimination needs to be modified along the following lines.

Time Inconsistency of Optimal Plans An optimal plan that calls for a sequence of

actions is called time-inconsistent if, in the course of time, one can gain by deviating
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from it. Essentially such gains may occur if others rely in an important way on the

execution of that plan and the decision maker takes advantage of breaching that

"trust."

If an optimal sequence of actions is time-inconsistent, inflexibility and the power

to make a commitment to stick to these actions become valuable. However, such

commitment is difficult to achieve.

The problem of the time inconsistency of optimal plans and the search for com-

mitment mechanisms is a matter of concern in many decision problems (think of

smoking and the notorious difficulties of quitting). It already engaged the attention

of Greek mythology. In his famous story of Odysseus and the sirens, Homer tells of

two sirens - creatures half bird and half woman - on the rocks of Scylla who lured

sailors to destruction by the sweetness of their song. The Greek hero Odysseus

escaped the danger of their song by stopping the ears of his crew with wax so that

they were deaf to the sirens. Yet he wanted to hear the music himself, and had

himself tied to the mast so that he could not steer the ship out of course.

1.6.1 Durable-Goods Monopoly

We now consider the simplest possible durable-goods monopoly problem with a

time horizon of only two periods. Although the exposition is kept at an elementary

level, the issues raised show up in general settings and have a bearing on many

other topics in economics, from oligopoly to monetary policy.

Suppose a monopolist produces a durable good that can be used for two periods.

The average cost is constant in output and time and thus normalized to zero. There

is no wear and tear. The durable good can be sold but not rented; leasing is not

feasible. The monopolist is free to deviate from an earlier plan and cannot commit

to a sequence of outputs or prices.

The demand side of the market is characterized by the time-invariant inverse user

demand (or marginal willingness to pay for use) per period f € {1, 2 , . . . } , defined

on the consumption flow of the durable good in period t, Xt e [0, 1]:

_\\-Xt for* = 1,2,
P(Xt)-\0 fort>2. ( L 5 2 )

Note: P(§) is a marginal willingness for consumption or use, not ownership, and

customers are interested in this good only during the first two periods.

Denote the monopolist's outputs by x\, x2 and normalize the rate of consumption

per unit of the durable good to be equal to one. Then, since there is no wear and

tear, the consumption flow available in each period bears the following relationship

to past outputs:

Xx :=xi, X2:=xx+x2. (1.53)

Customers can only buy, not rent. Buying in period 1 provides a consumption

flow in two periods, whereas buying in period 2 provides valuable consumption only
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in period 2. From these facts one can compute the inverse demand for ownership,

as follows.

Inverse Ownership Demand

In period 2, the marginal willingness to pay or inverse ownership demand, P2,

coincides with the marginal willingness to pay for use, since the durable good is

useless thereafter. Using the stock flow conversion assumption (1.53), this entails

P2 = P(X2) = P ( x x + X 2 ) = l - x l - x 2 . (1.54)

In period 1, the marginal willingness to pay for ownership, Pi, takes into account

that the acquired good provides services during two periods. Using the discount

factor 8 e (0, 1] and assumption (1.53), one obtains the inverse ownership demand

in period 1:

Pl:=P(Xl)

= P(xl) + 8P{xl+x2)

= (l-Xl) + 8a-xi-x2). (1.55)

Evidently, in order to make the right demand decision in period 1, customers have

to correctly predict the monopolist's output in period 2.

Interpretation

Many students who have difficulties with this computation of the inverse ownership

demand Pi find the following interpretation useful.

Imagine those who buy the durable good in period 1 sell it at the end of the period

and then possibly buy again the quantity they want to consume, at zero transaction

costs. Since new and old durable goods are perfect substitutes, the unit price at

which the used good is sold at the end of period 1 is equal to P(x\ + x2). There-

fore, the inverse demand for ownership in period 1 must be equal to the marginal

willingness to pay for use in period 1 plus the present value of the price earned

from selling it at the end of that period, which gives Pi = P (x\) + 8 P (x\ + x2), as

asserted.

Payoff Functions

After these preliminaries it follows immediately that the monopolist's present values

of profits in periods 1 and 2 are

TT2 : =

= (1 -x\ -x2)x2, (1.56)

TTI := P\(xi9x2)xi +8n2

= (1 - x\ + (5(1 - x\ - x2)) x\

+ 8(l-xl-x2)x2. (1.57)
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1.6.2 Time-Inconsistency Problem

The optimal output plan maximizes the present value of profits:

max 7t\(x\,x2). (1.58)
*l,*2>0

Proposition 1.3 (Optimal Price Discrimination) The optimal output plan, prices,

and present value of profits are

xx = 0.5, x2 = 0, (1.59)

pi= 0.5 + 8p2, p2 = 0.5, (1.60)

TTi =0 .25(1+5) . (1.61)

Proof The objective function is strictly concave. Therefore, the solution is uniquely

characterized by the Kuhn-Tucker conditions

((l-2xl)(l+8)-82x2) <0 and (• •-)*i = 0, (1.62)

(1 - 2JCI - 2x2) < 0 and (• • -)x2 = 0. (1.63)

The output plan (1.59) satisfies these two conditions. The associated prices and

maximum present value of profits follow easily. •

Alternative Solution Procedure Of course, the optimal price discrimination fol-

lows already from the standard formula for optimal third-degree price discrimina-

tion. Note that if marginal cost is equal to zero, that formula requires user prices

(the unit cost of consumption) to be set at the level where the corresponding price

elasticities of demand are equal to —1, or equivalently (see (1.29)),

! £ £ -.. <e,1.2,.
Si oXi P

Since P(X[) = 1 — X,-, it follows immediately that

Hence, X\ = X2 = \, and x\ = X\ = | , x2 — X2—x\— 0, user prices = ^, and

prices for ownership p{ = (I + <5)/2, p2 = \, as asserted in Proposition 1.3.

Proposition 1.4 (Time Inconsistency) The optimal third-degree price discrimi-

nation summarized in Proposition 1.3 is time-inconsistent. In the absence of com-

mitment the monopolist deviates from that plan.

Proof Suppose the monopolist starts out with x\ = \ and customers believe that

the monopolist will continue with the optimal output plan. Then, the market clearing

price in period 1 is equal topi = ^ (1+5) . However, when period 2 has arrived,

the monopolist faces the inverse residual demand function P2 — 1 — | — x2. The

maximizer of the associated profit function T^te) — \xi ~ X2 ^s X2 = \ > 0.
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Since the monopolist is free to deviate from any plan, he will serve the market again

at the rate X2 = \ - violating the optimal plan. •

At first glance you may wonder: How can the monopolist raise his profits by

deviating from the optimal plan? Of course, this works only if customers believe

incorrectly that the monopolist will stick to the optimal plan and will not erode the

price of the durable good in period 2. In reality, rational customers anticipate that

the optimal plan is not time-consistent, adjust their marginal willingness to pay for

ownership accordingly, and shift purchases to later periods when prices are lower

- to the monopolist's dismay.

1.6.3 Optimal Time-Consistent Price Discrimination

If customers anticipate correctly at what rate the monopolist will serve the market

in period 2, once they have observed the output rate in period 1, the monopolist is

restricted to time-consistent output plans.27 Therefore, the monopolist's decision

problem is to find the optimal-time-consistent third-degree price discrimination.

Can one find a time-consistent plan? A simple way to achieve time consistency is

to serve the market only during the last relevant period: (x\ = 0, X2 = \). However,

such end loading is surely not the optimal time-consistent plan, since it completely

destroys the benefits of durability.

In order to find the optimal time-consistent plan, one has to solve a dynamic

programming problem. The solution procedure is that of backward induction. In

a first step, one has to find the reaction function xfai) that maps the first-period

output into the optimal second-period output. That reaction function is employed

by customers in their prediction of X2 and in computing the optimal first-period

output, given customers' predictions.

Suppose the monopolist has supplied x\ in period 1 and customers have observed

this. Then, in period 2 the monopolist will supply that quantity that solves

*2). (1.64)

The solution is described by the reaction function

:= max \ ———, 0 \ . (1.65)

Customers anticipate the monopolist's reaction and, after observing x\, adjust

their marginal willingness to pay for ownership in period 1 to

Pi(*i,*|(*i)). (1.66)

In turn, the monopolist anticipates that customers make these predictions. There-

fore, the monopolist sets that output rate x\ that maximizes the reduced form profit

function:

7Tf(*i):=7Ti(*i,*2(*i)). (1.67)

27 The "revelation principle" assures that the restriction to time-consistent plans involves no loss of generality.
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Proposition 1.5 (Optimal Time-Consistent Price Discrimination) The optimal

time consistent output plan, associated third-degree price discrimination, and max-

imum present value of profits are

" = ^ " = \ + 4 T J - (1'68)

2 + * „_ *±* (1.69)
2(4 + 8)9 y 2(4 + 8)'

(2 + 8)
( L 7 0 )

4(4 + 8)

Altogether, both prices and the present value of profits are lower than in the optimal

plan.

Proof Inserting (1.65) into (1.57) gives the reduced-form profit function (for

x\ < 1):

7T*(jti) is strictly concave, and the first derivative of 7T*(JCI) vanishes at x\ =

2/(4 + 8). The asserted X2 is the monopolist's best response to this x\9 by (1.65).

And the associated prices and maximum present value of profits follow immediately.

•

Example 1.7 As an exercise, suppose the durable good is subject to physical decay

at the rate p e (0, 1) (after one period, for each unit only p units are left), and set

the discount factor equal to 1. Then one has

n\ = (1 - x\)x\ + (1 - px\ - x2)px\ + (1 - px\ - x2)x2. (1.71)

Therefore, the following output plan is optimal:

(1.72)

and the optimal time consistent output plan is

xi = -r^--, x2 = l :~\ (1.73)
4 + p 2

Leasing as Commitment Mechanism?

As Bulow (1982) observed, short-term leasing may serve as a commitment mech-

anism that supports optimal price discrimination. This follows immediately by the

fact that the solution of (recall that the X's denote the consumption flow and the

JC'S acquisition of ownership)

max P(Xi)Xi + 8P(X2)X2

is X\ = X2 = i , and that this plan is also time-consistent because

1
= 2"
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However, notice that observed leasing arrangements are typically long-term and

thus cannot solve the durable-goods monopoly problem. Leasing can only set the

right incentives to maintain the optimal price of the durable good if leasing rates

are flexible and are always adjusted to the current market rate. Observed leas-

ing arrangements are apparently geared to save taxes, not to solve a commitment

problem.

Comparative Statics

1. Switching to an inefficient technology with higher marginal costs and lower fixed costs

can be profitable.

2. The monopolist has an incentive to reduce durability {obsolescence planning).

3. If there is a constant inflow of a new generation of customers, the equilibrium price

sequence can be cyclical (see Conlisk, Gerstner, and Sobel (1984)).

4. Incomplete information concerning the seller's marginal cost tends to benefit the mo-

nopolist.

1.6.4 Coase Conjecture

The durable-goods monopoly problem was discovered by Coase (1972) in one of

his seminal contributions to economics. Coase did not only discover the inconsist-

ency of the optimal plan. He also conjectured that the monopolist tends to lose

all monopoly power if he can adjust prices faster and faster. The latter assertion

has become known as the Coase conjecture. It was later proved by Stokey (1979,

1981) for particular demand functions, and generalized by Gul, Sonnenschein, and

Wilson (1986) and by Kahn (1986).

The Coase conjecture is to some extent intuitively appealing. If the time span

between trading periods within a given time period is reduced, the durable-goods

monopolist works himself down the demand function at a faster pace. Since con-

sumers anticipate that prices will fall, fewer and fewer transactions take place at

high prices, and more and more transactions are concentrated around the compet-

itive price. In the limit, all transactions take place in the twinkling of an eye, and

the equilibrium present value of profits converges to zero.

1.6.5 An Example Where the Coase Conjecture Fails*

In the literature there are several counterexamples to the main durable-goods

monopoly results. Of course, these counterexamples are based on slightly different

models of the durable-goods monopoly problem.

For example, Bagnoli, Salant, and Swierzbinski (1989) assumed discrete demand

instead of the continuous demand functions assumed in the bulk of the litera-

ture. Surprisingly, they showed that the standard assertions concerning the durable-

goods monopoly may then fail. These claims are now explained using their main

example.

Suppose there are only two customers. Each wants to buy either one unit or

abstain. Their valuations are VA > VB if the good is obtained in period 1, and SVJ
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if it is obtained in period 2.28 Specifically, VA is taken to be so much bigger than

VB that VA > 2VB- Marginal costs are constant, and normalized to zero. The time

horizon is two periods.

Suppose the monopolist plays the following myopic pricing strategy:

Pi = vA, (1.74)

{ VA if customer A did not buy in period 1,
. . (1.75)

VB otherwise.
This strategy is myopic, because the monopolist simply calls the best price on

current demand, as if there were no future to consider.

In response to this myopic strategy, consumer A would lose by delaying his

purchase; therefore A buys in period 1, and B in period 2. In other words, consumers'

best reply is the get-it-while-you-can strategy

buy an <=> pt < ViS'-1, i e {A, B}, t e {1, 2}. (1.76)

In turn, the monopolist myopic strategy is a best reply to consumers' get-it-while-

you-can strategy, in each of the two subgames. Therefore, in the subgame-perfect

equilibrium, the durable-goods monopolist achieves almost the same payoff as the

idealized, perfectly price-discriminating monopolist (the two coincide if there is no

discounting, 8 = 1):

(1.77)

Compare this with the profit at the Cournot point, which is nc = VA,in this case.

It follows immediately that the durable-goods monopolist achieves a profit that is

higher than at the Cournot point:

7r* = vA + SvB > vA, (1.78)

contrary to what was claimed by Coase, Bulow, and others.

However, as Dudey (1995) made clear, the significance of this result is somewhat

questionable.

1.7 Bilateral Monopoly and Bargaining*

So far monopoly has been equated with the power to unilaterally dictate either the

unit price or some more sophisticated price discrimination scheme. In the language

of game theory, monopoly pricing was modeled as an ultimatum game where the

monopolist sets the price function and customers make their purchases accordingly.

An ultimatum is a final proposition or demand whose rejection will end nego-

tiations. It requires the ultimatum player to have a reliable commitment to end

negotiations if the ultimatum is rejected. Such commitment is, however, difficult to

achieve. This suggests that the theory of monopoly pricing should be put into the

28 There is a bit of a break here. In our first example we assumed a stationary rental demand; in this example
we assume that the valuation is independent of the time when the good is available, except for the effect of
discounting.
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framework of more general bargaining games between buyer and seller where both

have some market power.

One way to generalize the simple ultimatum game is to permit several rounds

of haggling, while maintaining that one party has ultimately the power to make an

ultimatum, and assume that delay in reaching an agreement is costly. This is the

perspective of finite-horizon bargaining games.

In most bargaining settings one can always add another round of haggling. There-

fore, the finite-horizon framework is not entirely satisfactory. Moreover, the two

parties may be in a bilateral monopoly position, where both sides have equal market

power, and no one is in the position to make an ultimatum at any point in the re-

lationship. In either case, infinite-horizon bargaining games are appropriate where

no one ever has the power to set an ultimatum.

In the following, we give a brief introduction to finite- and infinite-horizon bar-

gaining games. The emphasis is on explaining basic concepts and presenting simple

proofs of existence and uniqueness of the bargaining solution. The main limitation

is that we stick to the complete-information framework. Incomplete information

is, however, particularly important for understanding why rational bargainers may

end up with a breakdown of negotiations despite gains from trade.

1.7.1 A Finite-Horizon Bargaining Game

Consider the following three stage bargaining game: Two players, 1 and 2, bargain

over the division of a fixed sum of money, say $ 1. Their utilities are linear in money,

but there is discounting with discount factors 81,82 < 1.

The bargaining has three stages; exactly one period passes between two consec-

utive stages.

Stage 1. Player 1 asks for x\ e [0, 1]. Player 2 accepts or rejects; if he accepts, the game is

over, if he rejects, it continues.

Stage 2. Player 2 asks for X2 € [0, 1]; if player 1 accepts, the game is over; if he rejects, it

continues.

Stage 3. Player 1 obtains the default payment d > 0, and player 2 goes empty-handed.

This game has many Nash equilibria (find at least two). But since it has a sub-

game structure, we invoke subgame perfection. This selection principle is effective.

Indeed, the game has a unique subgame-perfect Nash equilibrium, explained as fol-

lows.

1. If stage 3 is reached, player 1 gets his default payment d\ player 2 gets nothing.

2. If stage 2 is reached, player 2 asks for x\ (2) = 1 — 8\ d, and player 1 accepts. Acceptance

gives player 1 the payoff 1 — JC|(2) = 8\d\ rejection gives d one stage later, which has

the present value 8\d. Therefore, JC|(2) makes player 1 indifferent between acceptance

and rejection.

3. In stage 1, player 1 asks for x*(l) = 1 — 62(1 — 8\d) and player 2 accepts. The share

JC*(1) is chosen in such a way that player 2 is made indifferent between acceptance and

rejection (the left-hand side is player 2's payoff from acceptance, the right-hand side that
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from rejection):

l - * * = a2** = « 2 ( l - M ) . (1.79)

This gives JC*(1) = 1 — ^(1 — 8\d), as asserted.

The associated equilibrium payoffs are

it*(d, Su h) = 1 - 52(1 - Sid), (1.80)

(1.81)

Evidently, each player would prefer to face an impatient rival with a high discount

rate; impatience is costly.

An important special case occurs when there are no payoffs in case of disagree-

ment (d = 0).Then

tff (0, Su S2) = l - S2, TT2*(0, 8u 82) = 82. (1.82)

And if agent 2 is infinitely impatient (S2 -> 0), the solution approaches that of the

ultimatum game.

The general finite bargaining game, with possibly many rounds, was solved by

Stahl (1972). The extension to an infinite game - to which we turn next - is due to

Rubinstein (1982).

1.7.2 Infinite-Horizon Bargaining

Finite-horizon bargaining games are not convincing. No matter how long the par-

ties have already bargained, they can always add another round of haggling. This

suggests that, at the outset, one should not restrict the number of stages. This leads

us to the bargaining game solved by Rubinstein, the solution of which is known as

the Rubinstein solution.

The analysis of this bargaining game utilizes an important property of subgame

perfectness known as the one-stage-deviation principle.

Proposition 1.6 (One-Stage-Deviation Principle) Consider a multistage game

with observed actions. A strategy profile is subgame perfect if and only if it satisfies

the one-stage-deviation condition that no player can gain by deviating from it in a

single stage while conforming to it thereafter.

This principle applies to finite as well as to infinite-horizon games, provided

events in the distant future are made sufficiently insignificant through discounting.

Essentially, the one-stage-deviation principle is an application of the fundamental

dynamic programming principle of pointwise optimization, which says that a profile

of actions is optimal if and only if it is optimal in each time period.29

29 For a proof of the one-stage-deviation-principle see Fudenberg and Tirole (1991), p. 109.
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Multiplicity of Nash Equilibria

Like the finite-horizon bargaining game, the infinite-horizon game has many Nash

equilibria; but only one is subgame-perfect.

An example of a Nash equilibrium that is not also subgame-perfect is the fol-

lowing profile of "tough" strategies:

Each player always asks for share x = 1 and never accepts less.

Evidently, these strategies are a Nash equilibrium (given the rival's strategy, the

own strategy is a best response). However, subgame perfection is violated because

these strategies are improvable by one-stage deviations.

To see why this happens, one has to identify a particular history of the game at

which it pays to engage in a one-stage deviation from the candidate strategy if the

rival sticks to it. A case in point is the history described by the event that the rival has

just asked for 0 < x < 1. Then, by sticking to the candidate solution strategy, one's

payoff is equal to zero, whereas, if one deviates just once and then accepts, one earns

1 — x > 0. Therefore, the candidate strategy is improvable by a one-stage deviation.

Note that a subgame-perfect equilibrium strategy must be unimprovable at all

possible histories - not just the ones that occur in equilibrium. This is why the one-

stage-deviation principle must be applied on as well as off the equilibrium path.

This is precisely what we did when we showed that "always ask for x = 1 and

never accept less" is not a subgame-perfect equilibrium.

Proposer and Responder

In the following, we call the player whose turn it is to propose the proposer and

the player whose turn it is to either accept or reject the responder.

Subgame-Perfect Equilibrium

The game has a unique subgame-perfect Nash equilibrium. It exhibits stationary

strategies, as follows. We first state and prove existence, and then turn to the proof

of uniqueness. Since the proof of uniqueness includes a proof of existence, you may

go immediately to Proposition 1.8. However, the proof of the following proposition

is quite useful in exercising the one-stage deviation principle.

Proposition 1.7 (Existence) The following strategy profile is a subgame perfect
Nash equilibrium; it tells player i what to do, depending upon whether it is i ys turn
to propose or to accept/reject:

1. Proposer: always ask for

x* = Y^JJ.-
 ( L 8 3 >

2. Responder: always accept any share equal to or greater than

( L 8 4 )

(Note that ifi asks for x* then j is offered 8j(l — 5/)/(l— 5/<5y), which j accepts.)
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Proof Consider the above strategy profile. We want to show that these strategies are
a subgame perfect Nash equilibrium. In view of the one-stage-deviation principle,
one needs to show is that no one-stage deviation pays at any possible history of the
game.

1. Suppose i is responder and i is offered at least 5/(1 — 57)/(l — 8(8j). The candidate

strategy tells him to accept. But what if he engages in a one-stage deviation, rejects the

offer, and then returns to the candidate strategy? Then the game enters into the next

bargaining round where / is proposer, and since he returns to the candidate strategy, he

asks for the share (1 — <$/)/( 1 — 8t8j), which is accepted by the rival. Discounting this

payoff shows that it would have been at least as good to accept the original offer. An

immediate implication is that it does not pay to engage in a one-stage deviation either if

the rival has offered less than <5;(1 — <5/)/(l — 8(8j).

2. Next, suppose / is proposer. Suppose he deviates once, asks for a higher share than

(1 — 8j)/(l — 8(8j) (lower shares would be accepted at a loss), and thereafter returns to

the candidate equilibrium strategy. Then j rejects and offers /

1 — 8(8j 1 — 8(8j

which player / accepts. Properly discounting shows that this one-time deviation would

lead to a lower payoff, since

2 i _ Sj 1 - 8j

n

Proposition 1.8 (Uniqueness) The stationary strategies described in Proposition

1.7 are the unique subgame perfect equilibrium?®

Proof Suppose the game has not yet ended at time t. Denote the subgame-perfect

continuation payoff of the proposer at t by v and the corresponding continuation

payoff of the responder by w. Define

v := sup(u), v_ := inf(t;), (1.86)

w := sup(w), w_ := inf(u;). (1-87)

We will show that the continuation payoffs are uniquely determined as follows:

Vi = vt = m = l~8j , (1.88)

*'n ~*:)-. (1.89)wi wi wi \
1 - bjbj

Then it follows immediately that (1.83) and (1.84) are the unique subgame-perfect

equilibrium strategies. The associated equilibrium outcome is that player 1 opens

the game asking for x\ = (1 — 82)/(I — 8182), which player 2 accepts.

30 The original proof by Rubinstein is rather involved. The following ingeniously simple proof was introduced by
Sutton (1986).



48 Imperfect Competition

1. Assessing v_: Suppose 1 is proposer. If he offers 2 at least as much as the present value

of 2's "maximum" continuation payoff after rejection, 1 — JCI > 82V2, his proposal will

definitely be accepted. Therefore, l's continuation payoff cannot be below 1 — 82V2. The

same reasoning applies if 2 is proposer. Hence,

Hi > 1-SjVj. (1.90)

2. Assessing w: Suppose 1 is proposer. He will never offer the responder 2 more than 82V2.

Therefore, the responder's continuation payoff cannot exceed 52i>2- The same reasoning

applies if 2 is proposer. Hence,

Wi<8iVi. (1.91)

3. Assessing v: Suppose 1 is proposer. Since the responder will definitely reject any offer

1 — x\ < 82H2, player 1 cannot get more than 1 — 82v_2 through acceptance of his current

proposal. In turn, 1 cannot get more than 8\ ib\ through rejection of his current proposal.

Therefore, l's continuation payoff is bounded from above: v\ < max{l — <$2v2, 8iW\}.

The same reasoning applies if 2 is proposer. Hence,

vt < max{l - 8jVj, S/tD,-} (1.92)

< max{l - 8jVj, 8?vt} by (1.91). (1.93)

Next we show that 1 — 8jVj > 8fvt. Suppose per absurdum that 1 — 8jV_j < <5?D/. Then

Vi < 8 f vi9 and hence vt < 0(note:5, v < 1). But then (1.92)-( 1.93) imply 1-SjVj > 0 >

Sfvt, which is a contradiction. Again, similar reasoning applies if 2 is proposer. Hence,

vt <l-8jVj. (1.94)

4. Finally, combine all of the above, as follows:

m > 1-SjVj by (1.90)

> l-Sj+SiSjVi by (1.94)

1 — didj

and

^ < l-8jVj by (1.94)

< 1 -Sj+SiSjVt

= » vt < ^—^T- (1.96)
1 - didj

Hence, u,- = vt = v^ = (1 — 8j)/(l — 8(8;), which confirms (1.88). Similar reasoning

also confirms wt = wt = w_t = 5/(1 — <$/)/(l — 8t8j).

This proves that the continuation payoffs of the subgame-perfect equilibrium are

unique. The associated equilibrium strategies stipulate that, in every subgame, the

proposer offers exactly x — v = v_ and the responder accepts all x < v = y_. •

Remark 1.1 (Nash Bargaining Solution) Make the time lag between bargaining

rounds arbitrarily small. Then the above solution of the noncooperative bargaining
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game converges toward the well-known cooperative Nash bargaining solution (see

Nash (1950a)). If both players have the same discount factor, that solution gives

rise to equal sharing, JC* = \.

Remark 1.2 (Three or More Bargainers) Unfortunately, the uniqueness result

holds only in bilateral bargaining. With three or more parties, one ends up with

a multiplicity of subgame-perfect equilibrium solutions. Therefore, the celebrated

uniqueness result holds only in a borderline case.

1.8 Digression: The Case Against Microsoft

Microsoft Corporation is perhaps the best-known, most successful, and most con-

troversial monopoly in history. The Department of Justice claims that Microsoft

has a monopoly in the field of personal-computer operating systems (OSs), and

that it has cemented this monopoly through unlawful practices. For many years,

these anticompetitive practices went virtually unchecked, which allowed Microsoft

to establish and defend its dominant position in the market for personal-computer

operating systems.

At the heart of the case against Microsoft are the following alleged monopolistic

practices:31

Predatory Contracts. Microsoft offered its operating system to hardware manufacturers
at a 60% discount if they agreed to pay them for every PC sold, as opposed to paying
them for every PC sold with Microsoft's operating preinstalled. Therefore, if a hardware
manufacturer wished to install a different operating system on some of its PCs, it would
in fact have to pay for both operating systems.

Vaporware. Microsoft has a record of announcing new products long before they are ready
(and of repeated delays in the release of new software) with the intent to deter customers
from buying competing products. (In Silicon Valley, Microsoft became known as the
"viscount of vapor.")

Deliberate incompatibility. For example, Microsoft told customers that DR-DOS would not
work with Windows 3.1 (those who tried it anyway got an error message on the screen),
even though there was apparently no reason why the two programs should not work
together.

Bundling. Microsoft bundled its operating system with its own Internet browser with the
intent to crowd out the browser software Netscape, which had the potential to develop
into an alternative operating system.

The foundation of Microsoft's power is its ability to exploit network externalities:

In the PC industry, the firm that controls the standard operating systems has an enor-

mous advantage because software developers have an incentive to design software

for the most widely used operating system. A successful operating system has more

applications written for it. This, in turn, draws more developers to write programs,

which further attracts customers, and so on, until, eventually, the operating system

31 Cassidy (1998) gives a nice summary from which we borrow here.
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that started out with a small advantage locks in. Competing operating systems then

stand little chance to succeed, even if they are superior.32

The case against Microsoft poses new challenges to antitrust authorities. The

antitrust laws, as their name suggests, were introduced at the turn of the last century

in response to the commercial trusts, like Rockefeller's Standard Oil, and J. P.

Morgan's United States Steel Corporation, that dominated the markets for oil, gas,

and steel. New principles and laws are needed to deal with the new network-

externality-based monopolies.

1.9 Concluding Remarks

The theory of monopoly has made important advances. However, we are still far

from having a unified theory that explains under which circumstances either price

discrimination or Cournot monopoly tends to emerge. We close this introduction

to monopoly with some tentative remarks on the intricate relationships between

monopoly and bargaining, and the need for further research on this topic.

A peculiar feature of price discrimination is that the monopolist draws a positive

profit not only from the collective body of customers but from each and every

individual customer. If each customer is valuable, the monopolist is tempted to

enter negotiations when a customer has refused his ultimatum. This, in turn, induces

customers to question the credibility of the ultimatum and make counteroffers.

Therefore, price discrimination can only work in the particular way in which it was

analyzed if the monopolist has found a mechanism that reliably commits him to

end negotiations when an ultimatum was rejected. And without such commitment,

price discrimination is intricately linked with bargaining problems.

Not so under Cournot monopoly. Recall that at the Cournot point the marginal

profit is equal to zero. If each customer contributes only a relatively small quantity to

market demand, it follows that the marginal profit of serving individual customers

is equal to zero. In that case, the monopolist need not worry about individual

bargaining and problems of credibility. When an individual customer has refused

the monopolist's ultimatum and starts haggling, the monopolist has no reason to

enter negotiations because losing that customer is of no concern. Therefore, the

Cournot point is renegotiation-proof, and hence can be maintained even if individual

customers are in doubt about the monopolist's commitment power. This is one of

the strong points of Cournot monopoly.

1.10 Bibliographic Notes

There are many good surveys on price discrimination that stress other aspects

ignored here. An extensive general survey is the book by Phlips (1983). Tirole's

(1989) chapter on price discrimination elaborates more on two-part tariffs, and

Varian (1989) analyzes whether and how a legal prohibition of price discrimination

32 Some corporate giants tried it, like Digital Research with DR-DOS and IBM with OS/2, but failed.
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would affect welfare. Finally, the most comprehensive survey is by Wilson (1993).

There you can look up many practical applications and open problems, in particular

in the area of multiproduct monopoly.

There is an extensive literature on the durable-goods monopoly problem and

the Coase conjecture. In addition to the literature that attempts to formalize and

prove the Coase conjecture, there is also a critical literature that focuses on its

limitations. Assuming a finite set of buyers, von der Fehr and Kiihn (1995) show

that the durable-goods monopoly problem may have equilibrium solutions that

differ radically from the Coase conjecture, including the perfectly-discriminating-

monopoly outcome (see also Dudey (1995)). Levine and Pesendorfer (1995) explain

why equilibria can be so radically different in a model with a finite number of agents

than in a model with a continuum of agents, and apply their general results to the

durable-goods monopoly problem.

Another interesting counterexample to the Coase conjecture is given by Kiihn

(1998), who assumes that durability and quality are positively correlated. In his

model small differences in quality and cost between durables and nondurables

allow a durable-goods monopolist to maintain intertemporal price discrimination,

despite continuous trading.

A comprehensive survey of the literature on noncooperative bargaining theory

is the book by Osborne and Rubinstein (1990); see also Myerson (1991).

The role of bundling in monopoly (mentioned in Section 1.8) is analyzed in

Adams and Yellen (1976) and McAfee, McMillan, and Whinston (1989). The role

of network externalities is worked out in Arthur (1989), Katz and Shapiro (1985,

1992), and Choi (1994). Productpreannouncement ("vaporware") as an anticom-

petitive strategy is analyzed in Farrell and Saloner (1986).
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Regulation of Monopoly

How come there's only one Monopolies Commission?
Anonymous

2.1 Introduction

It is sometimes desirable, on the ground of minimizing costs, to grant a single

firm the exclusive right to serve a certain market. But how does one prevent an

unleashed monopolist from exploiting consumers, and how does one assure that

the monopolist operates on an efficient scale?

In the older literature on industrial organization, economists were primarily con-

cerned with analyzing observed regulations. The most thoroughly researched ex-

amples are rate-of-return and price-cap regulation. The normative problem of how

to design a satisfactory regulatory mechanism was only addressed in a meaningful

framework in recent years, inspired by advances in the theory of incentive contracts

under incomplete information.

Regulation is widespread in the U.S. and in western Europe, ranging from air

and rail transportation to insurance, banking, and telecommunications. During the

1980s, many of these regulations came under heavy fire, which is why that decade is

sometimes called the "age of deregulation." Prime examples of large-scale deregu-

lation are the breaking up of the Bell Telephone system and the removal of entry and

price regulations in the U.S. airline industry. In western Europe, the EC's program

of economic and legal integration is a major force in the deregulation of industries

like insurance, electric power, trucking, and banking.1 However, the growing dis-

satisfaction with the long-term effects of deregulation in the U.S.2 will probably

slow down and change the process of deregulation in western Europe.

1 In western Europe, public utilities are often publicly owned rather than regulated private monopolies. Therefore,
the issue of deregulation is often linked with that of privatization. Public ownership was originally justified by
the proponents of Gemeinwirtschaft. For an interesting anecdotal account of the original ideas and practices that
lead to the establishment of publicly owned statewide monopoly suppliers of electric power in Germany see
Staudinger(1982).

2 In the Wall Street Journal of July 20, 1987, Kilman summarized this disappointment with the deregulation of
the U.S. airline industry with the following headline: "An unexpected result of airline decontrol is return to
monopolies."
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There is an enormous literature on the various aspects of regulation that we cannot

do justice to here.3 In-depth coverage is usually given in a course on "industrial

organization." Here, we can only touch some basic issues and elaborate selected

examples. We start with a discussion of the Averch-Johnson effect, one of the best-

known examples of a positive theory of regulation. Then we discuss two regulatory

mechanisms as examples of the normative theory of regulation. Roughly, a positive

theory of regulation is concerned with explaining how certain regulations work and

what impact they tend to have, whereas a normative theory deals with the actual

design of satisfactory regulations.

2.2 Positive Theory: The Averch-Johnson Effect

Suppose you own a power company that serves a certain community as a regu-

lated monopoly. Your pricing and supply decisions are monitored by a government

regulatory agency. Only linear prices are permitted. By experience you know that

you are pretty much free to choose the most profitable price, output, and factor

proportions, as long as your rate of return on capital stays within a certain limit,

judged as a "fair rate of return." But as soon as you exceed this limit, the regulator

may impose unfavorable prices and quantities. Wise and accommodating as you

are, you decide to respect this implicit rate-of-return constraint. We ask: how does

this constraint affect your optimal factor demand and product supply?

We will show that the rate-of-return constraint leads the regulated monopoly to

inflate its rate base by substituting capital for labor. More surprising yet, it leads to

the choice of factor proportions off the cost curve. Therefore, profit maximization

requires a deviation from cost minimization. These results are known as the Averch-

Johnson effect (see Averch and Johnson (1962)).

2.2.1 Assumptions

Consider a Cournot monopoly with two factors of production, capital K and labor

L, and fixed user costs of labor w (wage rate) and capital r. Due to regulation,

the rate of return on capital has to stay below the "fair" rate of return p. To rule

out trivial cases, the rate-of-return constraint is assumed to be binding, and the fair

return per unit of capital is taken to be greater than the user cost r. Also, the price

of capital goods PK is normalized to PK = 1 -4

Let P be the inverse demand function, defined on total sales, and / the production

function, defined on capital and labor. We introduce the composite revenue func-

tion R(K, L) := P(f(K, L))f(K, L), and assume that R is twice continuously

differentiate and strictly concave, and that / (0 , 0) = 0.

3 An excellent, though somewhat dated introduction to the institutional issues is in Kahn (1971). When you look
at this text, keep in mind that it was written before the wave of deregulation by one of its most ardent supporters.
For a modern treatment of the normative theory of regulation see, for example, Guesnerie and Laffont (1986).

4 Recall that the user cost of capital is PK(I + & — Pk), where i is the rate of interest, 8 the rate of depreciation,
and PK the expected rate of change of PK -
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The regulated monopolist maximizes profit n := R — wL — rK subject to the

rate-of-return constraint:

' R I ) - t < p. (2.1)
K

To solve this program, we define the Lagrange function C(K,L,X) := R —

wL — rK + X(pK + wL — R), with the Lagrange coefficient X > 0, and com-

pute the Kuhn-Tucker conditions for an interior solution (subscripts denote partial

derivatives):5

K: RK(l-k) = r-kp, (2.2)

L: RL(l-k) = w(l-k), (2.3)

X : pK + wL - R > 0 and X(pK + wL - R) = 0, (2.4)

X > 0, ^ > 0, L > 0. (2.5)

2.2.2 £jfjfecfc of Regulation

In order to assess the effects of regulation, we compare the optimal solution

(AT*,L*,A*) with the hypothetical situation where the regulatory constraint is

absent (denoted by (K°, L°, X0)). Our main goal is to show that rate-of-return

regulation leads to overcapitalization in the sense that K* > K°.

The proof is built up by combining several auxiliary results. In a first step, notice

that

A* ̂  1 and 7T* := /?* - wL* - rK* > 0. (2.6)

For if A* were equal to 1, we would have r = p by (2.2), contrary to what was

assumed. Also, since the rate-of-return constraint binds, one has n* + rk = pk,

and therefore 7r* = (p — r)K* > 0.

An immediate implication of A* ̂  1, combined with (2.3) is that

Rl = w. (2.7)

Next, observe that, by the strict concavity of R and the fact that (K*, L*) ^

(K°, L°) and A0 = 0, one has6

R°-R* < R*K(K° - K*) + R*L(L° - L*)

= R*K(K° - K*) + w(L° - L*) by (2.7), (2.8)

R* - R° < R°K(K* - K°) + Rl(L* - L°)

= r(K* - K°) + w{L* - L°) by (2.7), (2.2). (2.9)

5 We mention that the program is not quite well behaved because the constraint set may not be convex (the
quasiconcavity of the constraint function <f>(K, L) := pK — R + wL is ambiguous). In view of Lemma C.4 and
Theorem C.5, in Appendix C, it follows that the Kuhn-Tucker conditions are necessary but not sufficient for a
global maximum. Therefore it is conceivable that these conditions have a solution, but the program itself does
not have one. Do you see the trap?

6 We use the second-partial-derivative characterization of concavity, explained in Appendix D in Part IV (see
Theorem D.I 1). Notice that strict concavity implies strict inequality because optimal inputs are in a range where
marginal revenue products are positive.
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Adding (2.8) and (2.9) gives

0 < (r - R*K)(K* - K°). (2.10)

Therefore,

K* > K° <F=> r>R*K. (2.11)

Proposition 2.1 (Averch-Johnson) The rate-of-return-constrained monopolist

uses an excessive amount of capital, in the sense that K* > K°.

Proof By (2.11) all we need to show is that r > /?£. Since R (0, 0) = 0, we conclude

from the strict concavity of /?, together with (2.7) and the fact that the rate of return

constraint is binding,

< /?* - R*LL* - R*KK*

= tf* - wL* - R*KK* by (2.2)

= <j>-R*K)K* by (2.4).

Finally, multiply this inequality with A* > 0, and one has

o < r (P - R*K)

= r-R*K by (2.2). (2.12)

Hence, r > 7?^, as asserted. •

2.2.3 Relation to Cost Minimization

Overcapitalization also holds relative to the usual cost-minimizing factor propor-

tions. To prepare for the proof, we first show that the Lagrangian coefficient is

strictly between 0 and 1, A* e (0, 1).

You know already that A* > 0 (the constraint is binding), and that A* ^ 1, by

(2.6). Therefore, all you need to show is that A* cannot exceed 1. For the sake of

the proof, suppose that A* > 1. Then, by (2.2) and the assumption p > r, one has

R*K(1 -X*) = r - k*p < r ( l - A*).

Divide this inequality by 1 — A*, which is then a negative number, and one gets

R^ > r, in contradiction to Lemma 2.12. Therefore, A* e (0, 1).

Proposition 2.2 The rate-of-return-regulated monopolist chooses a factor combi-

nation off the cost function that exhibits overemployment of capital in the sense

that the marginal rate of substitution of capital to labor exceeds the ratio of their

factor prices:

r->fX
v ft
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Proof Divide (2.2) by (2.3). Since r < p and X* e (0, 1), one obtains:

(2.13)

(2.14)

- A * )

r — A*r + A*r — A*p

- A * )

< - . (2.16)

•

The beautiful feature of the Averch-Johnson effect is that it presents an example

for a rational, profit-maximizing deviation from cost minimization. But don't let

yourself be fooled by words. For the most part, the surprise effect is only one of

those tricks that language can play with us.

To show this, we propose to define the regulated monopolist's cost function on

given output x and given capital K, as follows:

C(JC, K) := min{wL | / (L, K) >x,pK- P(x)x + wL^ 0}. (2.17)

Then, the monopolist's decision problem can be put as follows:

max[P(jc)jc -C(x,K)], (2.18)
K ,x

and one obtains the marginal conditions:

x: [P(x)x]f = Cx, (2.19)

K: CK = -r. (2.20)

This puts the analysis of the regulated monopolist on a par with the usual analysis

of factor demand.

2.2.4 Welfare Implication

Is overcapitalization bad? The Averch-Johnson effect is sometimes interpreted to

imply that a fair rate-of-return constraint leads to an inefficient factor combination.

This is, however, not quite right. Recall that the Cournot monopoly gives rise to

inefficiency in the first place. Therefore, the excessive use of capital may have the

desirable side effect of raising output.

Consider, for example, a production function with /LK > 0 everywhere. Then

rate-of-return regulation induces the monopolist to deliver more output to the

market.7 Therefore, the desirable welfare effect of higher output has to be weighed

against the adverse effect of a distorted factor proportion.

7 Proof: We have already shown that K* > K°.lf the employment of labor L* were not also greater than L°, the
right-hand side of (2.3) would exceed w, which is a contradiction.
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2.3 Normative Theory: Two Almost Perfect Regulations

Having studied the effect of the often used rate-of-return regulation, we now turn to

the more interesting task of designing good or perhaps even optimal regulations. We

consider, again, a Cournot monopoly that does not face the threat of competition -

say, because of licensing, patenting, or any other legal protection of the incumbent

firm. We ask: how can one prevent the social loss of monopoly as well as the

exploitation of consumers?

These tasks are easily accomplished if there is complete information about de-

mand and cost functions. The regulator then only needs to set a subsidy per output

unit plus a lump-sum tax in such a way that the unit price is equal to marginal cost

at the subsidy-induced Cournot point, and both the social loss of monopoly and

monopoly profits vanish.8 However, this scheme requires more information than

one can reasonably assume the regulator to have. Therefore, one would like to find

mechanisms that require less information.

We discuss two alternative mechanisms: the total surplus subsidy by Loeb and

Magat (1979) and the incremental surplus subsidy mechanism by Sappington and

Sibley (1988). Neither mechanism requires that the regulator have any knowledge

of the cost function or that costs are observable. However, both require knowledge

of the demand function and observability of the unit price.

Important applications of these mechanisms include the regulation of natural

monopolies such as public utilities or local garbage collectors.
Throughout, the following assumptions are made:

Al. Inverse demand P(x) is strict monotone decreasing and continuously differentiable.
A2. The cost function C(x) is strict monotone increasing, convex, and twice continuously

differentiable.
A3. ]imx-+0P(x) > limx^0C'(x).

2.3.1 The Total Surplus Subsidy Mechanism

The total surplus mechanism was invented by Loeb and Magat (1979); it is inge-

niously simple, but it has one disadvantage that makes it not entirely satisfactory.

It is described by three rules:

• Permit the monopolist to set any unit price that it desires.
• Let the monopolist collect the entire market revenue.
• Pay the monopolist a subsidy equal to the net consumer surplus that it generates.

Proposition 2.3 The total surplus subsidy mechanism induces the monopolist to

choose the Pareto-optimal supply.

Proof By assumption, the subsidy S(x) is equal to the consumer surplus:

S(x):= f P(y)dy-P(x)x. (2.21)

Jo
8 Of course, this requires that the cost function be subadditive. If cost functions are superadditive, the optimal

allocation can only be reached by breaking up the monopoly - not by regulating it.



58 Imperfect Competition

Therefore, the monopolist's earnings coincide with the total surplus (consumer

plus producer surplus) P(x)x — C{x) + S(x) = f£ P(y) dy — C(x), and the profit

maximum is at the socially optimal output where P(x*) = Cf(x*). This stationary

point exists, and it is a global maximum, since P'{x) — C"(x) < 0. •

Isn't this beautifully simple and yet effective? So, what's wrong with the total

surplus subsidy mechanism?

The total surplus mechanism removes the social loss of monopoly, but it does not

prevent exploitation of consumers and taxpayers. In fact, it assures the monopolist

the entire gain from trade, leaving no gain to consumers and taxpayers. This in

itself makes it unacceptable because the resulting high monopoly profits give rise

to wasteful expenditures in the competition for the monopoly, as we explained in

our discussion on the deadweight loss of monopoly (see Section 1.2.2).

Before completely dropping the total surplus subsidy mechanism, one may won-

der whether its deficiency cannot be remedied by means of additional taxes. For

example, lump-sum taxes achieve a transfer of monopoly rent that can be used to

compensate consumers without affecting the monopolist's output decision. How-

ever, without knowing the cost function - or at least without observing costs - the

regulator does not know how to set the right lump-sum tax. If the wrong rate is

chosen, either monopoly profits persist or, worst of all, the market may collapse

altogether because the monopolist is driven out of it by excessive taxes.

If several firms stand in line to do the monopolist's job, the regulator could gain

the missing information by auctioning off the right to be the monopolist to the

highest bidder. Even if there is no competition on the market, one may still have

competition for the market. The regulator then only needs to set up the right auction

to appropriate the entire rent and then plough it back to consumers.9

In many cases there are either no competing bidders (think of a monopoly granted

by patent law), or they have widely differing cost functions,10 or they are themselves

subject to incomplete information about their prospective cost functions.11 In either

case, the total surplus subsidy mechanism fails to get rid of consumer exploitation

and thus of the deadweight loss due to wasteful expenditures in the course of the

competition for the monopoly market.

2.3.2 The Incremental Surplus Subsidy (ISS) Mechanism

In the literature, there are many suggested improvements of the total surplus mecha-

nism. For example, Vogelsang and Finsinger (1979) propose an adaptive mechanism

9 If there are at least two potential monopolists and it is common knowledge that they are subject to the same
cost function, then standard auctions will sell the monopoly license at the price of the full monopoly profit,
including the subsidy. A complete analysis of auction games is in Chapter 8.

10 If costs differ, the lowest-cost monopolist will succeed in an auction and then pocket a profit equal to the
difference between the second lowest and his own cost.

11 If bidders themselves are subject to imperfect information about their prospective cost, it is no longer optimal to
auction off the monopoly license by a standard auction. Instead, the optimal regulation includes price-regulation
and even involves setting unit prices above marginal cost, to induce more aggressive bidding. See Riordan and
Sappington (1987).
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that gives rise to the Pareto-optimal output and vanishing monopoly profits after just

a few rounds. However, as was pointed out by Sappington (1980), this mechanism

invites strategic manipulation by the monopolist, who may benefit from inflating his

costs. Therefore, it fails to assure cost minimization. But without cost minimization,

it does not assure output efficiency either.

The incremental surplus subsidy mechanism proposed by Sappington and Sibley

(1988) is free from these defects. It achieves output efficiency, zero monopoly profits

after just one period, and cost minimization. Like the total surplus subsidy and the

Vogelsang-Finsinger mechanism, it does not require that the regulator know the

cost function or that costs be publicly observable. However, unlike the Finsinger-

Vogelsang mechanism, it assumes that the regulator knows the demand function.

To see how the incremental surplus subsidy mechanism works, consider a Cournot

monopoly that plans to serve the market for several (say T > 1) periods, subject to

stationary market demand and costs. At each t the regulator observes the current

and the previous unit price or quantity sold, the previous resource expenditures

Et-u and therefore the previous accounting profit nt-\. Based on this information,

the regulator

• pays a subsidy equal to the incremental (not total) consumer surplus, and
• taxes away the previous accounting profit.

The increment in consumer surplus between period t — 1 and / is12

yP\y)dy. (2.22)[X

JxtJxt

Therefore, the incremental surplus mechanism subsidizes the monopoly by the

following rule:

St:= f"1 yP\y)dy-7Tt-U (2.23)
Jxt

where n denotes gross profits before subsidies,

7tt:=ptxt-Ct-Wt, (2.24)

XQ and no reflects initial conditions, which for convenience are set to

x0 = 7To = 0, (2.25)

and pt, Ct are shorthand expressions:

pt := P(* r), Ct := C(xt). (2.26)

All along, the regulator knows the inverse demand function P, but neither the

cost function C nor the past cost level C(xt-\). Although the regulator can observe

resource expenditures (with a lag of one period), the waste W cannot be detected.

12 Notice: by the product rule of differentiation one has (yP(y)Y = P(y) + yP'iy). Therefore, the consumer
surplus is

rx rx r°
/ P(y)dy-P(x)x=xP(x)- / yP\y)dy - xP{x) = I yP'(y)dy.

JO J0 Jx
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Therefore the monopolist may waste resources and thus inflate resource expendi-

tures Et := Ct + Wt. Waste may be a profitable way to manipulate the mechanism,

as we have learned from the discussion of the Finsinger-Vogelsang mechanism.

Analysis

We will now analyze the mechanism in two steps. First we invoke the preliminary

assumption that the monopolist has the power to commit once and for all to a

sequence of output and waste levels. In the second step we remove this power of

precommitment and analyze the time-consistent or dynamically optimal sequence

of outputs and waste levels. Altogether, the analysis will be fairly simple - certainly

far simpler than the proof proposed by Sappington and Sibley (1988).

Solution Under Precommitment

If the monopolist can commit once and for all to an optimal policy, the monopolist's

decision problem is to choose an output vector x := (x\,..., xj) > 0 and a vector

of waste levels, W := (W\,..., Wj) > 0, in such a way that the present value of

profits is maximized, given the discount rate 8 < I:13

T

' ( * , + £), (2.27)

subject to (2.23)-(2.26).

Since n is assumed to be strictly concave, this is a straightforward nonlinear

programming problem. Its solution (x*, W*) is uniquely characterized by the Kuhn-

Tucker conditions14

(8f - 8t+l)(pt - Ct) < 0 a n d xfl ••] = (), t = 1 , . . . , T - 1, (2.28)

8T(pT-CT)<0 and **[.••] = 0, (2.29)

St+i _ 8t < 0 a n d w *[ . . . ] = o, t = 1 , . . . , T - 1, (2.30)

-8T <0 and -8TWT=0. (2.31)

Proposition 2.4 (ISS with Commitment) Suppose the monopolist can commit

once and for all to optimal output and waste levels. Then the incremental surplus

subsidy mechanism leads to

1. cost minimization (Wt = 0) in all periods,

2. output efficiency (marginal cost pricing pt = C't) in all periods,
3. zero net profits (717 + St = 0), except in the first period.

Proof Since 0 < 8 < 1, it follows immediately that 8t+l - 8* < 0 and that -8T < 0,

and therefore W* = 0, for all t, by (2.30) and (2.31). This assures cost minimization.

13 The initial price po and quantity xo either are inherited from the time before regulation was introduced or are
themselves part of the regulatory mechanism.

14 Pi denotes the derivative of P(xt), and C't that of C(xt).
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Next, (2.28) implies xf > 0, and therefore pf = C'(xf), Vf = 1 , . . . , 7\15 This

assures output efficiency. Finally, realize that x* is constant over time, for if it were

not, the condition

Pt+l ~ Pt — W+l ~~ c r

would contradict the assumed convexity of the cost function. Therefore gross profits

are constant, so that taxing away the previous period's gross profit assures zero net

profits for all f = 2 , . . . , T. u

Remark 2.1 The first-period net profit is equal to the maximum social surplus

(consumer plus producer surplus) TC* — JQ yP'(y)dy, and all subsequent net profits

vanish. This shows how the ISS coincides with the total surplus subsidy mechanism

during the first period.

The fact that net profits do not vanish altogether gives rise to wasteful expen-

ditures in the competition for the monopoly. This indicates that the ISS is a good

mechanism but perhaps not optimal.

Of course, it is unlikely that the monopolist has the assumed power of precom-

mitment. If she wants to deviate from a specified course of action, she is usually

free to do so. This raises the question: How will the incremental surplus subsidy

mechanism perform in the absence of precommitment?

Time-Consistent Solution

Suppose the monopolist is free to reconsider her course of action in each period.

Then predicting the monopolist's behavior requires us to find that particular output

and waste-level strategy that maximizes the present value of profits in each period,

anticipating that an optimal strategy will be used thereafter. This leads us right to

a dynamic programming problem.

In a dynamic program a strategy is a prescription for output and waste levels

in each period t, contingent on the history of past output and waste levels. (In the

language of optimal control theory one also talks about closed-loop or feedback

strategies, as opposed to the open-loop strategies from the commitment case that

were functions of calendar time only.)

Due to the mere size of the strategy space it is generally difficult to solve dy-

namic programs. Just think of the many ways in which one can link prescribed

actions to past output and waste levels. However, there is a nice and simple char-

acterization of optimal strategies that can be used to test any candidate strategy,

even though it does not give guidance as to how to come up with a candidate

solution. This characterization is known as the one-stage- or one-step-deviation

principle.

Lemma 2.1 (One-Stage Deviation Principle (Bellman)) Consider a finite dyna-

mic program with perfectly observed (and remembered) past actions. A strategy

15 Recall that at x = 0 one has p > C'\ otherwise it would be never be attractive to serve the market.
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profile is a solution if and only if it is unimprovable in a single step, that is, if it

never pays to deviate from it in a single period while conforming to it thereafter

(see Kreps (1990) or Fudenberg and Tirole (1991)).

We now use this principle to show that the solution derived under precommitment

also solves the monopolist's decision problem in the absence of precommitment.

Proposition 2.5 (ISS Without Commitment) The results stated in Proposition

2.4 apply also if the monopolist cannot commit to a sequence of outputs and waste

levels. Therefore, the ISS is almost perfect with and without the power of commit-

ment.

Proof Take the (stationary) solution of the program with commitment, xt = JC*,

Wt = W* = 0, with P(x*) = C'(JC*), as summarized in Proposition 2.4, as a

candidate solution of the dynamic programming problem in the absence of com-

mitment. Suppose the monopolist deviates just once in period t and then returns

to the candidate solution strategy (JC*, W*) thereafter. Then the present value of

profits, evaluated at t, is

G(xt, Wt) : = n(xt, Wt) + St(xt, x\ W*)

( i _ 8T-t+i \

+ 8 ln(x*, W*) l _ s + S,+i (**,*„ Wt)\ . (2.32)

In order to find the optimal one-step deviation, partially differentiate with respect

to xt and Wt, and one finds immediately that it is optimal to stick to the candi-

date solution strategy, xt = JC*, Wt = W*. Therefore, by the one-stage-deviation

principle, (JC*, VK*) is also a solution of the dynamic program, and all properties

summarized in Proposition 2.4 confirm. •

Remark 2.2 Suppose an unregulated monopolist learns in period 0 that the ISS will

be introduced after one period. How does this affect current output if the discount

factor is either close to one or close to zero?

The optimal output in the period that precedes the introduction of the ISS solves

the condition

(l-S)(Po-Co)+xoP^ = O. (2.33)

Therefore, if 8 —> 0 (only the present matters), JCO approaches the one-shot Cournot

monopoly solution, and if 8 —> 1 (no discounting), JCO —• 0.

Finally, notice that the incremental surplus mechanism is pretty good, but it may

not be optimal, not even in an infinite-time-horizon framework. Given the assumed

information structure and technology, the properties of the optimal mechanism are

still unknown. All we can say at this point is that the incremental surplus mechanism

is almost perfect; but someone - perhaps you - may find a better one.
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Discussion

Apart from the fact that it does not assure zero profits in all periods, the incremental

surplus mechanism has at least three other disturbing deficiencies. One problem is

that it does not perform well under cost inflation, as pointed out by Stefos (1990).

But while this problem can be fixed by a slight modification of the mechanism

(see the cure proposed in Sappington and Sibley (1990)), a serious and still unre-

solved problem has to do with managers' fringe benefits. The regulatory mechanism

does not eliminate the kind of waste that benefits managers. Instead, it allows the

monopoly to keep the revenue necessary to cover managers' fringe benefits. As a

result, neither does the mechanism eliminate waste, nor does it give owners any

reason to weed out waste, so that the buildup of wasteful expenditures goes virtually

uncontrolled. In a sense, the ISS is "too effective": by eliminating profits except in

the first period, it also eliminates the incentives to monitor managers and weed out

wasteful fringe benefits. These observations indicate that some of the fundamental

issues of how to regulate monopolies best are still unresolved.

Finally we mention that the mechanism has the desirable stationarity property

only when the cost function is convex. However, many monopolies exist only

because of nonconvexities due to significant economies of scale.

Conclusions

This brief review has covered some major contributions to the positive and nor-

mative theory of regulation. Of course, many other strands of thought have been

left out. For example, we did not cover the important problem of regulating price-

discriminating monopolies. Since public utilities tend to use two-part tariffs, this

is a serious omission. Another omitted issue of great practical importance is the

breaking up of the activities of alleged natural monopolies into those parts that can

be decentralized, such as the running of trains or the generation of electric power,

and that minimum component that cannot be decentralized, such as the supply of

a network of rails or power lines. In this regard, recent regulatory practice has ex-

perimented with a number of interesting schemes, some of which were inspired by

auction theory,16 that require a separate review.

2.4 Bibliographic Notes

The assertions of the Averch-Johnson effect were posed for the first time by Averch

and Johnson (1962). However, their proofs were not quite right. Corrections were

later proposed by several authors, notably by El-Hodiri and Takayama (1973).

We mentioned that the decision problem is not well behaved in that the constraint

set may not be convex. This issue is notoriously ignored in the literature. For

example, Klevorick (1966) writes: " . . . Averch and Johnson make use of the Kuhn-

Tucker conditions for a constrained maximum. These conditions are necessary as

well as sufficient under our assumption of concavity of profit function."

16 See Section 8.8.2.
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A critical assumption is the concavity of the composite revenue function, defined

on capital and labor. One of the reasons why the firm is regulated in the first place

may be the presence of increasing returns to scale. Under increasing returns, the

composite revenue function may not be concave, and rate-of-return regulation may

lead to under rather than overcapitalization (see Dechert (1984)).

The Averch-Johnson effect has inspired a large theoretical and empirical litera-

ture. For a favorable empirical test, using data on the electric power industry, see

Courville (1974). However, Courville's favorable analysis was countered by Boyes

(1976).

While the normative literature reviewed here focuses on simple regulatory mech-

anisms that have certain desirable properties, there is also a large literature on op-

timal regulatory contracts. The common denominator is the assumption that firms

have private information on costs. Therefore, in both branches of the literature,

the regulator faces a tough information and incentive problem. However, while the

mechanism literature allows the regulator to interfere with the monopolist's affairs

only indirectly through tax and subsidy incentives, the contract approach assumes

that they write comprehensive, enforceable contracts that commit the monopolist

to certain pricing and supply functions.

The seminal paper on the contract model of regulation is Baron and Myerson

(1982). This approach was further refined by Guesnerie and Laffont (1986) and by

Laffont and Tirole (1988,1990). This literature is reviewed and elaborated in great

detail in the advanced textbook by Laffont and Tirole (1993).

One limitation of our review is that we restricted the analysis of regulatory

mechanisms to linear prices (Cournot monopolies). If you look at your utilities or

telephone bill, you see that many monopolists are actually able to set two-part tariffs

and sometimes even a whole menu of different two-part tariffs. This suggests that

one should analyze regulation also in a framework of price discrimination. Some

results in this direction are in Vogelsang (1989).
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Oligopoly and Industrial Organization

He is a fool that thinks not that another thinks.
Herbert

"Where are you going?" "To Minsk." "Shame on you! You say this to make
me think you are going to Pinsk. But I happen to know you are going to
Minsk."

A Jewish Anecdote

3.1 Introduction

Having looked at perfect competition and its antipode, monopoly, it is about time to

turn to more relevant markets. Most of the products that we buy are manufactured

by firms that have only few competitors. For example, there are only a handful of

different brands of automobiles, household detergents, breakfast cereals, and even

canned tomato soup, to name just a few. Typically, in most markets a small number

of suppliers compete for a large number of potential buyers.

A market environment that has few suppliers but many buyers is called an

oligopoly. In such an environment, each buyer takes market conditions as given,

but each seller is aware that his actions have a significant impact upon his rivals'

payoffs, and vice versa.

Apart from large firms whose products are traded all over the entire economy,

even small firms are often part of oligopolies. Many markets are geographically

localized, composed of more or less insulated market areas. Local banks, super-

markets, bars, and restaurants in small communities or on a university campus are

a case in point. Most people live in small towns, suburbs, or villages. Therefore,

the importance of small-size oligopolies should not be underrated.

3.1.1 Game-Theoretic Foundations

Compared to a competitive firm or an uncontested monopoly, the typical oligopolist

faces a considerably complicated decision problem. Strategic interdependency is

the issue. When a price taker or a monopolist determines his optimal supply or

factor demand, he may face a task that is complicated enough, but at least he need
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not be concerned with how others solve similar decision problems. Not so the

oligopolist. He cannot make a good decision unless he does a good job anticipating

the decisions of all rival firms. Hence, each oligopolist faces the doubly complicated

task of solving his own decision problem, and at the same time forming rational

expectations about how rivals do it.

At first glance, these problems seem to lead into a hopeless cycle of circular

reasoning of the kind: "if you do this, then I do that, but then you do the other, etc."

Luckily, game theory has taught us how to avoid this trap.

Key methodological concepts are noncooperative games under imperfect and

complete information and the solution concepts known as

• noncooperative Nash equilibrium,
• self-enforcing agreement.

A game is called noncooperative if its players cannot write binding agreements be-

cause they have no access to an enforcement mechanism. Usually, oligopoly games

are viewed as noncooperative because oligopolists cannot use the machinery of law

enforcement to enforce cartel agreements, simply because these are prohibited by

antitrust law.1

A noncooperative oligopoly game is said to be under imperfect information if

each oligopolist chooses his strategy without knowing his rivals' choices. Also, we

say that it is subject to complete information if each firm knows the market demand

and the cost functions of all firms, if each firm knows that all the others know all

of this, if each knows that all the others know that it knows, etc.2

The fundamental solution concept of noncooperative games is that of a self-

enforcing agreement. Suppose, for the moment, that oligopolists make an agree-

ment, constrained by antitrust law. Since no external enforcement mechanism is

available, such an agreement is useless unless everyone has a built-in incentive to

stick to it, provided everyone else upholds the agreement. Agreements that have

this kind of bootstrap property are called self-enforcing.

A closely related - and in simple one-stage games identical - concept is that

of a noncooperative Nash equilibrium. For the time being, we will not distin-

guish between the two concepts until we deal with more complicated multistage

games.

An alternative interpretation of the solution concept that does not assume com-

munication and agreements is in terms of self-fulfilling expectations. In this in-

terpretation, a complete strategy vector is a solution of a noncooperative game if

no player can do better than choose the strategy that the solution assigns to him

provided he expects that all rivals play their part in it.

Essentially, the proposed solution concept excludes all those agreements or ex-

pectations that are self-destroying in the sense that some player has an incentive

to deviate from his part of the assignment. Surely, it makes no sense to consider

1 This rule has, however, more exceptions than you may think. In the U.S. many formerly regulated industries
were deregulated during the Reagan years but in other countries, such as Germany, industries like insurance,
public utilities, and air transportation are exempt from antitrust legislation, but subject to public regulation.

2 The two pairs of concepts are 1) complete-incomplete and 2) perfect-imperfect information. The distinction
may seem to be overly pedantic, but it is actually quite important.
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strategies as a solution if it is obvious from the outset that some player will breach

the agreement or that the expectations based on these strategies will be refuted. All

you are asked to accept is this exclusion of self-destroying agreements or expec-

tations. If you accept this principle, you have already accepted the game-theoretic

solution concept of noncooperative games.

3.1.2 Historical Note

Oligopoly theory originated with the French mathematician and engineer Antoine

Augustin Cournot (1801-77), whose work has no equal in the history of eco-

nomic theory in terms of sheer originality and boldness of conception (Cournot

(1838)). Cournot not only gave the first clear mathematical formulation of the

oligopoly problem. He even anticipated the solution concept for noncooperative

games long before the development of game theory by John von Neumann and

Oscar Morgenstern (1944). It took forty-five years until Cournot's book became

the subject of a book review. The reviewer was another French mathematician,

Joseph Bertrand (1883). He was actually quite critical of Cournot's achievements,

in particular the assumed rules of the market game.

The bone of contention was the pricing mechanism. While Cournot assumed

that oligopolists set outputs as strategies and let a neutral auctioneer set the market-

clearing product price, Bertrand contended that it is more plausible to let oligopolists

themselves set prices, without the help of an auctioneer. More than merely raising

the issue, he suggested that his proposed modification leads to radically different

conclusions.

Thereafter, the theory of oligopoly largely lay dormant until the recent game-

theory revolution in economics. There are, however, some notable exceptions. One

is the work of Heinrich von Stackelberg (1934), who pioneered the role of com-

mitment in oligopoly theory; the other is that of Francis Y. Edgeworth (1925), who

pointed out some subtle and intriguing problems of price competition as proposed

by Bertrand.

In recent years, the literature on oligopoly has mushroomed and many major new

results have been obtained. But even today most of the literature can be classified

as part of one of the three great traditions linked with the names of Cournot,

Bertrand, and Stackelberg which marked the birth of oligopoly theory. Even the

recent attempts to provide a unified treatment of oligopoly games include Bertrand,

Cournot, and Stackelberg competition as summary descriptions or as constituent

parts of a more complicated multistage game.

3.2 Three Perspectives

We start with an elementary treatment of Cournot, Bertrand, and Stackelberg com-

petition. If the following pages are too simple for your taste, just skim the material

until it gets more involved. The main point that we want to get across in this first

section is how and why the three basic models differ in their rules of the market

game but not in the equilibrium concept.
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Assumptions Consider two oligopolists {duopoly). Each produces a homogeneous

good at constant average cost. Market demand is given by the simple affine function,

defined on the unit price p

*( /? ) := max{l - /? ,0} . (3.1)

Therefore, the inverse demand function is P(X) := max{l — X, 0}.

Firms' unit costs are constant, c\, C2 e (0, 1). Moreover, to assure interior solu-

tions, the c's are assumed to satisfy the conditions

l>2a-Cj. (3.2)

All demand and cost parameters are common knowledge.

3.2.1 The Three Market Games

Using these assumptions, the three basic models differ in their rules of the market

game, as follows.

Cournot Competition

The Cournot duopoly game has three players: the two duopolists and one arbiter,

the neutral auctioneer. Firms simultaneously choose their outputs Jt;, which they

deliver to the auctioneer. The auctioneer computes the aggregate output

X :=x\ +X2

and the market-clearing price P(X) :== max{l — X, 0}. Buyers pay this price, firms

collect their payoffs

7n(xi,Xj) := (P(xt + Xj) - a)xi9 (3.3)

and the game is over. Duopolists' strategies are outputs JC,- e [0, 1]; the price is set

by the auctioneer.

The assumed simultaneity of decisions is not to be taken literally. All that mat-

ters is that each duopolist decides without knowing the rival's choice (imperfect

information).

In game theory one often describes incomplete-information games in sequential

form, as follows:

Round 1. Firm 1 chooses x\.

Round 2. Firm 2 chooses X2 (without knowing l's choice of x\).

Round 3. The auctioneer sets the market-clearing price, and revenues are paid out.

Clearly, it is arbitrary who starts in round 1. As long as one maintains the

imperfect-information assumption, it does not really make any difference whether

one plays at round 1 or 2.
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Bertrand Competition

Under Bertrand competition firms simultaneously choose their unit price pi, subject

to the commitment to serve the market at that price. Buyers shop at the cheapest

seller. If a tie occurs, demand is shared equally by both sellers. Therefore, depending

upon the prices p\, /?2, the payoffs JT; are

{ (1 - Pi)(pt - ci) if pi < pj, pi < 1,

\{\ - pi)(pi - ct) if pi = pj < 1, (3.4)

0 otherwise.
An equivalent sequential formulation of the Bertrand game is as follows:

Round 1. Firm 1 sets p\.

Round 2. Firm 2 sets pi (without knowing p\).

Round 3. Buyers place orders at the cheapest seller, and sellers produce and deliver as
ordered.

Unlike the Cournot model, firms themselves set prices without the help of an

auctioneer, and production and delivery take place after buyers have placed their

orders.

Stackelberg Competition

Under Stackelberg competition one oligopolist, say firm 1, has the power to precom-

mit to a strategy choice and to perfectly publicize that choice before it is the rival's

turn. The first mover is called the Stackelberg leader, the responder the Stackelberg

follower. In principle, Stackelberg competition could be combined with either price

or quantity competition. Since the combination with price competition is a trivial

exercise without new results, we confine ourselves to quantity competition.

Stated in sequential form, the rules of the Stackelberg game are as follows:

Round 1. Firm 1, the leader, chooses x\, delivers to the auctioneer, and makes his choice
known to firm 2.

Round 2. Firm 2, the follower, chooses x-i under full knowledge of jti, and delivers to the
auctioneer.

Round 3. The neutral auctioneer computes aggregate output X := x\ -f X2, and announces
the market-clearing unit price p = max{ 1 — X, 0}; buyers place orders, revenues are paid
out, and the game is over.

Solutions

Denote the solutions of the Cournot competition game by the superscript C, of

the Bertrand game by B, and of the Stackelberg game by S, and, as benchmarks,

the competitive and Pareto-optimal outcome by PO and the Cournot monopoly

outcome by M. We now characterize these solutions, explain how they can be

determined, and give a complete welfare ranking.
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3.2.2 Cournot Competition

The solution of the Cournot competition game is a pair of outputs (xf, xf) that

satisfies the two mutual best-reply conditions

xf e argmaxlTT/te, xf) \ xt > 0}, i ^ j , i, j = 1,2, (3.5)

where m (xi, Xj) is defined in (3.3). These conditions require, in words, that no firm

can do better than stick to xf if the rival sticks to his part of the Nash equilibrium.

Since 7t\ is strictly concave in the own strategy JC,-, the maximizer is unique.

Therefore, the solution is characterized by the Kuhn-Tucker conditions of the

maximization problems in (3.5) for i ^ y, i, j e {1, 2}:

1 - 2xt - XJ - a < 0 (3.6)

and

Xi\\ — 2xi — x • — ct\ = 0. (3.7)

These are solved easily, and one obtains the equilibrium strategies xf,jcf and

equilibrium outcomes

x, = 3 , n, = , (3.8)

PC=l-±^, ^ = ( 2 ~ V C 2 ) 2 - 0.9)

Here, S denotes the consumer surplus

fx

S(X) := / P(y)dy- P(X)X. (3.10)
Jo

Reaction Functions

A useful illustration of the Cournot solution is in terms of each firm's best-reply

or reaction function. Let xf : [0, 1] —• [0, 1] be the solution function of (3.5) with

image xf(xj). It is a best-reply or reaction function of firm / in the sense that if

i assumes his rival j to produce jt/, the profit-maximizing response is to produce

xf(xj). By (3.6) one finds the reaction function

x*(xj) :=max{^-^,o}. (3.11)

It is graphed in Figure 3.1.

The two corner points xf1 and ;c^et have a particular meaning, xf is the Cournot

monopoly point, which is of course a best response to Xj = 0. x^et is the deterrence

point, which indicates the minimum output that rival j would have to supply in

order to drive / out of the market. Also, since xf(xj) is a maximizer of 777 given Xj,

Hi reaches the highest level at (xf(xj), Xj). This is indicated by the dashed isoprofit

curves. All these illustrations, the reaction function, the two corner points, and the

isoprofit curves are convenient and frequently used tools.
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Figure 3.1. Firm l's Reaction Function.

rdet

\ *2* 1

/ \ -

\

/

equilibrium

x2

Figure 3.2. Cournot Solution.

Reaction functions are sometimes criticized for taking the rivals' choice of strate-

gies as given, which supposedly ignores the strategic interdependency of oligopolis-

tic decision problems. But this objection misses the point. Reaction functions are

simply a tool to illustrate and find the solution of the Cournot game.

Finally, import the inverse of the rival player's reaction function xj (x;) into the

diagram that graphs X*(XJ), as in Figure 3.2. Then look at the unique intersec-

tion of the two graphs, and you see that this point gives the unique solution of

the Cournot game because this and only this point satisfies the required mutual

best-reply property. This shows how reaction functions are employed to find the

solution.

Residual Demand

Another useful illustration is the residual-demand representation. Take the rival's

output as given, say at the level x^. Then firm i has only the left-over or residual

inverse demand
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P(Xi,X°)-d

X

Figure 3.3. Cournot Monopoly Point in Residual-Demand Space.

and the best reply to JĈ  is simply the Cournot monopoly solution in the residual-

demand space, as illustrated in Figure 3.3. This shows neatly how Cournot mono-

poly ties in with Cournot duopoly.

Solution by Iterated Elimination of Dominated Strategies

We mention that the Cournot duopoly can be solved by iterated elimination of domi-

nated strategies. We explain this by spelling out a few steps under the simplifying
assumption c\ = C2 = 0:

1. xi < xM — ^ because no one ever supplies more than the Cournot monopoly output.
2. The rival's output is also bounded from above, by the same consideration. Therefore,

firm /'s best reply is bounded from below, due to X[ = ^ (1 — JC7 ) > ^ x | = | .
3. Again, the rival's output is also bounded from below, by the same consideration. There-

fore, firm /'s best reply is bounded from above, due to xt = i(l — Xj) < \ x | = | .
4. Again, the same consideration applies to the rival. Therefore, xt = \{\ — Xj) > ^ .

Therefore, X{ e [^, | ] , which is already pretty close to | . Further application of

this consideration brings us closer and closer to x = ^, as asserted.

Remark 3.1 (Supply Matching) What if the Cournot market game is modified in

such a way that producers can revise their supply decision and match their rival's

supply if it exceeds their own? Show that this modified Cournot game has many

Nash equilibria, among them one in which both suppliers choose \ of the monopoly

output, giving rise to the monopoly price.

3.2.3 Bertrand Competition

The Bertrand solution is a pair of prices (p\, pi) - not quantities - that satisfy the

corresponding mutual best-reply properties

pf e argmax [nt (pt, pf^j } ,

where iti is defined in (3.4).

Uj = (3.12)
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Since jtt is discontinuous you cannot characterize the solution by the Kuhn-
Tucker conditions of the underlying maximization problems. But a few elementary
observations explain why the Bertrand game has a unique solution, characterized
by the equilibrium strategies and equilibrium outcomes:

1. Ifc2 = c\ =c,

P? =
\-c

*f = 0, SB =
(1-c)2

(3.13)
2 2

2. If c2 > c\ (beware: these results concern the limit of pure-strategy equilibria, as explained

below),

pf =max{ci,c2} =

n? = ( l -c 2 ) (c 2 -c i ) ,

= 1 - c2,

= 0, SB =

= 0, (3.14)

(3.15)

In order to prove that this is indeed the solution, first suppose c\ = c2 — c.

Then, pi = c is an equilibrium: if your rival quotes p = c, you cannot do better

by quoting another price. Moreover, quoting a price above p — c cannot be part of

an equilibrium because it always invites underbidding. Of course, p < c would be

nonsense. Therefore, /?/ = c is indeed the unique equilibrium.

Now permit C2 > c\. Then, strictly speaking, the game has no equilibrium in

pure strategies (neither pt > C2 nor pt < C2 can be part of an equilibrium, and

Pi = C2 invites underbidding). However, if one considers the assumed continuum

of prices as an approximation of an arbitrarily fine grid of discrete prices, it is easy

to see that the pure-strategy equilibria of the game converge to the asserted solution.

Reaction Mappings

It is one of the peculiar features of the simple Bertrand model that the reaction

mapping is not defined for all prices above the equilibrium price. Take a look at the

payoff functions Hi (pi, pj) depicted in Figure 3.4 for c\ = c2 = 0. In the diagram

on the left it is assumed that the rival's price pj is above the equilibrium price and

below the monopoly price pM. In this case, the payoff function TT,-(/?,-, pj) has a

discontinuity at pi = pj. Indeed, coming from pi > pj, H[ jumps up at /?/ = pj

/ \
/ 1

/ 1

/ T
/ i

/ I

1 i

\
\

\
\
\
\
\
\
\

i,P)

Pi

Figure 3.4. Payoff Functions in Bertrand Competition.
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from 0 to ^(1 — p{) pi and again from ^(1 — pt)pt to (1 — pi)pi as /?; is reduced

below pj. This illustrates that if the rival sets pj e (0, pM], it is always profitable

to underbid him. But since there is no real number that is smaller and yet closest to

Pj, there is no best response.3

Things change in the price range (pM, 1] and at the equilibrium price. For each

Pj e (pM, 1] the best response is of course the monopoly price pM. However, at

the equilibrium price there is not just one best response, there are infinitely many.

Indeed, any price from the support [0, 1] is an equally good response, as illustrated

in the diagram on the right.

This latter property makes it a bit difficult to accept the equilibrium solution.

Why, you may ask, should firm / respond to pj = 0 with pi — 0 if any other

price from the support is just as good a response? The only answer that one can

give in defense of this procedure is to point out that all prices other than (pf, /?f)

give rise to self-destroying expectations or agreements and hence cannot qualify as

solutions.

Remark 3.2 (Price Matching) What if we modify the Bertrand market game and

admit matching-offer strategies where firms independently quote a price with the

provision that they match any lower price? Show that this modified Bertrand game

has many Nash equilibria. In one of them, each firm quotes the monopoly price,

which gives rise to the monopoly outcome.

3.2.4 Stackelberg Competition

Turning to Stackelberg competition, we come back to quantity strategies (the

Stackelberg model with price strategies is trivial in the present context). Let firm

1 be the first mover, called the Stackelberg leader, and firm 2 the follower. Un-

like in the Cournot model, firm 2 can respond to firm l's output decision JCI.

When 2 makes its choice, it has already observed some relevant history of the

game. Therefore, 2's strategies are reactions to x\, described by functions X2 =

§(JCI) that map the observed history of the game, captured by x\, into 2's

choice.

Evidently, the Stackelberg leader has the same strategy set as under Cournot

competition; but the follower's strategy set is considerably larger, for it includes

all real-valued functions § : [0, 1] —• [0, 1]. This may suggest the somewhat

paradoxical conclusion that the Stackelberg follower is in a stronger position and

should therefore be able to earn a higher profit.

At first glance, this conjecture seems to be confirmed if you consider the strategies

2 l7 ' (3.16)

xi=0, (3.17)

3 The problem vanishes if one allows only discrete prices from a certain price grid. This assumption is plausible.
As the mathematician Kronecker used to say, "God gave us the integers, all else is the work of man."
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that award monopoly power to the Stackelberg follower. Obviously, x\ = 0 is the

leader's best response to the follower's strategy § (x\) and vice versa. Therefore, we

arrive at the paradoxical conclusion that the Stackelberg follower may be a Cournot

monopolist in the equilibrium of the Stackelberg game.

However, the strategy (3.16) is not credible, for the following reason: Suppose

firm 2 plays (3.16), but firm 1 deviates and supplies some positive output x\ > 0.

Then firm 2 would do better to revise its plan and produce the quantity that is a best

response to x\. Having understood this, the Stackelberg leader calls the strategy

(3.16) a bluff and anticipates that the follower will always respond to x\ with

x2 =x%(xi).

The conclusion from all of this is that one can restrict player 2's strategies to the

best-reply function

:= max j 1 ~ C* ~ Xl, o | (3.18)

because no other strategy is credible. In the language of game theory, (3.18) is the

unique solution of the subgame that starts at the node of the games tree where the

Stackelberg follower makes his move.

Of course, the Stackelberg leader anticipates how the follower responds to his

choice and utilizes this knowledge to maximize his own payoff. Therefore, the

leader chooses the output that maximizes his reduced-form payoff function

max n\(x\,X2(x\), (3.19)

( ^ f ) i > (3.20)

which has the unique solution

* f = 1 ~ 2 ; i + C 2 . (3.2D

We conclude: the Stackelberg model has a unique subgame perfect equilibrium

solution. The equilibrium strategies are (3.18), (3.21). They give rise to the equi-

librium outcome

( 3 . 2 3 )

16 32
Compared to the Cournot game, the Stackelberg leader is better off, and the Stack-

elberg follower is worse off.

Remark 3.3 (Can More Information Hurt?) A puzzling consequence of this re-

sult is that the oligopolist who knows his rival's strategy is worse off than the one

who does not have this information. Does this prove that more information can be

detrimental? The answer is no. What hurts the Stackelberg follower is not that he

knows more, but that the rival knows that he knows more.
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— V — Stackelberg point

1/2

Figure 3.5. Stackelberg Point for c\ = c2 = 0.

Reaction Function

As we have shown, all points on the Stackelberg follower's reaction function are

Nash equilibrium outcomes. Invoking credibility of strategies (subgame perfection),

the set of equilibria shrinks to the one strategy that maximizes the Stackelberg

leader's payoff over the follower's reaction function. This is illustrated in Figure 3.5.

There, the solid line is the follower's reaction function, the dashed curves are

the leader's isoprofit curves, and (as a reference) the dashed sloping line is the

leader's reaction function. The Stackelberg point xf, JC| is the point of tangency

of the leader's isoprofit curve and the follower's reaction function. Essentially, the

follower's reaction function is the leader's menu of choices; the leader picks from

this menu the point that suits him the most.

Stackelberg Competition without Commitment Mechanism

How does the outcome of the game change if the leader can communicate but cannot

irreversibly precommit his strategy choice? In this case, the follower has no way of

knowing the leader's decision. Whatever the leader threatens to do, he can always

deviate and do otherwise. Therefore, the game again turns into a game under imper-

fect information (neither player knows his rival's decision). Therefore, Stackelberg

competition stripped of a commitment mechanism is Cournot competition.

While this argument is already conclusive, it may be useful to look at it from yet

another angle. Suppose firm 1 threatens to supply xf even though it cannot precom-

mit. In that case firm 2 will ask: is this threat serious or is it just a bluff? In order

to qualify it as a serious threat, the self-declared leader should have an incentive to

stick to the threat if the other player takes it seriously and plays the assigned role

as Stackelberg follower. However, the leader is better off by deviating because

(*2* (*f)) = ^(1 -*? (** + c2) < 1(1 - 2ci + ci) = xf. (3.25)

Therefore, the supposed follower calls the bluff a bluff and plays the Cournot

equilibrium strategy, and the self-declared leader follows suit.
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3.2.5 Welfare Ranking

The three market games have radically different properties that are summarized in

the following welfare ranking. As a benchmark, we include the Cournot monopoly

and the Pareto optimum in our comparison:

*" = I^ I , ^ = £ ^ f SM = V-^ (3.26)

(3.27)

Ranking by consumer surplus, Bertrand competition is the best and Cournot

competition the worst of all kinds of oligopolistic competition; Stackelberg compe-

tition ranks somewhere in between. Bertrand competition is actually Pareto-optimal

if c\ = C2, just like perfect competition, but Cournot competition is not quite as

bad as Cournot monopoly:

Spo >SB >SS >SC > SM\ (3.28)

Judging by equilibrium profits, every firm would like best to be Stackelberg leader

and least to play in a Bertrand competition game.4 But the Stackelberg leader does

not quite fare as well as the Cournot monopolist:

nM > nf > nf > iti > ixf = npo. (3.29)

Finally, judging by total surplus, defined as the sum total of consumer and pro-

ducer surplus,

T :=<S + 7Ti+7r2,

one gets the same ranking as judging by consumer surplus:

TPO =rB >TS >TC > TM. (3.30)

3.2.6 The Dual of Cournot Duopoly

There are many links between oligopoly and monopoly. In some cases they differ

only in the interpretation placed on symbols. A case in point is the complementary

monopoly, which turns out to be the dual of Cournot monopoly. The nice implication

is that one has a well-developed body of results on complementary monopoly merely

be reinterpreting known results on oligopolies.

Complementary monopolies were already studied by Cournot (1838).5 He con-

sidered the case of two monopolists who sell complementary products - copper

and one unit of zinc - to the competitive brass industry. Brass is made out of one

unit each of copper and zinc, in those fixed proportions. Therefore, the demand for

brass is a function of the sum of the two prices for copper (pc) and zinc (pz).

4 We mention that the preference for being the Stackelberg leader is reversed if reaction functions are upward
sloping, which may occur under product differentiation (see Dowrick (1986)).

5 See Chapter 9 on "Mutual Relations of Producers" in his main book. The duality relationship was later pointed
out by Sonnenschein (1968).



78 Imperfect Competition

Now replace quantity by price in the description of the Cournot duopoly and you

have a complete description of complementary monopoly. Indeed, each monopolist

chooses his price under imperfect information, demand is a monotone decreasing

function of the sum of prices, and the solution of the market game is a pair of

prices that has the mutual best-response property. The formal equivalence of the

two theories is thus established.

An immediate consequence is that a theorem on Cournot duopoly is a theorem

on complementary monopoly. For example, the result that the output supplied un-

der Cournot duopoly is greater than that supplied under pure monopoly translates

into the result that the sum of prices charged under complementary monopoly is

greater than that charged under monopoly. Of course, all other results can be trans-

lated just as well, as summarized by the following welfare ranking, where CM

denotes complementary monopoly without a leader-follower structure, CS com-

plementary Stackelberg monopoly, and M the merger of the two complementary

monopolists:

SPO > gM > SCM > SCS^ ( 3 3 1 )

nM > jrfs > nfM > n^s. (3.32)

3.2.7 Discussion

Having acquired a basic knowledge of the different kinds of oligopoly theory, you

probably have more questions than before we started. For example, you probably

wonder:

• What is the intuition for the welfare properties of Cournot, Bertrand, and Stackelberg
competition?

• Do these results apply to more general demand and cost structures?
• Does anything change if oligopolies interact during many periods?
• Are there any meaningful commitment mechanisms to support Stackelberg competition?
• How could policy makers reduce the welfare loss of Cournot and Stackelberg competition?
• Which of the competing market games is the "correct" one?

Among all these issues, the plethora of oligopoly models is probably the most

disturbing. In the past, many people have claimed that oligopoly theory is caught

in a premature state of development because, after more than 150 years, one has

not even reached an agreement on what is the right equilibrium concept.

As you have just learned, this criticism is not quite right. Oligopoly theorists have

no quarrel about equilibrium concepts. Indeed, they all employ the same solution

concepts of a noncooperative game.

However, the fact remains that there are several plausible oligopoly models that

have widely different properties. So which is the correct one? Should we not ask

oligopoly theorists to clean up their act and agree on a set of market rules before

they deserve to be taken seriously?

There is probably no single right answer. Several contributors have started to

endogenize the choice of market rules to determine whether price or quantity
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competition tends to emerge (see for example Singh and Vives (1984)). Others

have argued that, given the variety of real-world market environments, the vari-

ety of models is a virtue, not a defect. Most important of all, some success has

been achieved in actually providing a unified oligopoly model. Interestingly, as

you will learn later in this chapter, all these attempts include Bertrand, Stackelberg,

and Cournot competition as summary descriptions or as constituent parts of more

complicated multistage games.

3.3 More on Stackelberg Competition

The problem with Stackelberg competition concerns the assumed credibility of

precommitment. How can the leader irreversibly precommit himself to a certain

strategy? How can he credibly "tie his hands" so that he can never take advantage of

second-round gains? Without answering these questions, Stackelberg competition

is simply not meaningful.6

3.3.1 Criticism and Extensions

If you see a model with Stackelberg competition, make it a habit to raise three

questions:

• How does the leader actually "tie his hands" - in the language of game theory, what
commitment mechanism is available to him?

• Why is this commitment mechanism not equally available to other players?
• Is the commitment level perfectly observable to rival players?

In many economic applications one can actually find meaningful commitment

mechanisms. However, these are usually available to all players, not just to an identi-

fiable leader. Therefore, one is led to analyze a modified model of Stackelberg com-

petition - with strategic precommitment, but without a leader-follower structure.

There is a large and growing literature on market games in which each player has

the power to precommit. For example, Dixit (1980) showed how investment may

serve as a commitment mechanism, available to all oligopolists. Similarly, Brander

and Spencer (1983) stressed the role of R&D, Brander and Lewis (1986) the role of

financial leverage under limited liability, and Gal-Or (1990) the role of delegation

to retailers. These and other contributions have proven that commitment plays an

important role in industrial organization. And indeed, the analysis of market games

with specific powers of commitment has become one of the main strands of thought

in current oligopoly theory.

In view of the importance of this tradition, we will now present one simple appli-

cation in some detail. This particular application concerns the role of delegation -

in particular of delegation to managers - as commitment mechanism. It contributes

to resolve a long debate in the theory of the firm, and it has some nice paradoxical

results.

6 Go back to our analysis of Stackelberg competition stripped of a commitment mechanism. There we showed
that the only credible precommitment is the Cournot equilibrium strategy.
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Later on in your reading of this book you should also compare the view of

delegation expounded here with that of the classical principal-agent problem, which

we discuss in Chapter 11 on "Hidden Action and Moral Hazard."

Towards the end of this section, we will also point out some fundamental flaws

of the entire Stackelberg tradition in economics. This has to do with the implausible

requirement of perfect observability in commitment games.

3.3.2 Managerial Incentives as Commitment Mechanism

In economics, there is a long-standing debate about the proper description of firms'

objective function. Economic theorists tend to assume that profit maximization is a

fairly good working hypothesis. However, critics of economic theory and practical

economists alike have always contended that profit maximization is useless as a

descriptive device of what goes on in firms. As J. K. Galbraith (1988) put it in one

of his polemics:

... it has long been accepted in fact - though not, alas, in economic theory - that the
ordinary shareholder, either individually or collectively, is normally without power.
... What did not follow was the acceptance of the fact in the established microeco-
nomic theory. The latter depends, and absolutely, on the aforesaid commitment to
maximizing profits.

The following model builds a bridge between the two seemingly irreconcilable

camps. Like Galbraith, we recognize that the modern corporation is characterized

by delegation of control to professional managers. Managers pursue their own

goals; therefore, delegation gives rise to a principal-agent problem. However, pace

Galbraith, profit maximization is not thrown out all the way. Instead, owners will be

assumed to maximize profits indirectly, by selecting profit-maximizing managerial

incentives. Paradoxically, you will learn that profit-maximizing owners may have

an incentive to direct their managers away from profit maximization toward a more

aggressive sales orientation.7

The Model

The choice of incentives is modeled as a two-stage oligopoly game. At stage 7,

the owners of identical firms simultaneously select a managerial incentive plan and

hire a manager. At stage 2, the incentive plans become public information, and

managers play a Cournot competition game. Based on managers' supply decisions,

the auctioneer sets the market-clearing unit price, trade takes place, and revenues

and costs are paid out.

Three simplifications are assumed: 1) inverse demand takes the simplest possible

form,

P(X) := max{l - X, 0}, X := xx + JC2; (3.33)

7 The following model is based on Fershtman and Judd (1987). For another contribution along similar lines see
Vickers (1985).



Oligopoly and Industrial Organization 81

2) average costs are uniform and constant at the rate c e (0, 1); 3) incentive plans

are linear in sales and profit, the managers' profit share is a,-, and their revenue

share is 1 — a,-; in addition, managers may earn a lump sum fi.

Denoting managers' salary by M; and gross profit by 7T;, incentive plans have

the following form:

Mi(xhxj9ah ft) := ann + (1 - cti)P(X)xi + ft (3.34)

= P(x( + Xj)xt - otiCXi + ft. (3.35)

Obviously, OL\ = 1 leads managers to maximize profits, and a,- = 0 leads them

to maximize sales.

Managers have a reservation price m. Therefore, in order to hire a manager, the

incentive plan has to satisfy the participation constraint

Mt > m. (3.36)

Of course, m must be sufficiently small and not eat up the entire profit, and we may

then normalize it to m = 0.

Solution Concept The analysis is in two steps. First we analyze the stage-2 Cournot

competition subgame played by managers, for all possible incentive plans. The

rationale for isolating and beginning with the last stage of the game is that, once

incentive plans have been chosen and become public information, duopolists play a

self-contained Cournot competition subgame. The results of this subgame are then

used to compute owners' reduced-form payoffs as functions of incentive plans, and

then solve equilibrium incentive plans. In the language of game theory, the solution

concept is that of a subgame-perfect Nash equilibrium. A Nash equilibrium is called

subgame-perfect if it is a Nash equilibrium for each subgame. Subgame perfectness

is one of the most important refinements of the Nash equilibrium concept.

A Labor-Saving Device One can minimize dull and boring computations by in-

telligently recycling the results of Section 3.2.2. For this purpose define

d := one. (3.37)

Managers' objective function can thus be rewritten in a form that resembles the

payoff function of owner-operated firms, except for the lump-sum payment /)•:

Mi = P(xt + Xj)xt - axt + ft. (3.38)

Lump-sum payments do not affect optimal actions. Therefore, we can immedi-

ately use the results of Section 3.2.2 to describe the solution of the Cournot subgame

between managers.

In a second step we compute owners' reduced-form payoff functions and let them

simultaneously choose the c-s and / / s . From that point on it is a snap to compute

the equilibrium incentive plan.
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xfd/2,1)
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Figure 3.6. Manager l's Reaction Function.

Equilibrium of the Cournot Subgame

Given incentive plans (ci, / i ) , fe, fi), managers play a Cournot game. Each mana-

ger maximizes his own income Mt by choice of JC,-. As we already noted, this game

is equivalent to a Cournot game played between profit-maximizing firms with unit

COStS Ci = OtiC.

By (3.8), the solution of that game is

x.(c. c.)-)-2«±El (3 39)

Note that introducing a deviation from profit maximization in the direction of

giving more emphasis on sales is equivalent to reducing the own unit cost Q in an

associated game between profit maximizing firms. The latter makes the own firm

more aggressive, which in turn has a deterrence effect upon the rival firm. Thus,

introducing a sales orientation in the incentive plan drives managers to be more

aggressive. This is illustrated in Figure 3.6, where the solid line with the smaller

slope is the reaction function for Q = c and the parallel dashed one is the reaction

function for Q = \c.

Equilibrium Incentive Plans

In the first stage, owners simultaneously chose their incentive plans. This can be

viewed as a choice of c,, ft. The Nash equilibrium incentive plans simultaneously

maximize owners' reduced-form payoff functions over c\, f\ and C2, fi, respec-

tively.

To compute owners' reduced-form payoff functions, two steps are required. First,

notice that owners can capture the entire gain by setting the lump sum ft at the

level that drives managers' income down to the minimum {Mi = m). This entails

- ft = {P{xt + xj) - aiC)xi - m. (3.40)

Therefore, owners' income coincides with standard profits minus the constant m:

{P{xt + xj) - c)xt - Mt = {P{xi + Xj) - c)xt -m by (3.40)

=: 7ti{xi,Xj) -m.
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Second, insert the solution of the Cournot subgame (3.39), and one has the owners'

reduced-form payoff function

n * (ct, Cj, c) = 7ii (xt (ct ,Cj), Xj (ct, Cj), c)

= (l- 2ct + Cj)(l - 3c + ci + Cj)/9. (3.41)

The equilibrium c's satisfy the best-reply requirements

c* e argmax7r*(c;, cJ9 c), / ^ ; , /, j e {1, 2}. (3.42)

The associated first-order conditions are (note: nonnegativity is not required)8

6c - Act -Cj - 1 = 0 , i ^ 7, i, ; G {1, 2}. (3.43)

One obtains the unique solution

c\ = cl = ^ _ l l . (3.44)

Putting the pieces together, the unique subgame-perfect Nash equilibrium incen-

tive plan and payoffs are

a * = a * = ^ l l , (3.45)

/,- = / 2 * = ' » - 1 ^ . (3-46)

* * 2(1 -c)2

Mf = M2=m. (3.48)

Proposition 3.1 (Equilibrium Incentive Plan) The equilibrium managerial in-

centive plan has the following properties:

1. Profit-maximizing owners direct their managers away from profit maximization toward

a more aggressive sales orientation, af < 1, with a* > Ofor c > ^, and af < Ofor

2. If all managers were induced to maximize profits by setting at = 1, all owners would

earn higher net profits. However, this incentive plan is not part of a subgame-perfect

equilibrium.

Proof Part 1 Follows immediately by the fact that c < 1. Part 2: If a,- were set

equal to 1, managers would maximize gross profits, as in the standard symmetric

Cournot model where equilibrium profits are equal to (1 — c)2/9. Obviously,

(1 - c)2
 = 2(1 - c)2 2(1 - cf =

9 18 > 25

Therefore, the equilibrium incentive plan gives rise to lower profits than profit

maximization. •

8 Show that the second-order condition is satisfied.
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Remark 3.4 If only one firm, say firm 1, has hired a manager, it is easy to see that

it can get the Stackelberg-leader profit by setting

5c - 1 5c - 1
c\ = and a\ = . (3.49)

4 4c

This brings out sharply the incentive to deviate from profit maximization.

Remark 3.5 As a variation, suppose managers play a Stackelberg game in lieu of a

Cournot game. Then the owners of the Stackelberg leader firm L will choose profit

maximization, a^ = 1 - which is hardly surprising - whereas the managers of the

Stackelberg follower firm F are given a stronger sales orientation,

_ 4c - 1 6c - 1
F ~~ 3c 5c

Altogether, the equilibrium profit of the follower firm is higher than that of the

leader,

= (c - I)2 ^ (c - I)2
 = ^

Therefore, we here have a case where it is preferable to be a follower.

Moreover, the leader is even worse off and the follower better off than in the

original game with Cournot competition. This leads us to the surprising observa-

tion that the commitment device of delegation can be very powerful if it is used

against a Stackelberg player who is already endowed with a direct commitment

mechanism.

Discussion

At this point you may object: why should profit-maximizing owners deviate from

profit maximization if this leads them only to lower net profits? Why do they not

simply make an agreement to stick to profit maximization, so that are all better

off?

The reason why this does not work is that an agreement to this effect is not self-

enforcing. If the owners of the rival firm stick to profit maximization, it is always

the best response to deviate from profit maximization and introduce a strong sales

orientation. Similarly, if the rival firm's owners set a = a*, the best reply is also to

seta = a*, not of = 1.

The conclusion from all of this is that delegation has its price - not because

managers cannot be induced to maximize profits, as in the classical principal-agent

story, but because owners cannot resist using managerial incentive plans to make

even higher profits, which is, alas, self-defeating.9

9 We mention that the restriction to linear incentive plans poses a serious problem. Suppose owners can also write
so-called forcing contracts of the form M,- = m if *,• = Jc,- and M,- = 0 otherwise. Such forcing contracts are
a much more powerful commitment mechanism than the linear incentive plan assumed in this section, but they
have radically different consequences. Indeed, if only one owner can delegate, you get the classical Stackelberg
outcome. However, if both owners can delegate and use forcing contracts, the game collapses to the usual
Cournot game. Another serious problem is that effective commitment requires that the owner and the manager
be able to convince others that they have not written a new contract superseding the one to which they claim
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Finally, we mention that the philosophy of the present approach can be applied

to explain other incentive schemes, such as labor contracts with a profit-sharing

component. Several years ago Weitzman (1984) came out with the idea that the

widespread use of profit sharing in labor contracts would cure the notorious un-

employment problem, essentially because profit sharing gives rise to a permanent

excess demand for labor. An obvious objection to Weitzman's claims was that in-

dividual firms and their employees have no incentive to introduce profit sharing,

so that, in the absence of tax incentives, individual firms would never voluntar-

ily undertake the proposed switch (see for example Wadhwani (1988)). However,

this objection holds true only in a competitive or a monopolistic framework. If the

product market is organized as a Cournot oligopoly, labor contracts with a profit-

sharing component can be equilibrium labor contracts pretty much for the same

reason the introduction of a sales orientation is an equilibrium incentive scheme in

managerial labor contracts (see Stewart (1989)).

3.3.3 Commitment and Observability

The kind of stage games exemplified in the previous section on managerial incen-

tives has been very popular in recent years. A large part of the field of theoretical

industrial organization has been built on this foundation.10 And even the self-

proclaimed "new international trade theory," which stresses the role of subsidies,

tariffs, and regulations as commitment devices, is nothing but an application of the

mechanics of stage games and subgame perfectness (see for example Helpman and

Krugman (1989)).

However, this entire tradition has at least three serious flaws:

• Results tend to be highly sensitive to the assumed sequence of moves.
• Finding subgame-perfect equilibria can be difficult except if one works with simple exam-

ples that permit explicit solutions and assure well-behaved reduced-form payoff functions.
• Worst of all, the strategic benefit of commitment tends to vanish if the observation of

commitment levels is distorted, even if that distortion is arbitrarily small.

The first flaw - the sensitivity of results to the assumed sequence of moves - has

led to the criticism that multistage games can be used to explain everything and

thus nothing (Hellwig (1987)).

The second flaw explains why multistage games tend to come in the form of

simple examples such as linear demand and cost functions.

The third flaw poses the most serious challenge to the entire Stackelberg tradition.

For this reason, we will now elaborate on it, following an important contribution by

Bagwell (1995). The argument will be based on a simple example, but it illustrates

a general property.

to have committed. This problem is serious because, given others' belief about the managerial incentive plan
chosen by one firm, it is always in the joint interest of the owner and the manager of this firm to sign a new
contract instructing the manager to maximize profit.

10 See for example the textbooks by Tirole (1989) and by Martin (1993).
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Table 3.1. Noisy Stackelberg

1
s

c

game

S

(5,2)

(6,3)

2

C

(3,1)

(4,4)

Bagwell's Criticism

Consider a 2 x 2 Stackelberg game where player 1 is the Stackelberg leader, and

player 2 the Stackelberg follower. Both players' action set is A := {S, C}, where

S is mnemonic for Stackelberg and C for Cournot. Payoffs are described by the

payoff matrix in Table 3.1.

If players have to choose their actions simultaneously, the game has the unique

equilibrium strategy vector (C, C) (Cournot solution). In contrast, the two-stage

Stackelberg game, where player 1 moves first, precommits to an action, and per-

fectly communicates it to player 2 before that player chooses his own action, has

the unique subgame-perfect equilibrium (Stackelberg solution)

a\ = S (leader's equilibrium strategy),

cr(S) = S, cr(C) = C (follower's equilibrium strategy).

The associated equilibrium outcomes are (C, C) (Cournot) and (S, 5) (Stackel-

berg).

Now introduce noise into the Stackelberg game. When player 1 chooses an

action a\ e {5, C}, player 2 receives a signal (p e {5, C}. That signal is imperfect

or distorted because both signal values occur with positive probability, as follows:

Pr{0 = S | 5} = 1 - 6, (3.50)

Pr{0 == C | C} = 1 - 6, 6 G (0, 1). (3.51)

Therefore, if 1 chooses a particular action, 2 observes a signal indicating the same ac-

tion with probability 1 — e. Obviously, the signals are almost perfect if e is close to 0.

The pure strategies of the noisy Stackelberg game are a\ e {5, C} (player 1) and

<j((j)) e {S, C} for all (p e {S, C). In other words: player 2's strategies are reactions

to the observed signal, whereas player l's strategies coincide with his actions.

Pure-Strategy Equilibrium Amazingly, the value of commitment vanishes al-

together if we look only at pure-strategy equilibria, even if the imperfection of

observability is arbitrarily small.

Proposition 3.2 (Noisy Stackelberg game I) The noisy Stackelberg game has ex-

actly one pure-strategy equilibrium

ax = C, or (5) = or(C) = C. (3.52)
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Player 2 does not react to the signal, and (C, C) (Cournot) is the unique equilibrium

outcome.

Proof Suppose, ad absurdum, that in equilibrium player 2 reacts to the signal as

in the strategy

a(S) = S9 a(C) = C.

Then player l's best reply is a\ — S, provided e is smaller than ^ . n Yet, player 2's

best reply to a\ — S is a (S) = cr(C) = 5, which is a contradiction. By a similar

argument it follows that a (S) = C, a{C) = S cannot be part of an equilibrium

either. •

Mixed-Strategy Equilibria Perhaps one can recover the value of commitment if

one is willing to consider mixed-strategy equilibria.

Note that neither the simultaneous-move game nor the Stackelberg game under

perfect observability has mixed-strategy equilibria. However, the noisy Stackelberg

game has exactly two such equilibria. One of them does indeed recover the value of

commitment and gives support to the traditional Stackelberg equilibrium. However,

the other mixed-strategy equilibrium has exactly the opposite property: it destroys

the value of commitment and supports the Cournot equilibrium outcome when the

signal distortion becomes small.

In order to prepare for the proof of these claims, it is useful to understand which

strategy profiles cannot be part of a mixed-strategy equilibrium. Mixed strategies

will be denoted by

X := Pr{ai = S}, ij(0) := Pr{a2 = S\(/>}. (3.53)

Lemma 3.1 (Impossibilities) Suppose the signal distortion is sufficiently small,

€ < \. The following strategy profiles cannot be part of an equilibrium in mixed

strategies:

1. Only player 2 randomizes.
2. Only player 1 randomizes.
3. Player 2 randomizes at each signal.

Proof 1: If player 1 plays a pure strategy, then player 2's best reply is unique;

therefore, in equilibrium player 1 cannot randomize either. It follows that in a

mixed-strategy equilibrium

k e (0, 1) (player 1 randomizes). (3.54)

2: Similarly, if player 2 plays a pure strategy, then player 1 's best reply is unique.

Therefore, in a mixed-strategy equilibrium,

i7(5) e (0,1) or n(C) e (0, 1). (3.55)

3: Suppose player 2 randomizes at all signal realizations, i.e., ^(5), r](C) e (0, 1)

and A € (0, 1). Then player 2 must be indifferent between the two actions S and C

11 If € > j , the relevant strategy of 2 is cr(S) = C, a(C) = S, and player l's best reply remains the same.
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regardless of which signal has been observed. Therefore, at each signal realization,

the following condition of indifference between action S (LHS) and action C (RHS)

must be satisfied for player 2:

2y + 3(1 - y) = y + 4(1 - y), ye {a, 0). (3.56)

Here a and /3 denote the conditional probabilities of a\ = 5, conditional on ob-

serving signal 5 and C, respectively.

Of course, these two conditions of indifference can be both satisfied only if the

associated conditional probabilities are the same. Therefore, a = 0.

Now compute a and /?. Using Bayes' rule, one obtains

a := Pr{ai = S | 0 = 5}

= S \ai = S}Pr{ai = S}

Pi# = S)

= <1Z£» . (3.57)
(1 — e)X + 6(1 — X)

By the same consideration you can solve /3 := Pr{a\ = S | 0 = C} and confirm

that it has the same solution as a if you replace the 1 — e in (3.57) by 6. Since a

and ft must be the same, it follows that 6 = 1—6 and therefore 6 = ^, which

contradicts the assumed 6 < \. u

Proposition 3.3 (Noisy Stackelberg Game II) Suppose the signal distortion is

sufficiently small, £ <\- The noisy Stackelberg game has exactly two mixed strategy

equilibria. Whereas one equilibrium supports the Stackelberg outcome,

X = l-e and r)(C) = J^J~, ri(S) = 1, (3.58)

the other supports the Cournot outcome

X = 6 and rj(S) = , 7/(0 = 0. (3.59)
2 — 46

Proof The above Lemma 3.1 implies that a mixed-strategy equilibrium must have

the following form:

X e (0, 1) and either r](S) e (0,1) or rj(C) e (0,1).

Using the standard property of indifference between the actions that should be

played in equilibrium with positive probability, the asserted equilibria follow im-

mediately. Note that if 6 is made small, the first equilibrium leads almost always to

the Stackelberg outcome and the second to the Cournot outcome.

To exemplify the procedure of the proof, we now show that X = 1 — 6 is a best

reply to t](S) = 1, I J ( O = (1 - 4*)/(2 - 46).

Recall that a mixed strategy can only be player l's best reply if he or she is

indifferent between the two actions a\ = S and a\ — C. Player l's payoff, if
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playing a\ = S is (using r](S) = 1)

= S \ ax = S]

= C | ax = S] (5i?(C) + 3(1 - rj(C))

= 5-2e + 2er)(C). (3.60)

Similarly, player l's payoff from playing a\ — C is

= C} (6ri(C) + 4(1 - n(C))

6). (3.61)

After a bit of rearranging it follows immediately that the condition of indifference,

Ui(S, ri) = t/i(C, rj), holds only if r](C) = (1 - 4e)/(2 - 46), as asserted. n

Altogether, these results indicate that the entire tradition of games that rely on the

strategic benefits of commitment is seriously flawed.12 This is bad news for those

who hope to write important theory with the simple tools and tricks of multistage

games and subgame perfection.

3.4 More on Cournot Competition

Of all oligopoly models, Cournot's is the oldest and most popular. Many economists

believe that it gives the best mileage for understanding the basic principles of

oligopolistic behavior. And some have even argued that it is indicative of the out-

come of more realistic multistage games in which firms set prices without the help

of a fictitious auctioneer.

Given the eminent importance of the Cournot market game, we now prepare

for a fuller understanding of it. The emphasis in this section is on generalizing

assumptions on demand and cost functions. Among other things, we will explore

what happens if firms may exit and new firms may enter, and point out some

surprising effects of cartel laws on equilibrium profits.

3.4.1 Existence and Uniqueness

By a well-known result due to John Nash (1950b), every noncooperative game

with finite pure-strategy sets has at least one Nash equilibrium solution. Therefore,

existence of a solution of the Cournot market game is always assured if each

oligopolist is restricted to choose from a discrete grid of output levels. But what

happens if we admit any real-valued output, and, more important, what can be said

about existence and possibly uniqueness of pure-strategy equilibria?

12 We mention that there are some commitment games where actions are payoff-irrelevant and signals are payoff-
relevant. For example, central banks choose the stock of high-powered money, which in turn is reflected in the
inflation rate. Of course, the public cares more about the signal of the authorities' actions - the inflation rate
- than the underlying action. Not surprisingly, equilibrium strategies may be signal-dependent in such a case.
See for example Fudenberg and Levine (1992).
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Actually, as Glicksberg (1952) has shown, the restriction to a discrete grid of

strategies can be replaced by the requirements that strategy sets be compact (closed

and bounded) and payoffs be continuous functions of strategies. However, both

these general results assure existence only in an unrestricted strategy space that

permit pure as well as mixed strategies.13 Many people feel uncomfortable with the

idea that managers determine their output by the flip of a coin. Therefore, one would

like to know which assumptions assure existence of a pure-strategy equilibrium.

Furthermore, multiple equilibria of a noncooperative game pose serious prob-

lems of interpretation and make comparative statics meaningless. Therefore, one

would like to know even more specifically which assumptions assure a unique

pure-strategy equilibrium.

In the oligopoly literature there is a large set of sufficient conditions for existence

and uniqueness, some of which are more and some less technically demanding.14 In

the following we present one particular proof. The underlying assumptions are not

the weakest requirements. However, the proof has the advantage that it is accessible

without advanced mathematical prerequisites. In addition, it provides a simple

solution procedure that is often useful for computing the equilibrium strategies of

Cournot and other strategically aggregable (Selten) games.

Assumptions

Consider an industry composed of n > 2 suppliers of a homogeneous good. Firm
i produces the good in quantity JC; > 0. Its cost function is Q(JC/). The inverse
demand function is P(X), where X := YH=\ xi *s the total market supply.

(Al) Cost functions are continuous on R+ and twice continuously differentiable on R++

withC-fe) > 0.
(A2) Demand has a finite satiation point, P(X) = 0, VZ > X. P is continuous on R+ and

twice continuously differentiable with P(X) > 0, and P'{X) < 0 on (0, X).

(A3) All firms are viable if they alone serve the market: limx.^0 C[(xi) < lim^^o P(X).

(A4) Cost functions are convex (C-'QCJ) > 0) and inverse demand concave (P"(X) < 0),
at least one strict.15

In order to prepare the proof of existence and uniqueness, we recall the rules of

the Cournot oligopoly game and adopt some new notation and concepts. As before,

strategies are outputs xt e [0, X], and a complete strategy choice is denoted by

the strategy vector x := (x\, . . . , xn). The complete strategy set X is the Cartesian

product of the individual strategy set [0, X\\ therefore, x e X. In addition, define the

truncated strategy vector as JC_/ := (x\, . . . , xi-\, JC;+I , . . . , xn)\ viewed from the

perspective of firm/, it lists the strategies of all rival players. Finally, let JT,- : X -> R

13 Pure strategies are feasible output levels; mixed strategies are probability distributions over the set of feasible
output levels.

14 For a review consult Friedman (1986).
15 These assumptions can be replaced by the following weaker requirements concerning the marginal profit

function: P"(X)JC,- + P'(X) < 0 VJC; > 0, X < X, P'{X) - C'f{xi) < 0 VJC/ > 0, X < X.
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be firm /'s profit as a function of all players' strategies:

Definition 3.1 The output vector xc e X is a pure-strategy equilibrium of the

Cournot oligopoly game if it is a mutual best response:

xf e arg max m(*,-,*!:,.), i = 1 , . . . , n.
JCi€[0,X]

Since the profit function is strictly concave, a pure-strategy Nash equilibrium is

equivalently described as the solution of the following Kuhn-Tucker conditions,

f o r / = l , . . . , n : 1 6

[P/(X)xi + P(X)-Ci(xi)]<0 and [• • .]xt = 0, (3.63)

Inclusive Reaction Function - a Convenient Tool

Select the Kuhn-Tucker conditions for one particular firm /. Make a "bold" move:

view X > 0 as a parameter, and summarize the solutions of the /th firm's Kuhn-

Tucker conditions for all X e [0, X] by a function 0; (X) defined on X > 0. Adapt-

ing a terminology proposed by Selten, we call 0; an inclusive reaction function.17

Finally define the aggregate inclusive reaction function

n

(3.65)

You will see, in just a moment, that the Nash equilibrium has a lot to do with the

fixed point of 0, which is that particular X e [0, X] that 0 maps into itself:

0(X) = X. (3.66)

Example 3.1 Suppose P(X) := max{l — X, 0} and C,-(JC,-) := C,-JC,-, with c,- < 1.
Then the inclusive reaction functions 0,- and 0 are as follows:

<pi(X) = max{l - X - Q , 0}, 0(X) = nmaxjl - X - c, 0},

where c denotes the industry's average of marginal costs,

16 The second partial derivative of m with respect to xt is equal to ( P ^ - + P') + (P7 - C'(). By (A4) both
terms in parenthesis are negative. Therefore, the profit function is strictly concave, and the maximum is unique
(if one exists). Existence of a maximum is assured by the Weierstrass theorem, since the objective function is
continuous in JC, and the associated domain [0, X] is compact.

17 This function appears in the literature under different names. Selten (1970) calls it "Einpassungsfunktion"
Novshek (1984) "backward reaction mapping," and Phlips (1995) "fitting-in function."
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0 X

Figure 3.7. Inclusive Reaction Functions.

X

Properties of Inclusive Reaction Functions The functions 0; and 0 have sev-
eral notable properties that follow immediately from the underlying Kuhn-Tucker
conditions:

1. Since every solution of (3.63), (3.64) is a Nash equilibrium, every fixed point X of 0
generates a Nash equilibrium

and vice versa;

2. (j)i(X) = 0 and 0/(0) > 0, and therefore 0(X) = 0 and 0(0) > 0;
3. 0 is continuously differentiate, with <p'(X) < 0, if 0(X) > 0, since

0/, 0, and the fixed point X of 0 are illustrated in Figure 3.7 and 3.8.

Basic Existence and Uniqueness Theorem

With these preliminaries, the proof of existence and uniqueness is a snap.18

Proposition 3.4 Assume (A1)-(A4). The Cournot oligopoly game has a unique

pure-strategy equilibrium xc.

Proof You have already learned that every fixed point X gives us a Nash equi-

librium (0i (X),..., 0n(X)), and vice versa. Therefore, existence of equilibrium

is equivalent to existence of a fixed point of 0. Since 0 is continuous and strictly

decreasing, ranging from 0 (0) > 0 to 0 (X) = 0, 0 does have a fixed point (0

must cross the 45° line somewhere, as illustrated in Figure 3.8). Also, since 0 is

strict monotone decreasing if 0(JC) > 0, it cannot have more than one fixed point.

Therefore, the fixed point is unique. •

18 The following proof is usually attributed to Szidarovszky and Yakowitz (1977). However, it appeared seven
years earlier in Chapter 9 of Selten (1970). Selten even generalized the procedure of this proof to cover Cournot
oligopoly models with joint production and interdependent demand.
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4>(X)

'45'

X X

Figure 3.8. Fixed Point of </>.

Example 3.2 In order to see how the inclusive reaction function provides a simple

solution procedure, go back to the assumptions and notation of Example 3.1. It

is a snap to compute the fixed point X, which is exclusively determined by the

industry's average of marginal costs c:

n
X =

1

Finally, insert X into the functions fa, and one has the equilibrium strategies

= ——1(1 - a) - n(c, - c)]-

(If some of the thus determined outputs are not positive, eliminate the firm with the

highest Q , and repeat the entire procedure until all outputs are positive.)

Notice how the distribution of equilibrium outputs xf is governed by the devia-

tion of individual marginal costs from the industry's average. Also notice that the

Cournot equilibrium price is exclusively determined by that industry average and

unaffected by any reshuffling of individual marginal costs.

Moreover, note that if the c's are changed in such a way that the average, c,

remains unchanged, the equilibrium outputs change as follows:

c = const

This suggests that the Treasury can raise tax revenue without affecting the market

price by taxing output of low-cost firms (where the tax base is high) and subsidizing

output of high-cost firms (where the tax base is low). This issue is picked up in

Example 3.5.

Example 3.3 As another example consider the simple linear Cournot oligopoly

from Section 3.2 with three firms. Suppose firms have a collusive agreement that

binds them to not exceed the output quotas

= 0.6, x2 = 0.4, x3 = 0.
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Determine the equilibrium outputs in the Cournot game.

In a first step show that the inclusive reaction functions are

= max{0, min{l - X, x;}},

1.1 if Xe [0,0.4],

1.5 - X if X e [0.4,0.6],

2A-2X if X e [0.6, 0.9],

max{3 - 3X, 0} if X > 0.9.

It follows immediately that the unique fixed point 0(Z*) = X* is X* = 0.7. Insert

X* into (pi(X)), and one has the unique equilibrium outputs

x* = JC* = 0 . 3 , jcf = 0 .1 .

Multiplicity and Nonexistence

The above conditions for existence and uniqueness may seem fairly innocuous. But

it does not take all that much to violate them and end up with multiple equilibria

and even nonexistence.

Take a look at the following example, which is also an instructive application of

the inclusive reaction function. The only deviation from the assumptions (A1)-(A4)

is that the demand function has a discontinuity.

Example 3.4 Let the inverse demand be given by the discontinuous function P :

[0, 1] -> K+ with

P ( x , . _ i 2 - X for Xe[0,X]9
r W — \ l - X for Xe(X,l]

with X = 0.75, and let there be two identical firms with zero marginal costs.

Using these data, determine the inclusive reaction functions fa: one obtains

J2-X for Xe[0,X],

\ l - X for Xe(X,l].

Therefore, the aggregate inclusive reaction function (p is

(4-2X for Xe[0,l],

\2-2X for Xe(X, 1].

Plot the graph of(/>, and you see immediately that 0 does not have a fixed point

(see Figure 3.9). Therefore, no pure-strategy equilibrium exists. (Of course, if you

have nonexistence in pure strategies, you may go to randomized ormixed strategies.)

Generalizations

Before we conclude this glimpse of the existence and uniqueness problem, we

mention that there is an enormous literature on these issues and a host of alternative

necessary or sufficient conditions.
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Figure 3.9. Nonexistence of Cournot Equilibrium.

A fundamental result that can be applied here is a well-known existence theorem

by Debreu (1952), which says that one has always a pure-strategy equilibrium if 1)

strategy sets are convex and compact, 2) all payoff functions are continuous in the

entire strategy vector, and 3) all payoff functions are quasiconcave in the players'

own strategies. Application of this result allows us to loosen the requirements for

concavity of market revenue and convexity of cost function and still have existence,

though not necessarily uniqueness.

But there are many further conditions that cannot be subsumed under Debreu's

existence theorem. For example, Roberts and Sonnenschein (1976) allow general

(downward-sloping) inverse demand and prove existence and uniqueness if there

are n identical firms with nondecreasing marginal cost. One limitation of this result

is that it assumes identical firms. Allowing different cost functions, Novshek (1985)

extends our existence result to arbitrary continuous cost functions, so that one can

do without our convexity assumption and assure existence, though not necessarily

uniqueness.

Finally, Kolstad and Mathiesen (1987) provide a tight necessary and sufficient

condition for uniqueness. Essentially, this condition requires that the effect of a

small change in a firm's output on its own marginal profit must be greater than the

effect on its marginal profit from a similar output change on the part of all rival firms.

3.4.2 Digression: A Prescription for Leviathan*

As a brief application, consider the tax-revenue-maximizing Leviathan in the frame-

work of Cournot oligopoly. Let tf e (0, 1) be the current tax rate per output unit

levied upon firm i. You are hired as an advisor. Your job is to figure out whether

and how these rates should be changed. The preset goal is to maximize tax reve-

nue. However, there is one constraint. Whatever you recommend, you should not

change the product price or the overall supply, so that consumers are not upset by

your proposed tax reform.

In order to simplify matters, assume constant marginal costs. Now everything is

fairly simple, and you can start with your job.
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A useful property of the Cournot equilibrium price is that it is invariant with

regard to changes in marginal costs as long as their sum remains unchanged.19 This

result follows immediately if you sum over the Kuhn-Tucker conditions (3.63) of

all active firms, and hence obtain
n

P\XC)XC +nP(Xc) = 5^C;(jcf). (3.68)

Denote the constant marginal cost by a > 0. Since the inclusion of the tax rate

tf has the same effect as an increase in marginal cost, Q + tf can be viewed as

the effective marginal cost of firm i. It follows immediately that any reshuffling of

tax rates that leaves their sum unchanged has no effect on equilibrium price and

quantity.

Using this result, a second useful property is that the Cournot equilibrium strate-

gies xf are affected only by firm Ts own tax rate tt and independent of the t's of

other firms, as long as the sum of tax rates is unchanged. Indeed, by (3.68), one has

in this case

Combining both results, your job is now reduced to finding those tax rates that

solve the following simple maximization problem:

mzx^tixfin) s.t. X>-*?)=0. (3.70)

Obviously, this decision problem is well behaved, and it follows from the first-

order conditions that tax rates should satisfy the following requirement:

ti-tj = \(cj-Ci) Vi^j. (3.71)

Therefore, all firms that have the same marginal cost should also be taxed the

same, and the higher the marginal cost, the lower should be the tax rate.

This result is quite surprising at first glance because any zero-sum reshuffling

of tax rates leads to a zero-sum reshuffling of outputs but not of tax receipts.20

However, given the fact that aggregate output remains unchanged, it is clear that

one can generate tax revenue by imposing a tax on those who have a high tax base

(high output due to low marginal costs), and neutralize its effect on price by paying

an equal subsidy per unit output to those who have a low output and hence subsidy

base.

Example 3.5 Consider the Cournot duopoly with linear inverse demand and con-

stant marginal costs:

P(X):=1-X, ci=0, c2 = 0.2.

19 This observation is due to Bergstrom and Varian (1985b).
2 0 Oligopoly theory offers a rich mine for public finance. For another taste of it, take a look at Levin (1985), where

it is shown that an output tax, designed to reduce the emission of an undesirable by-product, such as air or water

pollution, may actually increase pollution. This could never happen in a competitive framework.
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Suppose firm 1 's output is taxed and firm 2's output is subsidized, both at the same

rate t. Then the equilibrium outputs are a function of the tax rate t, as follows:

xf (0 = 0.4 - t, xf (0 = 0.2 + t. (3.72)

Therefore, the tax receipt maximizing tax rate is

The associated tax receipt amounts to 0.0005 units.

3.4.3 What Does a Cournot Equilibrium Maximize?*

Isn't this a silly question? Oligopolists maximize their own profit. They do not care

about how the outcome affects their rivals' payoffs. Therefore, it is not likely that

the Cournot equilibrium maximizes the objective function of any single player or

that it maximizes social welfare. So, what sense does this question make?

Even though all of these observations are correct, it would still be useful to know

that the Cournot equilibrium can also be derived as the maximizer of a certain

fictitious objective function.

Indeed, it can, if cost functions are uniform.21 Among other applications, this

happens to be useful in assessing the welfare properties of Cournot equilibria.

Proposition 3.5 Assume (A1)-(A4) and uniform cost functions. The Cournot equi-

librium output per firm, z := Xc /n, is the unique maximizer of the weighted sum of

total surplus and aggregate profits, represented by the function F : [0, X] —> R+,

with image F(z):

F(z) := (n - l)T(z) + nn(z), (3.74)
rnz

T(z):= / P(t)dt-nC(z), (3.75)
Jo

n(z):=P(nz)z-C(z). (3.76)

Proof F is strictly concave; therefore, the maximizer of F must be the unique

solution of the Kuhn-Tucker condition ((A3) assures existence of an interior solu-

tion)

P(nz) + P\nz)z - C\z) = 0.

But this condition is precisely the same as condition (3.63). •

The fictitious objective function F has a suggestive welfare interpretation. In the

first term T(nz) is the total surplus (net consumer plus producer surplus), which

is a measure of social welfare, and in the second term n(z) is the profit per firm.

If there is only one firm, total surplus is assigned zero weight, and z is determined

exclusively by profit maximization. However, as the number of firms is increased,

21 This result is due to Bergstrom and Varian (1985a). Unfortunately, it cannot be extended to the case of different
cost functions.
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total surplus gets a higher and higher weight relative to profits, and industry output

gradually approaches its social optimum.

3.4.4 What If Suppliers Form a Cartel?

Which outputs would firms choose if they could write an enforceable cartel agree-

ment? The following strictly concave program gives the answer. Here it is assumed

that the cartel maximizes the sum of its members' profits, which may then be

redistributed appropriately:22

max P(X)X-J2Ci(xt) (3.77)

s.t. 5 ^ J C , - - X > 0 and x > 0. (3.78)
i=i

Since the decision problem is strictly concave, its solution is unique and charac-

terized by the Kuhn-Tucker conditions (existence of an interior solution is assured

by (A3))

P(X)-C'i(xi)=0 Vi. (3.79)

Denote the cartel solution by the superscript K. It differs from the Cournot

solution as follows:

Proposition 3.6 The cartel produces less output and earns higher profits than the

Cournot equilibrium.

Proof Suppose, per absurdum, that XK > Xc. Then there must exist at least one

firm, say firm r, that produces at least as much as under the C-regime: xfr < xf.

Since all firms produce positive quantities (recall that interior solutions are assured),

it follows by (3.63) and the fact that P\XC) < 0 that

P\XC)XC + P(XC) < P\Xc)xf + P(XC) = Cf
r(xf).

By the convexity of the cost functions, combined with (3.79), one has

C;(xr
c) < C'r{x?) = P\XK)XK + P(XK).

Therefore, putting the two pieces together, marginal revenue is strictly increasing

inX:

P\XK)XK + P(XK) > P\XC)XC + P(XC).

But this contradicts the assumed concavity of the market revenue function.23 Finally,

in order to prove that the cartel earns higher aggregate profits, just think of the fact

that the cartel could always stick to the Cournot equilibrium output vector. But, as

we have just seen, it can do better. •

2 2 This requirement is incidentally a property of the standard solution concepts of cooperative bargaining solutions.

However, it may be more appropriate to view the bargaining over the distribution of profits as a noncooperative

game, with sequential moves and countermoves, which was reviewed in Chapter 1.
2 3 Recall the second-derivative characterization of concave functions explained in Appendix C.
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The Cartel Instability Problem

If you were part of a cartel, would you rely on your fellow cartel members' promise

to stick to the terms of the agreement even if no external enforcement is available

because cartel agreements are illegal?

A fundamental yet simple observation suggests that the answer is negative.

Proposition 3.7 The cartel solution xK is not self-enforcing. Each firm's best res-

ponse to xE( is to exceed his output quota xf.

Proof We have already shown that the cartel solution differs from the Cournot

solution. By definition, each Cournot solution is self-enforcing and vice versa.

Therefore, the cartel solution cannot be self-enforcing. To show that each firm has

an incentive to exceed his output quota, compute firm /'s marginal profit at the

point xK; using the fact that P is strict monotone decreasing, that each xf > 0,

and (3.79), one obtains

P(XK) + P\XK)xf - C[(xf) > P(XK) + P\XK)XK - C[(xf) = 0.

Therefore, if rivals stick to the cartel agreement, it is more profitable to violate the

agreement and produce more than the output quota. •

If no external enforcement is available, why doesn't the cartel invent its own

internal enforcement mechanism? Surely, the cartel could threaten to punish all

those "bad guys" who breach the agreement? If the penalties are sufficiently high,

cheating is deterred and the cartel agreement holds. However, the threat of sanc-

tioning those who breach the cartel agreement poses a serious credibility problem.

Once a breach has occurred, the execution of the sanctions cannot possibly undo

it. Hence, once a violation has occurred, the execution of sanctions has costs but

no benefits. In this situation, no rational cartel would stick to its threat, unless it

had found a way to "tie its hands." But, of course, it is difficult to imagine any such

commitment mechanism.

The Role of the Antitrust Office

This suggests that the prohibition of cartels is sufficient to actually prevent cartels.

Interestingly, this works without an antitrust office that collects evidence to detect

hidden cartels and then triggers legal sanctions. All that is needed is that the services

of law enforcement, which are part of contract law, are not extended to cartel

agreements.

Of course, this does not imply that one does not need an antitrust office at all.

After all, someone has to figure out whether a contract that coordinates the actions

of some firms - be it a full-scale merger or just a joint advertising campaign - falls

under the domain of antitrust law.24

24 In many applications, the distinction between enforceable and illegal agreements is rather loose. This sug-
gests an intriguing research problem: to analyze self-enforcing cartel agreements under uncertainty about the
enforcement of antitrust laws.
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Disguised Cartel Agreements

The task of the antitrust office is in many ways considerably more complicated than

it may seem at first glance. Many cartel agreements come in disguise and then often

pass as legal agreements, served by the machinery of law enforcement.

For example, referring to environmental concerns, the firms of an industry could

write an agreement to restrict the emission of certain pollutants. If pollution is a

function of outputs, this joint restriction of pollution is really a deceptively pack-

aged system of monopolistic output quotas. Similarly, the firms and workers of an

industry may take advantage of the right to collective bargaining - one of the ma-

jor exemptions from antitrust law - and write an industry-wide labor contract that

restricts employment and thus outputs. These are just two of many widely used prac-

tices that make the job of the lawmaker and antitrust officer despairingly difficult.

An Externality Interpretation

The choice of quantity strategy by each oligopolist has a measurable effect on the

market price and hence on the payoffs of all rival suppliers. This side effect is the

source of an externality problem. As each individual supplier is concerned only with

his own costs and returns, he ignores the negative externality that he exerts upon

his rivals whenever he increases his own supply. Hence, each oligopolist tends to

produce too much, relative to what is optimal for all suppliers. This tendency toward

"overproduction" corresponds to the fact that each supplier has an incentive to

exceed his output quota whenever rival suppliers stick to the joint profit-maximizing

cartel agreement.

3.4.5 Selten's "Four Are Few and Six Are Many"

In the previous section we assumed that firms would join an all-inclusive cartel

if they could write enforceable cartel agreements. However, as Selten (1973) has

shown, this is only true if the market is sufficiently small. In large markets, with

many competitors, only some firms will join a cartel, while others stay independent.

The surprising part is that four or fewer firms tends to be a "small" market, while

six or more is "large." We now illustrate this important "four are few and six are

many" property, using the simple linear model from Section 3.2.

Suppose there are n > 2 firms, each with constant marginal cost, normalized

to zero, and the inverse market demand function P(X) := 1 — X, X := J2xi-

The market game has three stages: In stage 1, firms either join a cartel or stay out;

in stage 2, cartel members propose output quotas, and, provided they propose the

same quotas, write an enforceable cartel agreement that binds each member to his

quota. Finally, in stage 3, firms play a Cournot market game, knowing who is a

cartel member.

Denote cartel members by K := { 1 , . . . , &}, nonmembers by N := {k +

1 , . . . , n}, and the respective aggregate and individual supplies by XK, X(K,XN, JC/AT.

Then the equilibrium supplies and profits are functions of the number of cartel mem-

bers, k, and the size of the market, n, as follows.
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Proposition 3.8 Suppose 0 < k < n firms join the cartel. Then the subgame

perfect-equilibrium outputs and profits of stages 2 and 3 are

XK(k, n) = - , xiK(k9 n) = —,

n-k 1
XN(k, n) = — T , . xiN(k, n) =+ y (2(n-k+l)y

, n) = ^k ^
4k(n - k + 1) A(n-k + I)2

is also the output quota of cartel member i.

Proof Stages 2 and 3 are a Stackelberg leader-follower game in which the cartel

has the role of leader and the n — k nonmembers the role of independent followers.

It is straightforward to see that the followers' best reply to XK is

i-xK

n — k + 1

hence,

(n-k)(l-XK)
XN = TT~i •

n — k + 1

From this it follows easily that the cartel's overall profit is maximized by XK = \,

regardless of k, and the asserted equilibrium supplies and profits follow easily. •

Corollary 3.1 In equilibrium all firms join the cartel if and only if the market size

is four or less firms. If there are six or more firms, equilibrium cartels include only

some firms.

Proof The all-inclusive cartel is stable if and only if

7tK(n,n) > nN(n - l , n ) .

As one can easily confirm, this occurs if and only if k < 4, as asserted. If k > 4, one

can find the equilibrium size of cartels by imposing the conditions that it should not

be profitable for a cartel member to quit membership, TXK (k, n) > TTN(k — 1, n), or

for a nonmember to join, n^ (k, n) > 7tK(k + l,n). D

Example 3.6 Suppose n = 5orn = 6(n = 9ovn = 10). Then the equilibrium

size of the cartel is k = 4 (k = 6). Also note that nonmembers consistently earn

higher equilibrium payoffs.

Selten's "four are few and six are many" theory is often viewed as a noncoopera-

tive theory of cartels (see for example Martin (1993, p. 98)). However, this is quite

misleading. True, Selten explicitly models the participation decision of potential

cartel members. However, he assumes that once a cartel has formed, members can

neither quit nor deviate from the agreed-upon output quota. In other words, mem-

bership is voluntary, but those who became members write an enforceable quota

agreement. The assumed enforceability of output quota agreements is, of course,

inconsistent with cartel laws in most countries.
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3.4.6 Are Mergers Profitable?

Firms are better off if they collude. But does this property extend to mergers of some

firms? You may be very much surprised, but it does not, without qualification.25

In order to explain this point, go back to our simple example of an ft-firm Cournot

oligopoly with a linear inverse demand function P (X) = 1—X and constant average

cost, normalized to be equal to zero.

If none of these n firms merge, each oligopolist produces an output equal to

\/{n + 1) and hence earns a profit

IV n + lj (n + 1)2'

Evidently, jr(n) is strictly diminishing in n, and so are aggregate profits Tl(n) :=

nn(n), and the equilibrium price p(n) = l/(n + 1). So far, nothing is new.

But now suppose a subgroup of m + 1 firms merge, so that m firms leave the

market. What is their gain from a merger?

The merger reduces the number of firms from n to n — m. Therefore, the merged

firms' profit is equal to n(n — m), whereas before the merger the coalition of m + 1

firms earned a sum total of (m + l)n(n). Hence, the gain from merger is equal to

g(n, m) := n(n - m) - (m + l)n(n)

1 m + \

" (n-m + 1)2 ~ (n + l)2'

We show that a merger is profitable if and only if almost all firms are part of it.

Proposition 3.9 Consider the linear-demand, constant-average-cost Cournot oli-

gopoly, with a given number n of firms. Suppose m + l firms merge, where m +1 < n

(no grand merger). The merger is profitable if and only if at least 80% of the

firms merge.

Proof Obviously, g(n, 0) = 0 (the singleton coalition is just the status quo) and

g(n,n — l ) > 0 (the grand coalition reaps the monopoly profit). Next, observe that

g is decreasing at m = 0 and convex over its entire domain:

\-n

dm m=0 (n

> 0 Vm < n - 1.
(3m)2 (n-m + I)4

Therefore, the graph of g(n, m) is as in Figure 3.10.

This graph shows clearly that a merger is not profitable unless it includes many

firms. But how many is many? In order to answer this question, we determine the

breakeven point m*.

Let m* + 1 be the number of firms in the coalition that makes a merger neither

profitable nor beneficial. Define the breakeven fraction of firms in the coalition as

. . m*(n) + 1
ot(n) = .

n

25 This observation is due to Salant, Switzer, and Reynolds (1983).
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9

n-1
m

Figure 3.10. Profitability of Merger.

Then a(n) is implicitly determined as the solution of

1 a(n)n
0 =

It has three roots,

1
a2 = a3 =

n 2n 2n

The third root is greater than 1 and hence inadmissible, and the first gives the

singleton coalition for all n. Therefore, only the second root is of interest. Finally,

compute the first and the second derivative of a2 with respect to n\ one finds that

a2 has a minimum at n = 5, with #2(5) = 0.8, for

—a2(n) = 0
dn

This completes the proof.

5) = 0,

d2

0.

What is the intuition for this surprising result? In a Cournot oligopoly the industry

as a whole gains from a merger, since the aggregate equilibrium profit n(A0 :=

nn(n) = n/(n + I)2 is strictly increasing in n. However, since this gain comes

in the form of a price reduction, it is shared also by those who are not part of

the merging coalition and who thus take a free ride. This free-rider problem is

aggravated because the merging coalition's reduction in output induces free riders

to expand their output. Consequently, a merger is profitable for those who merge if

and only if a sufficiently large number of firms take part in it.26

In the applied industrial-organization literature, it has always been claimed that

real-world mergers are rarely profitable. As Scherer (1980) put it:

26 We mention that this paradoxical property is a feature of Cournot competition. Under Bertrand competition
with differentiated products, mergers tend to be profitable even if they include only two firms (see Deneckere
and Davidson (1985)).
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. . . the weight of the postmerger profitability evidence for an assortment of nations sug-
gests that on average the private gains from mergers were either negative or insignificantly
different from zero.

This suggests that the observations made in this section are often learned the hard

way, after incurring heavy losses.27

3.4.7 The Welfare Loss of Cournot Oligopoly

We have shown that the Cournot oligopoly produces too much, relative to the cartel

solution. Now we show that it also produces too little, relative to the Pareto optimum.

As welfare criterion we use again the total surplus function T : [0, X] -» R given

by

rX _ _ n n

T(Y\ - / P(Y\ rIY \ ^ C ( Y \ Y - \ ^ r- (% 9X\\
1 \A ) . — / r \ A ) a A — > LilAi J, A . — / Xi. \J.O\J)

Jo ti h
The Pareto optimum is defined as the maximizer of T and denoted by the superscript

PO.

Proposition 3.10 The Cournot oligopoly produces too little, relative to the Pareto

optimum (Xc < XP0).

Proof In two steps: First, we prove the assertion assuming well-behavedness of

the welfare optimization problem; second, we prove well-behavedness.

By the well-behavedness assumption, the unique maximizer x P0 of T is characte-

rized by the Kuhn-Tucker conditions (existence of interior solutions is guaranteed

by (A3))

P{XP0) = C[{xP0) Vi, where ^ > f ° = XP0.
i = l

Assume, per absurdum, that Xc > XP0. Then there exists at least one firm, say

firm r, that produces at least as much under the Cournot equilibrium, xf > xP0.

Therefore, by the convexity of cost functions,

By (3.63) and the fact that P is strictly monotone decreasing, one has

P(XC) > P\Xc)xf + P(XC) = C;(;tr
c).

Therefore, by combining the two results, one concludes that P(XC) > P(XP0),

which contradicts the assumption that P is monotone decreasing in X.

The welfare maximization problem is well behaved if T is strictly concave in the

vector JC. We now show that this property holds. Recall, from the Appendix C, that

27 More evidence to support this claim was published by Ravenscraft and Scherer (1989).
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T is strictly concave if its Hessian matrix, H(T), is negative definite. Obviously,

H(T) :=

P' - C'I P' P'

P' P' - C'i P'

= p'

P'

1 . . .

1 . . .

1 . . .

P' P'

C'{ 0

0 C'i

0 0

P'

P'

p'-l

. 0

. 0

Pre- and postmultiply with xT and x respectively, and one has, for all x € W,

which proves negative definiteness. D

Combining this with previous results, we summarize with the following rankings:

XPO>XC>XK and TPO>TC>TK. (3.81)

You probably guessed this result. Haven't we shown already that the Cournot

equilibrium does not maximize total surplus, but instead maximizes a weighted sum

of total surplus and total profits, giving "too much" weight to profits? However, do

not overlook that this representation of the Cournot equilibrium is feasible only if

firms have uniform cost functions.

3.4.8 A Corrective Tax

If the Cournot equilibrium gives rise to a welfare loss, perhaps an intelligent govern-

ment can do something about it. If the government has complete information about

demand and cost functions, this task is indeed fairly easy. Just adapt the lessons

from corrective taxation of Cournot monopoly. The basic idea is to induce firms to

produce more by paying an appropriate subsidy per output unit, and at the same

time skim profits by a simple lump-sum tax. The only difficulty is to determine the

right subsidy and tax rates.

A corrective tax should have various properties that characterize an ideal mech-

anism.

Definition 3.2 An ideal mechanism 1) implements the maximum total surplus as a

corrected Cournot equilibrium, 2) does not contribute to an unbalanced budget, and

3) makes no one worse off. In addition, one may require that it eliminate profits.

Consider the tax scheme (si, t[, T), where si denotes a fixed subsidy per output

unit, tt a lump-sum tax on firm /, and T a lump-sum tax on the group of consumers.
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Set (st, t(, T) as follows:

st := -P'(XP0)xf° > 0, ti:=siXfo-(nf-nr), T :=
i=\

where 7T; is the profit before tax and subsidy.

Proposition 3.11 The tax scheme (si, U, T) is an ideal mechanism.

Proof It is immediately obvious that the mechanism leaves net profits and the

government's budget unchanged if and only if xP0 is the unique tax-cwm-subsidy-

induced Cournot equilibrium. Consequently, if the mechanism succeeds, the entire

welfare gain goes to consumers, and nobody is made worse off. Therefore, all

that remains to be shown is that xP0 is indeed the unique equilibrium. Compute

marginal profits, evaluated at xP0, and one finds, using the specification of sv,

Therefore, xP0 is indeed a tax-cwra-subsidy-induced Cournot equilibrium, and by

our basic existence theorem it is the only one.28 •

Remark 3.6 If the mechanism should also eliminate profits, just remove the lump-

sum tax on consumers, which simplifies it considerably, and change the lump-sum

tax on firms to t\ := stxP0 — nf°.

Of course, it is hardly reasonable to assume that a government agency has re-

liable information about firms' cost functions. But without this information, the

mechanism cannot work. This suggests a search for ideal or at least acceptable

mechanisms that have lower information requirements, just as in Section 2.3.

3.4.9 The Generalized ISS Regulatory Mechanism*

Recall the incremental surplus subsidy (ISS) mechanism from Section 2.3.2. It is

easy to adapt it to the Cournot oligopoly environment.

For simplicity, suppose n identical firms operate repeatedly in a market char-

acterized by stationary demand and cost functions. Consider symmetric equilibria

(Xt = nxt). In the spirit of the ISS mechanism the regulator subsidizes the incre-

ment of consumer surplus between periods t — 1 and t, and taxes away the profit

earned in t — 1, as stated in the following subsidy rule:29

St := [Xt~l yP\ny)dy -
Jxt

(3.82)

28 Include the tax and subsidy as part of the cost function, and it follows immediately that the tax scheme does not
change assumptions (A1)-(A4). Therefore, existence and uniqueness follow from our basic existence theorem.

29 The following slightly more complicated subsidy rule was proposed by Schwermer (1995):

S,
r° r°

S, : = / yP(X-+y)dy- yP(X;_{ + y)dy -
JXt Jxt-\

where X~ denotes the aggregate output of all rival firms. The proof is again straightforward.
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Proposition 3.12 The incremental surplus subsidy rule (3.82) induces output effi-

ciency (P(Xt) = Cf(xt)) in all periods and zero profits in all periods except the

first.

Proof The proof is the same as in the case of monopoly regulation. •

The ISS is appealing in that it does not require the regulator to know firms'

cost functions. However, it lacks incentives to control managers' appetite for fringe

benefits, as we emphasized in Chapter 2, and it needs to be adjusted if the demand

or cost environment is not stationary. Also keep in mind that it may be just as

important to change the number of active firms as to correct the output distortion.

If unit costs are decreasing, the best regulatory policy is to transform oligopoly into

monopoly, and then apply monopoly regulation.

3.4.10 Entry*

Up to this point, the number of oligopolists in the market has been given. Similarly,

we have assumed that the actions of suppliers in other markets either are given or

can be ignored. This procedure is not entirely satisfactory for at least two reasons:

• markets are open and admit free entry and exit, unless the law restricts entry by direct
regulation or through patents and licensing;

• the demand for different products is interdependent, so that firms are subject to strategic
interdependency both within and across markets.

The second criticism points at a limitation of partial analysis - to which we will

nevertheless confine ourselves in this chapter. Therefore, we concentrate on the first

issue and ask: How does the Cournot equilibrium change as the number of firms is

increased, and what are the consequences of free entry?

Limiting Properties

As the number of firms is increased, one may conjecture that the market becomes

more competitive and continuously approaches the familiar model of competitive

price-takership. Plausible as this may sound, it is, however, not quite correct. True,

as more firms enter and each firm produces a diminishing share of market supply,

the elasticity of demand facing the firm eventually tends to infinity. But the effect

of additional output on price depends on the slope of the demand function, not the

elasticity.30 Therefore, you may increase the number of firms as much as you like

and still not always end up with price-takership.

In order to describe some limiting properties of the Cournot equilibrium in the

long run without much technical apparatus, suppose all cost functions are uniform,

so that the solution is symmetric. Also suppose all fixed costs are reversible (which

is surely plausible in the assumed long run). Denote output per firm by z := X/N.

Since X is bounded (see (A2) in Section 3.4.1), z tends to zero as TV tends to infinity.

30 This point was raised by Ruffin (1971).
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The average cost is defined as the ratio of two functions A(z) := C(z)/z that both
tend to zero as z tends to zero.31 Therefore, by L'Hospital's rule,

lim A(z(N)) = lim A(z) = lim C'(z) = lim C'(z(N)),

and by (3.63),

lim P (Nz(N)) = lim [C'(z(N)) - z(N)Pf(z(N))] = lim C\z).

Hence, in the limit, the Cournot equilibrium price approaches marginal and average

costs.

As is well known, in a (long-run) competitive equilibrium, the product price is

equal to the minimal average cost, minz A(z), and therefore the Cournot equilibrium

price and quantity converge to the competitive solution if and only if limz^o C (z) =

minz A(z).

This condition is indeed satisfied as long as we stick to convex cost functions.

Proposition 3.13 If the average cost function is convex, the Cournot equilibrium

price and quantity converge to the competitive solution.

However, once we remove the convexity of the cost function, we still have exis-

tence of a unique (symmetric) Cournot equilibrium,32 but it does not converge to

the competitive solution.

Proposition 3.14 If the average cost function A is U-shaped, the Cournot equilib-

rium price always exceeds the competitive price.

Proof This follows immediately from the well-known fact that average and margi-

nal cost coincide at the point where the average cost reaches its minimum, and that

average costs exceed marginal costs at all higher outputs. •

Equilibrium Size

In the presence of indivisibilities and hence fixed costs, only a limited number of

firms can be squeezed into a given market. So how many firms will enter, if entry

is not restricted by patents or any other legal monopoly licensing?

The standard explanation of equilibrium size in symmetric oligopoly models is to

treat the equilibrium number of firms as the largest integer h such that equilibrium

profit per firm is nonnegative:

h = max{rc e N | P(nxc)xc - C(xc) > 0}. (3.83)

But while this yields one equilibrium number of firms, the equilibrium size is

usually not unique33 unless all fixed costs are sunk.

In order to explain this point and show how large the range of equilibrium sizes

may be, go back to our simple example of an ft-firm Cournot oligopoly with a linear

31 This would of course change if some fixed costs were irreversible, for then C would converge to the level of
these reversible fixed costs and hence not to zero.

32 Recall the result due to Roberts and Sonnenschein (1976) that was reported in Section 3.4.1.
33 This was noticed, among others, by Mankiw and Whinston (1986).
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inverse demand P(X) := maxjl — X, 0} and zero marginal cost, to which we now

add fixed costs F > 0 of which the fraction s e [0, 1] is sunk. Denote the gross

profit (before deducting F) in the w-firm Cournot equilibrium by

n(n) := P(nxc)xc = ( 1 + ^ ) 2 . (3.84)

Also, let n(n) denote the maximum gross profit that an (n + l)th firm can earn by

optimally responding to the ft-firm industry equilibrium output level

n(n) := P(nxc + x*(nxc))x*(nxc) = ——. (3.85)

Obviously, there cannot be more than h firms that enter in equilibrium, because

otherwise at least one would make a loss. But there can also be strictly fewer. The

reason is that, even if n < h firms are in the market, an (n + l)th firm may be

deterred from entering, if there is an equilibrium of the postentry Cournot subgame

at which the (n + l)th firm would not actually produce. This is possible if the

(n + l)th firm cannot cover its nonsunk fixed costs (1 — s)F9 provided that the n

firms threaten to stick to the ft-firm equilibrium outputs xc:

n(n) < (1 -s)F. (3.86)

If (3.86) holds, this threat is credible, because it is an equilibrium of the Cournot

subgame for the n firms to stick to the threat and for the (n + l)th entrant not to

produce.

In order to determine the range of equilibrium size, compute the real number n\

that solves Il(ni) - F = 0:

m = -]= - 1, (3.87)
y/F

and the real no that solves n(no) — (1 — s)F = 0:

no = _ — L = - l . (3.88)
2v( l — s)F

Obviously,

m > no 4=^ s < 0.75.

Therefore, we summarize:

Proposition 3.15 Consider the linear-demand, zero-marginal-cost Cournot oligo-

poly with fixed cost F e (0, X) of which the proportions e (0, 1) is sunk. Ifs < 0.75,

any integer N e [no,n\] is an equilibrium number of firms. The equilibrium size

is unique and then equal to h if and only ifs > 0.75.

Obviously, the range of equilibrium size increases as the degree of sunkness is

diminished; and as s tends to zero, no approaches \n\.

As an illustration, suppose F = 0.000001 and s = 0.001.34 Then, n\ = 1000, so

that 1000 is an equilibrium number of firms (even if all fixed costs were sunk).

34 Notice: F may be a larger number, in natural units. Recall that we have normalized the physical units in such a
way that the unit price is in the interval [0, 1].
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However, given the relatively small degree of sunkness, any integer between 501

(almost \n) and 1000 is an equilibrium number of active firms.

In the face of this potential multiplicity of equilibria, what prediction of equilib-

rium size is the most plausible? One disturbing aspect of the equilibria that involve

n < n firms is that they assume an asymmetry in the strategies that the n firms play

relative to what the (n + l)th entrant does. Asymmetric equilibria pose a difficult

coordination problem, in particular since the active entrants earn positive profits

and hence are strictly better off than the passive one. It is difficult to imagine how

potential firms could resolve this coordination problem. This is why one is inclined

to favor symmetric equilibria. But once we impose the requirement that the equi-

libria of each subgame should be symmetric, an additional entrant could always

anticipate that the n incumbent firms accommodate its entry, so that h would be the

unique equilibrium size. Therefore, the symmetry requirement supports the usual

explanation of equilibrium size.

However, even the standard explanation of equilibrium size poses an unresolved

coordination problem, as it fails to explain who enters and who stays out. This sug-

gests that one should perhaps break more radically with the standard approach, and

analyze entry decisions in the framework of symmetric mixed-strategy equilibria.35

Mixed Entry Strategies*

If all N potential competitors are identical, the equilibrium in mixed entry strategies

is easy to develop. Let F be the sunk entry cost, and assume that equilibrium gross

profits are decreasing in the number of active firms, for example as in the Yl(n)

function stated in (3.84).

Suppose, in equilibrium each firm enters with probability /x. Consider any one

firm. Randomizing can only be its best response, if it is indifferent between entry

and nonentry. As usual in the analysis of mixed-strategy equilibria, this requirement

helps us to actually determine /x.

There are TV — 1 others. If n of them enter together with the one firm, the industry

has altogether n + 1 active firms, and each earns the profit Tl(n + 1) — F. The

probability that n other firms enter is

Therefore, the firm's payoff from entry is T,n=o ^>(n)U(n + 1) - F. The payoff

from nonentry is zero.

Putting pieces together, it follows that the equilibrium probability of entry must

solve the following condition of indifference between entry and nonentry:36

J2 (N ~ * V d - VL)N-l-nn(n + 1) - F = 0. (3.89)

35 For a strong defense of mixed entry strategies see Dixit and Shapiro (1986). Their model is summarized in the
following subsection.

36 Using the tools of first-order stochastic dominance, it is relatively easy to show that (3.89) has indeed a unique
solution /x e (0, 1). The proof is spelled out in detail in Section 5.5.
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The mixed-strategy equilibrium is particularly interesting in a dynamic frame-

work if entry is possible in each of many successive rounds of the market game. The

model then gives rise to an appealing explanation of the evolution of the market

structure. Typically, the industry starts out with a small number of active firms,

leading to transient profits. These profits are then eliminated by successive entry,

until an absorbing state is reached where no further entry is profitable, often ending

with overcrowding and irrecoverable losses. Paradoxically, high transient profits

speed up the subsequent entry process to such an extent that the early incumbents

would actually prefer to start out with more competitors. Therefore, the worst that

can happen to a firm is to find itself in the transient position of a monopolist.37

Are Cartel Laws Good for Business?

In a closed market, cartel laws are definitely not in the interest of firms, as we

showed in Section 3.4.6. Interestingly, this assessment does not extend to open

markets with free entry and exit. As Selten (1984) has shown, under free entry

quite the opposite may be true. Paradoxically, equilibrium profits may be higher if

cartels are effectively prevented by cartel laws, so that firms themselves should be

the most ardent supporters of antitrust legislation.

What is so radically different about the effect of cartel laws if we admit free entry

and exit? The key observation is that collusive joint profit maximization permits

a greater number of firms in the market than noncollusive behavior, essentially

because, at each given number of firms, collusion restricts output. Therefore, if

cartels are legal, markets tend to be overcrowded. This entry effect counteracts the

obvious advantages of collusion. And as Selten (1984) has shown, under reasonable

assumptions on the distribution of market parameters it even outweighs it, so that,

ironically, the expected sum of all profits is indeed increased by cartel laws.

3.4.11 Exit*

We have discussed entry in markets with stationary demand. But what about the

exit decision in shrinking markets?

Markets with shrinking demand are part of a changing economy. New goods tend

to crowd out other, less desirable ones. This change may be sudden and violent,

forcing firms to exit immediately. But often it is gradual and progresses at a fairly

predictable pace.

Sooner or later, the oligopolists facing a shrinking market have to leave it. If

they all hang on, everyone makes losses, and if they all leave, profit opportunities

are forgone. Therefore, the order in which they exit does matter. But who leaves

first and who last? Clearly, no individual oligopolist can decide for himself without

making conjectures about his rivals' exit decisions. Therefore, the exit decision is

a strategic decision problem.

Strategic exit decisions have been analyzed by several authors, notably by

Fudenberg and Tirole (1986), Ghemawat and Nalebuff (1985, 1990), Lieberman

37 See the simulations reported in Dixit and Shapiro (1986) where the value of incumbency is increasing in n until
the static equilibrium number of firms is reached.
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(1990), and Whinston (1988). Here we will briefly review the model by Ghe-

mawat and Nalebuff in a simple duopoly framework. The main result will be that

it is always the larger firm that exits first. After analyzing the exit game we will

also briefly discuss an integrated entry plus exit game. As it turns out, adding

the exit stage to a commonly used entry game leads to considerably changed

predictions.

Assumptions

We stay in the framework of the Cournot duopoly, but modify two assumptions:

(Al) The inverse demand function P(X, t) is strictly monotone decreasing in time t and
in demand X; as t becomes arbitrarily large, P(X, t) comes arbitrarily close to zero;
however, marginal revenue is always positive.38

(A2) Each firm has a given capacity Ki\ therefore, JC, (t) < K( "it.

(A3) Firm 1 is larger than firm 2: K\ > K2.

(A4) The cost functions C;, defined on [0, Kt ], exhibit constant operating costs (normalized
to zero) and reversible (or quasi-) fixed costs (with c > 0):

/ cKi if xt > 0,
Ct(xi) = < . (3.90)

[ 0 otherwise.

(A5) Exit is irreversible.
(A6) Each duopolist maximizes the present value of profits; the discount rate r is constant.

At the beginning of the planning horizon, t = 0, both firms just break even under

full capacity utilization:

P(Kl + K2,0) = c. (3.91)

Since demand shrinks, there exists a finite date t* at which firm i exits even if it is

an uncontested monopoly at full capacity utilization:

tf) = c. (3.92)

Obviously,

t* < f2. (3.93)

Solution of the Exit Game

Each duopolist has to choose two actions: the date of exit, r,-, and the supply Xf (t)

for all t prior to T/. We begin with some elementary properties of pure-strategy

equilibria (r*,x*(0).

Proposition 3.16 A pure-strategy Nash equilibrium has the following properties:

L x*(t) = Kt for all t G [0, r*] (full capacity utilization);

2. r* < t* (zt is bounded);

3. either z* = 0 or z£ — 0 (exactly one firm exits immediately).

38 As an illustration, consider the constant-elasticity inverse demand function P (X, t) := X^e~% with/3 e (—1,0).
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Proof 1: By assumption, marginal revenue is always positive. Therefore, each firm

will choose full capacity utilization unless it exits. 2: By definition of t*9 it never

pays to stay in the market beyond time t*. Part 3 follows immediately from the fact

that the two firms cannot coexist without suffering losses. •

In a pure-strategy Nash equilibrium one duopolist leaves right away, at t = 0.

But who leaves and who stays? The answer depends on the monopoly payoff that

the smaller firm 2 can earn during the (t*, t%\ period, relative to the loss that it

would have to endure during the period [0, t*] if the rival firm 1 also stayed until

time t*.

Evidently, the smaller firm 2 has x2 = t% as its dominant strategy if the present

value of the monopoly profit during the interval [t*, t%] exceeds the present value

of the loss that it suffers in the worst case during the interval [0, t*] (if firm 1 ever

stays in the market that long):

[P(K2, t) - c]K2e~rt dt>- \ h [P(KX + K2, t) - c]K2e~rt dt (3.94)
q Jo

In that case the larger firm 1 exits right away, and the smaller firm 2 stays until t%.

However, except for this extreme case, there are always two equilibria: one where

firm 1 yields and exits right away, and one where firm 2 yields. Therefore:

Proposition 3.17 The exit game has the following Nash equilibria:

1. if the present-value condition (3.94) applies, then x* = 0, r | = t\ is the unique equili-
brium;

2. if condition (3.94) does not hold, x\ — t\, x2 = 0 is also an equilibrium.

In either case, x*(t) = Kt "it e [0, r*].

Proof Using the results of Proposition 3.16, it is obvious that the strategies have

the mutual best-response property. If the present-value condition (3.94) holds, it is

a dominant strategy for the smaller firm 2 to stay until r|. The asserted equilibria

are in pure strategies. The impossibility of a mixed-strategy equilibrium is shown

in the proof of Proposition 3.18. •

This leaves us with a multiplicity problem. But, as you will see in just a mo-

ment, only one equilibrium is meaningful because only one passes the subgame-

perfectness test.

The Unique Sub game-Perfect Equilibrium

By assumption, no duopolist can precommit to a certain date of exit, which means

that firms may always reconsider their exit strategy until they have actually left the

market. Also, the exit decision is one under complete information. Therefore, at

each point in time, the duopolists play a well-defined exit subgame. Consequently,

subgame perfectness is the appropriate equilibrium concept.39 Subgame perfectness

39 As we explained before, a Nash equilibrium is subgame-perfect if it is a Nash equilibrium of each subgame.
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eliminates all those Nash equilibria that are not plausible because they involve an

exit strategy that is not credible.

Proposition 3.18 The exit game has a unique subgame-perfect Nash equilibrium:

the larger firm exits right away, and the smaller firm stays until t% .40

Proof Define the time t^ as the first date such that the smaller firm 2 is willing to

sustain losses during the period [^, £*] to reap monopoly profits during the period

(t\, J|). Since the larger firm 1 exits no later than at t\, the smaller firm 2 will

definitely stay until f| if it is still in the market at date t&. But then firm 1 will exit

right away, and firm 2 enjoys monopoly profits during the entire period (tA, t%].

Given this solution of the ^-subgame, define ts as the first date such that firm

2 is willing to sustain losses during the period (f#, ^ ] to reap monopoly profits

during the interval (f̂ , f|]- Again, it follows that the equilibrium exit strategy

of the ^-subgame requires firm 1 to exit right away and firm 2 to stay until t\.

Next, compute tc, applying the same consideration, and note that tc is a larger

step back from ts than ts was from t^ since inverse demand is increasing as one

moves backwards in time. Therefore, the steps are moving toward the origin at an

increasing rate. Hence, this process of backward induction continues until t — 0. A

similar argument excludes mixed strategy equilibria. Just note that firm 1 will not

randomize its exit decision at the ^-subgame. Thus firm 1 will exit with probability

1 at tA- Using a procedure such as the above, one can work backwards to time ts

etc. until time t = 0. •

Discussion

The analysis of strategic exit decisions took firms' capacities as given. But capacities

are chosen at some point. Rational firms anticipate the outcome of the later exit

game already when they contemplate entry. Typically, firms go through a life cycle,

beginning with entry and expansion and ending with shrinking outputs and ultimate

exit. This suggests that one should merge the analysis of entry and exit, rather than

study them in isolation. As it turns out, this merger leads to some rather surprising

and unusual results, which are in stark contrast to the predictions of isolated entry

models.

For example, consider the entry model in the spirit of Dixit (1980). Assume that

one firm, the incumbent, enters before the rival contemplates entry. Entry requires a

certain fixed entry cost that is fully sunk, plus the choice of capacity which serves as

a commitment mechanism. After both firms have made their entry decision and cho-

sen their capacities, in sequential order, they play a standard Cournot-competition

game. Therefore, the model has a Stackelberg leader-follower structure.

Assuming a stationary (or a one-shot) demand, the entry model predicts that the

incumbent chooses a higher capacity than in the corresponding Cournot model and

40 In a subsequent paper, Ghemawat and Nalebuff (1990) analyze the case in which firms can divest incrementally
rather than on an all-or-nothing basis. In this case, the larger firm divests first in equilibrium, and continues to
do so until it has shrunk to the size of the smaller firm. Subsequently, both firms gradually shrink together.
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than an uncontested monopolist. The reason is that it uses its first-mover position

to induce the rival to choose a low capacity - under certain circumstances, even to

stay out of the market altogether. An immediate implication is that potential entry is

socially useful, because it gives rise to a higher market output than an uncontested

monopoly - even if the incumbent deters entry.

As it turns out, these predictions no longer hold true if the entry model is aug-

mented by assuming that demand will shrink after some time so that firms face

an exit game, at some point. To the contrary, it turns out that after adding the exit

stage, potential competition may be socially harmful, even if the exit stage is arbi-

trarily short. We close with a brief sketch of the main arguments that lead to this

conclusion.41

In a first step, notice, from the solution of the above exit game, that the firm with

the smaller capacity will exit at time to(K), implicitly defined by the condition42

P(K, to(K)) = c, K:=KX + K2. (3.95)

Therefore, it is straightforward to compute the reduced-form profit function, defined

on capacities K\, K^. Denote this function by Fl with image n (K\, K2). Then it is

easy to solve for the equilibrium capacities, as follows.

Let firm 1 be the incumbent and firm 2 the Stackelberg follower. Since 2 chooses

its capacity after K\ has become public information, firm 2's equilibrium choice of

capacity is fully described by the reaction function k : R+ - • R+, defined as

k(Ki) := aigmaxll(*', Kx), (3.96)

and therefore, firm 1 's equilibrium strategy is

Kf :=argmaxTl(K,k(K)). (3.97)
K

Which capacities actually are chosen in equilibrium depends on the parameters.

Three parameters play a pivotal role. These are the capacities that would be chosen

by a monopolist,

KM := aigmax[P(K, t) - c]K,
K

and the two capacities at which a monopolist exactly breaks even:43

K := min{^ e M+ | [P(K, t) - c]K = 0},

C := max{K e M+ | [P(K, t) - c]K = 0}.

We now give two examples. In both of them we assume that the phase during

which demand shrinks away is very short, so that it has a negligible effect on

payoffs.

41 For a more detailed analysis of the integrated entry plus exit game, see Fishman (1990).
42 In equilibrium, firms will never choose the same capacity; therefore, we need not be concerned with this case.
43 Why are there two such levels of capacity? Just recall that there are two cost components: the proportional

capacity cost plus the sunk entry cost. Therefore, the average cost function intersects the inverse demand
function either twice or not at all. If it did not intersect at all, the market would not be feasible in the first place,
which is why this case is ignored.
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Example 3.7 Suppose KM > C/2, k(C/2) = 0, T\(C/2,0) > 0. Then the equi-

librium capacities are

Ki = | , K2 = 0. (3.98)

Why? First of all, K\ = 0 is a best response to firm 1 's choice because k(C/2) = 0.

Of course, firm 1 would like to increase capacity up to KM if it could still keep 2

out of the market. But, if 1 increases capacity above C/2, it is 2's best response to

follow suit and choose a capacity just marginally below K\. For, in this case, the

overall capacity is greater than C, so that the larger firm 1 is forced to exit right

away, hence assuring a positive profit to the second mover, firm 2. This shows how

adding an exit phase may give rise to full entry deterrence, and this at a supply

which is paradoxically below that of an uncontested monopoly.

Example 3.8 Suppose K > C/2. Then there are two equilibrium capacities: one

that gives rise to full entry deterrence at a price at which the incumbent earns zero

profits,

Ki = K, K2 = 0, (3.99)

and another where the entrant stays out and the second mover, firm 2, sets the

monopoly capacity,

Kx=0, K2 = KM. (3.100)

The capacities (3.99) are an equilibrium outcome because firm 2 has to choose at

least K if it enters (this is the minimum capacity - everything less leads to a sure

loss). Therefore, if firm 2 enters, it will be the larger firm. And since overall capacity

is above C, firm 2 thus induces an immediate exit game in which it will be forced to

leave right away. Similarly, the capacities (3.100) are an equilibrium outcome, as

K\ = 0 gives zero profits just like K\ = K, combined with K2 = 0. In either case,

potential competition does not contribute to drive output above that of an uncon-

tested monopoly. True, if capacities are chosen as in (3.100), potential competition

drives profits down to zero. However, paradoxically, the overall output is below that

of an uncontested monopoly, so that potential competition is actually harmful.

Both examples show that adding an exit stage to a standard entry model gives rise

to quite unusual and paradoxical results, even if the exit stage is arbitrarily short.

The most counterintuitive result was that potential competition may be harmful

under reasonable circumstances.

3.5 More on Bertrand Competition

Of all three basic oligopoly models, Bertrand's is the most appealing in terms of

the assumed pricing mechanism, but the least plausible in terms of results. The nice

feature is that firms themselves set prices without the help of a fictitious auctioneer.

The unconvincing feature - sometimes referred to as the Bertrand paradox - is
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that it gives rise to the perfectly competitive outcome, regardless of the number of

oligopolists if there are at least two. Of course, this result may be well liked by

those who are committed to the simple competitive paradigm (which is why it is

sometimes ridiculed by saying that "in Chicago two is a large number"). But most

economists have more confidence in the Cournot result despite the bothersome role

of the auctioneer.

On a closer look it turns out that price competition is not the villain. Rather,

the Bertrand paradox is due to other specific assumptions of Bertrand's modeling

of price competition, such as the assumed lack of capacity constraints and the

particular cost functions. Once you deviate just slightly from this particular case,

the paradox vanishes.

The importance of Bertrand competition is that it can provide economists with

a convincing price formation story. Therefore, it is well worthwhile to invest some

more effort to get a fuller understanding of it.

The emphasis in this section is on the effect of capacity constraints. Among other

results, you will learn that the Bertrand model may lead to some very noncompetitive

results. In particular, even the monopoly outcome is a Bertrand equilibrium if ca-

pacities are sufficiently scarce. Furthermore, we will show that, for an intermediate

range of capacities, no pure-strategy equilibrium exists, and Bertrand competition

gives rise to random sales. As capacity is further increased, the equilibrium reaches

the perfectly competitive outcome, as in the simple Bertrand story.

3.5.1 Capacity-Constrained Price Competition: An Example

Go back to our basic Bertrand competition duopoly, and add the assumption that

each firm has the same fixed production capacity, denoted by k e R+. All other

assumptions of the basic model are maintained. In particular, marginal cost is zero,

and market demand has the simplest possible form,

X(p) : = m a x { l - p , 0 } . (3.101)

In addition to the assumptions of the standard Bertrand model we assume that

there are n identical consumers. Therefore, consumers' demand functions Xv are

equal to

Xv(p) := -X(p), v = 1, . . . , n. (3.102)
n

With limited capacity it can now happen that one firm is unable to serve the

demand for its product, so that some demand spills over to the rival seller. But how

much spills over depends on the particular rationing rule employed by the capacity

constrained seller. In this section we consider a particular case known as random

rationing.

Random Rationing

Suppose the two firms have set distinct prices. Let p\ be the low and ph the high

price, and assume that p\ is such that firm / is capacity-constrained, 1 — p\ > k.
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Then firm / cannot serve the entire demand, and some demand spills over to the

high-price seller.

Under random rationing each buyer has the same chance of buying at the low

price. The number of buyers who are served by the low-price seller is k/Xv(pi),

and the number of buyers who are not served at the discount price is (ignoring

integer constraints)

nh '=n-—^—=n l l -
Xv{pi) L X(pi)

Therefore, the high-price seller h faces the residual demand X, which is determined

as follows:

X(ph,phk) : = nhXv(ph)

= X(pi)-k

X(pi)
X(Ph)

l~Pl ' (3.103)

Some Preliminaries

To prepare the analysis of the modified Bertrand model, we introduce some use-

ful concepts and basic relationships. First, we ask: what price would be set by a

monopolist seller? Obviously, a monopolist calls the monopoly price

pM(k) :=max{i,l-ifc} (3.104)

where ^ is the unconstrained monopoly price if capacity does not bind.

Next, ask: what price would a monopolist call who controls only residual demand

X? The answer is similar. The residual-demand monopolist calls the residual-

demand monopoly price

pM(k,pi) :=max{± p) , (3.105)

where p(k, pi) is the price at which residual demand matches the given capacity

supply:

p(k, pi) := 1 - k l~Pl (3.106)
1 - pi - k

The price \ enters simply because the maximizer of

1 — p\ — k
phX(ph, pi) = — (1 - ph)ph

1 - Pi
over ph is the same as that of phX(ph) = Ph(l — Ph), which is the unconstrained
monopoly price \.
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Another useful concept is the accommodating price, pA(k), defined as the price

that clears the market if both sellers dump their entire capacity. The accommodating

price is equal to

pA{k) := P{2k) = max{l - 2k, 0}, (3.107)

And if both firms call pA(k), the firms' profit is equal to

7tA(k):=pA(k)k. (3.108)

Using these concepts, we collect three useful results:

Lemma 3.2 TT A (k) has a unique global maximum at the capacity that supports the

monopoly outcome, which is k = ^. Therefore

nA(k)<nA(\) = \ V * # i . (3.109)

Lemma 3.3 (Best-Response Properties) 1) If firm i calls pt > pM(k), it is firm

j 's best response to underbid i and call the monopoly price pM(k); 2) if a firm is

committed to call a higher price than its rival, it should call the residual demand

monopoly price pM(k, /?/).

Proof Obvious. •

Lemma 3.4 A pure-strategy equilibrium must be symmetric.

Proof Suppose, per absurdum, that there is an asymmetric pure-strategy equili-

brium where firms set distinct prices, ph > Pi- By Lemma 3.3 it follows that

one must have p\ < pM(k). If pi < pM(k), the low price-seller would gain

by raising his price, moving towards pM(k) while staying below pn- In turn,

if pl = pM(k) < ph, the high-price seller would gain by lowering his price just

marginally below pM (k). •

Low Capacities - Some Very Noncompetitive Results

In stark contrast to the simple Bertrand model, which predicts the competitive

outcome, low capacities give rise to some very noncompetitive results. Even the

monopoly outcome can be a Bertrand equilibrium. Indeed, under random rationing,

any price at or above the monopoly price is a Bertrand equilibrium, if capacities

are sufficiently scarce.

Proposition 3.19 Suppose k e [0, \] or k > 1. The Bertrand-competition game

has a unique pure-strategy equilibrium that has both firms call the accommodating

price pA(k).

Proof If k > 1, firms are never capacity-constrained, which takes us right back to

the standard Bertrand model. As we know already, the unique equilibrium is then

pA(k) = 0. Therefore, we need only consider the case k e [0, £].
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First, we prove that pA (k) is indeed a pure-strategy equilibrium. For this purpose,

suppose the rival sets pA{k). Then underbidding does not pay, since the firm has

already full capacity utilization at pA(k) and cannot take advantage from extra

demand anyway. But could it gain from overbidding! The answer is no, for the

following reason. By Lemma 3.3 we know that if one chooses to overbid, one

should always call the residual demand monopoly price. But

= max | - , 1 - 2* j by (3.107)

= pA(k), since k <-.

Therefore, overbidding does not pay either.

Second, we prove uniqueness by contradiction. Suppose, per absurdum, that the

game has another pure strategy equilibrium. By Lemma 3.4 this equilibrium must

be symmetric. Therefore, the uniform equilibrium price is either higher or lower

than pA(k). If it is lower, at least one firm cannot serve all demand and therefore

benefits from raising its price, and if it is higher, at least one firm cannot sell its entire

capacity and therefore has an incentive to underbid. Therefore, the equilibrium is

also unique. •

Corollary 3.2 The equilibrium price is equal to the unconstrained Cournot mono-

poly price for k = \ and even higher for k < \.

High Capacities - Nonexistence of a Pure-Strategy Equilibrium

But what happens if capacity is in the range ( | , 1) ? If the above existence result also

applied in this case, even the Cournot outcome would be a Bertrand equilibrium

for k = \. However, under random rationing this cannot hold true.44 In fact, for

all capacities in this range the Bertrand-competition game has no pure-strategy

equilibrium at all.

Proposition 3.20 Suppose k e ( | , 1). The Bertrand-competition game has no

pure-strategy equilibrium.

Proof Recall that a pure-strategy equilibrium must be symmetric by Lemma 3.4.
We proceed by trying all possible candidates for an equilibrium solution - but they
all fail.

1. Obviously, no price above the accommodating price can be an equilibrium because
underbidding is then better than matching.

2. This incentive to underbid vanishes once you reach pA (k), where both suppliers exhaust
their capacity. However, if the rival has set pA(k), it is always better to overbid. For

44 This result is, however, due to the particular rationing mechanism. Later, when we turn to parallel rationing,
the Cournot price is not only a pure-strategy equilibrium, it is even the only equilibrium if capacities are choice
variables in a two-stage game.
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example, if k > \, matching yields the price pA{k) = 0, whereas a price slightly higher

than pA{k) yields a positive profit. And if k e ( | , \), matching pA(k) yields

7ti(pA(k), pA(k)) = 7tA(k) < i V* € ( i , 1), by (3.109),

whereas overbidding up to /? = \ > pA(k) gives definitely more, since

= - m i n i A:,-1 by (3.107)

= - , since k > -.
8 4

3. Of course, no price p < pA(k) can be a symmetric equilibrium because in that case
at least one firm could not serve the entire demand, and therefore would benefit from
raising its price. •

Incidentally, the nonexistence of a pure-strategy equilibrium for certain high

levels of capacity was already observed by Edgeworth (1925) in his path-breaking

contribution. He concluded that prices would be cyclical in this situation with suc-

cessive underbidding, starting from the monopoly price down to a certain positive

price, at which point one supplier raises the price back to the monopoly price and

the whole sequence starts all over again. But, of course, such price dynamics could

only occur if it were assumed from the outset that firms set prices repeatedly in

some fixed sequential order.45

Random Sales

If a game has no pure-strategy equilibrium, you may always go to mixed strategies.

In the present context, a mixed strategy is a probability distribution over the set of

feasible prices. Therefore, if firms play mixed strategies, they pick their price at

random. The outcome may be a cautious, high price at or near the monopoly price,

or an aggressive price equal to the accommodating price, or anything in between.

Such price-setting behavior can be interpreted as random sales.

Is existence, and possibly uniqueness, of a mixed-strategy equilibrium assured

for all A: e ( | , 1)? As simple as the present model may be, the answer is far

from obvious. Indeed, standard existence theorems do not apply here. Recall that

the existence theorem by Glicksberg (1952) that was quoted in Section 3.4.1 re-

quires continuity of payoff functions in strategies. But as prices are changed, profits

can make a discontinuous jump, violating continuity. However, since Glicksberg's

condition is only sufficient and not also necessary, you cannot conclude that no

equilibrium exists.

For the present example, the existence of mixed-strategy equilibria was proven

by Beckmann and Hochstadter (1965),46 who solved the equilibrium strategies

45 In the literature on dynamic oligopoly games this sort of cyclical pricing has been derived from a dynamic game
with staggered price setting, employing the concept of a "Markov perfect Nash equilibrium." See the section
on "Edgeworth Cycles" in Maskin and Tirole (1988).

46 If you read this article, watch out for one flaw in the proof of uniqueness.
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explicitly. A similar result was obtained by Levitan and Shubik (1972) for the

alternative, parallel rationing rule (see the next subsection for this rule). Finally,

Dasgupta and Maskin (1986) have generalized Glicksberg's theorem in such a way

that the continuity requirement is softened. As they showed, this generalization as-

sures existence for a large class of capacity-constrained Bertrand models, including

the present example. Their results were further generalized by Dixon (1984) for

general convex cost functions, and by Simon (1987) to admit fixed costs.

Summary

If capacity is sufficiently scarce - the critical value is k = | - the Bertrand game

has a unique pure-strategy equilibrium. In this case, both firms set the accom-

modating price, which is at or above the monopoly price. Due to the shortage of

capacity, underbidding does not pay, and since the price is at or above the monopoly

price, overbidding does not pay either. Hence, shortage of capacity leads to quite

noncompetitive results. If capacity is increased beyond this critical value, accom-

modation is no longer an equilibrium, and the game becomes more competitive.

In an intermediate range of capacity, the game has an equilibrium only in mixed

strategies, where firms pick a price at or below the monopoly price at random. If

capacity is further increased to or beyond k = 1, the capacity constraint never

binds and the market becomes perfectly competitive, as in the simple Bertrand

story.

3.5.2 An Alternative Rationing Rule

The above example assumed random rationing. Of course, one can easily design

alternative rationing rules. Their adoption may lead to a different price competition

game. Therefore it is important to decide which rationing rule is the most plausible.

At first glance random rationing looks like a fairly reasonable assumption. Sellers

have usually little if no information about the preferences of individual customers.

But without such information it would seem that firms sell on a first-come, first-

served basis, which supports random rationing.

However, it turns out that sellers have a strong incentive to use more sophisti-

cated rationing rules. And these are feasible even if firms are subject to incomplete

information about individual preferences. More important yet, random rationing

induces buyers to trade at an aftermarket, and the prospect of being able to trade

there affects buyers' willingness to pay in the primary market in such a way that

random rationing tends to lead to the same market outcome as more sophisticated

rationing rules.

Parallel vs. Random Rationing

You may have noticed it already: random rationing is not efficient. Efficiency re-

quires that the marginal willingness to pay be at least as high as marginal cost. From

the perspective of buyers, the marginal cost of output is equal to the high price, say

Ph. Yet those who were so lucky as to be served by the low-price seller buy as long
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Figure 3.11. Residual Demand under Parallel Rationing.

as their marginal willingness to pay is not lower than the discount price p\. Hence,

with random rationing not all gains from trade are exploited.

In order to ration efficiently, customers have to be served in the order of their

willingness to pay. By a well-known result from demand theory, the inverse market

demand function can be interpreted as the aggregate marginal-willingness-to-pay

function. Therefore, if the capacity of the low-price seller is rationed efficiently and

P is strictly monotone decreasing, the marginal willingness to pay of the group

of customers served by him must be greater or equal to P(k). Consequently, the

willingness-to-pay function facing the high-price seller is just

P(xj,k) = P(xj+k). (3.110)

Therefore, under efficient rationing, the residual demand function X is indepen-

dent of the rival's discount price p\ and determined as

X(ph, k) := mzx{X(ph) - k, 0}. (3.111)

It is illustrated in Figure 3.11. Evidently, its graph is obtained by a parallel shift of

the market inverse demand function. This is why efficient rationing is often called

parallel rationing.

Parallel Rationing: Why and How

If a firm can choose between random and efficient rationing, which should it apply?

At least two reasons suggest that efficient rationing is the better choice.

As a first observation, notice that parallel rationing leaves less residual demand

to the rival firm because the highest willingness to pay is skimmed off first. This

may suggest that parallel rationing is the more likely choice on the ground that it fits

better to the noncooperative, rivalrous relationship between oligopolists. However,

this argument is not compelling. Firms maximize their own profit. Why should they

care to inflict harm on others if this does not raise their own profit?

A more convincing argument is that parallel rationing is more profitable, if it is

done right. All that is needed is to sell coupons that give the bearer a transferable

right to obtain output at the announced discount price. These coupons may be sold
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or distributed at a nominal fee on a first-come, first-served basis. No matter how

their sale is organized, the aftermarket for coupons takes care of their efficient

allocation.47 For all those whose willingness to pay is below the high price ph sell

the coupons they have, whereas those whose willingness to pay is at or above ph buy

and exercise coupons. Therefore, the use of coupons implements efficient rationing.

At the same time, coupons can be issued at a positive price, up to the difference

between max{P(£), ph} and the discount price p\. Hence, parallel rationing is

efficient as well as profitable.

Coupons are widely used in the U.S. in the retailing of groceries. In these ap-

plications coupons are used primarily to compete for the highly price-sensitive

consumers. However, coupons have also been introduced into other markets. For

example, airline coupons were introduced by United Airlines in 1979, after a

long strike. United Airlines issued transferable coupons that entitled the bearer

to a 50% discount on flights. Within a short time, an aftermarket developed,

with active trading of coupons, and other airlines followed suit and issued similar

coupons.48

3.5.3 Generalizations

Based on our discussion, there are several urgent generalizations:

1. One should analyze capacity-constrained price competition under parallel rather than
random rationing.

2. One should consider the case when firms hold different capacities.
3. The choice of capacities should be endogenized.
4. Finally, one should allow general demand functions and introduce the costs of building

and maintaining capacity.

All these generalizations will be pursued in the following section.

Having shown that the introduction of capacity constraints may lead to some

very noncompetitive results, so that two is no longer a large number, one should

also reexamine the effect of large numbers on the equilibrium outcome. This im-

portant topic was pursued by Allen and Hellwig (1986). Assuming exogenously

given capacities and random rationing, they showed that the equilibrium probabil-

ity distribution of prices converges towards the competitive outcome in the sense

that, as the number of firms is increased, the probability mass is more and more

concentrated in a small neighborhood of the competitive price, even though the

support of prices always includes the monopoly price, regardless of the number

of sellers. In a sequel article Vives (1986) explored the same issues under parallel

rationing and showed that this leads to even nicer limit results, as even the support

of prices tends to shrink to the competitive price in this case.49

4 7 If all customers have similar individual demand functions, those who got a sufficient number of coupons exercise

only some and sell the rest.
4 8 Incidentally, Gelman and Salop (1983) showed how coupons can be used by a small-sized entrant to build a

profitable yet uncontested niche in a market dominated by a large incumbent.
4 9 For a simpler variation of the Bertrand-Edgeworth model see Dudey (1992).
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3.6 A Defense of Cournot Competition*

After these preliminaries on capacity-constrained Bertrand competition it is time

to generalize and come to an assessment of Cournot vs. Bertrand competition. Fol-

lowing Kreps and Scheinkman (1983), we consider a two-stage duopoly game. In

the first stage firms choose capacity without knowing their rival's choice. There-

after, capacities become common knowledge, and firms play a capacity-constrained

Bertrand competition game with parallel rationing and unit prices as strategies.

The surprising result will be that the equilibrium outcome of the game is as if

duopolists played a Cournot-market game. Hence, Cournot competition may be a

good predictor of oligopolistic behavior even if firms set prices without the help of

a fictitious auctioneer.

Assumptions

We work with a general downward-sloping demand function, assume parallel rather

than random rationing, and introduce irreversible or sunk costs of building up

capacity. The assumptions on demand and cost functions are borrowed from the

general Cournot model in Section 3.4.1, except that assumptions on the cost function

now refer to the cost of building up capacity. In addition there may be operating

costs, but these are taken to be constant and hence are normalized to zero.

Procedure and Solution Concept

We proceed in two steps. First we analyze the stage-two-price competition sub-

game for all possible combinations of capacities. The rationale for isolating and

beginning with the last stage of the game is that, once capacities have been chosen,

the duopolists play a self-contained price-competition subgame, simply because

they have complete information at this stage and because they cannot precommit to

price strategies. The results of this subgame are used to compute the reduced-form

payoffs as functions of capacities. These reduced-form payoffs serve as payoff

functions of the stage-1 subgame, with capacities as strategies. In the language of

game theory, the solution concept is that of a subgame-perfect Nash equilibrium.50

3.6.1 Benchmark Cournot Equilibrium

Our goal is to show that the equilibrium outcome of the two-stage game is the same

as that of the corresponding, hypothetical Cournot game. For this purpose, we need

to know the benchmark Cournot equilibrium, defined as the pair of outputs that are

a Nash equilibrium of the corresponding Cournot game.

Two benchmark Cournot equilibria are considered: one if there are costs of output

represented by the capacity cost functions C, and one if there are no such costs.

The Cournot equilibrium with costs is denoted by fcf, k%, and the one without by

50 Recall that a Nash equilibrium is called subgame-perfect if it is a Nash equilibrium of each subgame. This
solution concept was already used in Section 3.3 on Stackelberg competition.
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Definition 3.3 (Cournot Reaction Functions) Write r(kj) for firm I'S reaction

function of the benchmark Cournot game with capacity costs, and ro(kj) for the

reaction function in the absence of capacity costs:

r(kj) := argmax[P(jc + kj)x - C(x)],

ro(kj) := argmaxP(x + kj)x.

As one can easily confirm, these reaction functions exist, are continuous, and are

monotone decreasing. Furthermore, one has

Lemma 3.5 The best response output with capacity costs r(kj) is smaller than that

without ro(kj),

ro(kj) > r(kj) for allkj,

unless ro(kj) = 0.

Proof This follows immediately from an analysis of the reaction functions in the

Cournot oligopoly model. •

Also, the benchmark Cournot equilibria (&f, k^), (&?, k®) a r e unique.

3.6.2 The Price-Competition Subgame

This subgame is played after firms' capacities are common knowledge. The game

rule is that firms simultaneously call a unit price, subject to the commitment to ser-

vice demand, up to capacity. Consumers shop at the discount seller unless demand

is rationed, in which case some demand spills over to the high-price seller. Parallel

rationing is used. If a tie occurs, demand is split evenly between the two firms.

As in the previous section, the equilibrium strategies depend upon what capacities

are given. A unique pure-strategy equilibrium exists if and only if capacities are

either "small" or "very large", each in a sense to be made precise below. In the

intermediate range, the price competition game has only mixed-strategy equilibria.

Again, it is useful to define the accommodating price pA, the monopoly price

pf1, and the residual demand monopoly price pf1, as follows:51

(3.112)

(3.113)

))}. (3.114)

Pure-Strategy Equilibria

Lemma 3.6 In a pure-strategy equilibrium both firms name the accommodating

price pA.

51 If you wonder why ro rather than r enters, just recall that capacity costs are already sunk when the price-
competition subgame is played.

PA

pf

pf

:= P(ki +

:= max{pA

k2),

%), P(ro(O))},

[,P(kj + r0(kj
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Proof Suppose, per absurdum, that the equilibrium pure strategies differ, say p2 >

p\. Then firm 1 is a monopolist for all prices p e [0, pi), so that p\ = pf must

hold.52 But then, the discount seller 1 leaves no residual demand to the high-price

seller 2, regardless of the question whether capacity binds or not. Therefore, seller

2 has an incentive to undersell 1 just slightly in order to catch some demand at

a positive price. This proves symmetry. Next, suppose the equilibrium price is

p > pA. Then at least one firm has excess capacity and gains by underselling p

just slightly. Finally, if p < pA, both firms ration their customers. By naming the

higher price pA, firm 1 nets a higher profit, since

=PA

=PA

=PA

(X(p

(*1 +

h

A)

k2

-k2)

-k2)

While this lemma tells us what prices are named in a pure-strategy equilibrium,

it does not tell us whether a pure-strategy equilibrium does exist. This question is

answered as follows.

Lemma 3.7 A pure-strategy equilibrium exists if and only ifVi: either kt < ro(kj)

or kt > X.

Proof Sufficiency: Suppose k( < ro(fc/)» for both i. By Lemma 3.6, in a pure-

strategy equilibrium both firms set the accommodating price. At this price no firm

has an incentive to undersell. But can a firm gain by overbidding pAl Suppose,

per absurdum, that firm / benefits from overbidding. Then one must have P {kj +

ro(kj)) > pA. Since P is strictly monotone decreasing, it follows that ro(kj) < kt,

contrary to what was assumed. Finally, if firms' capacities exceed the satiation

point, capacities never bind, and we are back to the simple Bertrand model which

predicts a price equal to zero, which is the accommodating price at these high

capacities.

Necessity: Suppose a pure-strategy equilibrium exists. Then, by Lemma 3.6, pA

is the equilibrium price. Now suppose that one firm, say firm /, has kt > ro(kj).

Then kj + k[ > ro(kj) + kj and hence P(kj + ro(kj)) > pA - which contradicts

the assumption that (pA(k), pA(k)) is an equilibrium. •

The pure-strategy range of capacities is represented by the shaded area in Fig-

ure 3.12.

An immediate implication of these results is

52 This assumes pM < /?2- If PM > Pi, firm 1 would try to match p2 as closely as possible; therefore, different
prices could not be part of an equilibrium in this case.
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Figure 3.12. Pure-Strategy Range of Capacities.

Corollary 3.3 The reduced-form gross and net profit functions IT* and FI* have the

exact Cournotform

if and only ifVi: ki < ro(kj) orki > X.

Proof The reduced-form payoff functions map the capacity vector (k\, £2) into

firm I'S gross or net profit respectively, assuming that both firms call the equili-

brium prices of the resulting price competition subgame. Using this definition, the

assertion follows immediately by Lemma 3.6 and Lemma 3.7. •

Mixed-Strategy Equilibria

If firms' capacities are in the intermediate range, represented by the area that is not

shaded in the diagram, the game has no pure-strategy equilibrium. Does it have one

in mixed strategies? If existence of an equilibrium is assured, the answer is yes,

by exclusion. But existence does not follow readily from the standard existence

theorems reviewed in Section 3.4.1.

Since we deal with a continuous-strategy game, it would seem that Glicksberg's

theorem is the appropriate one. However, this assumes that payoffs are continuous

functions of strategies - which is violated in Bertrand models, including the present

one. In recent contributions, Dasgupta and Maskin (1986) and Simon (1987) weak-

ened this continuity requirement and showed that existence is assured in the present

capacity-constrained Bertrand game.53

53 See Theorem 1 in Dasgupta and Maskin, Part II. Incidentally, Kreps and Scheinkman (1983) explicitly solve
for the equilibrium mixed strategies, which also proves existence, without recourse to the general results of
Dasgupta and Maskin.
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Referring to these general existence results, we can assume existence of equili-

brium and turn right away to the properties of mixed-strategy equilibria if capacities

are in the intermediate range where the equilibrium cannot be in pure strategies.

The main result will be that the larger firm's reduced (gross) profit function has the

exact Stackelberg-follower form. This result makes it easy to assess the effect of a

unilateral increase in capacity.

The support of equilibrium mixed strategies is the interval [p., pi]. Loosely

speaking, you may refer to p. as the lowest and to pi as the highest price.

A first result concerns the location of the two "highest" prices and the probability

weights assigned to them.

Lemma 3.8 In a mixed-strategy equilibrium one cannot have pi = p, i = 1, 2,

andPr{pi = p} > 0, for both i; in other words, if the two "highest" prices are the

same, they cannot both be called with positive probability.

Proof We have already shown that pA dominates all prices below pA, so that the

"lowest" prices must be at or above pA and the "highest" prices must exceed pA (if

they were equal to pA, we would have a pure- strategy equilibrium, by Lemma 3.6).

Now assume, per absurdum, that the two "highest" prices coincide and are both

called with positive probability. Then each player is strictly better off by shifting

probability mass away from p to a price just marginally below p. Therefore, the

assumed strategies cannot be equilibrium strategies. •

An immediate implication is that we have either one of two cases:

Pi > P2 or [pi = p2 and Pr{p2 = Pi) = 0] (case I),

P2 > Pi or [p2 = pi and Pr{pi = pl} = 0] (case II).

Lemma 3.9 Suppose case I holds. Then

1. p\ = P(k2 + Tofe)) (Stackelberg-followerprice),
2. k\ > ro(k2) (excess capacity at Stackelberg-follower price),

3. 7r* (k\, k2) = P (k2 + ro(k2))ro(k2) (reduced-form gross profit function has exact Stackel-
berg-follower form),

4. ki > k2.

The extension to case II is obtained by interchanging subscripts 1 and 2.

Proof In order to prove parts 1 and 2, notice that firm 1 is undersold with certainty

whenever it calls p\. Therefore, p\ must be the residual-demand monopoly price

(otherwise p\ would not be part of the equilibrium support of prices), which is

equal to

Pi = Pf = p(k2 + ro(k2)), since pA < p\.

By the monotonicity of P it follows that k\ > rofe), as asserted.

3: If firm 1 calls p\, its payoff is equal to P(k2 + r o f e ^ o f e ) - By a known

property of mixed-strategy equilibria, the equilibrium payoff 7r*(&i, k2) is the same
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as the payoff that occurs when firm 1 replies to the rival's equilibrium strategy

with one of the pure strategies (including p\) over which the player randomizes.

Therefore, n*(k\,k2) = P(k2 + ^o(^2))^ofe), as asserted.
The proof of part 4 is rather long and unenlightening, and hence omitted.

The extension to case II is obvious. •

Two immediate implications of these results are

Corollary 3.4 Suppose capacities are in the intermediate, mixed-strategy equilib-

rium range. Then case I applies ifk\ > k^> and case II ifk^ > k\.

Corollary 3.5 In the mixed strategy range of capacities the larger firm's reduced

form payoff function has the exact Stackelberg-follower form

kt > kj «=> n*(kuk2) = P(kj + ro(kj))ro(kj).

3.6.3 Equilibrium of the Overall Game

We are now ready to characterize the solution of the overall game.

Proposition 3.21 The overall game has a unique subgame-perfect Nash equilib-

rium. It gives rise to the Cournot outcome: k( = kc and pt = pA, i = 1, 2.

Proof The proposition claims that the Cournot solution is an equilibrium outcome

and that the equilibrium is unique. We prove the first part but omit the proof of

uniqueness (which would require a few more steps).

Since the equilibria of the price competition subgame are already represented in

the reduced-form payoff functions, we only need to show that the Cournot capacities

have the mutual best-response property. Since the Cournot capacities are within the

pure-strategy range (see Lemma 3.7), the resulting equilibrium prices follow from

Lemma 3.6. Now consider firm 1, and suppose the rival firm 2 has chosen k2 = kc.

We show that it does not pay to switch from k\ = kc to any other capacity level.

Evidently, it never pays to switch to another capacity level from within the pure-

strategy set {k € R | k\ < ro(kc) or k\ > X) because the reduced-form payoff

function has the exact Cournot form in this range (see Lemma 3.3), and because

the Cournot equilibrium is unique.

But what about moving into the mixed-strategy range of capacities? As firm

1 moves into this range, one has k\ > k2. Therefore, by Corollary 3.5, firm l's

reduced profit function has the exact Stackelberg-follower form, and one obtains

+ r0(k
c))r0(k

c)-C(ki)

< P(kc + ro(k
c))ro(k

c) - C(ro(k
C)) (by Lemma 3.9)

< P(kc + r(kc))r(kc) - C(r(kc)) (since r(k) maximizes nj)

= P(kc + kC)kC - C(kC) (by definition of Cournot equilibrium)
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Therefore, k\ = kc is the best response to &2 = &c, and vice versa. This completes
the proof. •

3.6.4 Excess Capacity and Collusion

The present model has been used by Osborne and Pitchik (1987) and Davidson

and Deneckere (1990) to analyze the relationship between excess capacity and

collusion. They assumed that firms choose their capacities before they enter into

collusive agreements. If collusion fails, firms return to the Bertrand game with

limited capacity.

In this framework, a higher capacity gives firms a stronger bargaining position

in the negotiation concerning cartel quotas. And excess capacity turns out to be a

prerequisite of stable collusion.

To a certain extent, these models illustrate the capacity race that was observed

during the 1920s, which was a period of widespread cartelization. As Scherer (1980,

p. 370) reports:

In Germany, during the 1920's and 1930's, shares were allocated on the basis of production
capacity. Cartel members therefore raced to increase their sales quotas by building more
capacity ... Even when market shares are not linked formally to capacity, a cartel mem-
ber's bargaining power depends upon its fighting reserves ... Recognizing this, companies
participating in market sharing cartels will be tempted to invest more in capacity than they
need to serve foreseeable demands at anticipated collusive price levels.

3.6.5 Discussion

We close this ingenious defense of the Cournot model with some remarks.

The main limitation of this defense is that it does not hold under alternative

rationing schemes such as random rationing. You can see immediately why it does

not hold for random rationing, by going back Section 3.5.1 where random rationing

was used. There we showed that the Cournot outcome cannot be an equilibrium

outcome of the overall game, simply because the price-competition subgame has

no pure-strategy equilibrium for the Cournot capacities. This point was made with

greater generality by Davidson and Deneckere (1986), who pointed out that the

Cournot outcome cannot emerge as an equilibrium for virtually any rationing rule

other than parallel rationing.

Another limitation is that this defense assumes complete information concerning

the choice of capacities, as firms enter into the price-competition subgame. During

World War II, the British army drew up dummy tanks in order to mislead German

air reconnaissance about the strength of its tank corps. Similarly, firms may have

many ways to mislead rivals about their true capacity.

This and other examples suggest that we have reached the limitations of the

complete-information analysis of oligopoly. Many of the stylized features of oligo-

polistic markets - such as entry deterrence through limit pricing - are difficult

to explain within a complete-information framework. Recent contributions have

increasingly turned to models of incomplete information. A full review of these
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developments is the subject of specialized courses on theoretical industrial organi-

zation.

3.7 Bibliographic Notes

If you want to know more about oligopoly theory and industrial organization, we

recommend five books: the classic text by Scherer (1980), Tirole's (1989) textbook,

the textbooks by Shy (1995) and Martin (1993), and the survey by Phlips (1995).

While Scherer's book is a rich mine of 10 themes and cases, Tirole's book has

extensive coverage of the incomplete-information theory of oligopoly that we have

excluded from the present chapter. The books by Shy and Martin supplement Tirole

and are generally at a more introductory level. The book by Phlips surveys important

contributions on collusion and oligopoly.

One important area in oligopoly theory that we have not covered is the analysis

of product differentiation. To underline its importance, recall that the analysis of

oligopolies with heterogeneous products is often a better model of monopolistic

markets than the given-demand-function approach in standard monopoly theory, as

we pointed out in the introduction to the monopoly chapter.

Product differentiation is well covered in other texts. A good introduction can be

found in Friedman (1983) or in Singh and Vives (1984). One prominent application

is that of spatial competition, originating with a famous contribution by Hotelling

(1929). Concise introductions to the Hotelling model and the complications that

come with it are Gabszewicz and Thisse (1986) and Anderson, de Palma, and Thisse

(1992).

Two other important fields not covered here are price discrimination in oligopoly

(see Stole (1995)), and the repeated-game theory of oligopoly and the theory of

price wars due to Green and Porter (1984). On the latter issue see also Slade (1989)

and Klemperer (1989).
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Stochastic Dominance: Theory

Only risk is sure.
Erica Jong

4.1 Introduction

Decision problems under uncertainty concern the choice between random payoffs.

For a rational agent with a known utility function, one random variable is preferred if

it maximizes expected utility. This is easy enough in theory. However, in practice it

is often difficult to find an agent's utility function. Therefore it would be most useful

to know whether a random variable is the dominant choice because it is preferred

by all agents whose utility functions share certain general characteristics.

In this chapter, we introduce two such rankings, known as first- and second-

order stochastic dominance. These notions apply to pairs of random variables.

They indicate when one random variable ranks higher than the other by specifying

a condition which the difference between their distribution functions must satisfy.

Essentially, first-order stochastic dominance is a stochastically larger and second-

order stochastic dominance a stochastically less volatile or less risky relationship.

While the larger random variable is preferred by all agents who prefer higher real-

izations, the less volatile random variable is preferred by all agents who also dislike

risk. In this sense, stochastic dominance theory gives unanimity rules, provided

utility functions share certain properties.

Stochastic dominance theory has a bearing on the old issue whether one can

judge a random variable as more risky than another regardless of who is the judge,

provided that utility functions belong to a class with certain common properties.

For many years, economists thought that mean and variance are a satisfactory mea-

sure of comparative risk. But this was not quite right. Indeed, mean and variance

can only serve this purpose if agents' utility functions are quadratic or if all prob-

ability distributions are normal distributions. Surely, normal distributions are far

too restrictive.1 And quadratic utility functions are unsatisfactory. Not only do they

imply that utility reaches a maximum, they also entail that the absolute degree of

1 For example, studies have shown that stock price changes are inconsistent with the assumption of normal
probability distributions (see Mandelbrot (1963) and Breen and Savage (1968)).
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risk aversion is increasing in wealth, approaching infinity as utility approaches its

maximum. Consequently, one is led to the absurd result that the willingness to

gamble for a bet of fixed size should decrease as wealth is increased.

Stochastic dominance is interesting in itself. But we are mostly interested in what

it contributes to the solution of complex decision problems and their comparative

statics of risk. Keeping this in mind, we will not only give a detailed exposition

of the theory, but also elaborate on a number of applications from various fields in

economics. Among other examples, we address the following issues:

• Will the competitive firm increase its supply if the random product price becomes "larger"?

What if it is subject to less risk?

• Consider the labor-supply and saving decision if the return from saving is risky. Will

labor supply increase if the return from saving becomes more volatile?

• Consider the entry decision in an oligopoly market. Is there a symmetric equilibrium in

mixed entry strategies, and how does the equilibrium entry probability change if more

firms contemplate entry?

• Can one unanimously rank distributions of wealth in a society if all agents agree on some

general ethical principles represented by a social welfare function with certain properties?

• Does it pay to diversify a financial portfolio, and should one always invest more in an

asset if its return becomes "larger" or if it is subject to less risk?

4.2 Assumptions and Definitions

We use capital letters such as X and Y to denote random variables, and the corres-

ponding lowercase letters to denote realizations. Capital letters such as F and G

denote distributions, and / and g the associated density functions. For convenience,

all random variables have the same (extended) support / := [x, Jc], — oo < x_ <

x < +oc. All expected values are assumed to be finite.

The decision maker has a preference ordering over all possible outcomes, which

is represented by a von Neumann-Morgenstern utility function. Two properties of

the utility function are emphasized: monotonicity (more is better than less) and

concavity (risk aversion). The set of utility functions that are monotone increasing

is denoted by U\, and the set of functions that are monotone increasing and concave

by U2. Differentiability requirements will be invoked as needed. All utility functions

are bounded.

Obviously, UeU\ if and only if the argument of U is regarded as a good, and

U e U2 if and only if the decision maker is also risk-averse.

4.3 First-Order Stochastic Dominance (FSD)

We say that the random variable X first-order stochastically dominates (FSD) the

random variable Y, written X ^FSD Y, if

Pr{X > z}> Pr{y > z} for allz, (4.1)

or equivalently, if

F(z) > G{z) for allz (4.2)
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F,G

G

Figure 4.1. First-Order Stochastic Dominance, FSD (dotted area = E[X\).

(where F(z) := 1 - F(z) and G(z) := 1 - G(z)). If the inequality is strict for

some z, the dominance relationship is strict.

In the literature, (4.2) is often written in the form

F(z)<G(z) for all z. (4.3)

However, since it is slightly easier to remember that the dominant random variable

is stochastically larger, we find formulation (4.2) slightly more appealing.

An illustration of first-order stochastic dominance is in Figure 4.1.

4.3.1 Main Results

The following result is useful in several proofs. It also indicates that Y cannot

FSD-dominate X if its expected value is lower. This offers a quick test for FSD.

Lemma 4.1 X >zFSD Y = > E[X] > E[Y].

Proof Suppose X and Y are nonnegative random variables. Then, by a known

property of expected values,2 the assumed FSD implies

E[X] = fX F(t)dt > [X G(t)dt = E[Y].
Jo Jo

If x < 0 one has3

E[X]= [ dx- [ F(x)dx
Jo Jx_

f dx- f G(x)dx
o Jx_

= E[Y].

(4.4)

•

Proposition 4.1 (FSD Theorem) X is unanimously preferred to Y by all agents

with monotone increasing utility functions if and only ifX £FSD Y:

E[U(X)]>E[U(Y)] forallUeUi.

The preference ranking is reversed if utility functions are decreasing.

2 Consult rule R6 in Appendix D (Section DAI).
3 Consult rule R5 in Appendix D (Section D.4.1).
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Proof Suppose X ^ F SD Y. Then4

Pr{U(X) > z} = Pr{X > U~\z)}

>Pr{F> U~\z)}

= Pr{[/(F) > z}.

Therefore, U(X) tFSD U(Y), and Lemma 4.1 implies E[U(X)] > E[U(Y)].

Suppose E[U(X)] > E[U(Y)] for all U e U\. For each z consider the particular

monotone increasing function5

Uz(x) :=
1 if x > z,

0 otherwise.

Evidently, E[UZ(X)] = Pr{X > z},E[Uz(Y)] = Pr{F > z}9 and therefore X>Z¥SD Y.

D

4.3.2 FSD and the ''Stochastically Larger" Relationship*

Proposition 4.1 links the FSD stochastic order relationship and a preference order

shared by all agents who prefer more to less. This already indicates that FSD can

be viewed as a "stochastically larger" relationship. The following result makes this

interpretation even more compelling. It shows that if X tpsD Y, then it is possible

to represent X and Y by probabilistically equivalent gambles, X* and F*, in such

a way that X* is unambiguously larger than y* for all events.

Proposition 4.2 IfX ^FSD Y, one can find random variables X* and 7* that have

the same probability distributions as X and Y and that satisfy the ustochastically

larger" relationship

Pr{X* > r*} = 1. (4.5)

Proof Notice that the random variable F* := G~l(F(X)) has distribution G just

like random variable F because

Pr{F* < x} = Pr{G~l(F(X)) < x}

= Pr{F(X) < G(x)}

= Pr{X<F-\G(x))}

= F(F-\G(x)))

= G(x)

=: Pr{F < JC}.

Now set X* = X, and observe that Pr{X* > F*} = Pr{X > G~l(F(X))} =

Pr{G(X) > F(X)} = 1, as asserted. •

4 Define £/~ Hz) := sup{x\U(x) = z}. This may seem a bit pedantic. But it allows you to cover the case when U is
monotone but not strictly monotone increasing. Notice, however, that continuity is required to make this work.

5 Generally, we assume continuous utility functions (see the remark in the preceding footnote). So how can we
dare to use a discontinuous function in the proof of one of the key results? Don't worry about this. One can
always approximate this function by a continuous function as closely as one desires.
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Examples There are many examples of first-order stochastic dominance. Two of

the more frequently used examples are listed below:

1. The binomial distribution with the density function

increases stochastically both as N and as p are increased.

2. The normal distribution increases stochastically with its mean.

4.3.3 Relationship to Other Stochastic Orderings

In the economics of information one frequently encounters some other stochastic

orderings, such as the likelihood ratio and hazard-rate orderings (see Chapters 8,

9, 11, and the survey by Jewitt (1991)). Both these orderings are even stronger

requirements than FSD.

Definition 4.1 (MHRC) Let X and Y be continuous nonnegative random variables

with respective distributions functions F, G and densities / , g. Then X is said to be

larger in the sense of the monotone hazard-rate condition, written as X ^MHRC Y, if

hx(x) := —— < —— =: hY(x) Vx.
1 — F(x) 1 — G(x)

Definition 4.2 (MLRC) Similarly, X is said to be larger in the sense of the mono-

tone likelihood-ratio condition, written as X ^MLRC Y, if

rx(x) :=
g(x) g(y)

Proposition 4.3

^fcMLRd7 =* XfcMHRC^ => X fcFSD Y.

Proof Since X ^MLRC Y, it follows that for all y > x,

f(y) >

and hence

hx(x) = 1 - F(x)

fix)

fix)

six)

= hyix).

This proves that MLRC =>• MHRC.
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Table 4.1. Two probability

distributions that violate FSD

X\ X2

0.2 0.2 0.6

0.1 0.4 0.5

Now assume X ^MHRC Y\ then one has for all x that hx(x) < hy (x). Therefore,

one has also

r
JO

Sir)

JO 1 -

which is obviously equivalent to ln(l — F(x)) > ln(l — G(x)), and hence to

F(x) < G(JC), for all x. Therefore, MHRC => FSD. •

A Reminder If you only skimmed through the main result, you may mistakenly

equate FSD with the monotonicity of utility functions. Therefore, we remind you

that the FSD theorem is an unanimity result. It gives a necessary and sufficient

condition under which all agents with monotone increasing utility functions agree

on a preference ranking of two random variables. At the risk of unnecessary rep-

etition, we stress that for random variables that do not satisfy FSD, one can always

find monotone increasing utility functions that give higher rank to either the one

or the other, as in the following discrete example. But this cannot occur if random

variables can be ranked according to FSD.

Example 4.1 Consider the probability distribution functions over the three out-

comes x\, X2, X3 stated in Table 4.1 and two monotone increasing utility functions: a)

U(xi) = 0.5, £/(JC2) = hUix^) = 2andb)C/(xi) = 0.5,£/(JC2) = 1.5,t/(jc3) = 2.

Obviously, b) = » E[U(Y)] > E[U(X)l and a) = > E[U(Y)] < E[U(X)].

4.4 Second-Order Stochastic Dominance

We say that random variable X second-order stochastically dominates (SSD) ran-

dom variable F, written X ^SSD Y, if

rk rk

/ Pr{X >x}dx > / Pr{Y>y}dy for all*, (4.6)
Jx_ Jx_

which is equivalent to

/ F(x)dx> G(y)dy for all*. (4.7)
Jx_ Jx^

If the inequality in (4.6) is strict for some *, the dominance relationship is strict.

In the literature, condition (4.7) is often written in the form

rk rk

/ F(x)dx< G(y)dy for all*. (4.8)
Jx Jx
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F,G

»xty

Figure 4.2. Second-Order Stochastic Dominance (SSD).

An illustration of SSD dominance is in Figure 4.2.

4.4.1 Main Results

Of course, FSD =$> SSD - but not vice versa. Also, computing expected values

offers a simple test for SSD:

Lemma 4.2 E[X]>E[Y].

Proof The assertion follows immediately by the fact that E[X] = /0* F(t)dt if

x > 0, and E[X] = f* dx - /* F(x) dx if x < 0. n

Proposition 4,4 (SSD Theorem) X is unanimously preferred to Y by all agents

with monotone increasing and concave utility functions if and only ifX £SSD Y'

X>zSsnY ^ ^ E[U(X)]>E[U(Y)] forallUeU2.

The preference ranking is reversed if utility functions are decreasing and convex.

Proof Suppose E[U(X)] > E[U(Y)] for all U e U2. Consider the following

function:

if x <k,

if x>k.

Obviously, i- Suppose x_ > 0. Then

fk

E[Uk(X)]
f
k

=
Jo

-

F(x)dx foreach^t.

Therefore the assumption implies /0 F(x) dx > Jo G(x) dx for all k, and hence

X £SSD Y. Similar reasoning applies if x_ < 0.

We show that X^SSD Y = » U(X) >ZSSD U(Y) for all utility functions U e

U2. Since monotonicity implies differentiability almost everywhere, and since risk

aversion entails that Uf is monotone decreasing, we can invoke differentiability with
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U' > 0, U" < 0 almost everywhere. Using a transformation of random variables

from X to U~l (X) and integration by parts, one obtains

rk rk

/ Pr{U(X) >x}dx= / Pr{X> U~\x)}dx
Jx_ Jx_

rk

= / F(U~l(x))dx
Jx

= [ F(z)U'(z)dz
J

d
U\z)— / F(v)dvdz

dv Jz

=u\z) r F(V) dv - r u\z) r
Jz Jz Jz

Since Ur > 0, U" < 0, the assumed X ^SSD ^ implies immediately that U (X)

f/(F). Combining this with Lemma 4.2, we conclude E[U(X)] > £[C/(y)] for all

U e U2.
6 •

4.4.2 SSD and the "Stochastically More Risky" Relationship*

Proposition 4.4 links the SSD stochastic order relationship and a preference order

shared by all agents who prefer more to less and are risk-averse. This already

indicates that SSD can be viewed as a "stochastically more risky" relationship. The

following result makes this interpretation even more compelling. It shows that if

X fcssD Y, then it is possible to represent X and Y by probabilistically equivalent

gambles, X* and y*, in such a way that 7* is more risky than X* for all events.

Proposition 4.5 IfX ^SSD Y, one can find random variables X* and F* that have

the same probability distributions as X and Y and satisfy the "more risky " rela-

tionship

Pr{£[y*|X*] < X*} = 1. (4.9)

Examples The most frequently used example of SSD consists of two single-

crossing distributions; the mean-preserving spread is a special case. Two distribu-

tion functions are called single-crossing if they intersect exactly once, as in Figure

4.2. An important implication of single crossing is that one random variable has

more probability mass on both tails of the distribution.

Another implication of the single crossing is that the relationship between ex-

pected values and SSD can be strengthened as follows:

6 Sketch of alternative proof (using integration by parts twice): Let Z(x) := F(x) — G(x) = G(x) — F(x).

Then E[U(X)] - E[U(Y)] = -[* U(x)dZ(x) = P U'{x)Z{x)dx = U'(x) T Z(y)dy -
J X J X OX

£u"(x)f*Z(y)dydx>0.
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Proposition 4.6 (Single Crossing and SSD) Suppose X and Y are nonnegative

random variables that are single-crossing with F(x) > G(x) for low and F(x) <

G(x)for high x. Then X^SSDY <=^ E[X] > E[Y].

Proof Lemma 4.2 already shows that X £SSD Y = > E[X] > E[Y]. Therefore, we

need only prove that E[X] > E[Y] =>• X ^SSD Y. By the assumed single crossing

property, it follows immediately that f*[F(t) - G(t)]dt > 0 for all z e [x, c),

where c denotes the crossing point. We now show that this relationship extends also

to all z e [c, x]. For this purpose, assume z e (c, jc]; then one has

0 < E[X] - E[Y]

= [X[F(t)-G(t)]dt
Jo

= f\F(t) - G(t)]dt + fX[F(t) - G(t)]dt
Jo Jz

< [Z[F(t)-G(t)]dt.

Hence, /o
z[ F{t) - G(t)] dt>0 holds for all z. •

Another example concerns normal distributions.

Proposition 4.7 (Normal Distributions) Suppose X and Y are normally distribu-

ted and Y has a higher variance or a lower expected value than X. Then X ^SSD Y.

Proof If the variance is the same, but the expected value of X is greater than that

of 7, then we know already that X fepsD Y, which, of course, implies SSD. If the

variance of X is lower while expected values are the same, the two distributions are

single-crossing.7 Therefore, X ^SSD Y, by Proposition 4.6. If X has both a higher

expected value and a lower variance than Y, the assertion follows by the transitivity

of stochastic dominance relationships (see Proposition 4.8 below). •

This last fact proves that the mean-variance analysis in finance is justified if the

returns of financial securities are normally distributed.

4.5 An Invariance Property*

Stochastic dominance is preserved when the original random variables are multi-

plied by a constant or when another independent random variable is added.8

Proposition 4.8 (Transitivity) Consider three independent nonnegative random

variables X, Y, and W, and the linear combination aX + bW andaY + bW with

a>0,b>0. Then:

1 The crossing point is z = E[X] = E[Y], which is where the density function has its peak.
8 This result is needed in the starred application on optimal portfolio selection (Section 5.7). You may skip it if

you do not cover this application.
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L X feFSD Y =>(aX + bW) fcpso (flY + bW).

2. X ^SSD Y = > (aX + ft W) ^SSD ( ^ + ft W).

Proof See Hadar and Russell (1971). •

4.6 Ranking Transformations of Random Variables*

Suppose the random variable X is transformed using the deterministic function t(x).

This transformation maps each possible outcome of the original random variable

into a new value. Let t be monotone increasing (to assure that the transformation

does not reverse the preference ranking) and differentiable.

We begin with two results that provide necessary and sufficient conditions for

FSD and SSD dominance of t(X) over X. In the light of what you have already

learned, these results are plausible. Therefore the proofs are omitted.

Proposition 4.9 Consider the transformation t (X), and define k(X) := t(X) — X.

Then

t(X)>zFSDX ^ ^ k(x)>0 VJC, (4.10)

t(X)>zSSDX 4=* r k(t)dF(t)>0 VJC. (4.11)
Jo

Strict dominance requires strict inequalities for some x.

Proof To prove the FSD relationship note that

Pr{t(X) > x} = Pr{X > rl(x)}

> Pr{X > x}

^=^ r\x)<x <=^ x<t(x).

The proof of the SSD relationship is left as an exercise. •

Frequently used transformations are affine transformations, t(x) := a + fix. But

these are often more specialized than necessary to derive unambiguous comparative

statics of risk.

Example 4.2 (Stretching) Consider the affine transformation of X

t(X) :=a + px (4.12)

with a > 0, ft > 1, at least one strict. Then t(X) ^ F S D X. Obviously, t(X) can be

viewed as a stretching of X.

The direct proof follows from a simple assessment as follows:

Pr{t(X) > z} = Pr j x > ̂ J > Pv{X > z}.

But it is also a consequence of Proposition 4.9.
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Example 4.3 (Single Crossing) Consider a single-crossing transformation t(x),

with t(x) > x for x < JC* and t(x) < x otherwise. Also assume the mean-

preserving property E[t(X)] > E[X]. Then the integral condition in (4.11) is

satisfied; therefore, t(X) £SSD X.

4.7 Comparative Statics of Risk

Economic models of uncertainty usually examine optimal decisions in the face

of random outcomes. In comparative statics, we explore how the optimal action

responds to parameter changes. Comparative statics of risk concerns changes in the

nature of the underlying uncertainty. In this section we lay the foundations for the

comparative statics of risk, for a class of decision problems. The results will then

be used in the analysis of various typical applications.

4.7.1 Framework

Suppose the decision maker has the objective function

V(a,X) :=U(n(a,X)),

where a is his action variable and n(a, X) the random outcome, codetermined by

his action a and the nonnegative9 random variable X. The function n (which could

be the profit function of a firm) is strictly concave in a, and na = 0 is satisfied for

some finite a, for each x.

The decision maker maximizes expected utility:

Existence of an interior solution a* that solves

E[Va(a\ X)] = 0 and E[Vaa{a\ X)] < 0 (4.13)

is assumed.

4.7.2'Key Issue

We want to find out how a* changes when the random variable X is altered by a FSD

or SSD transformation. For this purpose consider the convex linear combination of

X and t (X) given by

Z(0) := 6t(X) + (1 - 0)X, 0 e [0, 1]

= X + 0k(X)

where

k(X) :=t(X)-X.

9 In the following, nonnegativity is invoked only in order to avoid cumbersome case distinctions.
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We will analyze the solution function

a*(6) := argmax£[V(tf, Z(9)l
a

in particular its derivative at the point 9 = 0. The sign of a*'(0) determines the

effect of the transformation t (X) on the optimal action.

Since a*(9) solves the first-order condition E[Va] = 0, one has by the implicit-

function theorem

E[Vaxk] ( 4 H )

where all functions are evaluated at the point (a*, X). By the second-order condition,

E[Vaa] < 0. Thus,

kl (4.15)

and the comparative statics problem is reduced to determining the sign of E[Vaxk].

Proposition 4.10 (FSD Transformations I) The optimal action increases (dec-

reases) [a*f(0) > 0 (< 0)1 for all FSD transformations ifVax(a*, X) > 0 (< 0)

everywhere.

Proof Follows immediately by (4.15) and the fact that k(X) > 0 (FSD). •

Proposition 4.11 (SSD Transformations I) The optimal action increases (de-

creases) [a*'(0) > 0 (< 0)] for all SSD transformations ifVaxx(a*, x) < 0 (> 0)

everywhere, in addition to the condition stated in Proposition 4.10.

Proof Using integration by parts one obtains

E[Vaxk] = f' Vax(a\x)^-( f k(t)dF(t))dx
Jo dx \Jo )

= Vax(a\x) f k(x)dF(x)
Jo

- f Vaxx(a\x) f k(t)dF(t)dx.
Jo Jo

Since /^£dF > 0 Vx, by SSD, the sign of E[Vaxk] is unambiguous when Vax (a*, x)

< 0 and Vaxx > 0 f° r aH x, a n ( l the assertion follows immediately. •

As an interpretation of these results, we introduce what has been called the

generalized risk aversion10

-U"nn
K ! =

U'

10 Notice: \iiia7zx = 1, the measure reduces to the absolute risk aversion, and \i7ia7ix = ax, to the partial relative
risk aversion proposed by Menezes and Hanson (1970).
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Then Vax and Vaxx can be rewritten as follows:

Vax = U'(7rax-R), (4.16)

Vaxx = U\naxx - Rx) + U"nx(nax - R). (4.17)

Therefore, the conditions in Propositions 4.10 and 4.11 can be replaced by require-

ments concerning the function n and the generalized risk aversion R.

For example, if n(a, X) := aX, one has nax = 1 and therefore a*'(0) > 0 for

all SSD transformations if R(a*, x) < 1, Rx(a*, x) > 0.

The conditions summarized in Propositions 4.10 and 4.11 are sufficient for de-

termining the sign of a*'(0), but not necessary. This suggests that there is room

for other sufficient conditions. We close with two further results that are useful in

several applications. Key requirements are that k!(X) < 0 and that the absolute risk

aversion, A := —U"/U\ must be monotone decreasing. Whereas the emphasis

of the previous conditions is on the degree of risk aversion, the emphasis of the

following conditions is on the functional form of the transformation rule.

Proposition 4.12 (FSD Transformations II) The optimal action increases for all

FSD transformations if all of the following conditions hold everywhere:

L U' > 0, U" < 0, A! < 0,
2. 7tx > 0, 7TXX < 0, JZax > 0,

3. k'(x) < 0.

Proof Using the absolute risk aversion A, Vax can be written in the form

Vax = U\nax-A7Txna). (4.18)

Therefore,

E[Vaxk] = jX U'naxkdF - T UfAnxnakdF. (4.19)
Jo Jo

The first integral is obviously nonnegative for all FSD transformations. In order to

determine the sign of the second integral, notice two facts: 1) Anxk is positive and

decreasing in x; and 2) U'na is negative for low JC, say for all x < x\, and positive

for all x > x\ in such a way that the first-order condition / Ufna dF = 0 holds.

Combining these facts, one has

fX\Aknx)U
fJTadF < (Aknx)\x=X] /*' U'nadF, (4.20)

Jo Jo

f\Aknx)U'na dF < (Aknx)\x=Xl f U'na dF. (4.21)

Therefore, by the first-order condition concerning a,

r AknxU
fna dF < (Aknx)\x=X] T U'ixa dF = 0, (4.22)

Jo Jo
and hence E[Vaxk] > 0. •
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Table 4.2. Sufficient conditions for a*'(0) > 0

Propositions FSD transformations SSD transformations

4.10 and 4.11 Vax > 0 . . . and Vaxx < 0

4.12 and 4.13 A', k\ rtxx < 0, nx, nax > 0 . . . and 7taXx < 0

Note: A := -U"/U'\ R := A7Tanx, Vax = U\nax - /?),
Vaxx = U\7taxx - Rx) + U"nx(Xax ~ R)

Finally, a similar result applies to all SSD transformations, if one makes the

stronger requirement that the marginal product na must not only increase but must

also be concave in x.

Proposition 4.13 (SSD Transformations II) The optimal action increases for all

SSD transformations ifnaxx < 0 in addition to the conditions stated in Proposition

4.12.

Proof Look at the first integral term on the RHS of (4.19). Using integration by

parts, this can be written as

f U'naxkdF = f Ufnax^- ( f k(y)dy) dF(x)

= U'nax [" k(y)dy

Jx_

- [\u"nax + U'naxx) fXk(y)dydF(x).

Using an argument similar to the one developed in the previous proof, the assertion

follows easily. •

4.7.3 Summary Table

Since we make extensive use of these results in the following applications, we

summarize these sufficient conditions for a* (0) > 0 in Table 4.2.

4.8 Bibliographic Notes

The exposition of the theory of stochastic dominance is based on Hadar and

Russell (1969, 1971), Meyer (1989), Meyer and Ormiston (1983), Ross (1983),

and Ormiston (1992). For further details the reader is referred to the collection

of essays edited by Whitmore and Findlay (1982), especially the contributions by

Fishburn and Vickson (1978) and Hadar and Russell (1982).

The extension to third- and higher-order stochastic dominance is straightforward.

The interested reader is referred to Whitmore (1970).

x=x

X
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Stochastic Dominance: Applications

Chance favors only the prepared mind.
Louis Pasteur

5.1 Introduction

In the introduction to this part of the book (Section 4.1) it was claimed that stochastic

dominance theory is useful in many areas of economics. We now put this claim to

a proof with a sample of applications - ranging from a simple portfolio selection

problem to the measurement of income inequality in society.

5.2 Portfolio Selection I

A risk-averse investor considers dividing given wealth w between two assets: one

riskless asset with the sure return r, and one risky asset with the random return r + X.

Short sales are not feasible. The decision problem is to choose that investment in

the risky asset a e [0, w], which maximizes expected utility:

maxE[U(n(a, X))] where n(a, X) := wr + aX. (5.1)
a

To assure an interior solution, a* e (0, w), E[X] > 0 is assumed.1

Evidently, one has

na = X, nax = \, naxx^Q, nx=a, nxx=0, R = ——aX.
U"

i

(5.2)

Therefore,

Vox = U\\ - R), Vaxx = -UfRx + U"a{\ - R). (5.3)

Proposition 5.1 Investment in the risky asset will increase if

1. its return is subject to a FSD transformation and R < 1 everywhere;

2. its return is subject to a SSD transformation and R < 1, Rx > 0 everywhere.

1 The first-order condition for an interior solution is E[U'X] = 0. Since E[U'X] = E[U']E[X] + Cov(Uf, X),
it follows that an interior solution exists if and only if E[X] > 0. Notice: Cov(£/', X) < 0 4=> a > 0,
because U' is strict monotone decreasing.
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Proof See Table 4.2 and (5.2), (5.3). •

The two requirements in Proposition 5.1 are fairly restrictive. Indeed, R < 1

excludes some commonly used utility functions, and the alternative requirement

Rx > 0 contradicts the usual assumption of diminishing risk aversion.

However, by restricting the permitted transformations of the return of the risky

asset, one can show that the demand for the risky asset tends to increase also under

more reasonable assumptions concerning the degree of risk aversion.

Proposition 5.2 Investment in the risky asset will increase if its return is subject to

a SSD transformation, with tf(x) < 1 (equivalently kf(x) < 0), and the absolute

risk aversion is diminishing (Af < 0).

Proof See Table 4.2 and (5.2). •

As an illustration, suppose the premium on the risky asset is increased by a fixed

amount 9 at all realizations of X. This leads to the transformation t (X) = X + 6.

Hence, k(X) = 0, k'(X) = 0, and the demand for the risky asset will increase by

the first part of Proposition 5.2. As another illustration, suppose that the earnings

on the risky asset are subject to an income tax. Suppose the tax is reduced in such

a way that the tax reduction is high at low and low at high realizations x. Then

k(X) = t(X) - X > 0 and k\X) = t\X) - 1 < 0. Again, the demand for the

risky asset will increase, by the second part of Proposition 5.2.

Interestingly, if tf(x) > 1 (equivalently, ifkf > 0), the higher return of the risky

asset may lead the investor to hold less of it. An interpretation of this paradoxical

Giffen-good effect makes use of the distinction between an income effect and a

substitution effect, adapted from traditional demand theory. The fact that t(x) > x

(k(x) > 0) implies that the substitution effect is positive, which indicates that

a* should increase. However, if t' > 1 (k' > 0), the transformed random variable

is riskier, and the income effect may be negative and larger than the substitution

effect.2

5.3 The Competitive Firm under Price Uncertainty

Consider a risk-averse competitive firm with the convex cost function C(a), defined

on output a with fixed costs limfl^o C(a) > 0. Production is subject to a time lag;

therefore, production decisions have to be made before the market price is known.

The firm is a price taker in the sense that the product price is a nonnegative random

variable X. To assure an interior solution, E[X] > mina C(a)/a is assumed.

The firm maximizes the expected utility of profits n by choosing nonnegative

output a:

max E[U(n(a, X))], where jr(a, X) := Xa - C(a). (5.4)
a>0

2 If the demand for the risky asset may diminish when its return increases, you may rightly suspect that the
demand for the riskless asset may also increase if its (safe) return diminishes. This possibility was noticed by
Fishburn and Porter (1976). Necessary and sufficient conditions for this to occur are described in Fishburn and
Porter (1976) and in Pratt (1989).
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Figure 5.1. Effect of Price Support Program.

Evidently,3

= 1, = 0, 7Tv = a. (5.5)

Proposition 5.3 The competitive firm will increase output if the product price is

subject to a SSD transformation (/Q kdF > 0), with k'{x) = tf(x) — 1 < 0, and

the absolute risk aversion is decreasing in x.

Proof See Table 4.2 and (5.5). •

As an illustration, suppose output is subsidized at a fixed rate 9 > 0. Then t (x) =

x + 0 and k(x) = t(x) - x = 9 > 0, k'(x) = 0. Alternatively, let this subsidy

be regressive in the sense that the subsidy rate is positive but monotone decreasing

in the price x. Then k{x) > 0 and &'(JC) < 0. In both cases output will increase,

provided absolute risk aversion is not increasing.4

Finally, suppose the government introduces a price support program where it buys

or sells from its inventory in such a way that the price is confined to a narrower range,

say [JCI , xj\ C [x, jc]. Such price support or buffer stock programs are observed in

many markets for natural resources and agricultural products. Stated formally, they

lead to the transformation (see Figure 5.1)

-X) ifX<jci,

ifXe(xux2),

Therefore,

{
0
x2-X

If JCI is chosen sufficiently high or x2 sufficiently low, one can assure that

t(X)tssDX. The exact condition is x\ > (x — x^)1 (see Proposition 4.9 and the
3 Note that R = —{U"/U'){X — C')a, which is why R is positive for high x, and negative for low x.
4 Notice, however, that the effect of an ad valorem subsidy is ambiguous because in this case t(x) = Ox, 9 > 0,

and therefore k'{x) = 0 > 0.
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illustration), which is of course always satisfied if the price support intervenes only

to assure a minimum price. In this case, Proposition 5.3 indicates that the price

support program leads to higher output (provided the absolute risk aversion is not

increasing), which in turn may lead to a buildup of public inventories, epitomized

by the infamous butter mountain of the European Community.

5.4 Labor Supply

A risk-averse household chooses a labor supply a facing a fixed real wage rate

w > 0 and random earnings on nonhuman capital, X > 0. The endowment with

time is one unit; time spent without working is leisure. All income is spent on a

fixed basket of consumption goods; therefore, the number of units consumed is

n(a,X) :=wa + X. (5.6)

The household maximizes expected utility:

max E[V(a,X)].
ae[0,l]

The objective function is based on the twice continuously differentiate and concave

utility function U, with the two arguments a and n(a,X):

V(a,X):=U(a,n(a,X)).

Of course, Ua < 0, Un > 0, Un7Z < 0. To assure an interior solution, a* e (0, 1),

the usual Inada conditions are assumed.

The important difference between this and all previous applications is that the

utility function U now has two arguments, n (a, JC) and a. This must be kept in mind

when one applies the general theory of the comparative statics of risk.

We want to find out under which conditions labor supply tends to either increase

or diminish if random property income is subject to FSD or SSD transformations.

In contrast with previous applications, we now also need assumptions concerning

the behavior of the cross derivative of the utility function.

To obtain clear-cut results, we admit only utility functions that display either

Ua7r + wUnjr < 0 or > 0 everywhere. In the well-known deterministic labor-supply

model, these inequalities correspond to leisure being either a normal or an inferior

good, respectively. We will stick to this interpretation of the sign of Ua7T + wUnJT.

As you know from Section 4.7, the signs of Vax and Vaxx play an essential role

in explaining the labor-supply response. The nice feature of the present model is

that there is a one-to-one correspondence between the sign of these functions and

the nature of the leisure good. Therefore, the supply response is unambiguously

determined by the income elasticity of the demand for leisure.

Proposition 5.4 Labor supply diminishes (increases) for all FSD transformations

of property income, if leisure is a normal (inferior) good everywhere.
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Proof This follows immediately by Proposition 4.10 and the fact that

( normal,

Vax = Ua7l + wUnn = 0 if leisure is < neutral,

[inferior. D

This result can be pushed a bit further if one adds assumptions concerning the

behavior of the cross derivative of the utility function. For example, suppose the

consumption of leisure does not affect the household's willingness to take gambles.

Specifically, suppose the absolute risk aversion A is independent of the consumption

of leisure:

— A (a, n(a, x)) = 0 everywhere. (5.7)
da

Then whether leisure is a normal or an inferior good determines not only the sign

of Vax, but also that of Vaxx:

Lemma 5.1 Suppose (5.7) holds. Then sign Vaxx = —sign Vax.

Proof Since nx = 1, one has (d/dx) In Un = UnjT/Un = —A. Therefore, by the

assumed invariance of A with respect to a and the fact that the order of differentiation

does not matter, one has

da dx

d d

dx da

d

~~dx~

dx [Ux

Vaxx + V

Therefore, Vaxx = —VaxA, and the assertion follows immediately. •

Using this result one can extend the labor-supply response described in Propo-

sition 5.4 to all SSD transformations of property income.

Proposition 5.5 The labor supply diminishes (increases) for all SSD transforma-

tions of property income if leisure is a normal (inferior) good.

Proof This follows immediately by Proposition 4.11 and Lemma 5.1. •

5.5 Entry in Cournot Oligopoly

Consider the mixed-strategy equilibrium of the entry game in a Cournot oligopoly,

explained in Chapter 3 on Oligopoly and Industrial Organization (see Section 3.4.10).
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There we showed that the equilibrium probability of entry, /x, must satisfy the con-

dition of indifference between entry (leading to the payoff stated on the left-hand

side) and nonentry (leading to zero payoff):

N-l

] T 4>N(n, fi)U(n + 1) - F = 0, (5.8)

where 0jv(rc, />0 is the probability of the event that n rivals enter,

ti):= lN~1J^n(l-fi)N'l-\ (5.9)

n (n) the gross profit as a function of the number of active firms, N the number of po-

tential competitors, and F the sunk entry cost. N is taken to be so large that n (N) <

F\ in other words: If all firms entered with certainty, they would suffer losses.

The prize question is: Does this indifference condition have a solution /x e (0, 1),

and if so, is it unique? Having mastered stochastic dominance, the answer is easy

to prove.

Proposition 5.6 (Mixed Entry Strategies in Oligopoly) The simultaneous-entry

model has a unique mixed-strategy equilibrium where each potential competitor

enters with positive probability less than one.

Proof The proof proceeds in several steps:

1. Confirm that the left-hand side of (5.8) is positive if /x = 0, and negative if /x = 1. This
is the easiest part.

2. Consider the probability distribution of the random number of rival entrants, n, as a
function of/x:

^ (N-\\ m
<$>N(n, a) :=Pr{fi > n\ = > /x (1 — u) . (5.10)

*-^ \ m I
m=n+\ v 7

By a known result one can write (5.10) in the equivalent form5

i>N(n,u) = : / rn(l — r)N~n~2 dz, (5.11)
n\(N — n — 2)\ Jo

from which you see immediately that <&N is strictly monotone increasing in /x. In other

words, increasing /x leads to FSD dominance. Since n is decreasing in n, it follows

that the expected profit from entry (the left-hand side of (5.8)) must be strict monotone

decreasing in /x, by Proposition 4.1.

3. Putting pieces together, it follows that (5.8) has a unique solution /x e (0, 1). •

Another question concerns the effect of potential competition on the equilibrium

entry strategy. Again, stochastic dominance gives the clue.

Proposition 5.7 (Comparative Statics) The equilibrium probability of entry /x is

a strict monotone decreasing function of the number of potential competitors N.

5 See rule (R18) in the brief introduction to order statistics in Appendix D, Section D.4.5.
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Proof Follows immediately from the fact that the binomial distribution (f)N(n, M)
is stochastically increasing (in the sense of FSD) in N as well as in /x. •

5.6 Auctions

Consider the English (E) and Dutch (£>) auction in the symmetric framework

of independent private values with N >2 bidders. Assume uniformly distributed

valuations on the support [0, 1] and risk-neutral bidders.

In Chapter 8, we show in detail that the equilibrium bid functions are bo (v) = (1 —

\/N)v and b£(v) = v. The associated equilibrium prices are the random variables

PD and PE> Their probability distribution functions (cdf's) are (see (8.21) and

(8.22))

FE(x) = xN + N (xN~l - xN^j . (5.13)

The equilibrium price in both auctions is equal to the highest bid. In the Dutch

auction it is

PD=b*l(ViN)) (5.14)

and in the English auction

pE = b*{v(N-l)). (5.15)

Here V(AO> V(N-\) denote the highest and second highest order statistic of a sample

of N identically and independently distributed iid random valuations, respectively.

An important result in auction theory is that the expected values of equilibrium

prices in the Dutch and English auction are the same, E[PD] = E[PE]. However,

the random variables differ in their risk attributes. Indeed:

Proposition 5.8 (Dutch vs. English Auction) The random equilibrium price of

the Dutch auction, P&, second-order stochastically dominates that of the English

auction, PE> In other words, every risk-averse seller should strictly prefer the Dutch

auction.

Proof In order to prove the asserted stochastic dominance relationship, we show

that the two cdf's are single-crossing. Since the expected values of the two equi-

librium prices are the same, one can employ the single-crossing Theorem 4.6. The

dominated random equilibrium price is the one that has more probability mass on

both tails of the distribution. This happens to be PE- The details are spelled out in

Chapter 8 on Auctions, in Section 8.2.5 (see also Figure 8.2). •

5.7 Portfolio Selection II*

Using the mean-variance approach, it is relatively straightforward to find out

whether it pays to mix two risky assets in a portfolio even if one asset would
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be strictly preferable if one had to choose just one of them.6 The mean-variance

approach is however not sufficiently general.7 Therefore, it is high time to return

to this issue, using stochastic dominance instead of mean-variance rankings.

Consider portfolios consisting of a mixture of two random prospects. We are inter-

ested in conditions under which diversification is optimal for all risk-averse agents.

Let the two prospects be described by two independent and positive random vari-

ables X\ and X2. Then a portfolio is characterized by a new random variable P(X):

P(X):=XXx + (l-X)X2. (5.16)

The portfolio selection problem is to choose a X e K. that maximizes the investor's

expected utility, E[U(P(X)]. We will say that diversification is optimal if for all

U eU2 there exists some X e (0, 1) for which E[U(P(X))] > max{£[[/(P(0))],

A first result that also helps in other proofs is

Proposition 5.9 Let X\ and X2 be two independent, identically distributed random

variables. Then diversification pays in the strong sense that

E[U(P(X))] > max{£[C/(P(l))], E[U(P(0))]} WX e (0,1).

Proof See Hadar and Russell (1971). •

But does diversification pay even if one of the two random prospects, say X\,

SSD-dominates X2? Surprisingly, the answer is yes - provided the dominance is

not excessive in a sense to be made precise.

Before proceeding, it has to be stressed that this question makes sense only if

the two prospects have the same mean: E[X\] = E[X2]. Why this? First of all,

the assumption that Xi SSD-dominates X2 implies E[X\] > E[X2], by Lemma

4.2. Therefore, if E[X{\ differed from E[X2]9 one would have E[X{\ > E[X2].

But then WX e (0, 1), EP{\) = E[XX] > XE[XX] + (1 - X)E[X2] =: EP(X), so

that - again by Lemma 4.2 - P(X) cannot SSD dominate Xi, X e (0, 1), so that the

assertion could not possibly hold true. Anyway, the assumption E[X\] — E[X2] is

not restrictive. If assets are divisible, it is only a matter of the choice of units.

As a second preliminary question we now ask: What precisely do we mean by

saying that X\ dominates X2 - but not excessively so? For the purpose of formal-

izing this notion, we introduce yet another random variable. Let Y be independent of

X2, yet identically distributed. Then, by combining X2 and Y, one gets a new random

variable that SSD-dominates X2 (see Proposition 4.8). Utilizing this property, we

now make the following assumption:

Assumption 5.1 There exists a set S c (0, 1), S ^ 0, such that VX e 5, P(X) :=

XX2 + (1 - X)Y SSD-dominates Xi.

This gives precise meaning to the statement that X\ SSD-dominates X2, but not

excessively so.

6 See the supplementary section on variance-minimizing portfolios (Section 5.9).
7 Recall that variance is an unambiguous measure of risk only if the utility function is quadratic or if probability

distributions are normal.
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With these preliminaries we come to our main optimality-of-diversification result.

Proposition 5.10 Let X\ and X2 be two independent nonnegative random vari-

ables with identical means. Suppose X\ SSD-dominates X2, and suppose the above

assumption holds. Then, for all X e S, P(X) := XX\ + (1 - X)X2 SSD-dominates

X2 as weII as X\.

Proof In the proof we make use of certain properties of the artificial portfolio

described in Assumption 5.1 that involves a convex combination of the two random

variables X2 and F, P(X) :== XX2 + (1 - X)Y, X e S. Since X2 and Y are identically

and independently distributed, the probability distributions of P(X) and P(X) :=

XX1 + (1 - X)Y must be the same. Next, notice that, by Proposition 4.8, P(X) SSD-

dominates P(A,).8 Combining this with the other assumptions, one thus arrives at

the following combination of SSD relationships:

P(X):=XXl + (l-X)X2

X2.

The assertion follows immediately by the transitivity of stochastic dominance. •

5.8 Income Inequality*

As an economist you are well trained to rank social states by their efficiency on

the basis of the Pareto criterion. But how do you rank income distributions? For

example, you may be asked to answer questions such as these:

• Has the distribution of income become less or more equal during the past decade?
• Is the distribution of income in France less or more equal than in Germany?
• Does the introduction of the value added tax in the U.S. give rise to greater or less income

inequality?

How would you go about to answer these questions?

As a first shot you might use the Gini coefficient, a well-known summary statistic

of inequality. However, we all have some rough notion of what income inequality

should mean, and given any such notion one can always find examples of income

distributions for which the ranking by the Gini coefficient blatantly contradicts that

notion of inequality. Indeed, you may try as hard as you wish, but you cannot find

any acceptable social welfare function that consistently ranks income distributions

in the same way as the Gini coefficient, as was shown rigorously by Newbery (1970).

Already in the earlier 1920s Dalton (1920) suggested that the study of income

inequality should start with a statement of the underlying welfare norm in the

form of a social welfare function. The modern economic theory of ethics has laid

8 In applying Proposition 4.8 set a = X and b = 1 — X.
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Figure 5.2. Lorenz Curve.

out various properties that reasonable social welfare functions should share, such

as symmetry and additive separability. The rationale of imposing these and other

properties is the notion that ethical rankings of social states must be impartial vis

a vis all individuals in society.9

In the following, we adopt Dalton's advice and use a social welfare function to

rank income distributions. Specifically, we consider income distributions with equal

means /x characterized by their distribution functions such as F : [0, y] -> [0, 1]

and F* : [0, y] - • [0, 1] with images F(y), F*(y). These are ranked according

to the social welfare function W : T —> E, defined on the set of all distribution

functions T with domain [0, y],

W(F):= [yU(y)dF(y).
Jo

(5.17)

beanThe only additional requirement will be that the utility function U : E -

element of the class U2.

We ask: Under which conditions does F rank higher than F* regardless of the

particular form of the utility function U ̂ U^l This leads us to the notion of Lorenz

dominance and - even though no random variables are involved here - back to the

SSD.

You surely are familiar with the ingenious statistical representation of income

distributions by Lorenz curves. The Lorenz curve plots percentages of the popu-

lation, ordered by their income level from bottom to top, and their respective per-

centage shares of total income, as depicted in Figure 5.2. The diagonal represents

9 Social welfare functions that have these properties are usually referred to as utilitarian. One of the most ardent
and sophisticated defenders of modern utilitarianism is Harsanyi, and you may wish to consult one of his
beautifully clear contributions on this important subject, in the collection of his essays on this topic (Harsanyi
(1976)).
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the line of absolute equality. Therefore, Lorenz curves are always on or below the

diagonal.10

Stated formally, the Lorenz curve (due to Lorenz (1905)) is the graph of a function

cp : [0, 1] - • [0, 1] that maps the images of the distribution functions F(y) and

F*(y) into income shares as follows:

<p(z;F):=- I Z yf(y)dy (5.18)
/x Jo

1 rF-Hz)
<p(z;F*):=- / yf*(y)dy, (5.19)

\JL JO

where n := fyf(y)dy = f yf*(y) dy.
Based on this familiar concept, we now define Lorenz dominance:

Definition 5.1 Consider two income distributions with equal mean, described by

the distribution functions F and F*. F Lorenz-dominates F* (F >L F*) if F is

above F* everywhere, i.e., if Vz e [0, 1], <p(z\ F) ><p(z\F*).

Of course, any welfare function W ranks distributions the same way as Lorenz

dominance. But Lorenz dominance induces only a partial ordering of income dis-

tributions. However, as shown in the following main result, the welfare function W

cannot consistently rank distributions in the same manner for all utility functions

U e U2, unless these distributions can be ranked by Lorenz dominance. Interest-

ingly, the proof employs SSD, which is why the present material is an application

of stochastic dominance theorems.

Proposition 5.11 The income distribution function F ranks higher than F* (W(F)

> W(F*)) for all utility functions U e U2 if and only if F Lorenz dominates F*

(F >L F*).

Proof By Proposition 4.4, the statement W(F) > W(F*)VU e U2 is equivalent

to the statement that F dominates F* in the sense of SSD. Therefore, one only

needs to show that Lorenz dominance is equivalent to SSD. The details of the proof

are spelled out in Atkinson (1972). •

5.9 Supplement: Variance-Minimizing Portfolios*

We close this chapter with a supplementary section, dealing with the basics of the

mean-variance analysis of portfolio selection. This material may be used indepen-

dently, for example to motivate the analysis of portfolio selection scattered over

different sections of this part of the book.

Suppose you want to invest $1 million. You are offered two financial assets, say

two different bonds or stocks. Stripped of all unimportant detail, these assets are

fully characterized by their random returns X and Y. Both assets promise the same

10 Incidentally, the Gini coefficient is defined as the ratio of the area between the Lorenz curve and the line of
absolute inequality to the area under the line of full equality.
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average return E[X] = E[Y] and have the same unit price.11 But X is at least as

risky and perhaps riskier than Y. You are risk-averse. Would you be well advised

to invest in a mixed portfolio, with a positive fraction of your wealth invested in X

and Y, or should you rather put it all into the low-risk asset Y?

5.9.1 Portfolios

Given these assumptions, a feasible (budget-balancing) portfolio is characterized

by a new random variable Z, defined as a linear combination of the random returns

of its constituent assets:

Z := aX + (1 - a)Y, a e i (5.20)

Since the two assets' average returns are the same, the average return of the

portfolio Z is unaffected by the asset mix. Therefore, you can be single-minded and

focus on the effect of mixing assets on risk. Your decision problem is thus reduced

to choosing that particular a that minimizes the risk of the resulting portfolio.

While we are particularly interested in finding out whether the optimal a is a

real number between 0 and 1, which represents diversification, notice that we have

not excluded that a is negative or greater than 1. A negative a indicates that the

investor actually sells or issues the asset X, and a > 1 that he issues Y.

5.9.2 Conjectures

Before you continue with the formal analysis, sit back for a moment and let your

intuition guide you. As X is at least as risky as Y (and perhaps even riskier), you

may think that by combining them one can only increase risk relative to that from

holding only the low-risk asset. Therefore, it would seem that you should stay away

from the high-risk asset X. On the other hand, you may recall the old adage that

one should never put all one's eggs in one basket, which suggests that it is always

better to diversify.

5.9.3 Outlook

As it turns out, neither conjecture holds true without qualification. If the covariance

(or the correlation) of X and Y is sufficiently low, risk is subadditivity (the total is

less than the sum of its parts), and diversification is beneficial. But diversification

actually increases risk if the covariance is sufficiently high. Therefore, it all depends

on the degree of association between the two assets' returns, measured by their

covariance or correlation.

Essentially, risk is like toxic chemicals. To determine the toxic properties of a

blend of chemicals, it is less important how poisonous the ingredients are than

how they work together. Some perfectly harmless substances combine to a deadly

mixture, while other highly toxic ingredients completely neutralize each other.

11 Assuming both identical expected values and identical unit prices makes this analysis a special case. Neverthe-
less, some of the following results, such as the convexity of the variance of a portfolio, are central to the general
mean-variance analysis of portfolio choice. A nice introductory text is Sharpe (1970).
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5.9.4 Assumptions

In the following exercise, we develop a tight, necessary, and sufficient condition

for the optimality of diversification. In line with the mean-variance approach to the

theory of finance, we assume that the variance of Z is a suitable measure of risk.12

As a convention, we let

a2 := Var(X) > Var(F) =: a 2 (5.21)
A, y

By a known result (see rule (R3), Appendix D), one has

a 2 := Var(Z) = a 2 a 2 + (1 - a)1 a] + 2a(l - a) Cov(X, F). (5.22)

The question is: Does a 2 have a minimum for some a e (0, 1)?

5.9.5 A Lemma That Clears the Road

Lemma 5.2 Suppose G2 > G2 or X and Y are not perfectly correlated. Then a2

reaches a minimum at

a] - Cov(X, Y)

"' = y <5'23)

Proof Define the function 0 : R -> R, (p(a) := a2 . Then 0 is twice continuously

differentiable, and one has

- 2(1 - ot)a] + 2Cov(X, F) - 4a Cov(X, 7). (5.24)

Therefore, a* is a stationary point of

Denote the standard deviations by ox, ay (these are the nonnegative square roots

of (7 ,̂ a2), and the correlation by p := Cov(X, y)/(axcr>;). Also recall that p e

[ -1 , 1] (by rule (R7), Appendix D). Therefore,

(j)"{a) = la] + 2a2 - 4Cov(X, Y)

= 2a^ + 2a2 — 4paxay

> 2a2 + 2a2 - 4oxoy (by p < 1) (5.25)

= 2(ax - ay)
2

> 0 (by 5.21),

with at least one inequality holding strict because p < 1 or GX > Gy. Hence, 0

is strictly convex, and therefore the stationary point a*, determined in (5.23), is

a unique global minimum. (Note: By (5.25) the denominator of (5.23) is equal to

^(j)/f(a) > 0 and hence does not vanish.) •

12 As we have explained in this chapter, variance can only serve this purpose if utility functions are quadratic or if
probability distributions of X and Y are normal distributions (see Section 5.7). These conditions are, of course,
extremely restrictive.
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5.9.6 Main Result

It remains to be shown that a* e (0, 1) under reasonable circumstances. This ques-

tion is answered by the following main result

Proposition 5.12 Suppose ax > ay. Diversification is optimal, a* e (0, 1), if and

only if the correlation is sufficiently low: p < <Jy/ax.

Proof We need to show that 0 reaches a minimum at a* e (0, 1). Since 0 is convex

(see (5.25)) and 0(0) = Var(y) < Var(X) = 0(1), the proof is complete if 0'(O) <

0, as illustrated in Figure 5.3. Insert a = 0 into (5.24) and one obtains

= 2[Cov(X,Y)-ay
1}

= 2(pOXOy — Oy)

< 0
Oy

P <—. D

Example 5.1 Assume the joint probability distribution of two assets' random re-

turns X and Y summarized in Table 5.1. Then one obtains E(X) = E(Y) = 10,

Var(X) = 100, Var(Y) = 12, Cov(X, Y) = 0, and hence a* * 0.107. Therefore,

almost 11% of the entire investment should be put into the high-risk asset X.

Table

X--

X--

E

5.1.

= 30

Probability distribution

Y = 8

3/5

3/20

3/4

Pr(X, Y)

Y = 16

1/5

1/20

1/4

of returns

E
4/5

1/5

1

Var(Z)

Var(X)

0 «* 1

Figure 5.3. The Variance of a Mixed Portfolio.
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5.9.7 Summary

We have shown that the optimality of diversification hinges upon the degree of

association between the individual assets' returns. Diversification reduces risk and

hence is beneficial if and only if the correlation is sufficiently low. This occurs, for

example, if 1) both assets are equally risky (ay = ax), but p < 1, or 2) the correlation

is negative or vanishes (p < 0). In turn, diversification actually increases risk if the

two assets are highly correlated - p is positive and close to 1 - and one asset is

more risky than the other.

Having obtained clear-cut results, summarized by the necessary and sufficient

condition in Proposition 5.12, you may be ready to look at the generalized analysis,

using a less restrictive measure of risk, in Section 5.7 of this chapter.

5.9.8 Discussion

As an exercise, consider the effect of price variations. Normalize the price of asset

Y to 1, denote the (relative) price of X by 7r, and suppose the investor's budget is

equal to m > 0. Using the investor's budget constraint, feasible portfolios are then

described by the random return (where a now is the demand for asset X)

Z = aX + (m - an)Y,

and the variance-minimizing demand is

m(jzo] -Cov(X, Y))

It follows immediately that the variance-minimizing demand for the riskier asset

X can increase with its price n. In particular,

71 < p — =^ Of* < 0,

71 >
Oy

Therefore, as n is increased in this manner, the variance-minimizing investor

switches from a negative to a positive demand. This takes us to the somewhat

paradoxical conclusion that the riskier asset can be a Giffen good - provided the

investor is preoccupied with variance and pays little attention to the expected return.

Economists are usually hard pressed to find meaningful examples of Giffen goods.

You may view this exercise as an addition to a very short list of Giffen goods.

5.10 Bibliographic Notes

The applications to the diversification of simple portfolios are based on Hadar and

Russell (1982). If you want to know more about this topic, take a look at Fishburn

and Porter (1976), Hadar and Seo (1990a, 1990b), and Landsberger and Meilijson

(1990a).
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The application on the competitive firm is based on Hadar and Russell (1982) and

Ormiston (1992). For further aspects, see Sandmo's (1971) seminal contribution.

The distinction between the income and substitution effects may have seemed

misplaced to you in the context of the theory of the firm. In that case, take a look

at Davis (1989).

The application to labor supply uses results derived in the analysis of social

security risk by Prinz and Wolfstetter (1991).

The application to mixed entry strategies in a Cournot oligopoly uses the entry

model by Dixit and Shapiro (1986).

The application to income inequality and stochastic dominance is based on a cel-

ebrated result by Atkinson (1972). In the current literature, the concept of Lorenz

dominance has been generalized so that it can also be applied to income distribu-

tions with different means, and the so-called Atkinson theorem has been extended

correspondingly. If you are interested in these matters, take a look at Yitzhaki (1982)

and Amiel and Cowell (1997). For a general survey on income inequality, we also

recommend Sen's (1972) monograph very highly.

An important topic that has been omitted here concerns the relationship between

stochastic dominance and Marschak's measure of informativeness, which is quite

a bit more general than the usual measures of riskiness, such as the one proposed

by Rothschild and Stiglitz (1970). For an informal introduction to these concepts

- and detailed references to the literature - the interested reader is referred to Part

IofNermuth(1982).

In the literature, there are many more applications of stochastic dominance.

We mention the explanation of the optimal deductible in insurance contracts by

Arrow (1963) and Eeckhoudt, Gollier, and Schlesinger (1991), the theory of wage

indexation by Adolph and Wolfstetter (1991), and Holmstrom's (1979) analysis of

the principal-agent problem, which will be discussed extensively in Chapter 11.

Finally, we refer the reader to the well-known ranking of risk proposed by

Rothschild and Stiglitz (1970, 1971) and its critical evaluation by Landsberger

and Meilijson (1990b).
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Risk Aversion

Great deeds are usually wrought at great risk.
Herodotus

6.1 Introduction

Stochastic dominance concerns the assessment and comparative statics of risk. It

asks: What is meant by one prospect being more risky than another? A natural com-

plementary issue concerns the problem of characterizing agents' attitude towards

risk. We close this part with a brief discussion of this issue. In particular, we ask:

What is meant by one agent being more risk-averse than another, how are these

differences measured, and how useful are these measures in illuminating economic

issues?

The Arrow-Pratt measures are the best-known measures of risk aversion. They

are widely used to characterize the optimal allocation of risk, ranging from the

demand for insurance and portfolio selection to the analysis of tax evasion. How-

ever, despite their success, these measures are not strong enough to always yield

economically plausible results. This becomes apparent when they are applied to an

incomplete-markets framework where agents cannot cover all risks.
The purpose of this brief chapter is to introduce important measures of risk

aversion, spell out typical applications, and point out limitations and open issues.
In particular, we address the following questions:

1. How should risk aversion be measured?
2. Is more risk aversion associated with a higher willingness to pay for insurance?
3. Should a more risk-averse investor hold more high-risk assets in his portfolio?
4. Should wealthier agents exhibit lower risk premiums or hold more high-risk assets if

risk aversion is decreasing in wealth?

6.2 Absolute and Relative Risk Aversion

Consider two von Neumann-Morgenstern utility functions UA,UB, defined on E,

that are strictly monotone increasing, strictly concave (risk aversion), and in C3 (at

least three times continuously differentiable). The coefficients of risk aversion are

defined as follows:
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Definition 6.1 (Absolute Risk Aversion) UA exhibits (strictly) higher risk aver-

sion, in the sense of Arrow and Pratt, if its coefficient of absolute risk aversion is

higher:

U'A(x) Uf
B(x)

(with strict inequality almost everywhere).

An alternative ranking is based on the coefficient of relative risk aversion (which

is the elasticity of the marginal utility of wealth),

In general, these coefficients are local measures of risk aversion, except for the

following constant-risk-aversion utility functions, for /? > 0:

U(x) := a — fie~ax (a = absolute risk aversion),

U(x) := a — fix~r+l (r = relative risk aversion).

Another representation is gained by integrating the above coefficients twice. This

establishes the existence of a strictly monotone increasing transformation G such

that

UA(x) = G(UB(x)).

Therefore, UA exhibits more risk aversion than Us if UA can be obtained by con-

cavification of UB (see also Appendix C, Section C.8).

6.2.1 Pratt's Theorem

Is the Arrow-Pratt measure acceptable? The answer depends on how useful it is

in illuminating economic issues. Pratt (1964) himself proposed such an economic

test and claimed that his measure passes it with flying colors.

The canonical economic choice problem relates to risk-averse agents' willingness

to pay for insurance. If the measure of risk aversion makes economic sense, then

a more risk-averse agent should be willing to pay more for insurance. Define the

insurance premium as the maximum willingness to pay to avoid having a given

monetary lottery X with E[X] — 0. Stated formally, the insurance premium n is the

certainty equivalent of X that satisfies the condition (where w denotes initial wealth)

E[Ui(w + X)] = Ut(w - m), i e {A, B}. (6.3)

Proposition 6.1 (Pratt) The following three conditions are equivalent (Pratt

(1964)):
11" 11"

(V.) - £ > - £ . (i)
UA UB

(3G) G '>0 , G"<0, UA = G(UB)9 (ii)

(Vtu) 7iA >7TB. (iii)
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Proof (i) =>• (ii): Since UB is monotone, we can define G implicitly by UA =

G(UB)- Differentiating twice gives, after a bit of rearranging,

°'U'A U'B~ a"*'
which confirms that G is a monotone, concave transformation.

(ii) =>> (iii): Follows immediately from the following chain of inequalities (which

uses Jensen's inequality)

= E[G(UB(w

< G(E[UB(w

= G(UB(W-7TB))

= UA(w-nB).

(iii) =>>(i): Without loss of generality, consider the binary lottery L := (w+e, w—

e; | ) (L gives either the monetary payoff w + e or w — e with equal probability).

The associated risk premia, nA, HB> ̂ r^ implicitly defined as follows:

E[UA(L)] := i (UA(w + 6) + t/A(u; - O) = ^ ( u ; - JTA),

(C/5(u; + e) + f/B(u; - 6)) =

Expanding each, using a Taylor's series around w, one obtains for small 6 the

associated risk premia

Hence, nA >TTB => (i), as asserted. •

Apparently, the Arrow-Pratt measure of absolute risk aversion is in line with our

intuition in the simple insurance problem. But it can easily be upset, as is shown in

the following subsection.

6.2.2 An Incomplete-Insurance Puzzle

Typically, agents can only partially insure; some gambles can be insured against,

while others have to be retained. As Ross (1983) observed, if only incomplete

insurance is accessible, the Arrow-Pratt measure of absolute risk aversion is not

sufficiently strong to support the plausible association between the size of the risk

premium and the measure of risk aversion.

The following example, which is due to Ross, is a case in point: Suppose wealth

is distributed according to the compounded lottery

L := [Luw2; p],

L\ := \w\ -€,w\ +6; -
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(L gives with probability p the binary lottery L\ and with probability 1 — p the

monetary payoff w2\ and L\ gives either the monetary payoff w\ — € or w\ + e,

with equal probability). The agent can only buy partial insurance and get rid of the

risk due to lottery L\ and thus cannot avoid bearing some risk. The associated risk

premium is implicitly defined by the requirements

E[U(L2)] = E[U(L)l

L2 := [w\ -nu,w2 - nu; p]

(nu is the maximum willingness to pay for trading in lottery Li for a sure payoff).

For small e one obtains, applying a Taylor approximation,

E[U(L)] = | (U(wx - e) + U(wi + 6)) + (1 - p)U(w2)

« pU(wi) + (1 - p)U(w2) + | t V 2

E[U(L2)] = pU(wx - nu) + (1 - p)U(w2)

Combining yields

pU\wx)e

2(pU'(wl) + (l-p)U'(w2))'

Now consider the constant-absolute-risk-aversion utility functions UA , UB given

by

UA(x) := -e~ax, UB(x) := -e~bx, a > b.

Obviously, UA exhibits greater absolute risk aversion than UB '•

-£-»*--£•
UA UB

However, for wi — u>2 sufficiently large one has

ae <be ( 6-5 )

Hence, from (6.4), (6.5) one arrives at the counterintuitive conclusion that if p

is sufficiently small, more risk aversion is associated with a lower risk premium:

77^ <
 KB-

6.3 Strong Absolute Risk Aversion*

The failure of the plausible association between higher risk aversion and a higher

risk premium was one of the motivations for Ross's proposal of a new ordering

called strong absolute risk aversion.



Risk Aversion 169

Definition 6.2 (Ross) UA exhibits more strong absolute risk aversion than Us if

This new ordering is indeed strictly stronger than the Arrow-Pratt measure.

Proposition 6.2 If I) rA exhibits more strong absolute risk aversion than UB, then it

also exhibits more absolute risk aversion, but not vice versa.

Proof The asserted implication follows immediately by rearranging the definition.

To show that the converse fails, consider the utility functions t/,-(jc) := —e~aiX, i e

{A, B}, with a A > as. Obviously, UA exhibits higher absolute risk aversion than

UB, but

=

Uf
B(x2) aB

UB(x\) \aB

Hence, for x\ — x2 sufficiently large, one has

U"A(xx) ^ Uf
A(x2)

U'B(xi) > U'B{x2Y

which violates strong absolute risk aversion. •

6.3.1 Ross's Theorem

Proposition 6.3 The following conditions are equivalent:

UB(xi) UB(x2)

(3G, A. > 0) G' < 0, G" < 0, UA = XUB + G. (ii)

Proof (i) =4> (ii): Assume (i), and define G by

UA = XUB + G.

Differentiating gives

G' = U'A-kU'B,

U'A , G" ^

j±=x + w>x,
u B UB

which also implies G < 0. The proof of the converse, (ii) =>• (i), is omitted. n
Ross introduced this new risk-aversion relationship in order to reestablish an

unambiguous relationship between risk aversion and the size of the risk premium.

This goal was achieved for the particular lottery considered in the example of the

above insurance puzzle. However, as we exemplify with the following portfolio

selection example, Ross's new ordering does not generally perform satisfactorily.
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6.3.2 A Portfolio Selection Puzzle

In simple insurance problems it seemed natural to hope that a more risk-averse in-

dividual should have a higher risk premium. Similarly, in simple portfolio selection

problems one would expect that a more risk-averse individual should demand less

high-risk assets. However, this intuition is again not supported by the Arrow-Pratt

measure.

The failure of this intuition was one of the reasons for Ross's construction of

his strong absolute risk aversion measure. Ross showed that the strongly more

risk-averse investor should hold a smaller proportion of high-risk assets, provided

"riskier" is defined according to a new definition introduced by Ross (1983). How-

ever, his proof critically depends upon this peculiar definition of "riskier," and

indeed fails if "riskier" is properly defined in terms of a second-order stochastic

dominance relationship. Therefore, strong absolute risk aversion is still too weak

to support intuitively plausible results.

To see why this is the case, take a look at the following example, which is due to

Hadar and Seo (1990b). Consider two risky assets, denoted by their random returns

X and Y. Let Y be riskier in the sense of second-order stochastic dominance (SSD),

X ~SSD Y, and let E[X] > ZslY].1 Investors' utility functions are

Ui(x):=x-yix
2, *<Y> i e ^ B ^

YA> YB > 0,

and investors' portfolios are denoted by the random variables

which is characterized by the diversification parameter a,- e M.

UA is strongly more risk-averse than [/#. To prove this, define

G(x) := UA(x) - UB(x) = ~(Ya - Yb)x2.

Hence, one can write

and G(x) is monotone decreasing and concave - as required by Proposition 6.3(ii).

Next, compute the expected utilities of portfolio Z:

«,(««) := E[U((Z)] = E[Z] - YiE[Z2].

The optimal portfolios satisfy the first-order conditions

ufa) = E[Y -X]- 2YiE[Z(Y - X)] = 0.

Since we assumed E[Y — X] < 0, these conditions entail

E[Z(Y - X)] < 0

in both cases.

1 Recall that X ^SSD Y =>• E[X] > E[Y] by Proposition 4.2; therefore our assumption is slightly stronger than
SSD.
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Now note that

Z(Y -X) = (atY + (1 - cti)X)(Y - X)

Therefore, by the above first-order conditions,

Ya = <*BE[(Y - X)2] + E[X(Y - X)]

<
 Yb ctAE[(Y - X)2] + E[X(Y - X)]'

This entails (recall that E[Z(Y - X)] < 0)

aAE[(Y-X)2]>aBE[(Y-X)2].

Hence, a A > &B' the strongly more risk-averse investor invests more in the riskier
asset Y.

Of course, since strong absolute risk aversion is stronger than absolute risk

aversion by Proposition 6.2, this example also applies to the Arrow-Pratt measure.

6.4 Wealth-Dependent Risk Aversion*

In economic applications one often encounters the assumption of wealth-dependent

risk aversion. Particularly, most people expect wealthier individuals to be less re-

luctant to bear risk. This leads to the assumption of decreasing risk aversion.

Definition 6.3 (DARA) The utility function U (x) displays decreasing absolute risk

aversion (DARA) if

y>0): £ £ 4
U'(x + y)

and decreasing strong absolute risk aversion if

(Similarly, one has "increasing absolute risk aversion" if these inequalities are

reversed.)

Proposition 6.4 (Equivalent Conditions for DARA) The utility function U{x)

displays decreasing absolute risk aversion if and only if

U"\x) > U'\x)

U"(x) " U'(xY

(A sufficient condition is U < 0.)

Proof The proof is obvious. •

Do wealthier agents exhibit lower risk premiums, or should they hold more

high-risk assets if risk aversion is decreasing in wealth? Of course, the answer is



172 Risk, Stochastic Dominance, and Risk Aversion

positive only if the relationship between risk aversion and both the risk premium

and the demand for high-risk assets is unambiguous. Unfortunately, this is not

assured. Therefore, the search for a meaningful measure of risk aversion is still on

the agenda.

6.5 Bibliographic Notes

The basic notions of risk, risk aversion, and optimal decisions under uncertainty

are reviewed in Hirshleifer and Riley (1992), Part I. The presentation in this chapter

follows closely the seminal contributions by Pratt (1964) and Ross (1983). A sample

of the follow-up literature is Hadar and Seo (1990b), Menezes and Hanson (1970),

and Laffont (1990).

An important topic not covered here is the extension of the notion of risk aversion

to the many-goods case. On this issue consult Kihlstrom and Mirman (1974) and

Kihlstrom and Laffont (1979).
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Matching: The Marriage Problem*

No enemy can match a friend.
Jonathan Swift

7.1 Introduction

Many economic problems concern the need to match members of one group of

agents with one or more members of a second group. For example, workers need

to be matched with firms, graduate students with graduate schools, authors with

publishers, landlords with tenants, and men with women, to name just a few.

Matching problems pose three central issues:

• Is there a stable matching - one that cannot be upset by individual negotiations?
• What procedures or institutions accomplish stable matchings?
• Are these procedures manipulablel

This chapter gives a brief introduction to the economics of two-sided matching.1

To keep matters as simple as possible, we focus on one particular class of matching

problems: the matching of two distinct groups (two-sided matching).

7.2 Notation and Basic Assumptions

Consider the problem of matching two distinct groups, say W := {w\,..., wn) and

M := {mi , . . . , mn), metaphorically referred to as the marriage problem. Keeping

the particular application of marriage in mind, W may be remembered as the group

of women and M as the group of men.

Each man is assumed to have a complete and transitive strict preference defined

on W, and each woman has such a preference defined on M. These are conveniently

described by & preference matrix, as in the following example.

Example 7.1 The preference matrix below gives the rankings of three men and

three women. The first number of each pair in the matrix gives the ranking of

women by the men, and the second the ranking of men by the women. Thus, m\

1 Most of the results and examples are taken from the beautiful paper by Gale and Shapley (1962).
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ranks w\ highest, m2 most prefers ti>2, and m3 most prefers wy, women have just
the opposite rankings:

mi

ni2

m3

1,3
3,1
2,2

w2

2,2
1,3
3,1

w3

3,1
2,2
1,3

How many matchings are conceivable? If M and W have each n elements, there

are altogether n! matchings. This is obvious once you introduce the convention that

each matching is represented by an n-dimensional vector:

to be read as: m\ is matched with wix, m,2 with w;2, etc., and mn with wtn. For then,

the number of conceivable matchings is the same as the number of permutations

of a set of n elements, which you know is equal to n\. Therefore, Example 7.1 has

altogether six matchings.

7.3 Stable Two-Sided Matchings

Loosely speaking, a matching is unstable if a man and a woman who are not married

to each other are better off if they "divorce" their current partners and marry each

other. Stated formally:

Definition 7.1 A matching is called unstable if there are two M's and two W's who

are matched to each other, say (mi, w\) and (rni, wi), even though m\ prefers wi

to w\ and W2 prefers m\ ioni2'.

A matching that is not unstable is called stable.

In Example 7.1 there are altogether six possible matchings, of which three are

stable. One stable matching is reached if each man is assigned to his first choice.

It is stable simply because no woman can convince any man to divorce his first

choice. Similarly, the second stable matching is reached if each women is given

her first choice. And the third stable matching gives everyone his or her second

choice. An example of an unstable matching is (mi, w\), (rri2, w?>), (m^, 1̂ 2); for

m3 and w\ are then better off if they divorce their partners and get together with

each other.

This suggests that one might always find stable two-sided matchings simply by

giving either men or women their first choice. Unfortunately, this does not always

work: just imagine that two or more members of each group give the highest rank

to the very same member of the other group.

Do all matching problems have at least one stable matching, regardless of pref-

erences? The answer is no, as you can see from the following example. Unlike the



Matching: The Marriage Problem* 177

marriage problem, it concerns the matching of the members of one group with each

other.2

Example 7.2 (Roommate Problem) Four students, {s\,..., ^4}, are to be divided

up into pairs of roommates. Their preferences are summarized by the following

matrix, which includes only the essential rankings. Evidently, nobody wants to

share a room with 54, and whoever is matched with S4 can always find someone

else who would prefer to share the room with him rather than with his current

roommate.3 Therefore, no stable matching exists.

si

$2

^1 S2

1

1

53 S4

3

1 3
3

In view of this negative result, it is the more surprising that the marriage problem

has always a stable matching. Amazingly, it makes all the difference whether one

has to match one population with another or with itself.

Proposition 7.1 The marriage problem has at least one stable matching, regardless

of preferences.

Proof The proof constructs a procedure that actually finds a stable matching. This

procedure may be called "man proposes to woman." It works as follows:

Step 1: (a) Each man proposes to his most preferred woman.
(b) Each woman rejects all except the one whom she most prefers and keeps the most
preferred as her suitor.

Step k: (a) Each man who was rejected in the previous step proposes to the most preferred
of those women to whom he has not yet proposed.
(b) Each woman keeps as her suitor the man she most prefers among those who have
proposed and rejects the rest.

The procedure terminates when all women have received at least one proposal, at

which point each woman has one suitor. This occurs after at most n2 steps, simply

because each man can propose to each woman at most once.4

2 The following example could be turned into a two-sided matching problem if the students cared about the room
to which they are assigned and not about the roommate with whom they have to share it. One-sided matching
problems are analyzed in Hylland and Zeckhauser (1979) and in Zhou (1990).

3 For example, if si is matched with 54, it follows that 52 must be matched with S3. But 53 most prefers to be matched
with 5i. Therefore, 53 and si should move together and "divorce" their current roommates. The instability of all
other possible matchings follows by similar reasoning.

4 While this is an obvious upper bound, it is not the smallest one. The smallest upper bound of steps is (n — 1 )2 + 1.
Math whizzes, try your teeth on this.
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The outcome is stable, since any woman preferred by a man to his current wife

must have already rejected him in favor of her current partner. •

7.4 Who Benefits from Which Procedure?

The procedure constructed in the proof of existence of stable matchings is only

one of many possible procedures. Moreover, when there is more than one stable

matching, it generates an outcome that is heavily biased in favor of men. Indeed,

there is an entirely symmetric procedure with women proposing to men that also

leads to a stable matching, yet is always preferred by women, unless the stable

matching is unique.

Example 1 offers a nice illustration of this point. In this example, all men get

their first choice of women if they are allowed to propose. But if the procedure is

changed in such a way that women instead of men propose, all women end up with

their first choice of men and all men are worse-off. This suggests that, if there is

more than one stable matching, the selection gives rise to a kind of "class conflict"

of interest between the group of men and the group of women.

Proposition 7.2 Among all stable matchings, one is weakly preferred by every

man and one by every woman. Therefore, there is a "men-optimal" and a "women-

optimal" stable matching unless the stable matching is unique.

Proof Consider the stable matching selected if men propose. We will show that in

every other stable matching no man will get a more desirable partner. The symmetry

of the problem implies that the corresponding property holds in the alternative

procedure when women propose.

For each man m,, call a woman Wj possible for him if there is a stable matching

that assigns her to him. Suppose that, up to step k — 1 of the "man proposes to

woman" procedure, no man has been rejected by a possible woman and that, at

step &, n%i is rejected by Wj. Then, as we will show, Wj cannot be possible for m,-.

As no man is ever rejected by a woman who is possible for him, it follows that

no man is ever rejected by his most preferred possible woman, and the proof is

complete.

Suppose, per absurdum, that Wj is possible for m,-, even though Wj rejects m,- at

step k. Then, at step k, another man, say mr, was kept as suitor by Wj. Therefore,

mr >Wj mi

and, since mr has not been rejected by a woman possible for him,

Wj >mr Wk for all Wk possible for him.

But then the matching of Wj with m; and of mr with any woman possible for him is

unstable. Therefore, Wj cannot be possible for m,-, contrary to what was assumed.

•
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7.5 Strategic Issues

Up to this point, matching procedures were only used in the constructive proof of

certain properties of stable matchings. New problems come up if a procedure is

actually used as a mechanism to resolve matching problems. The source of trouble

is strategic voting. It comes up if agents know only their own preference and not

that of others.5

A mechanism consists of a certain procedure that maps preferences into a sta-

ble matching. Without loss of generality, one may look at direct mechanisms. A

mechanism is direct if each man and each woman is only asked to report his or her

preference, which is then taken at face value and processed by the given procedure.

The adoption of direct mechanisms gives rise to a noncooperative game under

imperfect information (no one knows the preferences stated by others) as well as

incomplete information (no one knows the true preferences of others). Each man's

strategy is a ranking of all women, and each woman's strategy a ranking of all men.

A key question is whether one can design a stable matching procedure that induces

truthful revelation of preferences. The literature on this topic is still evolving. We

will report some of the more important recent results (mostly without spelling out

the proofs), and then close with a brief note on successful applications of these

findings to the analysis of entry-level labor markets.

7.5.1 Two Impossibility Results

We start out with two negative results. The first one shows that one cannot design

a procedure that makes truthful revelation a dominant strategy in all matching

problems.

Proposition 7.3 No stable matching procedure exists for which the revelation of

true preferences is a dominant strategy for all preferences.

Proof In order to prove the assertion it is sufficient to present a matching problem

for which no stable matching procedure has truthful revelation of preferences as a

dominant strategy. For this purpose, consider the marriage problem characterized

by the following preference matrix:

m\

m2

2,1
1,3
1,2

1,2
2,3
2,1

3,1
3,2
3,3

It has exactly two stable matchings: the women-optimal (I) and the men-optimal
matching (II):

(I) (wu w3, w2),

(II) (w2, w3, wi).

5 If preferences are public information, the procedure can be delegated to a neutral third party such as an appro-
priately programmed computer.
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Now consider any stable matching procedure. It selects either (I) or (II). Suppose

it selects the men-optimal matching (II). But then, by misrepresenting her prefer-

ence, woman w\ can influence the selection in her own favor. For if w\ states the

untrue preference

m\ >Wl m2 >Wl m3,

the matching (II) is no longer stable (w\ could induce mi to break up with 1̂ 3).

At the same time, (I) is then the only stable matching. Therefore, by appropriately

misrepresenting her preference, woman w\ can force the stable matching procedure

to select the preferred women-optimal matching (I). Similarly, if the given procedure

selects the women-optimal matching (I), some man can be shown to benefit from

misrepresenting his preference. Therefore, no procedure exists that makes truth

revelation a dominant strategy. •

This negative result does not imply that truthful revelation of preferences cannot

be achieved. It only says that truth revelation cannot be a dominant strategy in all

matching problems. However, as Roth has shown, one can strengthen this negative

result and show that:6

Proposition 7.4 No stable matching mechanism exists that makes truth telling by

all players a Nash equilibrium for all preferences.

After these negative results, one would like to know whether one can at least find

mechanisms that are stable both in terms of stated and in terms of true preferences.

One can. The deferred acceptance procedures, labeled "man proposes to woman"

and "woman proposes to man," give the clue.

7.5.2 Stable Matchings?

Consider, for example, the "man proposes to woman" mechanism. If it is applied,

truth telling is a dominant strategy for all men, even under incomplete information

about preferences. Indeed, as Roth and Sotomayor have shown:

Proposition 7.5 The "man proposes to woman " mechanism makes it a dominant

strategy for each man to state his true preference. (Similarly, the "woman proposes

to man" mechanism makes it a dominant strategy for each woman to state her true

preference.)

However, even though honesty is a best policy for men under the "men pro-

poses to woman" rule, women can usually do better by responding with strategic

voting, as we have already seen in Example 7.5. Now consider the equilibrium in

which women optimally respond to mens' truthfully reported preferences. Will the

resulting matching be stable with respect to true preferences?7

6 The proof is in Roth (1989) and (in a slightly easier form) in Roth and Sotomayor (1990).
7 The fact that it is stable with respect to reported messages follows from the properties of an equilibrium.
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Roth and Sotomayor found that the answer is affirmative:

Proposition 7.6 Suppose women choose preferences that are a best response to

mens' true preferences under the uman proposes to woman" mechanism. Then the

corresponding matching is stable both with regard to stated and with regard to true

preferences.

Altogether, these results indicate that one can find simple mechanisms that lead

to stable matchings even under incomplete information. If these mechanisms are

applied, somebody tends to manipulate by misrepresenting his or her preference.

Therefore, the resulting matching is stable but generally not Pareto-optimal.

7.6 Bibliographic Notes

The matching problem has been applied to housing, college admission, and first-

entry labor markets. So far, the most thoroughly researched application is the work

of Al Roth on the matching of medical interns to hospitals in the U.S. and in England

(see Roth (1984, 1991)). In his study, Roth shows that the American market was

subject to chaotic last-minute recontracting with students who had often already

accepted a position elsewhere, until in 1952 a centralized matching algorithm was

introduced. This algorithm was successful precisely because it produced stable out-

comes. In turn, in England, similar problems led to the introduction of centralized

regional matching procedures, some of which were not stable and therefore did not

resolve the chaotic recontracting problem. Interestingly, all the successful mech-

anisms applied in the U.S. and in England are variations of the "man proposes to

woman" and "woman proposes to man" mechanisms. This emphasizes the eminent

practical significance of Propositions 7.5 and 7.6.

However, new problems have come up with the increasing number of couples

that look for internships at the same location. This has opened an important and

still unresolved new twist of the matching problem.

Labor markets are a natural application of two-sided matching models. However,

in most of these applications matching is related to wage determination. In an

important contribution Shapley and Shubik (1972) showed that the properties of

stable matchings generalize to models where matching and wage determination are

interrelated.

Some recent contributions of the matching literature have focused on the timing of

transactions. Bergstrom and Bagnoli (1993) explore reasons for delay in marriages,

and Roth and Xing (1994) and Li and Rosen (1998) explain the tendency for

transactions to become earlier, which is observed in some markets for highly skilled

employees.
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Auctions

Men prize the thing ungained more than it is.
William Shakespeare

8.1 Introduction

Suppose you inherit a unique and valuable good - say a painting by van Gogh or

a copy of the 1776 edition of Adam Smith's Wealth of Nations. For some reason

you are in desperate need for money, and decide to sell. You have a clear idea of

your valuation. Of course, you hope to earn more than that. You wonder: isn't there

some way to reach the highest possible price? How should you go about it?

If you knew the potential buyers and their valuations of the object for sale, your

pricing problem would have a simple solution. You would only need to call a

nonnegotiable price equal to the highest valuation, and wait for the right customer

to come and claim the item. It's as simple as that.1

8.1.1 Information Problem

The trouble is that you, the seller, usually have only incomplete information about

buyers' valuations. Therefore, you have to figure out a pricing scheme that performs

well even under incomplete information. Your problem begins to be interesting.

8.1.2 Basic Assumptions

Suppose there are n > 1 potential buyers, each of whom knows the object for sale

well enough to decide how much he is willing to pay. Denote buyers' valuations by

V := (V\, ...,Vn). Since you, the seller, do not know V, you must think of it as a

random variable, distributed by some joint probability distribution function (CDF)

T ' [ v \ , S i ] x • • • x [ v n , vn] - > [ 0 , 1 ] , F ( v u . . . , v n ) : = P r ( V i < v u . . . , V n <

vn). Similarly, potential buyers know their own valuation but not that of others.

Therefore, buyers also view valuations as a random variable, except their own.

1 Of course, it is not really easy to make something nonnegotiable.
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P(q)

Figure 8.1. Optimal Take-It-Or-Leave-It Price When There Are Two Potential Buyers.

8.1.3 Cournot-Monopoly Approach

Of course, you could stick to the take-it-or-leave-it pricing rule, even as you are

subject to incomplete information about buyers' valuations. You would then call

a nonnegotiable price p at or above your own valuation r, and hope that some

customer has the right valuation and is willing to buy. Your pricing problem would

then be reduced to a variation of the standard Cournot monopoly problem. The only

unusual part would be that the trade-off between price and quantity is replaced by

one between price and the probability of sale.

Alluding to the usual characterization of Cournot monopoly, you can even draw

a "demand curve," with the nonnegotiable price p on the "price axis" and the

probability that at least one bidder's valuation exceeds the listed price p

n(p) = 1 - G(p), G(p) := F(p,...,/?), (8.1)

on the "quantity axis" (as in Figure 8.1). You would then pick that price p that

maximizes the expected value of your gain from trade, n(p)(p — r).

Equivalently, you can state the decision problem in quantity coordinates, as is

customary in the analysis of Cournot monopoly, where "quantity" is represented

by the probability of sale, q := I — G(p):

max(P(q) -r)q,
q

P(q):=G-\l-q). (8.2)

Computing the first-order condition, the optimal price p* can then be characterized

in the familiar form as a relationship between marginal revenue (MR) and marginal

cost (MC):2

-G(p)
MR := p -

Gf(p)
= r =: MC. (8.3)

Example 8.1 Suppose valuations V/ are independent and uniformly distributed

over the interval [0, 1], and the seller's own valuation is r = 0. Then, for all/? e [0, 1],

As always, this condition applies only if the maximization problem is well behaved. Well behavedness requires
that revenue be continuous and marginal revenue strictly monotone increasing in p.
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G(p) = F{p)n — pn. Hence, the optimal take-it-or-leave-it price is

P*(n) = {/—^-. (8.4)
V n + 1

The resulting expected price paid (price asked times probability of success) is

p(n) := p*(n)(l - G{p\n))) = p*{n)^—. (8.5)
n + 1

Both p*(n) and p(n) are strictly monotone increasing in n, starting from /?*(1) =

1/2, p{\) = 1/4, and approaching 1 as n —> oo.3

Take-it-or-leave-it pricing is one way to go. But generally you can do better by

setting up an auction. This brings us to the analysis of auctions, and the design of

optimal auction rules. Interestingly, the particular Cournot monopoly price p*(l)

that holds for n = 1, will continue to play a role as an optimal minimum price in

the optimal auction setting, as you will learn in the section on optimal auctions.

8.1.4 Auctions - What, Where, and Why

An auction is a bidding mechanism, described by a set of auction rules that specify

how the winner is determined and how much he has to pay. In addition, auction rules

may restrict participation and feasible bids and impose certain rules of behavior.

Auctions are widely used in many transactions - not just in the sale of art and

wine. Every week, the U.S. Treasury auctions-off billions of dollars of bills, notes,

and bonds. Governments and private corporations solicit delivery-price offers on

products ranging from office supplies to tires and construction jobs. The Department

of the Interior auctions off the rights to drill oil and other natural resources on

federally owned properties. And private firms auction off products ranging from

fresh flowers, fish, and tobacco to diamonds and real estate. Altogether, auctions

account for an enormous volume of transactions.

Essentially, auctions are used for three reasons:

• speed of sale,
• to reveal information about buyers' valuations,
• to prevent dishonest dealing between the seller's agent and the buyer.

The agency role of auctions is particularly important if government agencies are

involved in buying or selling. As a particularly extreme example, think of the recent

privatization programs in Eastern Europe. Clearly, if the agencies involved, such

as the Treuhandanstalt that was in charge of privatizing the state-run corporations

of formerly communist East Germany, had been free to negotiate the terms of sale,

the lucky winner probably would have been the one who made the largest bribe

or political contribution. However, if assets are put up for auction, cheating the

taxpayer is more difficult and costly, and hence less likely to succeed.

3 For a simple proof of monotonicity, work with In p, which is obviously a monotone transformation of p.
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Table 8.1. The most popular auctions

Open

Ascending-price
(English)

Descending-price
(Dutch)

Closed

Second-price
(Vickrey)

First-price

8.1.5 Popular Auctions

There are many different auction rules. Actually, the word itself is something of

a misnomer. Auctio means increase but not all auctions involve calling out higher

and higher bids.

One distinguishes between oral and written auctions. In oral auctions, bidders

hear each other's bids and can make counteroffers; each bidder knows his rivals. In

closed auctions, bidders submit their bids simultaneously without revealing them

to others; often bidders do not even know how many rival bidders participate.

The best known and most frequently used auction (Table 8.1) is the ascending

price or English auction, followed by the first-price closed-seal bid or Dutch auction,

and the second-price closed-seal bid (also known as Vickrey auction).4

In the ascending-price or English auction, the auctioneer seeks increasing bids

until all but the highest bidder(s) are eliminated. If the last bid is at or above the

minimum price, the item is awarded or knocked down to the remaining bidder(s). If

a tie bid occurs, the item is awarded for example by a chance rule. In one variation,

used in Japan, the price is posted on a screen and raised continuously. Any bidder

who wants to be active at the current price pushes a button. Once the button is

released, the bidder has withdrawn and is not permitted to reenter the bidding.

Instead of letting the price rise, the descending-price or Dutch auction follows a

descending pattern. The auctioneer begins by asking a certain price, and gradually

lowers it until some bidder(s) shout "Mine" to claim the item. Frequently, the

auctioneer uses a mechanical device called the Dutch clock. This clock is started,

and the asking price ticks down until someone calls out. The clock then stops and

the buyer pays the indicated price. Again, provisions are made to deal with tie

bids.5

Finally, in a written auction bidders are invited to submit a sealed bid, with the

understanding that the item is awarded to the highest bidder. Under the first-price

rule the winner actually pays as much as his own bid, whereas under the second-

price rule the price is equal to the second highest bid.

4 Many variations of these basic auctions are reviewed in Cassady (1967).
5 An interesting Dutch auction in disguise is time discounting. In many cities in the U.S. discounters use this

method to sell clothes. Each item is sold at the price on the tag minus a discount that depends on how many
weeks the item was on the shelf. As time passes, the price goes down by (say) 10% per week, until the listed
bottom price is reached.
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This terminology is not always used consistently in the academic, and in the

financial literature. For example, in the financial community a multiple-unit, single-

price auction is termed a Dutch auction, and a multiple-unit, sealed bid auction is

termed an English auction (except by the English, who call it an American auction).

In the academic literature, the labels English and Dutch would be exactly reversed.

In order to avoid confusion, keep in mind that here we adhere to the academic usage

of these terms, and use English as equivalent to ascending and Dutch as equivalent

to descending price.

8.1.6 Early History of Auctions

Probably the earliest report on auctions is found in Herodotus in his account of

the bidding for men and wives in Babylon around 500 B.C. These auctions were

unique, since bidding sometimes started at a negative price.6 In ancient Rome,

auctions were used in commercial trade, to liquidate property, and to sell plundered

war booty. A most notable auction was held in 193 A.D. when the Praetorian Guard

put the whole empire up for auction. After killing the previous emperor, the guards

announced that they would appoint the highest bidder as the next emperor. Didius

Julianus outbid his competitors, but after two months was beheaded by Septimius

Severus, who seized power - a terminal case of the winner's curse?

8.2 The Basics of Private-Value Auctions

We begin with the most thoroughly researched auction model, the symmetric inde-

pendent private values (SIPV) model with risk-neutral agents. In that model

• a single indivisible object is put up for sale to one of several bidders (single-unit auction)',

• each bidder knows his valuation - no one else does (private values);

• all bidders are indistinguishable (symmetry);
• unknown valuations are independent and identically distributed (iid) and continuous

random variables (independence, symmetry, continuity);

• bidders are risk-neutral, and so is the seller (unless stated otherwise).

We will model bidders' behavior as a noncooperative game under incomplete

information. One of our goals will be to rank the four common auctions. To what

extent does institutional detail matter? Can the seller get a higher average price by

an oral or by a written auction? Is competition between bidders fiercer if the winner

pays a price equal to the second highest rather than the highest bid? And which

auction, if any, is strategically easier to handle?

8.2.1 Some Basic Results on Dutch and English Auctions

The comparison between the four standard auction rules is considerably facilitated

by the fact that the Dutch auction is equivalent to the first-price and the English

6SeeShubik(1983).



Auctions 187

to the second-price closed auction. Therefore, the comparison of the four stan-

dard auctions can be reduced to comparing the Dutch and the English auction.

Later you will learn the far more surprising result that even these two auctions are

payoff-equivalent.

The strategic equivalence between the Dutch auction and the first-price closed

auction is immediately obvious. In either case, a bidder has to decide how much he

should bid or at what price he should shout "Mine" to claim the item. Therefore, the

strategy space is the same, and so are the payoff functions and hence the equilibrium

outcomes.

Similarly, the English auction and the second-price closed auction are equivalent,

but for different reasons and only as long as we stick to the private-values framework.

Unlike in a sealed-bid auction, in an English auction bidders can respond to rivals'

bids. Therefore, the two auction games are not strategically equivalent. However, in

both cases bidders have the obvious (weakly) dominant strategy to bid an amount

or set a limit equal to their own true valuation. Therefore, the equilibrium outcomes

are the same as long as bidders' valuations are not affected by observing rivals'

bidding behavior, which always holds true in the private-values framework.7

The essential property of the English auction and the second-price closed auction

is that the price paid by the winner is exclusively determined by rivals' bids. Bidders

are thus put in the position of price takers who should accept any price up to their own

valuation. The truth-revealing strategy where one always bids one's own valuation

is a (weakly) dominant strategy. The immediate implication is that both auction

forms have the same equilibrium outcome, provided bidders never play a weakly

dominated strategy.

8.2.2 Revenue Equivalence

We have established the payoff equivalence of Dutch and first-price and of English

and second-price auctions. Remarkably, payoff equivalence is a much more general

feature of auction games. Indeed, all auctions that award the item to the highest

bidder and lead to the same bidder participation are payoff-equivalent. The four

standard auctions are a case in point. We now turn to the proof of this surprising

result and then explore modifications of the SIPV framework.

We mention that the older literature conjectured that Dutch auctions lead to a

higher average price than English auctions because, as Cassady (1967, p. 260) put

it, in the Dutch auction " . . . each potential buyer tends to bid his highest demand

price, whereas a bidder in the English system need advance a rival's offer by only

one increment." Both the reasoning and the conclusion are wrong.

Before we go into the general solution of SIPV auction games, in the following

subsection we elaborate on an extensive example and solve several standard auction

7 Obviously, if rivals' bids signal something about the underlying common value of the item, each bidder's
estimated value of the item is updated in the course of an English auction. No such updating can occur under a
sealed-bid auction, where bidders place their bids before observing rivals' behavior. Therefore, if the item has a
common value component, the English auction and the second-price sealed bid do not have the same equilibrium
outcome.
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games for the case of uniformly distributed valuations. This serves as motivation for

our general results and as a playground to exercise the standard solution procedure

that is typically employed in the literature.

The standard procedure to solve a particular auction, as in any other game, is to

first solve for equilibrium strategies and then compute equilibrium payoffs. This

procedure can, of course, be applied to arbitrary probability distribution functions,

not just to uniform distributions. But when we come to the general solution of SIPV

auction games, we will switch - with good reason - to an alternative solution pro-

cedure. Since you can learn from both, it is advisable neither to jump immediately

to the general solution in Section 8.2.5 nor to skip the latter.

8.2.3 Solution of Some Auction Games - Assuming Uniformly

Distributed Valuations

Example 8.2 Suppose all bidders' valuations are uniformly distributed on the sup-

port [0, 1], as in Example 8.1, and the seller's own valuation and minimum bid are

equal to zero. Then the unique equilibrium bid functions b* : [0, 1] -» R+ are8

b*(v) = v (English auction), (8.6)

b*(v) = ( l - - \ (Dutch auction). (8.7)

In both auctions, the expected price is

p = ^ 1 , (8.8)

and the equilibrium payoffs are

vn

U*(v) = — (bidders' expected gain), (8.9)

Ft = p = (seller's expected gain). (8.10)

This implies payoff equivalence. Moreover, more bidders mean fiercer competition,

to the seller's advantage and to the bidders' disadvantage.

We now explain in detail how these results come about. The proof uses two

preliminary assumptions that will then be confirmed to hold: the symmetry of

equilibrium and the strict monotonicity of equilibrium strategies.

Dutch (First-Price) Auction

Suppose bidder i bids the amount b, and all rival bidders bid according to the strictly

monotone increasing equilibrium strategy b*(v). Then bidder / wins if and only if all

rivals' valuations are below b*~l (b). Since the Vs are continuous random variables

and b*(v) is strictly monotone increasing, ties have zero probability. Therefore, the

8 Uniqueness of the English auction assumes elimination of weakly dominated strategies. More on this below.
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probability of winning when bidding the amount b against rivals who play the

strategy b*(v) is

(b),Vj^i}9 a:=b*~l

\ (8.11)

Here a (b) is the inverse of b* (v), which indicates the valuation that leads to bidding

the amount b when strategy b*(v) is played.

In equilibrium, the bid b must be a best response to rivals' bidding strategies.

Therefore, b must be a maximizer of the expected utility

U(b,v):=p(b)(v-b), (8.12)

leading to the first-order condition

— U(b, v) = p\b)(v -b)- p(b) = 0. (8.13)
db

Moreover, b itself must be prescribed by the equilibrium strategy b*(v) or, equiva-

lently, one must have

v = o(b). (8.14)

And a bidder with valuation 0 should bid zero, or equivalently

or(0) = 0. (8.15)

Using (8.14), one can rewrite (8.13) in the form

(n - Y)f(p(b)) (or(6) - b)a\b) - F(a(b)) = 0. (8.16)

This simplifies, due to F(a(b)) = a(b) (uniform distribution), to

(n - \){o(b) - b)a\b) - a(b) = 0. (8.17)

Given the initial condition a (0) = 0, this differential equation has the obvious

solution o{b) = [n/(n — l)]b.9 Finally, solve this for b and you have the asserted

equilibrium strategy10

b*(v)= (l--\. (8.18)

Notice that the margin of profit that each player allows himself in his bid decreases

as the number of bidders increases.

Based on this result, you can now determine the expected price p(n) by the

following consideration: In a Dutch auction, the random equilibrium price, P#, is

equal to the highest bid, which can be written as b*(V(n))9 where V(n) denotes the

9 Why is it obvious? Suppose the solution is linear; then you will easily find the solution, which also proves that
there is a linear solution.

10 This raises the question whether the equilibrium is unique. The proof is straightforward for n = 2. In this case,
one obtains from (8.17) o do = o db + bda = d(crb). Therefore, crb = \o2 + o(0). Since &(0) = 0, one has
cr(O) = 0 and thus a(b) = 2b. Hence, the unique equilibrium strategy is b*(v) = \v. In order to generalize
the proof to n > 2, apply a transformation of variables from (a, b) to (z,b), where z := o/b. Then one can
separate variables and uniquely solve the differential equation by integration.
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highest order statistic of the entire sample of n valuations. Therefore, by a known

result on order statistics,11

p(n) = E[b*(V(n))]

= ^—-^-E [V{n)] (since b*(v) = ^v)

= ^ { , (8-19)
n + 1

as asserted.

English (Second-Price) Auction

Recall that in an English auction truthful bidding, b(v) = v, is a weakly dominant

strategy. Therefore, if one eliminates weakly dominated strategies, the bidder with

the highest valuation wins and pays a price equal to the second highest valuation.

The random equilibrium price PE is equal to the order statistic V(w-i) of the given

sample of n valuations. And the expected price is

p(n) = E\V(n-i)\ = n-Z^-. (8.20)

Notice, however, that the English auction is plagued by a multiplicity problem.

For example, the "wolf-sheep" strategy combination

bx(v) = 1, bt(v) = O, i=2,...,n,

where bidder 1 bids very aggressively and bidders 2 to n hold back, is also an

equilibrium, even though it prescribes rather pathological behavior. These equilibria

are overlooked if one eliminates weakly dominated strategies. (This is why game

theorists view the elimination of weakly dominated strategies as problematic.)

Can one eliminate these pathological equilibria with a plausible equilibrium

refinement? Yes, one can. These equilibria fail the test of trembling-hand perfection

(see Fudenberg and Tirole (1991)).

Comparison

Since the two expected prices are the same, this example illustrates the general

principle of revenue equivalence. (It is left to the reader to confirm the stronger

payoff equivalence, asserted in (8.9) and (8.10).12) Notice, however, that random

prices differ in their risk characteristics. Indeed, the random equilibrium price in

the Dutch auction, Pp, second-order stochastically dominates that of the English

auction, PE. Therefore, all risk-averse sellers unanimously prefer the Dutch to the

English auction.

11 Let V(r) be the rth order statistic of a given sample of n independent and identically distributed random variables
Vi with distribution function F(v) =, v on the support [0, 1]. Then E[V(r)] = r/(n + 1) and Var(V(r)) =
r(n - r + l)/(/i + \)2{n + 2). See rules (R18), (R19) in Appendix D, Section D.4.

12 Note that in an English auction U*(v) = F(v)N~Hv - E[Vin-i) I V(/l) = u]); use (D.42), from Appendix B,
to compute the conditional expected value.
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To illustrate this, recall that one random variable second-order stochastically

dominates another if their expected values are the same and their probability dis-

tribution functions (cdf's) are single-crossing. This result is often referred to as the

mean-preserving spread theorem. A mean-preserving spread of a given distribution

shifts probability mass towards both tails of the distribution. It is plausible that this

induces more risk (for a proof see Section 4.4.2). Since the seller prefers higher

prices, the dominated random variable is the one that has more probability mass on

the tails of the distribution.

The cdf's of PD := b*(V(n)) and of PE := V(n-i) are

FD(x)=J>v{b*{V(n))

FE(x) = PrJ

Consider the difference

<Kx) := FD{x) - FE(x) =

<x}= min{xn+n(xn-l-xn), 1}.

- 1)) xn - nxn~\

(8.21)

(8.22)

(8.23)

Evidently, (f)(x) is an nth-order polynomial with only one change in the sign of

its coefficients. By Descartes's rule, 0(JC) has at most one real positive root. Also,

(p(x) must have at least one real root in (0, 1) because the expected values of Pp

and PE are the same. Hence, 0(x) has exactly one real root in (0, 1). This confirms

single crossing.

Finally, observe that PE has more probability mass on both tails of the distribution

than PD because

1 - FE(x) > 1 - FE(l) = 0 = 1 - FD(x) VJC G [ — - , ll ,

as illustrated in Figure 8.2. Therefore, Pp second-order stochastically dominates

PE-

Figure 8.2. Probability distributions of for n = 2.
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Third- and Higher-Price Auctions*

Consider a generalization of the second-price auction: the third-price auction, where

the highest bidder wins but pays only as much as the third highest bid, and, more

generally the k th-price auction, where the winner pays the kth highest bid.13 It has

the following solution:14

n K i
v, for y i>2 , Jfc = l , . . . , n . (8.24)

Third- and higher-price auctions have four striking properties: 1) bids are higher

than the own valuation; 2) equilibrium bids increase when one moves to a higher-

price auction; 3) equilibrium bids diminish as the number of bidders is increased

(since (n — l)/(n — k + 1) > n/(n — k + 2)); and 4) the variance of the random

price Pk,

V a r « ) . VarW(V ( ,_1 + 1 ) )) = ^ ^ + ^ ' ^ + ^ (8.25)

increases in k, and more generally, Pk second-order stochastically dominates Pk+\

farallJt = l , . . . , n - 1 .

Once you have figured out why it pays to "speculate" and bid higher than the

own valuation, it is easy to interpret the second property. Just keep in mind that a

rational bidder may get burned and suffer a loss because the kth highest bid is above

the own valuation. As the number of bidders is increased, it becomes more likely

that the kth highest bid is close to the own valuation. Therefore, it makes sense to

bid more conservatively when the number of bidders is increased, even though this

may seem somewhat puzzling at first glance.

Finally, the fourth property suggests that a risk-averse seller should always prefer

lower-order £th-price auctions and should most prefer the Dutch auction. While

the English auction is always appealing because of its overwhelming strategic

simplicity, third- and higher-price auctions are strategically just as complicated as

the Dutch auction, and in addition expose the seller to unnecessary risk.

Nobody has ever, to our knowledge, applied a third- or higher-price auction

in a single-unit framework. So is this just an intellectual curiosity, useful only to

challenge your intuition and technical skills?

Experimental economists have exposed inexperienced subjects to third-price

sealed-bid auctions and examined their response to a larger number of bidders.

Amazingly, the majority of bidders reduced their bid, just as the theory recommends

(see Kagel and Levin (1993)). The authors take great pride in this result; they take

it as evidence that inexperienced subjects are not as unsophisticated as is often

13 Third-price auctions were analyzed for the first time by Kagel and Levin (1993), assuming uniformly distributed
valuations.

14 Hints: Suppose the equilibrium bid function of the &th-price auction is linear in the own valuation, b*(v) = a^v.
Revenue equivalence applies also to the &th-price auction (the proof follows in Section 8.2.5). Therefore, the
expected price must be the same as under the English auction: E[V(n-i)] = E[b*(V(n-k+i))] = <XkE[V(n-k+i)]-
Compute the two expected values and you have the asserted bid function (8.24). Once you have a candidate
for solution, you only need to confirm that it does indeed satisfy the mutual best-response requirement. Notice,
however, that this sketch raises the question whether the equilibrium strategy is linear.
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suspected by critics of the experimental approach. The particular irony is that, if

asked to make a guess, trained theorists tend to come up with the wrong hunch

concerning the relationship between the number of bidders and equilibrium bids

until they actually sit down and do the computations.

All-Pay Auctions

As a last example consider an auction that is frequently used in charities; we call it

the charity or all-pay auction for lack of a better name. Its peculiar feature is that

all bidders are required to actually pay their bid. Just as in a standard auction, the

item is awarded to the highest bidder. But unlike in standard auctions, all bidders

must pay their bid, even those who are not awarded the item.

Using a procedure similar to the above, the equilibrium bid function is15

b*(v) = n—^-vn. (8.26)
n

This is in line with the observation that bidders often bid only nominal amounts of

money for relatively valuable items.

In order to determine the seller's expected revenue, notice that the seller collects

the following expected payment from each bidder:

E[b*(V)] = — - [l vn dv = ^
n J n(n + 1)

Take the sum over all bidders, and one obtains E[nb*(V)] = (n — l)/(n + 1),

which confirms revenue equivalence.

The crucial feature of charity or all-pay auctions is that they make winners and

losers pay. We mention that this is also a feature of the not so charitable seller-

optimal auction if bidders are risk-averse (see Matthews (1983))16 or if bidders are

financially constrained (see Laffont and Robert (1996)).

All-pay auctions have also been used to model political lobbying, political cam-

paigns, research tournaments, and job promotion (the last two interpretations view

bids as agents' effort).17 An early example of an all-pay auction under complete

information is Posner's (1975) well-known reinterpretation of the social loss of

monopoly.

Finally, note that instead of requiring all bidders to pay their own bid, one may

instead require them pay the second, third, or &th highest bid. In this sense, it would

be more precise to describe the above auctions as "first-price all-pay" auctions.

15 The probability of winning is the same as under the Dutch auction (see (8.11)). However, since all bids must
actually be paid, the equilibrium bid must be a maximizer of p(b)v — b; hence it must solve the differential
equation p'v = 1. Combining these two building blocks leads to the differential equation a(b)n~l<j'(b) =
\/{n - 1). Integration entails (l/n)cr(b)n = [l/(n - l)]b, and therefore b*(v) = [(n - l)/n]vn, as asserted.

16 However, Matthews also showed that the fee should be negative for sufficiently high valuation types.
17 See, for example, Baye, Kovenock, and de Vries (1993).



194 Incomplete Information and Incentives

Incidentally, the war-of-attrition game - used in oligopoly theory to model strategic

exit - is essentially a second-price all-pay auction.

Participation Fees

So far we have considered auction rules where all bidders have an incentive to

participate because no one can lose. All these auctions were payoff-equivalent.

This suggests the following questions: Is there any common auction that gives

rise to different equilibrium payoffs, and if so, is it ever desirable to adopt such a

deviation from standard auctions?

Many seemingly innocuous modifications of standard auction rules affect bidder

participation and drive a wedge between those who participate, typically those with

high valuations, and those who exit, typically because their valuation is below a

certain critical valuation vo. Adding such a distortion is profitable to the seller, even

though it involves the risk that no sale takes place.

In the following we discuss one particular example: the introduction of a uniform

entry or participation fee. The purpose of this exercise is to motivate and explain

the notion of a critical valuation vo below which it does not pay to participate and

to show that standard auctions are not seller-optimal, which motivates the search

for optimal auction rules.

Example 8.3 (Participation Fee) Suppose the seller requires a participation fee

c e [0, 1] from each bidder in an English auction. Let there be two bidders with

uniformly distributed valuations on the support [0, 1].

Then a bidder participates if and only if his valuation is at or above the critical level

t»0 := +J~c. The expected-revenue-maximizing entry fee is c* = | , and the maximum

expected revenue ^ . Therefore, for n = 2, the participation-fee-augmented English

auction is more profitable than the standard English auction and than the optimal

take-it-or-leave-it price (see Examples 8.1 and 8.2).

The proof is sketched as follows:

1. In order to compute v0, consider the marginal bidder with valuation v0. His cost of partic-

ipation, c, must be exactly matched by the expected gain from bidding, Pr{winning}i;o —

c = 0. Note that a bidder with valuation v0 can win only if the rival does not participate

because his valuation is below i>o, in which case the price is equal to zero. Therefore,

Pr{winning} = vo, and hence VQ — c = 0, or equivalently vo = y/c, as asserted.

2. Notice that the seller collects the entry fee from both bidders if and only if V(D > i;0, in

which case the price is equal to V(1). The seller has no earnings if and only if V(2) < VQ.

And finally, only one bidder participates if and only if V(\) < v0 < VQ)- Then the price

goes all the way down to zero, and the seller's only earning is the entry fee paid by the

one and only active bidder. Therefore, the seller's expected profit is equal to

n := Pr{V(1) > vo} {E[Vm | V(1) > v0] + 2c)

V(1) < v o < V(2)}c.
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Of course,

Pr{V(i) > vo} = (l-v0)
2,

Pr{V(i) < vo < V(2)} = 2vo(l - wo),

_ 2t;0 + l

3 '

Hence, by all of the above,

n =

2
>vo\=- —I v(l-v)dv

3. Evidently, n is strictly concave in c, and c* = \ solves the first-order condition \—2^/c =
0, which completes the proof.

While the introduction of an entry fee raises the sellers' payoff (the optimal c

is not equal to zero), we will later show that there are many ways to achieve the

seller's maximum revenue. The seller-optimal auction is characterized by a partic-

ular critical valuation vo, which can be implemented in many ways, for example by

setting the right minimum bid or the right entry fee.

8.2.4 An Alternative Solution Procedure*

There are many ways to solve an auction. In the previous subsection you were

introduced to the standard solution procedure, which is straightforward though a

bit cumbersome. The purpose of this subsection is to raise your virtuosity and

exercise a more elegant solution of a first-price or Dutch auction. This solution

procedure is also useful in other auction problems, and it breaks the ground for the

analysis in Section 8.2.5.

Proposition 8.1 First-price and Dutch auctions have a unique symmetric equilib-

rium strategy

b*(v) = E[V(n-i) | V(n_i) <v]<v. (8.28)

Proof We proceed as follows: Assume V is strict monotone increasing (which will

be confirmed later on). Consider one bidder, and suppose all other bidders play the

strategy b*. Then that bidder must only consider bids from the range [b* (0), b* (1)].

Therefore, all relevant deviating bids can be generated by bidding the equilibrium

strategy fc* as if the valuation were x e [0, 1] rather than v, which leads to a bid

b*(x) # b*{v).

Let U(x,v) denote that bidder's payoff, and p(x) his probability of winning

the auction, provided: 1) his true valuation is v, 2) all others play the strategy Z?*,

and 3) he bids the amount &*(%). In a first-price or Dutch auction U(x9 v) :=

p(x) (v — b*(x)) and, due to the monotonicity of Z?*, p(x) :=
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The strategy b* is a symmetric Bayesian Nash equilibrium if and only if it never

pays to deviate from the equilibrium bid fe*(f), i.e.,

v e argmax U(x, v) Vv. (8.29)

A necessary condition for (8.29) is that for all v

0 = ^-U(x, v)\x=v = p\v){v - b*(v)) - p(v)b*'(v).

This condition can be written in the form vdp = d{pb). Since b*(0) = 0, integra-

tion yields bp = JQ xdp, which implies the assertion b*(v) = E[V(n-i) | V(n-i) <

v].

Partial integration of (8.28) gives

[
Jo

which confirms bid shading. And differentiation gives

b\v) (nl)^l(v
F(v)

which confirms the assumed monotonicity of b*.

The necessary conditions are also sufficient if each stationary point is a global

maximum. This requirement holds because U(x, v) is increasing in x iff x < v and

decreasing if and only if x > v, as shown in the appendix on the pseudoconcavity

of bidders' payoff functions (Section 8.10). •

8.2.5 General Solution of Symmetric Auction Games

In many noncooperative games it is difficult, if not impossible, to find a closed-form

equilibrium solution unless one works with particular functional specifications.

The SIPV auction game framework is an exception. In this framework all standard

auctions - indeed, all auctions that select the highest bidder as winner - have a

unique symmetric equilibrium.

As we show in this subsection, the general solution of SIPV auction games can

be found quite easily. The trick is to begin with a more abstract account of auc-

tion games, and then solve for equilibrium payoffs, and establish general revenue-

equivalence properties before solving for equilibrium strategies.

Once equilibrium payoffs have been determined, one can turn to particular auc-

tion games such as the auctions considered in the previous subsection. Knowing

payoffs and the details of the considered auction, it is, in most cases a snap to

compute the associated equilibrium bid functions.

The advantage of putting the usual solution procedure upside down is twofold:

1) payoffs are determined and revenue equivalence is established for a large array of

auction rules (this could never be achieved by solving all conceivable auctions one

by one) and 2) the technique is remarkably simple (no need to do dull manipulations

of first-order conditions and solve nonlinear differential equations).
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To prepare the more abstract account of auction games, we begin with some

slightly technical definitions and remarks.

Probability Distribution

Since bidders' valuations are iid random variables, their joint distribution function

T is just the product of their separate distribution functions F : [0, v] —> [0,1],

which are in turn identical due to the assumed symmetry. Therefore,

u v2, • • •, vn) = F(vi)F(v2) • • • F(vn). (8.30)

Strategies

Bidders' strategies are their bid function b : [0, v] —> M+ and their participation

rule § : [0, v] -> {0, 1}. Without loss of generality we characterize symmetric

equilibria where all bidders play the same strategies. And we assume that all bidders

have an incentive to participate, provided their valuation is not below a certain

critical value VQ > 0, so that %(v) = 1 <=> v > VQ. This reduces strategies to bid

functions b(v) and critical valuations vo G [0, v].

Representation of Auction Rules

All auction rules can be represented by an allocation rule p and a payment rule

Jc, where p(b\,..., bn) is i's probability of winning the auction, and x(b\,..., bn)

i's payment to the auctioneer.18 The advantage of this representation is that, given

rivals' strategies, each bidder's decision problem can be viewed as one of choosing

through his bid b a probability of winning and & payment.

Consider one bidder, say bidder 1, and suppose bidders 2 to n bid according to

the equilibrium strategy b*(v). Then the probability of winning and the expected

payment are solely functions of the own action b, as follows:

p(b):= E [Hb,b*(V2),...,b*(Vn))], (8.31)
v2,...,vn

£(b):= E mb,b*(V2),...,b*(Vn))]. (8.32)
v2,...,vn

Due to the independence assumption, both p and £ depend only on the bid b but

not directly on the bidder's own valuation v.

Payoff Functions

Suppose rivals play the equilibrium strategy b*(v). Using the p, £ representation,

the bidders' payoff function is

U(b,v) :=p(b)v-£(b). (8.33)

Equilibrium

The strategies (b*(v), vo) are a (symmetric) Bayesian Nash equilibrium if (for

v > vo)

U(b*(v), v) > U(b, v) Vb, (8.34)

U(b*(vo),vo) = O. (8.35)

18 In principle, payments may be determined by a lottery. Therefore, Jc,- (•) should be viewed as an expected value.
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Results

As a first result, we establish the strict monotonicity of the equilibrium bid func-

tion.

Lemma 8.1 (Monotonicity) The equilibrium bid function Z?*(u) is strictly mono-

tone increasing.

Proof The expected utility of a bidder with valuation v who chooses the bid (action)

b when all rivals play the equilibrium strategy Z?* (v) is (8.33). The equilibrium action

b = b*(v) must be a best reply. Therefore, the indirect utility function is

U*(v) := U(b*(v), v) = p(b*(v))v - E{b*{v)). (8.36)

Since U*(v) is a maximum-value function, the envelope theorem applies, and one

has19

U*'(v) = ^-U(b*(v), v) = p(b\v)). (8.37)
dv

Obviously, U*(v) is convex.20 Therefore, U*'(v) — p(b*(v)) is increasing in v.

And since p(b) is increasing in b, it follows that the equilibrium bid function b*(v)

is increasing in v. In view of the fact that the optimal bid cannot be the same for

different valuations, the monotonicity is strict.21 •

An immediate implication of strict monotonicity, combined with symmetry, is:

Lemma 8.2 (Probability of Winning) The bidder with the highest valuation wins

the auction, provided that valuation is above vo. Therefore, the equilibrium proba-

bility of winning is (for v > vo)

p*(v) := p(b*(v)) = Pr{rivals' Vs are below v} = F(v)n~l. (8.38)

This brings us to the amazing payoff equivalence of a large class of auction

games.

Proposition 8.2 (Payoff Equivalence) All auctions that select the highest bidder

as winner have a symmetric equilibrium and share the same critical valuation vo

give rise to the same expected payoffs.

19 You may wonder whether a second-order condition is satisfied. The answer is yes, as we show in the appendix

(Section 8.10).
2 0 The proof is a standard exercise in microeconomics. Choose v\ ^ i>2, v := Xv\ + (1 — X)V2. By definition of

a maximum, p*(v)vt - S*(v) < p*(vt)vi - £*(vt), i e {1,2}. Rearrange, and you get U*(v) < W*(v\) +
(1 — X)U*{v2), which proves convexity. Make sure that you also understand the intuition of this result. Notice
that the bidder could always leave the bid unchanged when v changes, as a fallback. Therefore, U* must be at
or above its gradient hyperplane, which is convexity.

21 Suppose the bid function contains some flat portion in the interval (ui, V2). Then a bidder with some valuation
from this interval, say t>2, can raise his expected payoff by marginally raising his bid because then he always
wins when the second highest valuation is in that same interval.
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Proof Suppose v > vo. Integrating (8.37), one obtains, using (8.38) and the fact

that£/*(i;o) = O,

U*(v) =

= / " •

J Vo

= f F(x)"-1 dx. (8.39)
J VQ

Next, solve (8.36) for bidders' expected payment, and one finds (for v > vo)

= vF(v)n~l - [ F(x)n~ldx. (8.40)
Jvo

These results prove that bidders' equilibrium payoff, probability of winning, and

expected payments are the same for all permitted auction rules.

Finally, compute the seller's expected revenue FL The seller earns from each

bidder an expected payment £*(v). Since he does not know bidders' valuations, he

has to take an expected value, which gives

= E [VF(V)n~l-U*(V)]
V

= - E [V{n)]- E W*(V)].

Sum over all n, and one has the seller's expected revenue

n(n,vo) = n E [£*(V)]
V>v0

= E [V(n)]-n E [U*(V)] (8.41)
V(n)>V0 V>V0

d d
v — F(v)ndv

n dv

-n / / F(x)n-ldx)—F(v)dv.
JVQ \Jvo/vo / dv

Using integration by parts gives

fV ( fV F(x)n~l dx) —F(v) dv = fV F(v)n~l dv - f F(v)n dv
JVQ \Jvo / dv Jvo Jvo

\ 1 - F(v)1 r ( d

n Jvo \dv
dv.

vo \dv J f(v)
Therefore, the seller's expected revenue is

IIGi, vo)= iv- — ^ ^F(vT dv, (8.42)
Jvo V f(v) ) \dv J

which is also the same for all permitted auction rules. •
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Note that (8.41) indicates nicely how the social surplus from trade (the conditional

expected value of V(n), conditional on V(n) > vo) is divided between bidders and

the seller. It follows immediately that this surplus is maximized by setting vo = 0.

Therefore, the considered auction rules are Pareto-optimal if and only if vo = 0.

As you can see from the ingredients in the proofs, revenue equivalence applies

not only to the four standard auctions but to all auctions that select the highest bidder

as winner, provided they share the same critical valuation Do. However, expected

payoffs are usually not the same when critical valuations differ. In particular, while

standard auctions are payoff-equivalent when the critical valuation is the same, vary-

ing the critical valuation gives rise to a different class of payoff-equivalent auctions

with a different payoff level. Keep this in mind if you apply revenue equivalence.

Remark 8.1 Note that the factor that appears in the integrand of (8.42),

y(v) := v - 1J[V\ (8.43)
f(v)

can be interpreted as "marginal revenue" (see Section 8.1.3) or as a "priority level"

(Myerson).22 In this light it follows immediately from (8.42) that the seller's ex-

pected revenue is equal to the expected value of the highest priority level:

U(n,vo)= E [y(V(n))}. (8.44)

Proposition 8.3 (Equilibrium Bid Functions I) Suppose valuations are drawn

from the continuous probability distribution function F(v), and the minimum bid

is vo > 0. Then the equilibrium bid functions of standard auction games are (for

v > vo)

b*(v) = v - [V (^-^] dx (Dutch auction), (8.45)
Jvo \F(v)J

b*(v) = v (English auction). (8.46)

Of course, the English auction has also several asymmetric equilibria, but these

are weakly dominated.

Proof In the Dutch auction, the winner pays his bid, and the loser goes free. There-

fore, £*(v) = p*(v)b*(v). Solve this for b*(v), and one has immediately (8.45).

To establish the asserted symmetric equilibrium bidding rule for the English

auction, recall that truth telling is a (weakly) dominant strategy. This proves im-

mediately the asserted solution. However, as an exercise we now also derive the

symmetric equilibrium strategy using our solution procedure: By (??) one has

£*(v)= f y^{F(y)n-l)dy
Jvo dy

= E[V{n-i:n-i) | Vin-i-n-i) e [vo, v]] Pr{V(n-i:n-i) e [v0, v]}.

22 Myerson (1981) shows that, if valuations are drawn from different distributions, the optimal auction awards the
item to the bidder with the highest priority level and charges him an amount equal to the lowest valuation that
would still assure winning.



Auctions 201

In an English auction the winner pays the second highest bid, and only the winner

pays; therefore,

£*(V) = £[6*(V(n-l:W-l))|V(n-l:«-l) € [t>0, v]] Pr {y(w-l:W-l) G [u0, v]}.

Hence, b*(v) = v, Vf > vo. n

Proposition 8.4 (Equilibrium Bid Functions II) Suppose valuations are drawn

from the continuous probability distribution function F(v). Then the equilibrium

bid functions of some of the other auction games analyzed before are (for v > vo)

b*(v) = vF(v)n~l - [V F(x)n~l dx (all-pay auction), (8.47)

b*(v) = v-\ — (kth-price auction, k > 2). (8.48)
n-k + 1 f(v)

Proof In the all-pay auction all bidders actually pay their bid with certainty,

whether they win or lose. Therefore, b*(v) = £(Z?*(i>)), and the asserted bid func-

tion follows immediately from (??). The solution of the third-price auction is a bit

more involved and hence omitted (see Wolfstetter (1998)). •

In order to illustrate the effect of the minimum bid upon the bid function in the

first-price auction, take a look at Figure 8.3, where we plot the equilibrium bid

functions for the case of uniformly distributed valuations on the support [0, 1], and

two bidders under Do = 0 (dashed curve) and vo = \ (solid curve).

Remark 8.2 In a first-price auction the minimum bid po induces the same critical

valuation vo = po, which is why we identified vo and po in this case. However, the

two do not coincide in all auctions. For example, in an all-pay auction the critical

valuation vo bears the following relationship to the minimum price:

Po
vo = -—— > Po,

p(vo)

because the bidder with valuation vo is indifferent between participation and non-

participation if and only if P(VQ)VO — po = 0.

b(v)

5/8

1/2

-+• v

Figure 8.3. Effect of Minimum Price VQ on Equilibrium Bids in a First-Price Auction.
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Also note the following interpretation of equilibrium bidding.

Proposition 8.5 (Interpretation) In equilibrium each bidder bids so high that his

expected payment, conditional upon winning, exactly matches the item's value to

rival bidders:

S*(v) = p\v)E[V{n-X) | V{n) = v]. (8.49)

Therefore, the equilibrium bid function of the first-price auction can also be written

as

b*(v) = E [V(n_i) | V(n) = v] (first-price auction). (8.50)

Finally we mention that the second-order stochastic dominance relationship be-

tween the seller's payoff under the Dutch and the English auction, PQ ^SSD PE,

holds generally and not just for uniformly distributed valuations.

Proposition 8.6 (Stochastic Dominance) The equilibrium price under the Dutch

auction, Pp, second-order stochastically dominates that under the English auction,

PE- Therefore, a risk-averse seller prefers the Dutch over the English auction.

Proof (Sketch) Suppose the highest valuation is v. Then the conditional cdf's

of PD and PE, conditional on V(n) = v, are single-crossing. Note that the Dutch

auction puts all probability mass on b*(v), whereas under the English auction

PE is determined by the random variable V(w_i). Moreover, E[PD I V(n) = v] =

E[PE I V(n) = v] since £*(v \ V(n) = v) is the same under both auctions, by (??).

Therefore, for each V(n) = v, PE is a mean-preserving spread of PD, and Pp,

second-order stochastically dominates P^. Since this applies to all possible highest

valuations, it also applies to the average highest valuation. •

8.2.6 Vickrey Auction as a Clarke-Groves Mechanism*

In his analysis of the efficient provision of public goods, Clarke (1971) proposed his

well-known pivotal mechanism that implements the efficient allocation in dominant

strategies. This mechanism was later generalized by Groves (1973).23 Interestingly,

the Vickrey auction is a special case of the Clarke-Groves mechanism.

The Clarke-Groves mechanism, denoted by (t,k, kr), is defined by a transfer

rule t and the allocation rules k and k! that prescribe an allocation and payments,

contingent upon agents' valuations v. The allocation rule k(v), v := (v\,..., vn),

prescribes the allocation that is efficient for the valuations v reported by all agents.

And the allocation rules k'_{ (i>_/) prescribe the efficient allocations that would result

if agent / were not present, where v-i := (v\,..., u,-_i, u,-+i,..., vn). Finally, the

transferrule stipulates payments to agents if t((v) > 0 (and from agents if U(v) < 0),

23 Green and Laffont (1979) showed that the Clarke-Groves mechanism is the only one that implements the
efficient allocation in dominant strategies. They also showed that budget balancing (the requirement that the
sum of all transfers vanish) cannot generally be achieved by dominant-strategy mechanisms. However, as shown
by d' Aspremont and Gerard-Varet (1979), efficiency and budget balancing can be implemented as a Bayesian
Nash equilibrium.
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contingent upon agents' reported valuations, as follows:

tt(v) :=

where U( denotes / 's payoff as a function of the allocation and the own valuation.

Note that t{ (v) > 0 represents the positive externality that / exerts upon the welfare

of the n — \ other agents. It is the difference in welfare of others if agent / is present

and if i is absent. In turn, if t\ (v) < 0, agent i is required to pay a "tax" equal to

the negative externality that he inflicts upon others.

Now apply the Clarke-Groves mechanism to the allocation of a single indivisible

unit of a private good. In this case, the allocation rule k stipulates that the good is

awarded to the agent with the highest valuation, and that ux (k, vt) = vt if vt is the

highest valuation, and that Uj(k, V() = 0 otherwise. Therefore, by (8.51),

ti(v) = {-vl»-» tf <*=>>. (8.52)
iy } [0 otherwise, v }

i.e., the agent with the highest valuation is required to pay a transfer equal to the

second highest valuation, while all others pay nothing. This shows that, in the

present framework, the Clarke-Groves mechanism is precisely the social choice

rule implemented by the Vickrey auction.

8.3 Robustness*

Assuming the SIPV framework with risk-neutral agents, we have derived the amaz-

ing result that all auctions that award the item to the highest bidder and give rise

to the same critical valuation below which it does not pay to participate share the

same equilibrium payoffs. In other words, if all participants are risk-neutral, many

different auction forms - including the four standard auctions - are nothing but

irrelevant institutional detail. And if the seller is risk-averse, he should favor the

Dutch over the English auction (and the English over all higher-order fcth-price

auctions).

These results are in striking contrast to the apparent popularity of the second-

price auction as an oral auction and the first-price auction for sealed bids. Has the

SIPV model missed something of crucial importance, or have we missed something

at work even in this framework?

A strong argument in favor of the English auction is its strategic simplicity. In

this auction bidders need not engage in complicated strategic considerations. Even

an unsophisticated bidder should be able to work out that setting a limit equal to

one's true valuation is the best one can do. Not so under the Dutch auction. This

auction game has no dominant strategy equilibrium. As a result, understanding the

game is conceptually more demanding, not to speak of computational problems.

However, if the auction cannot be oral, say, because it would be too costly to

bring bidders together at the same time and place, there is a very simple reason

why one should favor a first-price sealed-bid auction, even though it is strategically

more complicated than a second-price or Vickrey auction.
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Second-price auctions can easily be manipulated by soliciting phantom bids close

to the highest submitted bid. This suggests that second-price sealed bid auctions

should not be observed if the seller is profit-oriented.

There are several further good reasons why the seller should favor the Dutch

auction. But these come up only as we modify the SIPV model. We now turn

to this task. In addition, we will give a few examples of auctions that violate the

prerequisites of revenue equivalence and on that ground fail to be payoff-equivalent

to the four common auctions.

8.3.1 Introducing Numbers Uncertainty

In many auctions bidders are uncertain about the number of participants (numbers

uncertainty). This seems almost inevitable in sealed-bid auctions where bidders do

not convene in one location but make bids each in their own office.

Notice, however, that the seller can easily eliminate numbers uncertainty if he

wishes to do so. He only needs to solicit contingent bids where each bidder makes

a whole list of bids, each contingent on a different number of participating bidders.

Therefore, the seller has a choice. The question is: Is it in the interest of the seller

to leave bidders subject to numbers uncertainty?

McAfee and McMillan (1987b) explored this issue. They showed that if bidders

are risk-averse and have constant or decreasing absolute risk aversion, numbers

uncertainty leads to more aggressive bidding in a first-price closed auction. Since

numbers uncertainty obviously has no effect on bidding strategies under the three

other auction rules, one can conclude from the revenue equivalence (Proposition

8.2) that numbers uncertainty favors the first-price closed auction. Incidentally,

this result is used in experiments to test whether bidders are risk-averse (see Dyer,

Kagel, and Levin (1989)).

8.3.2 Discrete Valuations

If valuations are discrete random variables, say V e {0,v\9V2,... ,vr}, the Dutch

auction has only a mixed-strategy equilibrium. This equilibrium has remarkable

properties that make it a truly interesting case and not just a technical side issue.

When you hear that bidders use mixed strategies, you may suspect that efficiency

and hence revenue equivalence are sacrificed. By chance, high-valuation bidders

may bid low and a low-valuation bidder bid high, in which case the item is not

awarded to the highest-valuation bidder.

However, this cannot occur. The equilibrium mixed strategies are continuous

probability distribution functions with a remarkable monotonicity property: the

supports of bids associated with v\ < V2 < • • • < vn are

where b\ < Z?2,..., < bn. Due to this neighboring property of the supports, effi-

ciency is maintained despite randomization, and revenue equivalence prevails.24

24 For an ingeniously simple proof see Riley (1989).
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As an illustration, suppose there are only two bidders, and their valuations are

either 0 or 1, with equal probability. Then the unique symmetric equilibrium is as

follows: if the valuation is equal to 0, do not participate; if it is equal to 1, participate

and bid according to the probability distribution function25

B(x) := Pr{bid < x] = —^—, x e [0, ±1, (8.53)
1 — x z

with 5(0) = 0, B{\) = 1.

In a mixed-strategy equilibrium, all actions from the support of the equilibrium

mixed strategy, [0, ^] , are an equally good response to B(x). Therefore, bidders'

equilibrium payoffs in the Dutch-auction game are £/*(0) = 0, f/*(l) = \.

Finally, consider the English auction. There, bidders stick to the truth-telling

pure strategy b*(v) = v. A bidder with valuation v = 1 has an equal chance to face

a rival either with valuation v = 0 or with v — 1. If the rival has v = 1, the item is

sold at price 1 by using some tie rule, and neither bidder gains or loses. And if the

rival has v = 0, the item is sold at price zero at a gain equal to 1. From this you see

immediately that bidders' equilibrium payoffs are the same as in the Dutch-auction

game. Finally, since it is always the highest valuation that wins the item, the overall

gain from trade and therefore the seller's expected revenue are also the same.

8.3.3 Removing Bidders9 Risk Neutrality

A more substantial modification is obtained by introducing risk-averse bidders.

Obviously, this modification does not affect the equilibrium strategy under the

English auction. Therefore, the expected price in this auction is unaffected as well.

However, strategies and payoffs change under the Dutch auction. Recall that in

this auction form bidders take a chance and shade their bid below their valuation.

When risk aversion is introduced, shading becomes less attractive because the

marginal increment in wealth associated with winning the auction at a slightly

reduced bid weighs less heavily than the possible loss of not winning due to such a

reduced bid. Therefore, a risk-averse bidder shades his bid less than a risk-neutral

bidder. Of course, bidders thus raise the seller's payoff and, alas, reduce their own.26

Proposition 8.7 Suppose bidders are risk-averse. Then the seller prefers the Dutch

to the English auction.

8.3.4 Removing Independence: Correlated Beliefs

Finally, remove independence from the SIPV model and replace it by the assumption

of a positive correlation between bidders' valuations. Positive correlation (this is

25 Make sure to check that all bids (actions) x e [0, \] are maximizers of \ (1 — x){\ + B(x)), and therefore best
replies to B(x).

26 For a formal proof see Riley and Samuelson (1981). On the design of optimal auctions when bidders are
risk-averse see Maskin and Riley (1984b).
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a special case of affiliation) means that a high own valuation makes it more likely

that rival bidders' valuations are high as well.

The main consequence of positive correlation is that it makes bidders bid lower in

a Dutch auction. Of course, correlation does not affect bidding in an English auction,

where truth telling is always the dominant strategy. Therefore, the introduction of

correlation reduces the expected price under the Dutch auction but has no effect

on the expected price under the English auction. In other words, correlation entails

that the seller should prefer the English to the Dutch auction.

Proposition 8.8 In the symmetric private-values model with positively correlated

valuations\ the seller's payoff is higher under the English than under the Dutch

auction, and that of potential buyers is lower.21

The intuition for this result is sketched as follows: Each bidder knows that he will

win the auction if and only if all other bidders' valuations are lower than his own.

The introduction of correlation means that those with low valuations also think it

is more likely that rival bidders have low valuations as well. Therefore, bidders

with lower valuations shade their bids more. In turn this convinces high-valuation

bidders that they do not have to bid so aggressively (for an instructive example see

Riley (1989, p. 48 ff.)).

The introduction of correlation has a number of comparative-statics implications

with interesting public policy implications. In particular, the release of informa-

tion about the item's value should raise bids in a Dutch auction. Incidentally, this

comparative-statics property was used by Kagel, Harstad, and Levin (1987) to test

the predictions of auction theory in experimental settings.

You may return to the analysis of auctions with correlated valuations in Section

8.7, where you will find a more detailed analysis and some simple proofs.

8.3.5 Removing Symmetry

The symmetry assumption is central to the revenue-equivalence result. For if bidders

are characterized by different probability distributions of valuations, under the

Dutch auction it is no longer assured that the object is awarded to the bidder

with the highest valuation. But precisely this property was needed in the proof of

Proposition 8.2.

Example 8.4 Suppose there are two bidders, A and B, characterized by their ran-

dom valuations, with supports (a, a) and (b, b), with a < b. Consider the Dutch

auction. Obviously, B could always win and pocket a gain by bidding the amount

a. But B can do even better by shading the bid further below a. But then the

low-valuation bidder A wins with positive probability, violating Pareto optimality.

An important implication is that Pareto optimality is only assured by second-price

bids. If a public authority uses auctions as an allocation device, efficiency should be

27 The formal proof is in Milgrom and Weber (1982).
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the primary objective. This suggests that public authorities should employ second-

price auctions.

A detailed study of asymmetric auctions is in Maskin and RHey (1996). They

state sufficient conditions under which first-price auctions are preferred by the seller.

Altogether, their results suggest that the first-price auction tends to generate higher

expected revenue when the seller has less information about bidders' preferences

than bidders do about each others' preferences. But if the seller is equally well

informed and therefore is in a position to set an appropriate minimum price, the

ranking is most likely reversed.28

Based on these observations, Maskin and Riley suggest that

... in procurement bidding, where the procurer almost certainly knows less about the
suppliers than they do about each other, the sealed first-price auction is very likely to be
preferred by the procurer.

whereas

... in art auctions, where the auctioneer is likely to have at least as much information about
buyers' reservation prices as each buyer has about his competitors, this presumption in favor
of the sealed first-price auction no longer obtains.

8.3.6 Multiunit Auctions

Suppose the seller has more than one unit of a good and auctions them simultane-

ously. Then everything generalizes quite easily as long as each buyer demands at

most one unit. But revenue equivalence generally fails if buyers are interested in

buying several units and their demand is a function of price.

Consider the case if each buyer wants at most one unit. First of all we need

to generalize the notions of first- and second-price auctions. Suppose k units are

put up for sale. In a generalized second-price auction, a uniform price is set at

the level of the highest rejected bid. The highest k bidders receive one unit each

and pay that price. This shows how the fcth-price auctions reviewed earlier are

important in a multiunit setting. Of course, in a generalized first-price auction, the

highest k bidders are awarded the k items and each pays his own bid. Therefore,

the generalized first-price auction involves price discrimination.

Just as in the single-unit case, one can show that all auction rules are revenue-

equivalent, provided they adhere to the principle of awarding each item to the

highest bidder (see Harris and Raviv (1981)). However, this does not generalize

when bidders may buy several units depending on the price.

A simple analysis of price-dependent demand is in Hansen (1988), who showed

that first-price auctions lead to a higher expected price, so that revenue equivalence

breaks down in this case. An important application concerns industrial procurement

28 Another study of asymmetric auctions is Plum (1992). However, Plum considers a very special case, focuses
on issues of existence and uniqueness, and does not address the ranking of different auctions by their expected
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contracts in private industry and government. Hansen's results explain why pro-

curement is usually in the form of a first-price seal-bid auction. For a fuller analysis

of this matter, see Section 8.8.1 on auctions and oligopoly below.

Altogether, the theory of multiunit auctions is not very well developed. Until

recently, one has often avoided modeling the auction as a game and instead ana-

lyzed bidders' optimal strategy, assuming a given probability distribution of being

awarded the demanded items.29 However, Maskin and Riley (1989) have general-

ized the theory of optimal auctions to include the multiunit case. And Spindt and

Stolz (1989) showed that as the number of bidders or the quantity put up for auction

is increased, the expected stopout price (the lowest price served) goes up, which

generalizes well-known properties of single-unit auctions.

The most important applications of multiunit auctions are in financial markets.

For example, the U.S. Treasury sells marketable bills, notes, and bonds in more than

150 regular auctions per year, using a sealed-bid, multiple-price auction mechanism.

Some of the institutional details of the government securities market are sketched

in Section 8.8.3 below.

8.3.7 Split-Award Auctions

Consider a procurement problem - say, the government wants to buy a sophisticated

piece of military hardware. There are only two potential suppliers. Suppose it is cost-

minimizing to break down the production into two subunits and to let each subunit

be produced by a different supplier, due to sufficiently strong decreasing returns

to scale. Then the government faces a dilemma: on the one hand, it would like to

have each supplier produce one subunit because subdivision assures cost efficiency,

and on the other hand, it would like to have competition between suppliers, as a

safeguard against monopolistic pricing. How can it reconcile both goals?

One answer is to introduce a split-award auction. Such an auction asks each

supplier to submit two bids: one for the subunit and one for the complete unit.

The auctioneer selects those bids that minimize the cost of the complete unit. In

equilibrium each supplier is awarded one subunit at a price that is lower than the

monopoly price, due to competition between firms for the entire unit. Unfortunately,

split-award auctions do not always perform so well (see Anton and Yao (1989,

1992)).

8.3.8 Repeated Auctions

If a seller has several units, he may also sell them sequentially, one unit after the

other. This method of sale gives rise to a repeated-auction problem.

Sequential auctioning is common, for example, in the sale of wine, race horses,

and used cars. In some of these markets it has been observed that prices tend to follow

29 See for example the analysis of Treasury-bill auctions by Scott and Wolf (1979) and Nautz and Wolfstetter
(1997). Treasury-bill auctions are explained in Section 8.8.3.
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a declining pattern (Ashenfelter (1989), Ashenfelter and Genovese (1992)). Several

explanations have been proposed for this declining-price anomaly.30

Ashenfelter suggested that risk aversion among bidders may explain declining

prices in sequential auctions of identical objects, such as identical cases of wine

or virtually identical condominiums. However, McAfee and Vincent (1993) could

only generate declining prices by assuming that bidders' absolute degree of risk

aversion is nondecreasing - which seems to violate most peoples' attitude towards

risk. Therefore, risk aversion alone is probably not the answer.

While there is no compelling reason for declining prices when identical objects

are auctioned, declining prices follow easily if each bidder's valuations for the

different objects are independently drawn from an identical distribution, and each

bidder wants to buy only one unit (see Bernhardt and Scoones (1994)).

To understand why prices fall in a sequential second-price auction of stochasti-

cally identical objects, it is useful to compare with the case of identical objects. In

his study of a sequential second-price auction of exactly identical objects, Weber

(1983) pointed out that bidders should bid less than their valuation in the first round

to allow for the option value of participating in subsequent rounds. Since Weber

assumed identical objects, bidders with a higher valuation have also a higher op-

tion value, and therefore they should shade their bids in the first round by a greater

amount than bidders with a lower valuation. This way, all gains to waiting are arbi-

traged away and, as Weber showed, the expected prices in all rounds are the same.

However, if the objects for sale are only stochastically the same, all bidders have

the same option value, regardless of their valuation for the first object put up for

sale. For a precise statement of equilibrium suppose there are n > 3 bidders and

two stochastically identical units sold in a sequence of second-price auctions. Each

bidder wants to acquire only one unit.

Bidders' expected gain in the second auction is

§ := ^ (E [Vfo-l:*-!)] - E [V{n-2:n-l)]) . (8.54)

Since a bidder could always delay bidding until the second round, and since he is

interested in just one unit, § is the option value of delay.

Another explanation of declining prices is based on the assumption of stochastic

scale effects, in the form of either economies or diseconomies of scale (see Jeitschko

and Wolfstetter (1998)).

8.4 Auction Rings

So far we have analyzed auctions in a noncooperative framework. But what if

bidders collude and form an auction ring! Surely, bidders can gain a lot by collusive

agreements that exclude mutual competition. But can they be expected to achieve

a stable and reliable agreement? And if so, which auctions are more susceptible to

collusion than others?

30 On the role of information transmission and learning in repeated auctions see Jeitschko (1998).
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To rank different auctions in the face of collusion, suppose all potential bidders

have come to a collusive agreement. They have selected their designated winner,

who we will assume is the one with the highest valuation, recommended him to

follow a particular strategy, and committed others to abstain from bidding. However,

suppose the ring faces an enforcement problem because ring members cannot be

prevented from breaching the agreement. Therefore, the agreement has to be self-

enforcing. Does it pass this test at least in some auctions?

Consider the Dutch auction (or first-price sealed bid). Here, the designated winner

will be recommended to place a bid roughly equal to the seller's minimum price,

whereas all other ring members are asked to abstain from bidding. But then each

of those asked to abstain can gain by placing a slightly higher bid, in violation of

the ring agreement. Therefore, the agreement is not self-enforcing.

Not so under the English auction (or second-price closed-seal auction). Here the

designated bidder is recommended to bid up to his own valuation and everyone

else to abstain from bidding. Now, no one can gain by breaching the agreement,

because no one will ever exceed the designated bidder's limit.

Therefore:31

Proposition 8.9 Collusive agreements between potential bidders are self-enforcing

in an English but not in a Dutch auction?2

These results give a clear indication that the English auction (or second-price

closed auction) is particularly susceptible to auction rings, and that the seller should

choose a Dutch instead of an English auction if he has to deal with an auction ring

that is unable to enforce agreements.

Even if auction rings can write enforceable agreements, the ring faces the problem

of how to select the designated winner and avoid strategic behavior of ring members.

This is usually done by running a pre-auction. But can one set it up in such a way

that it always selects that ring member with the highest valuation?

In a pre-auction, every ring member is asked to place a bid, and the highest

bidder is chosen as the ring's sole bidder at the subsequent auction. But if the bid

at the pre-auction only affects the chance of becoming designated winner at no

cost, each ring member has every reason to exaggerate his valuation. Therefore, the

pre-auction problem can only be solved if one makes the designated winner share

his alleged gain from trade.

Graham and Marshall (1987) proposed a simple scheme that resolves the pre-

auction problem by an appropriate side-payment arrangement. Essentially, this

scheme uses an English auction (or second-price closed auction) to select the des-

ignated winner. If the winner of the pre-auction also wins the main auction, he is

required to pay the difference between the price paid at the main auction and the

second highest bid from the pre-auction bid to a third party. This way, the entire

31 This point was made by Robinson (1985).
32 To be more precise, under an English auction the bidding game has two equilibria: one where everybody sticks

to the cartel agreement and one where it is breached. The latter can, however, be ruled out on the ground of
payoff dominance.
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game (pre- plus main auction) is made equivalent to a second-price auction without

collusion, which solves the pre-auction problem.

In order to prevent all the gains from collusion from going to the third party, the

ring has to sell the entitlement to this payment to an interested party and divide

that payment equally, prior to the pre-auction. This way, all ring members capture

a share of the gains from collusion.

Alternatively, the ring could arrange the pre-auction without using a third party.

For example, the ring could require the winner to pay to all ring members an

equal share of the difference between the price paid at the main auction and the

second highest bid from the pre-auction. Such auction games have been analyzed

by Engelbrecht-Wiggans (1994).

Notice, however, that these solutions work only if the ring can enforce the agreed-

upon side payments. In the absence of enforcement mechanisms, auction rings are

plagued by strategic manipulation, so that no stable ring agreement may get off the

ground.

In their analysis of weak cartels McAfee and McMillan (1992) come to the

conclusion that the impossibility of transfer payments precludes efficiency. Tacit

collusion implies bidding strategies of the following form (for some v e (0, 1)):

*» = (? ^ ; ! ' (8-55)
I f if V > V,

which evidently entails inefficiency.

Incidentally, this tacit collusion strategy has an empirical counterpart. As men-

tioned by Scherer (1980),

Each year the Federal and State governments receive thousands of sets of identical bids in
the sealed bid competitions they sponsor.

Finally, we mention that the seller may fight a suspected auction ring by "pulling

bids off the chandelier," that is, by introducing imaginary bids into the proceedings.

In 1985, the New York City Department of Consumer Affairs proposed to outlaw

imaginary bids after it had become known that Christie's had reported the sale

of several paintings that had in fact not been sold. This proposed regulation was

strongly opposed by most New York-based auction houses, precisely on the ground

that it would deprive them of one of their most potent weapons to fight rings of

bidders.

8.5 Optimal Auctions

Among all possible auctions, which one maximizes the seller's expected profit?

At first glance, this question seems unmanageable. There is a myriad of possible

auction rules limited only by one's imagination. Whatever your favorite auction rule,

how can you ever be sure that someone will not come along and find a better one?

On the other hand, you may ask, what is the issue? Did we not show that virtually

all auction rules are payoff-equivalent?



212 Incomplete Information and Incentives

The breakthrough that made the problem of optimal auction design tractable is

due to two contributions, one by Riley and Samuelson (1981) and the other by

Myerson(1981).

In a superficial interpretation, the two contributions differ in the style of how they

approach the optimal-auction problem. Whereas Riley and Samuelson start out with

a simple characterization of revenue-equivalence relationships (much of which has

entered into our analysis of standard auctions) and then reduce the optimal-auction

problem to the optimal choice of minimum price, Myerson poses optimal auctions

as a mechanism design problem.

However, the difference goes deeper. The approach by Riley and Samuelson is

more restrictive, for two reasons:

• Whereas Riley and Samuelson assume that the item is awarded to the highest bidder,
Myerson shows the limitations of this commonly used allocation rule.

• Whereas Riley and Samuelson assume that all bidders' valuations are drawn from the same
distribution, Myerson allows them to be drawn from different distributions (asymmetric
auctions).

In the following we first review the solution by Riley and Samuelson, which

builds directly upon our previous results. Then we explain Myerson's mechanism-

design approach. And finally we add some remarks on how optimal-auction results

change if one takes into account the cost of participation and stochastic entry.

8.5.1 A Simplified Approach

In the symmetric case it is easy to characterize optimal auctions, without employing

the apparatus of the mechanism-design approach if one is ready to restrict attention

to the allocation rule awarding the item to the highest bidder. This simplified ap-

proach follows Riley and Samuelson (1981). We will later confirm that the assumed

allocation rule is not restrictive in the symmetric case. Therefore, the only serious

limitation is the symmetry assumption.

For this purpose, go back to our solution of the seller's equilibrium payoff (8.42).

There, the only remaining choice variable for the seller is the critical valuation vo.

Therefore, the seller-optimal auction is the one that maximizes FI(n, vo) over vo.

Proposition 8.10 (Optimal Auctions without Entry) The seller optimal auction

sets the cutoff valuation VQ (below which it does not pay to bid) that satisfies the

condition

independent of the number of bidders n. Therefore, a modified second-price auction

- modified by imposing a minimum bid equal to VQ - is optimal. For example, if valu-

ations are uniformly distributed on the support [0, 1], then VQ = 1/2 (Figure 8.4).
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TL(vo,n)

0 0.5 1

Figure 8.4. Optimal Auction: Uniform Distribution and n = 2.

Proof Differentiate n*(uo, n) from (8.42) with respect to VQ, and one obtains

ovo

(n(v) :=
1 - F(v)

f(v)

(8.57)

(8.58)

Note that (8.57) has also a stationary point at vo = 0. However, since Tl*(vo, n)

is strictly increasing for all positive vo close to 0, the stationary point at VQ = 0

is a minimum. Therefore, the maximizer must solve (8.56). Existence is assured

because cp(O) = l / / (0) > 0 and <p(v) = — v < 0. We mention that if the hazard

rate f(v)/(l — F(v)) is strictly monotone increasing, VQ is unique.33

If you are still somewhat surprised by this result, take a look at the following

intuitive argument.

Suppose the minimum price is VQ, and the seller raises it to vo + 8. In which case

does this matter? The seller gains 8 only if he squeezes a single bidder who bids at

or above vo + 8, which occurs with probability nF(vo)n~l(l — F(VQ + 8)). And

the seller loses i>o if the maximum bid happens to be between vo and VQ + 8, which

occurs with probability

Therefore, the net expected gain, per increment in VQ, is

A(<5) := nF(vo)n~l(l — F(vo + 8)) — nF(vo)n~
o

Taking the limit gives

lim A(5) = nF(vo)n~l ((1 - F(v0)) - f(vo)vo),
8-+0

and setting A = 0, one obtains the asserted VQ = [1 — F(VQ)]//(VQ). D

Remarkably, the optimal minimum bid is independent of the number of bidders.

33 Otherwise, (8.56) may have multiple roots, in which case one has to evaluate the seller's payoff at all roots, to
find out which is the global maximizer.
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8.5.2 The Mechanism-Design Approach

We now turn to Myerson's mechanism-design approach. Recall that this approach

is more general in that it permits asymmetries and does not impose arbitrary re-

strictions concerning the allocation rule.

Myerson observed that in the search for optimal auctions one may restrict at-

tention, without loss of generality, to incentive-compatible, direct auctions. This

fundamental insight applies the famous revelation principle, which is also due to

Myerson (1979), and which has been useful in many areas of modern economics,

from the public-good problem to the theory of optimal labor contracts.

Direct Auctions

An auction is called direct if each bidder is only asked to report his valuation to

the seller, and the auction rules select the winner and bidders' payments. Closed

auctions are direct auctions; English and Dutch auctions are indirect.

Incentive Compatibility

A direct auction is incentive-compatible if honest reporting of valuations is a Nash

equilibrium. A particularly strong and strategically simple case is an auction where

truth telling is a dominant strategy.

Since we consider optimality from the point of view of the seller, incentive com-

patibility requires only that buyers reveal their true valuations; we do not require that

the seller reports his own true valuation before bids are solicited. Again, the second-

price closed auction is a good illustration. Obviously, it is incentive-compatible in

the sense that all buyers bid truthfully. But, as we have already learned, it is not

truthful with regard to the seller's own valuation because it is in the seller's interest

to set a minimum bid above his own valuation.

Revelation Principle

The revelation principle says that for any equilibrium of any auction game, there

exists an equivalent incentive-compatible direct auction that leads to the same

probabilities of winning and expected payments. Therefore, the auction that is

optimal among the incentive-compatible direct auctions is also optimal for all types

of auctions.
To prove the revelation principle, consider an equilibrium of some arbitrarily

chosen auction game. We will show that the following procedure describes an
equivalent incentive-compatible direct auction, characterized by an allocation rule p

and a payment mlejt, both contingent on the vector of valuations i; := (v\,..., vn):

1. Ask each bidder to report his valuation.
2. Write down bidders' equilibrium bidding strategies of the assumed auction game, and

compute the associated probabilities of winning pi and payments JC/ as functions of
bidders' valuations v.

3. Set the probabilities of winning pt (v) and payments xt (v) as in the given equilibrium of
the assumed auction game.

4. Select the winner, and collect payments accordingly.
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Evidently, if all bidders are honest, this direct auction is equivalent to the given

equilibrium of the assumed auction game. Finally, this direct auction is also incen-

tive-compatible. For if it were profitable for any bidder to lie in the direct auction,

it would also be profitable for him to lie to himself in executing his equilibrium

strategy in the original auction game. It is as simple as that.

Example 8.5 Consider the equilibrium in dominant strategies of the second-price

auction. To construct a payoff-equivalent, direct, incentive-compatible auction

(p,x), set

[0 otherwise,

f max v-i if vt = max v,
xt(v) = < . (8.60)I W [ 0 otherwise, v }

where v_/ denotes the truncated vector of valuations obtained from v by omitting vt.

Similarly, the equilibrium of the symmetric first-price auction game can be trans-

lated into a payoff-equivalent, incentive-compatible direct auction (p, x) by setting

p as in (8.59) and

{ —u,- if vt = maxf,
(8.61)

0 otherwise.

Feasible Direct Auctions

A direct auction is described by the allocation rule p and the payment rule x, both

defined on the product set of the support of valuations. Here pi(v) denotes the

/th bidder's probability of winning and JC,- (v) his payment (notice: the bidder may

have to make a payment even if he does not win the auction). To be feasible, these

functions have to satisfy the following three conditions.

First, because there is only one object to allocate, the probabilities pt (v\,..., vn)

must sum to no more than 1 for all valuations (notice: the sale may fail with positive

probability):

n

^2pi(v) < 1 (budgetconstraint). (8.62)
i=i

Second, the direct auction has to be incentive-compatible. That is, if a bidder's

true valuation is V(, reporting the truth must be at least as good as reporting any other

valuation ©,- / u,-. The utility of an agent whose valuation is V( but who reports the

valuation vt is

Ui(vi \ v t ) : = E [ P i ( V u . . . , ( ) > , . . . , V n ) v t ]

- E [ x / ( V i , . . . , ©/ , . . . , Vn)]. (8.63)

(The V's are random variables; vt and 0/ particular realizations.) Therefore, incen-

tive compatibility requires that, for all V(, 0/ e [j^, vt],

U((vi | Vi) > Ui(vt | V() (incentive compatibility). (8.64)
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Third, participation must be voluntary, i.e., each bidder must be assured a non-

negative expected utility,

Ui(vt | vt) > 0 Vi;,- e [Vj, vt] (participation constraint). (8.65)

The Programming Problem

In view of the revelation principle and the above feasibility considerations, the

optimal auction design problem is reduced to the choice of (p, JC) in such a way that

the seller's expected profit is maximized (recall that r is the seller's own valuation):

max £ E [ X ; ( V I , ..., Vn)] - £ E [ A - ( V I , . . . , Vn)]r, (8.66)

subject to the budget (8.62), the incentive compatibility (8.64), and the participation

constraints (8.65). What looked like an unmanageable mechanism design problem

has been reduced to a straightforward optimization problem.

In the following we review and interpret the solution. If you want to follow the

mathematical proof you have to look up Myerson's (1981) contribution.

Solution

In order to describe the solution, the so-called priority levels associated with a bid

play the pivotal role. Essentially, these priority levels resemble and play the same

role as individual customers' marginal revenue in the analysis of monopolistic price

discrimination.

The priority level associated with valuation vi is defined as

/ \ l-Fi(vi)
Yiivt) := vt . (8.67)

fiiVi)

We assume that priority levels are monotone increasing in the f/'s.34

Going back to the Cournot monopoly problem under incomplete information,

reviewed in the introduction (see (8.3)), yt(vi) can be interpreted as the marginal

revenue from offering the item for sale to buyer / at a take-it-or-leave-it price equal

to p = vt. Therefore, the monotonicity assumption means that marginal revenue

is diminishing in "quantity," that is, in probability of sale.35 Of course, the priority

level is always less than the underlying valuation Vi.

With these preliminaries, the optimal auction is summarized by the following

rules. The first set of rules describes how one should pick the winner, and the second

how much the winner shall pay.

34 Notice [1 — Fi (vi)]/fi (u,-) is the reciprocal of the so-called hazard rate. Therefore, the assumed monotonicity
of priority levels is satisfied whenever the hazard rate is not decreasing. A sufficient condition is obviously
t h e l o g concavity of the complementary distribution function F(v) : = 1 — F(v). (F is called log concave if
In F is concave.) This condition holds, for example, if the distribution function F is uniform, normal, logistic,
chi-squared, exponential, or Laplace. See Bagnoli and Bergstrom (1989).

35 Myerson (1981) also covers the case when priority levels are not monotone increasing.
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Selection of Winner

1. Ask each bidder to report his valuation, and compute the associated priority levels.

2. Award the item to the bidder with the highest priority level, unless it is below the seller's

own valuation r.

3. Keep the item if all priority levels are below the seller's own valuation r (even though

the highest valuation may exceed r).

Pricing Rule To describe the optimal pricing rule we need to generalize the second-

price auction rule. Suppose i has the valuation v,-, which leads to the highest priority

level Yi(vt) > r. Now ask: By how much could i have reported a lower valuation

and still have won the auction under the above rules?

Let n be the lowest reported valuation that would still lead to winning,

zt := min{S | n(v) > r, n(v) > Yjty), Vj ^ /}. (8.68)

Then the optimal auction rule says that the winner shall pay zt. This completes the

description of the auction rule.

Interpretation Essentially, the optimal auction rule combines the idea of a second-

price (or Vickrey) auction with that of third-degree monopolistic price discri-

mination.36 As a first step, customers are ranked by their marginal revenue vt —

[1 — Fi(vi)]/f(vi), evaluated at the reported valuation. Since only one indivisible

unit is up for sale, only one customer can win. The optimal rule selects the cus-

tomer who ranks highest in the marginal-revenue hierarchy, unless it falls short of

the seller's own valuation r. In this sense the optimal selection of the winner rule

employs the techniques of third-degree price discrimination.

But the winner is asked to pay neither his marginal revenue nor his reported

valuation. Instead, the optimal price is equal to the lowest valuation that would still

make the winner's marginal revenue equal to or higher than that of all rivals. In

this particular sense, the optimal auction rule employs the idea of a "second-price"

auction.

Illustrations

As an illustration, take a look at the following two examples. The first one shows

that the optimal auction coincides with the second-price sealed-bid auction sup-

plemented by a minimum price above the seller's own valuation, if customers are

indistinguishable. The second example then brings out the discrimination aspect,

assuming that bidders are different.

In both examples, the seller deviates from the principle of selling to the highest

bidder (which underlies revenue equivalence), and the equilibrium outcome fails

to be Pareto-optimal with positive probability. This indicates that the four standard

auctions are not optimal. However, the optimal auction itself poses a credibility

problem that will be discussed toward the end of this section.

36 Recall that in the theory of monopoly one distinguishes between three kinds of price discrimination: perfect
or first-degree price discrimination, imperfect or second-degree price discrimination by means of self-selection
devices (offering different price-quantity packages), and finally third-degree price discrimination based on
different signals about demand (for example, different national markets).
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Example 8.6 (Identical Bidders) Suppose valuations are uniformly distributed on

[0, 1]. Then the priority levels are

1 -
= 2vi - 1,Yiivi) vt

and a sale occurs only if the highest valuation exceeds \ + r/2. The winner pays

either ^ + r/2 or the second highest bid, whichever is higher. The optimal auction

is equivalent to a modified second-price sealed-bid auction where the seller sets

a minimum price equal to \ + r/2. Since that minimum price is higher than the

seller's own valuation, the optimal auction is not Pareto-efficient.

With two bidders and a zero seller's own valuation the optimal minimum price

is \, and the expected revenue is equal to ^ . 3 7 Compare this with the Cournot

approach, the English auction, and the participation-fee-augmented English auction

(see Examples 8.1, 8.2, 8.3).

Example 8.7 (Bidder Heterogeneity) Suppose two bidders, A and B, have uni-

formly distributed valuations; A's support is [0, 1] and B's [0, 2]. Set r = 0. Then

the priority levels are

yA(vA) = 2vA - 1, YB(VB) = 2vB - 2.

Obviously, B can only win if his valuation exceeds that of A by \. Thus, the optimal

auction discriminates against B in order to encourage more aggressive bidding. Note

that if B were not discriminated against, he would never report a valuation greater

than 1 and never pay more than 1, whereas in the optimal auction he might have to

pay up to | .

Remark

In the symmetric case, the optimal auction can be implemented by a modified

second-price auction. This is, however, not the only way. In fact, the optimum can

be implemented by any mechanism that awards the item to the highest valuation

that exceeds the optimal critical valuation. The list of possible auctions includes

first-price, second-price, and even all-pay auctions, supplemented by an optimal

minimum price.

The Case of Two Bidders and Two Valuations*

This brief introduction to optimal auctions has stressed essential properties and left

out proofs and computations. This may leave you somewhat unsatisfied. Therefore,

we now add a full-scale example with two identical bidders and two valuations.38 Its

main purpose is to exemplify the computation of optimal auctions in a particularly

simple case where the price-discrimination aspect of optimal auctions cannot play

any role. (See, however, the closing remarks in this sub-subsection.)

37 The expected revenue is Pr{V (1) > \}E[V{1) | V(1) > ±] + \ Pr{V(1) < \ < V ( 2 )}, with E[V(l) | V a ) > \] =
§, and Pr{V(i) > i } = \, Pr{V(i) < i < V(2)} = i . As an alternative, just plug n = 2 and F(v) = v into
(8.42).

38 The example is borrowed from Binmore (1992, pp. 532-536) .
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Suppose the two bidders are identical in the sense that they have either a low

or a high valuation (i^). These valuations occur with the probabilities Pr{ V =

In the framework of this example, a direct auction will be described by 1) the con-

ditional probabilities ph := E[p(V, Vh)], Pi := E[p(V, vi)] of obtaining the item,

and 2) the bidders' expected payments Eh := Ey[x(vh, V], Si := Ey[x(vi, V].

Optimization Problem The optimal auction maximizes the expected gain from

each bidder,

max G := (1 — n)Sh + TTSI,

subject to the incentive compatibility

PhVh — Sh > PlVh — El,

PiVi —Si > PhVi — Sh,

and participation constraints

PhVh ~Sh>0,

Pivi -Ei>0.

(8.69)

(8.70)

(8.71)

(8.72)

(8.73)

An immediate implication of incentive compatibility is the monotonicity property

Ph>Ph £h>£i- (8.74)

Restrictions due to Symmetry Having stated the problem, we now make it more

user-friendly. The key observation is that symmetry implies three further restrictions

on the probabilities Ph, Pi-

From the seller's perspective each bidder wins the item with probability (1 — n)

Ph + npi\ in a symmetric equilibrium this probability cannot exceed \. Therefore,

(l-7t)ph+npi<-. (8.75)

Also, in a symmetric equilibrium type h must lose with probability \ or more

whenever he faces a type-/* rival. Therefore, 1 — Ph > ^(1 — TT), or equivalently

Ph < 1 + ^(1 - * ) = ^(7r + l). (8.76)

And similarly, type / must lose with probability \ or more when he faces a type-/

rival, so 1 — p/ > ^7r, or equivalently

Pi<\- l-n. (8.77)

Combining these restrictions, the set of feasible probabilities ph, pi is illustrated

in Figure 8.6. Similarly, the set of feasible expected payments Eh, E\ is illustrated

in Figure 8.5. In both diagrams, the dashed lines represent the seller's indifference

curves.
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> Th ~ Vhiph - Pi)

/ _ _ J _ jPlVl

Ti < Th - vi(ph - pi)

piVh y v

PhVl PhVh

Figure 8.5. Optimal Auction: Optimal £'s.

(1\- n)vh{ph - pi) + pivi = G

Ph

Figure 8.6. Optimal Auction: Optimal p's.

Why Some Constraints Do Not Bind As you can see immediately from Figure

8.5, only two constraints are binding: the truth-telling condition concerning type

h and the participation constraint concerning type /. Therefore, you can ignore

inequalities (8.71), (8.72) and replace inequalities (8.70), (8.73) by equalities.

User-Friendly Optimization Problem Using these results, you can now eliminate

the expected payment variables and find the optimal auction as the solution of the

following linear programming problem:

maxG := (1 - n)vh(ph - pi) + p\vu
Ph,pi

(8.78)

subject to (8.75)-(8.77).

The only variables are Ph, Pi-

Solution The solution is easily characterized by the two diagrams. Take a look at the

seller's indifference curves (the dashed lines) in Figure 8.6. Evidently, the marginal

rate of substitution can be positive or negative, depending on the prior probability n.

In particular, if type / is sufficiently likely (n > (vh — vi)/vh), the marginal rate of

substitution is negative (the dashed indifference curve slopes downwards), whereas
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Table 8.2. Optimal auction

n Pi <w ph

it < ^ ^ U U | (

^(1 + 7f) j(Vh ~\~ HVi)

if it is sufficiently unlikely (n < (vh — vi)/vh), the marginal rate of substitution is

positive (the dashed indifference curve slopes upwards). Therefore, the solution is

at one of two corners of the set of feasible p's, depending upon the size of the prior

probability n, as summarized in Table 8.2.

Remarks While this example highlights some aspects of optimal auctions, it has

also some peculiar properties. In our general statement of the optimal-auction prob-

lem, we stressed that optimal auctions are standard auctions supplemented by a

minimum-price requirement. However, this holds true only if valuations are con-

tinuous random variables. With discrete valuations, as in the present example, the

optimal auction is typically not a standard auction.

To see why a standard auction is not optimal in the present example, take a look at

the case n > (vh — f/)/t>/i • Clearly, if one tries to implement the optimal auction by

a second-price sealed-bid auction supplemented by a minimum-price requirement,

the optimal £/, stated in the second row of Table 8.2, requires a minimum price

equal to p = u/. However, with this minimum price one cannot also implement the

optimal value for £\.

8.5.3 Secret Reservation Price?

In many auctions the seller keeps his reservation price secret. Secrecy is often

justified as a means to fight auction rings. But can a secret reservation price still

raise the seller's revenue, or does it destroy the value of commitment?

Consider a first-price auction. If the seller commits to a reservation price and

announces it to bidders, he thus induces more aggressive bidding (see Figure 8.3

in Section 8.2.5). The catch is that the seller runs the risk that no transaction

takes place, even if the bidders' highest valuation is above the seller's valuation.

Therefore, the seller would like bidders to believe that he is committed to a certain

reservation price above his own valuation; however, once they are convinced, the

seller would most like to revoke that reservation price and not forgo profitable

transactions. This suggests that secrecy makes the power of commitment useless,

as in the commitment-and-observability problem discussed in Section 3.3.3.

Proposition 8.11 Consider a first-price auction, and suppose the seller keeps his

reservation price secret. Then the equilibrium reservation-price strategy is to set it

equal to the seller's own valuation, 0, for all v.

Proof In a first-price auction setting the reservation price po induces the critical

valuation i>o = po. Therefore, we save notation by identifying the reservation price

with VQ.
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If the seller with valuation v sets the secret reservation price VQ>V9 his expected

profit is a function of vo and 0, as follows (to simplify notation, define G(y) :=

y} = F(yy,g(y) :=

o, v) = v + Pr {b* (V(n)) > vo}(E[b* (V(B)) | b* (V(n)) > v0] - v)

= v+ f {b*(y)-v)dG(y). (8.79)

Due to the strict monotonicity of i>*,39

= (0 - vo)g(b*~l(vo))—, . (8.80)

Therefore, the optimal minimum bid is vo = 0. •

However, if the seller runs a second-price or Vickrey auction, secrecy does not

hurt him, because in a second-price or Vickrey auction truthful bidding is a weakly

dominant strategy, no matter what reservation price is announced. Therefore, the

reservation price poses neither a commitment problem nor a commitment-and-

observability problem.

The bottom line is that the implementation of the optimal auction requires neither

the ability to commit to the optimal reservation price nor its perfect observability,

provided the seller adopts a second-price or Vickrey auction. If the seller adopts a

first-price or Dutch auction, secrecy completely destroys the power of commitment.

8.5.4 Optimal Auctions with Stochastic Entry*

We close the discussion of optimal auctions with some results concerning the

relationship between the minimum price and bidder participation.

The standard analysis of optimal auctions ignores the problem of entry in the

face of costly participation. We now show that optimal auctions differ drastically

if this entry problem is taken into account.40 Recently, Levin and Smith (1994)

explored whether one should use a minimum price or entry fees when participation

is costly. Here we present a simple and straightforward proof of one of their main

assertions.41

Suppose bidders have to spend resources to inspect the item for sale, before they

know their own valuation. Once the own valuation is known, the cost of inspection,

c, is sunk and does not affect further bidding behavior. In this sense, inspection

constitutes entry into the bidding game.

3 9 Note: since the reservation price is secret, bidders cannot react to it; therefore, bidders' strategy is independent

of VQ.
4 0 A simple complete-information model of auctions with stochastic entry is in Elberfeld and Wolfstetter (1999).

There it is shown that more potential competition lowers the seller's expected revenue, which implies that the

seller should restrict the number of bidders.
4 1 Incidentally, Tan (1992) analyzed a similar entry problem where bidders in a procurement auction invest in

R&D in order to learn their production cost. That game has reasonable pure-strategy equilibria; but, again, the

seller should not impose a price ceiling.
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The optimal auction problem is now posed as a three-stage game. At stage 7,

the seller selects an auction rule from the class of auctions considered in previous

sections. At stage 2, each of m potential bidders decides whether to enter. Entry

entails the fixed cost c. Finally, at stage 3, the number of active bidders, n < m,

who have entered becomes common knowledge, and they play the usual bidding

game.

The number of potential bidders, m, is taken to be so large that all bidders suffer

a loss if they all enter, E[U*(V; m, vo)] < c. If this condition fails, entry is not an

issue.

At stage 3 equilibrium payoffs are as shown in Proposition 8.2. Therefore, at

stage 2, when bidders do not yet know their own valuation, their reduced-form

payoff as a function of n and vo is E[U*(V; n, vo)] — c. Note that E[U*(V; n, vo)]

is strictly monotone decreasing in n and vo, and positive (negative) for low (high) n.

Now consider the entry subgame that begins at stage 2. Denote the (mixed) entry

strategy by q := Pr{entry}. Then the equilibrium strategy q* e [0, 1] must solve

the condition of indifference between entry and nonentry,

m - l

J2 Pn:m-i(q)E[U*(V; n + 1, v0)] -c = 0. (8.81)
n=0

Here pn\m-\{q) denotes the probability that n rival firms enter (out of a sample of

m-l),

Pn:m-i(q) := I™ ~ * ) ^ ( 1 - q)m~n~\ m > n. (8.82)

Note that as bidders randomize their entry decision, the number of active bidders

becomes a random variable, denoted by the capital letter 0 < N < m.lts probability

distribution is a binomial distribution, with the following property that will be used

repeatedly.

Lemma 8.3 (Stochastic Dominance (FSD)) When the probability of entry, q, is

increased, the random number of bidders, N, increases in the sense of first-order

stochastic dominance (FSD). The same applies to an increase in m.

Proof By a known result, one can write the (complementary) binomial probability

distribution function, for k e N, 0 < k < m,42

*(*; q, m) := Pr{N > k] = ̂  Pn:m(?) (8.83)
n=k

= / rk~l(l-r)m~kdr. (8.84)
(A: — l)!(m — ^)! JO

The asserted FSD relationship follows immediately: q2 > q\ ==> <£(£; qi^m) >

This formula is proved by repeated integration by parts. See Fisz (1963), equations (10.3.7), (10.3.8).
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Proposition 8.12 (Equilibrium Entry Strategy) The entry subgame has a unique

symmetric equilibrium strategy q* e (0, 1) that is strictly monotone decreasing in

v0.

Proof At q = 0 the left-hand side (LHS) of (8.81) is positive, and at q = 1

negative. Since E[U*(V; n, i>o)] is strictly monotone decreasing in n, the FSD

relationship established in Lemma 8.3 implies that the LHS of (8.81) is strictly

monotone decreasing in q. By continuity, there must be a q* where the indifference

condition holds with equality. The asserted comparative statics also follows from

Lemma 8.3. •

Using these preliminary results we now turn to the stage 1 subgame and solve

the seller optimal auction. For this purpose, use the seller's reduced-form payoff

function

G(v0, m) := £ pn:m(q*(vo))n*(n, v0). (8.85)
n=\

Note that n*(n, vo) is increasing in n, and it has a maximum in i>o, which is

independent of n, by Proposition 8.10.

Proposition 8.13 (Optimal Auctions with Stochastic Entry) In the face of stoch-

astic entry, the seller optimal auction sets a minimum price below the static op-

timum. The optimal auction moves towards the unmodified standard second-price

auction, with VQ = 0.

Proof Compute the derivative of the seller's expected payoff G(vo, m) withrespect

to i>o:

Evaluated at or above the static optimum VQ, one has

3
G(fo, m) < 0,

since 3n*/3i>o < 0, q*' < 0, and an increase in q "increases" the random number

of bidders in the sense of FSD. This shows that the optimal minimum bid is lower

than the static optimum. By similar reasoning one can see that -^-G(vo, m) < 0

also at fo = 0 (recall: n*(i>o, n) always has a stationary point at vo = 0). Therefore,

it may very well be optimal to set i>o = 0. •

Remark on Deterministic Entry Consider (one of the many) alternative pure

strategy equilibria, where bidders enter until their expected payoff has vanished.43

Interestingly, even in this framework, no minimum price should be imposed.

43 Since n is an integer, the precise equilibrium number of bidders is the largest n* for which E[U*(V; n*)] > c.
These equilibria are meaningful if bidders enter sequentially and learn about how many have already entered.
They were studied by McAfee and McMillan (1987c) (see also Engelbrecht-Wiggans (1993)).
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8.6 Common-Value Auctions and the Winner's Curse

In a famous experiment, Bazerman and Samuelson (1983) filled jars with coins,

and auctioned them off to MBA students at Boston University. Each jar had a value

of $8, which was not made known to bidders. The auction was conducted as a

first-price sealed-bid auction. A large number of identical runs were performed.

Altogether, the average bid was $5.13; however, the average winning bid was

$10.01. Therefore, the average winner suffered a loss of $2.01; alas, the winners

were the ones who lost wealth ("winner's curse").

What makes this auction different is just one crucial feature: the object for sale

has an unknown common value rather than known private values. The result is

typical for common-value auction experiments. So what drives the winner's curse;

and how can bidders avoid falling prey to it?

Most auctions involve some common-value element. Even if bidders at an art

auction purchase primarily for their own pleasure, they are usually also concerned

about eventual resale. And even though construction companies tend to have private

values, for example due to different capacity utilizations, construction costs are also

affected by common events, such as unpredictable weather conditions, the unknown

difficulty of specific tasks, and random input quality or factor prices. This suggests

that a satisfactory theory of auctions should cover private as well as unknown

common value components.

Before we consider combinations of private and common value components, we

now focus on pure common-value auctions. In a pure common-value auction, the

item for sale has the same value for each bidder (e.g., the jar in the above experiment

contains the same number of coins for each bidder). At the time of the bidding, this

common value is unknown. Bidders may have some imperfect estimate (everyone

has his own rule of thumb to guess the number of coins in the jar); but the item's

true value is only observed after the auction has taken place.

To sketch the cause of the winner's curse, suppose all bidders obtain an unbiased

estimate of the item's value. Also assume bids are an increasing function of this

estimate. Then the auction will select the one bidder as winner who received the

most optimistic estimate. But this entails that the average winning estimate is higher

than the item's value.

To play the auction right, this adverse selection bias must already be allowed

for at the bidding stage by shading the bid. Failure to follow this advice will result

in winning bids that earn less than average profits or even losses.

8.6.1 An Example: The Wallet Auction

An instructive example is the following wallet auction, which was introduced by

Klemperer (1998): Ask each of two students to check the contents of his wallet

without revealing it to the other; then, sell a sum of money equal to the contents of

both wallets to the same two students in an English auction.

Each bidder i = 1,2 knows the contents of his own wallet X[, but neither one

knows the sum v := x\ + X2. Therefore, the item sold has a common value, which
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is, however, unknown at the time of bidding and only becomes known after the

auction, when the contents of both wallets have been revealed.

Proposition 8.14 (Wallet Auction) The wallet auction has a symmetric equilib-

rium, described by the strategy b*(x) = 2x.

Proof Suppose rival j plays the candidate equilibrium strategy &*. Then, if rival

j quits bidding at price /?, bidder i updates his valuation to

vt : = E[xt + Xj | b*(Xj) = p ] = x t + | .

In order to maximize his payoff, bidder / should stay active as long as v > p, i.e.,

as long as p < 2xi. Hence, the optimal limit at which i should quit is b* (xt) : = 2JC,- .

In other words, &*(x;) is a best reply to Z?*(jt;), and vice versa. •

How can one interpret this equilibrium, and how do bidders avoid the winner's

curse? When the price is at the level p, bidder i knows that the wallet of rival j must

contain at least p/2. Therefore, the conditional expected value u,-, conditioned on

the event that p = 2JC,- has been reached, is equal to or greater than 2JC,- . But then,

why should i quit bidding at p = 2JC,-, and not bid higher?

Here the selection bias enters. If bidder / contemplates whether he should quit

bidding at p = 2x*, he must ask himself what is the conditional expected value v,-,

conditional on the event that he wins at p = 2*,-; because bidder j just quit bidding

at this price. Since j plays the strategy b*(xj) — 2JC/, his quitting at p = 2xi entails

Xj = Xi and hence vt = x; + Xj = 2xi. This explains why bidder / should bid

neither more nor less than 2x(.

We conclude that in a symmetric equilibrium bidder / bids exactly as if rival j

had the same amount of money in his wallet, i.e.,

b*(x) = E[Xt + Xj | Xt = Xj = xl

Incidentally, the wallet auction has also a continuum of asymmetric equilibria,

which have entirely different properties. Indeed, the following strategies are an

asymmetric equilibrium for all a > 1 (of course, the symmetric equilibrium is a

obtained for a = 2):

b*(x\) = OLXU bl(x2) = -x2.
a — 1

These asymmetric equilibria strongly favor one bidder, to the seller's disadvantage.

8.6.2 Some General Results

Now consider a more general framework, under the following simplifying assump-
tions:44

(Al) The common value V is drawn randomly from a uniform distribution on the domain

(v, v).

44 Assumptions (Al) and (A2) were widely used by John Kagel and Dan Levin in their various experiments on
common-value auctions. See for example Kagel and Levin (1986).
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(A2) Before bidding, each bidder receives a private signal S,-, drawn randomly from a
uniform distribution on (V — e, V + e). The unknown common value determines the
location of the signals' support. A lower e indicates greater signal precision.

(A3) The auction is first-price, like a Dutch auction or a sealed-bid auction.45

As an illustration you may think of oil companies interested in the drilling rights to

a particular site that is worth the same to all bidders. Each bidder obtains an estimate

of the site's value from its experts and then uses this information in making a bid.

Computing the Right Expected Value

Just as in the private-values framework, each bidder has to determine the item's

expected value and then strategically shade his bid, taking a bet on rival bidders'

valuations. Without shading the bid, there is no chance to gain from bidding. The

difference is that it is a bit more tricky to determine the right expected value, in

particular since this computation should allow for the built-in adverse selection

bias.

For signal values from the interval S( e [v — e, v + e], the expected value of the

item conditional on the signal s; is46

E[V\Si=si] = si. (8.87)

This estimate is unbiased in the sense that the average estimate is equal to the site's

true value.

Nevertheless, bids should not be based on this expected value. Instead, a bidder

should anticipate that he would revise his estimate whenever he actually wins the

auction. As in many other contexts, the clue to rational behavior is in thinking one

step ahead.

In a symmetric equilibrium, a bidder wins the auction if he actually received the

highest signal.47 Therefore, when a bidder learns that he won the auction, he knows

that his signal st was the largest received by all bidders. Using this information,

he should value the item by its expected value conditional on having the highest

signal, denoted by E[V \ Smax = st], Smax := max{Si,..., Sn}.

Evidently, the updated expected value is lower:

E[V | Smax = St] = Si - 6 —

n + \
< E[V | Si =stl (8.88)

Essentially, a bidder should realize that if he wins, it is likely that the signal he

received was unusually high, relative to those received by rival bidders.

Notice that the adverse selection bias, measured by the difference between the

two expected values, is increasing in n and e. Therefore, raising the number of

45 Second-price common-value auctions are easier to analyze, but less instructive. A nice and simple proof of their
equilibrium properties, based entirely on the principle of iterated dominance, is in Harstad and Levin (1985).
The procedure proposed in this paper requires, however, that the highest signal be a sufficient statistic of the
entire signal vector.

46 Here and elsewhere we ignore signals near corners, that is v £ (u, v + e) and v £ (v — e, v).
47 This standard property follows from the monotonicity of the equilibrium bid function; in the present context, it

is confirmed by the equilibrium bid function stated below.
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bidders or lowering the precision of signals gives rise to a higher winner's curse,

if bidders are subject to judgmental failure and base their bid on E[V \ Si = Sj]

rather than on E[V | 5max = 5,-].

Equilibrium Bids

The symmetric Nash equilibrium of the common-value auction game was found by

R.B. Wilson (1977b) and later generalized by Milgrom and Weber (1982) to cover

auctions with a combination of private- and common-value elements.

In the present framework, the symmetric equilibrium bid function is48

, (8.89)

where

0 (

n + 1
The function 0(5/) diminishes rapidly as st increases beyond v_ + e. Ignoring it,

the bid function is approximately equal to b(s{) = st — e, and the expected profit

of the high bidder is positive and equal to 2e/(n + 1).

Conclusions

The main lesson to be learned from this introduction to common-value auctions

is that bidders should shade their bids, for two different reasons. First, without

shading bids there can be no profits in a first-price auction. Second, the auction

always selects the one bidder as winner who received the most optimistic estimate

of the item's value, and thus induces an adverse selection bias. Without shading the

bid to allow for this bias, the winning bidder regrets his bid and falls prey to the

winner's curse.

The discount associated with the first reason for shading bids will decrease with

increasing number of bidders, because signal values are more congested if there are

more bidders. In contrast, the discount associated with the adverse selection bias

increases with the number of bidders, because the adverse selection bias becomes

more severe as the number of bidders is increased.

Thus, increasing the number of bidders has two conflicting effects on equilib-

rium bids. On the one hand, competitive considerations require more aggressive

bidding. On the other hand, allowing for the adverse selection bias requires greater

discounts. In the above example with bid function (8.89), the adverse selection bias

predominates, and bids are always decreasing in n. But for a number of common

distribution functions such as the normal and lognormal case, the competitive effect

prevails for small numbers of bidders, where the bid function is increasing inn; but

eventually the adverse selection effect takes over and the equilibrium bid function

decreases in n (see Wilson (1992)).

Altogether, it is clear that common-value auctions are more difficult to play and

that unsophisticated bidders may be susceptible to the winner's curse. Of course,

48 Again, we restrict the analysis to signal values from the interval s,- e [v + e, v — e\.
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the winner's curse cannot occur if bidders are rational and take proper account of

the adverse selection bias. The winner's curse is strictly a matter of judgmental

failure; rational bidders do not fall prey to it.

The experimental evidence demonstrates that it is often difficult to avoid the

winner's curse. Even experienced subjects who are given plenty of time and op-

portunity to learn often fail to bid below the updated expected value. And most

subjects fail to bid more conservatively when the number of bidders is increased.49

Similarly, many real-life decision problems are plagued by persistent winner's-

curse effects. For example, in the field of book publishing, Dessauer (1981) reports

that"... most of the auctioned books are not earning their advances." Capen, Clapp,

and Campbell (1971) claim that the winner's curse is responsible for the low profits

of oil and gas corporations on drilling rights in the Gulf of Mexico during the 1960s.

And Bhagat, Shleifer, and Vishny (1990) observe that most of the major corporate

takeovers that made the financial news during the 1980s have actually reduced the

bidding shareholders' wealth (see also Roll (1986)).

8.7 Affiliated Values*

The assumption of independent private values is appropriate for nondurable con-

sumption goods and services, but it is far too restrictive when it comes to the

auctioning of durable goods.
As an example, consider the auctioning of a well-known painting. In order to

apply the independent-private-values model, two prerequisites must be met:

1. each bidder must have his own private valuation, and
2. private valuations must be stochastically independent.

The first assumption rules out any consideration concerning a possible resale in the

future, and the second assumption rules out the influence of fashion.

In this regard, the common-value model may seem more appealing, because it

assumes that valuations are (perfectly) correlated. However, it completely ignores

differences in bidders' preferences.

Clearly, one would like to have a more general model that combines both

common- and private-value aspects and covers both basic auction models as special

cases. This leads us to the affiliated-values model by Milgrom and Weber (1982),

which is one of the most influential contributions to auction theory.

8.7.1 Private and Common Value Generalized

We now assume that bidders' valuations are influenced by their own preferences

but are also dependent upon other bidders' quality assessment. Since each bidder

knows only his own assessment, bidders do not exactly know their valuation of the

object for sale.

49 A comprehensive review of the experimental evidence is in Kagel (1995).
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Specifically, we assume that the valuation of bidder i, V/, is a function of all

bidders' quality signals Xi, X2,..., Xn and of the seller's quality signal Xo:

Vt : = I I ( X 0 , X ) . (8.91)

The function u is nonnegative, continuous, monotone increasing, and symmetric in

{Xj}j^i\ moreover, E[V(] is finite.

This formulation is sufficiently general to include both basic auction models as

special cases. In particular, the private-values model is obtained by setting V* = X,-,

and the common-value model by setting V/ = XQ.

In the following we consider only symmetric equilibria. This allows us to view

bidders' behavior from the perspective of one particular bidder, say bidder 1, who

has observed the quality signal Xi.

We denote the order statistics of bidders' quality signals by Y\ > Y2,..., Yn-2 >

Yn-\. Due to the symmetry assumption, we can thus write the valuation of bidder

1 as follows:

(8.92)

8.7.2 Stochastic Similarity: Affiliation

As a second modification we now replace stochastic independence by affiliation.

Affiliation is a statistical concept. Roughly speaking, the affiliation of random vari-

ables means that similarity of realizations is the most likely outcome. For example,

if quality signals are affiliated, and bidder / has observed a high quality signal X,-,

then he should believe that rival bidders have most likely also observed a high

signal.

Let fix) denote the joint probability density function (pdf) of X := (Xo, X\,...,

Xn). Consider two realizations x ^ x\ and denote the componentwise maximum

of (JC, xf) by x v x! and the componentwise minimum by x A xf. Quality signals

are called affiliated if the following inequality holds for all x,xf:

f(x V x')f(x A xf) > f(x) f(x'). (8.93)

As an illustration, consider the two realizations x := (10, 2) and x' := (5, 7).

The associated similar realizations are x v xf = (10, 7) and x A x1 = (5, 2).

Affiliation of signals (X, Xo) implies that the conditional expected values of V\,

w i x , y , z) : = E [V! I X i = *, Y{= y , Xo = z ] , (8.94)

U(JC, y) : = E [Vi \Xr=x, Yi=y], (8.95)

are strictly monotone increasing in all variables. Note that v(x,y) and w(x,y,z)

are the conditional expected valuations of bidder 1 after he has observed the signal

realizations Xi = x, Y\ —y and Xi = JC, Y\ = y, Xo = z, respectively.

8.7.3 Generalized Solution of the Vickrey Auction

Consider the Vickrey auction. Is truthful bidding a dominant strategy also in the

present affiliated-values framework?
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When the auction takes place, bidders do not exactly know their valuations.

Therefore, it is unclear what "truthful bid" possibly means in this case. Does it mean

that bidder 1 should bid an amount equal to his expected valuation, conditional on his

own quality signal X\ = x9 E[V\ | X\ = x]l This may seem reasonable, because

at the time of bidding the signal X\ = x is the best information available to bidder

1. However, beware of the selection bias. If bid functions are strictly monotone

increasing, the auction is always won by the bidder who observed the most favorable

quality signal. Bidders should take this additional information into account.

The wallet game from the previous section gives the clue. It suggest that bidders

should bid truthfully in the particular sense of bidding as if the relevant rival had

observed the same quality signal.

Proposition 8.15 The Vickrey auction has a symmetric equilibrium, described by

a strategy b*(x), which is a function of the own quality signal. Depending upon

whether the seller keeps his own signal Xo secret or makes it common knowledge,

one has

£*(JC) = v(x,x) (ifX0 is kept secret), (8.96)

b*(x\ xo) = w(x, x, xo) (ifXo is common knowledge). (8.97)

Proof We sketch an intuitively accessible proof, assuming that the seller hides

information concerning his own quality signal. The proof of the other case is similar

and hence omitted.

In Figure 8.7 we plot the equilibrium bid function b*(y) and the conditional

expected value v(x, y) := E[V \ X = x, Y\ = y] for a given quality signal of the

bidder X = x. As a working hypothesis it is assumed that &* is strictly monotone

increasing. The graphs of these functions intersect at the point y — y. (Hint: for

small values of y one has v(x, y) > b*(y), and for large ones v(x, y) < b*(y).)

The bidder knows his own quality signal JC , but not that of his relevant rival, Y\.

Which bid is the best reply to b*(Yi)l

b*(y),v(x,y)

b*{y)

b*(x)
v(x,y)

o y

Figure 8.7. Generalized Solution of the Vickrey Auction.
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The answer is simple: bidder 1 should bid the amount b = b*(y) because this

way he will win if and only if his payoff v(x, y) — b*(y) is nonnegative (see Figure

8.7). Therefore, in a symmetric equilibrium one must have

From the assumed strict monotonicity of b* it follows immediately that y = x,

which implies the assertion b*(x) = v{x, x). And the assumed monotonicity oft*

follows from the monotonicity of v(x, x). •

If a bidder succeeds with the bid b*(x), he knows for sure that the relevant rival

has a lower quality signal, i.e., Y\ < x. If the bidder loses, he knows for sure that

Y\ > x. Therefore, the implicit estimate of Y\, implicit in the bid (8.96), is biased

as follows, by the monotonicity of v(x, y).

Corollary 8.1 (Biased Estimator) Consider the equilibrium strategy of the Vickrey

auction. The successful bid overestimates the quality signal of the relevant rival,

Y\, whereas the unsuccessful bid underestimates it.

This result plays a pivotal role in the interpretation of the linkage principle, to which

we turn below.

To avoid misunderstanding, note that the biased-estimator property does not

reflect any deviation from optimal behavior. Just keep in mind that the winner of

the Vickrey auction pays less than his own bid because the price is equal to the

second highest bid.

8.7.4 Linkage Principle

The linkage principle says the following: Suppose the private quality signal of the

seller is affiliated with bidders' (affiliated) private quality signals. Then a policy

of always revealing the seller's private information increases the seller's expected

payoff.

The seller's private information could be due to an expert assessment of a paint-

ing's authenticity or of the state of a building. The linkage principle advises the

seller to make a commitment to reveal favorable as well as unfavorable information.

Proposition 8.16 Consider the Vickrey auction with revelation (r) and without

revelation (n) of the seller's quality signal XQ. Denote the associated expected

values of equilibrium prices by pr, and pn. Then

pr = E [w(Yu Ki, Xo) I {Xi > Fi}] (8.98)

ZEMYuYtiUX^Yi}] (8.99)

= Pn. (8.100)

Proof The proof is sketched in three steps:

1. If bidder 1 wins the auction, the equilibrium price P is equal to the highest unsuccessful
bid: with revelation, Pr = w(Y\, Y\, Xo), and without revelation, Pn = v(Y\, Y\). Due
to the assumed symmetry, these prices apply regardless of the bidder's identity.
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2. Consider the price-making bid (which is the highest unsuccessful bid). If the seller keeps

his information secret, it is b*(Y\) = v(Y\,Y\). Due to the biased-estimator property

stated in Corollary 8.1, this bid underestimates the signal of the winning bidder, which

is X\. The signals XQ and X\ are affiliated. Therefore, the price-making bid v(Y\,Y\)

also underestimates the distribution of Xo.

3. Now, suppose the seller is committed to reveal XQ. Then the price-making bid w{Y\,Y\,

Xo) is based on the true signal Xo. Therefore, the expected value of the equilibrium

price Pr, conditioned on the true signal Xo, is higher than the expected equilibrium price

Pn which is computed on the basis of a downward-biased estimated distribution of Xo.

Hence, pr > pn, as asserted. •

8.7.5 Why the English Auction Benefits the Seller

There are many variants of the English auction. They differ with respect to pric-

ing rules and the revelation of information. We exclusively consider the following

variant, which is particularly favorable concerning the revelation of information:

The auctioneer calls a sufficiently low initial price, which is depicted on a so-called

English clock and which goes up at a preset speed. At that initial price all bidders

are active, and they remain active until they irreversibly quit the auction. As the

clock goes up, some bidders quit, until finally only one bidder remains active. The

item is then awarded the last active bidder, who pays an amount of money equal to

the price at which the last rival quit the auction.

In this auction game the strategy of a bidder is a stopping rule, which says

at which price the bidder should quit, depending upon who else has quit and

at which price. Let k be the number of bidders who have already quit at the

prices p\ < p2 < • • • < Pk- Then the strategy of a bidder with quality sig-

nal x is described by the function bk(x | p\,..., Pk), which indicates at which

price that bidder should also quit, provided k bidders have already quit at prices

Pu • . . , Pk-

As a working hypothesis, suppose the equilibrium is symmetric and the equilib-

rium strategy is strictly monotone increasing in x. This assures that an active bidder

can deduce the underlying quality signal of those who quit, just by observing the

price at which they quit.

At the beginning of the auction, when all bidders are still active, no one knows

the others' quality signals. As soon as one bidder quits, the others infer that bidder's

signal. The more bidders quit, the more information is revealed until, in the last

round, when only two bidders remain active, all but the highest two signals are

common knowledge. This built-in transmission of information allows bidders to

continuously upgrade their quality assessment which, on average, leads to higher

bidding, to the benefit of the seller.

Proposition 8.17 The English auction has a symmetric equilibrium; the equilib-

rium strategy is a vector b*(x) = (b^x), . . . , b*_1(x))y in which b^(x) is the

bidders' price limit, contingent upon the prices p\, ..., pkat which k bidders have
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quit the auction:

bl(x) = E[Vl\Xl = Yl = ...= Yn.x = x], (8.101)

b*k(x \pu...,pk) = E[Vi\Xi = Yi = ... = Yn-k-x = x,

bl_x{Yn-k | pi, . . . , pk-i) = Pk, • • •,

W * - i ) = Pi], k = l,...,n-2. (8.102)

Proof (Sketch) Suppose bidder 1 observes the signal X\ = x, and all rival bidders

quit exactly when the price reaches the level p = b^iy). Then bidder 1 knows for

sure that Y\ = Y^ = • • • = Yn-\ = y wins the auction, and earns the payoff

E[Vi \Xx=x, Yi = Y2 = ' - , Yn-X=y]- b*(y).

Using a diagram similar to Figure 8.7, it becomes clear that (8.101) is the best reply

of bidder 1 if everyone else plays the strategy (8.101).

In a similar fashion one can show that b\(x) is the best reply to b^iy), £*(>0, etc.

Finally, the strategies are strictly monotone increasing in the own quality signal,

which confirms the assumed monotonicity of all components of bk(x). •

Proposition 8.18 The seller's expected profit is higher in the English than in the

Vickrey auction.

Proof (Sketch) In the English auction there are two phases: In the first phase the

bidders with the lowest n — 2 quality signals reveal their signal realizations by

quitting the auction at prices p\ < pi < pn-2- In the second phase the remaining

two bidders play a Vickrey auction. By Proposition 8.16 it is known that revealing

the seller's signal increases the seller's expected profit. Similar reasoning explains

why revealing some bidders' signals raises the seller's expected profit as well. •

Milgrom and Weber (1982) generalized this result, as follows:

Proposition 8.19 The equilibrium expected profits of the four most common auc-

tions rank as follows:

Dutch = first-price < Vickrey < English. (8.103)

The relatively low profitability of the Dutch and first-price auctions is due to the

fact that in the course of these auctions no useful information is revealed.

This result is often used to justify the use of an open, increasing auction, like the

English auction. However, one can design sealed-bid auction rules that are at least

as profitable as the English auction and yet less susceptible to collusion (see Perry,

Wolfstetter, and Zamir (1998)).

8.7.6 Limits of the Linkage Principle

In many auctions one sells many units of identical or similar goods. And often

the bidders are also interested in acquiring more than one good. Unfortunately, the

theory of multiunit auctions is still fairly undeveloped. The theory of single-unit
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auctions can be easily generalized to multiunit auctions if each bidder demands

only one unit. However, if bidders demand more than one unit, many questions are

still unanswered. In particular, it is not clear whether the revenue ranking known

from single-unit auctions also applies to the auctioning of many units.

Some negative results are already known. For example, we know that the linkage

principle does not always apply to multiunit auctions. True, the revelation of private

quality signals also raises the average unsuccessful bid and lowers the average suc-

cessful bid. However, unlike in the single-unit case, it can occur that the revelation

of a private quality signal turns a successful bid into an unsuccessful one, and vice

versa. This upsets the linkage principle, which suggests that the English auction

may be less profitable to the seller than a first-price or Dutch auction.

When practical advice is sought concerning the design of new auctions, one nat-

urally relies on the intuition developed for the well-researched single-unit case. For

example, when auction theorists were called upon to design an auction for the sale of

spectrum rights for the operation of wireless telephones, they relied on the validity

of the linkage principle and recommended the use of an open, increasing auction.50

The Federal Communications Commission decided that the advantageous effect

of the information revelation, which is built into an open auction, outweighs the

danger of collusion, which is intrinsic to open auctions.51

Another problematic prerequisite of the linkage principle is the symmetry as-

sumption. If it is common knowledge that some bidders have higher valuations than

others, the linkage principle may again be upset, and the first-price or Dutch auc-

tion can be more profitable than the English auction (see Landsberger, Rubinstein,

Wolfstetter, and Zamir (1998)).

Moreover, Klemperer (1998) developed several examples of auctions with almost

common values where the seller is better off if bidders receive no information

concerning other bidders' valuations. This again suggests that there are close limits

to the validity of the linkage principle, and that open, increasing auctions may not

always be the most profitable for the seller. To close with a positive perspective:

This just shows you that auction theory is still a rich mine for further research.

8.8 Further Applications*

We close with a few remarks on the use of the auction selling mechanism in financial

markets, in dealing with the natural-monopoly problem, and in oligopoly theory.

Each application poses some unique problem.

8.8.1 Auctions and Oligopoly

Recall the analysis of price competition and the Bertrand paradox ("two is enough

for competition") in Chapter 3 on Oligopoly and Industrial Organization. There

5 0 See McMillan (1994), Milgrom (1998), and Milgrom (1997).
5 1 Evidence concerning widespread collusion was reported in the Economist, May 17, 1997.
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we elaborated on one proposed resolution of the Bertrand paradox that had to do

with capacity-constrained price competition and that culminated in a defense of

the Cournot model. This resolution was successful, though a bit complicated - but

unfortunately not quite robust with regard to the assumed rationing rule.

A much simpler resolution of the Bertrand paradox can be found by introducing

incomplete information. This explanation requires a marriage of oligopoly and

auction theory, which is why we sketch it here in two examples.

Example 8.8 (Another Resolution of the Bertrand Paradox) Consider a simple

Bertrand oligopoly game with inelastic demand and n > 2 identical firms. Each firm

has constant unit costs c and unlimited capacity. Unlike in the standard Bertrand

model, each firm knows its own cost, but not those of others. Rivals' unit costs

are viewed as identical and independent random variables, described by a uniform

distribution with the support [0,1].

Since the lowest price wins the market, the Bertrand game is a Dutch auction with

the understanding that we are dealing here with a "buyers' auction" rather than the

"seller's auction" considered before. Since costs are independent and identically

distributed, we can employ the apparatus and results of the SIPV auction model.

Strategies are price functions that map each firm's unit cost c into a unit price p{c).

The unique equilibrium price strategy is characterized by the markup rule

p*(c) = - + ^——c. (8.104)
n n

The equilibrium price is /?*(C(i)), the equilibrium expected price52

p(n) := E [p*(Ca)] = E [C(2)] = - ^ , (8.105)

and each firm's equilibrium expected profit

n(c,n)= ( 1 ~ C ) . (8.106)
n

Evidently, more competition leads to more aggressive pricing, beginning with

the monopoly price p*(l) = 1 and approaching the competitive pricing rule p = c

as the number of oligopolists becomes very large. Similarly, the expected-price

rule and profit are diminishing in n, beginning with p{\) = 1,7?(1) = 1 — c, and

with lim^^oo p(n) = 0 and lim^^oo n(n) = 0. Hence, numbers matter. Two is not

enough for competition.

In order to prove these results, all we need to do is to use a transformation of

random variables and then apply previous results on Dutch auctions.

For this purpose, define

b:=l-p and v:=l-c. (8.107)

52 Notice that E[p*(C(\)] = E[C(2)] is the familiar revenue equivalence that holds for all distribution functions.
(If the market were second-price, each firm would set p*(c) = c, the lowest price would win, and trade would
occur at the second lowest price; therefore, the expected price at which trade occurs would be equal to E[C(2)]-)
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This transformation maps the price competition game into a Dutch auction, where

the highest bid b (the lowest p) wins. Also, b, v e [0, 1], and v is uniformly

distributed. Therefore, we can apply the equilibrium bid function from Example

8.2, which was b(v) := [(n — l)/n]v. We conclude

p* = l-b

= 1 v

(
n

= - + "—^c, (8.108)
n n

as asserted.

Remark 8.3 (Why Numbers Matter) By revenue equivalence one has

p(n) := £[p*(C(i)] = £[C(2)]. (8.109)

Therefore, the "two is enough for competition" property of the Bertrand paradox

survives in terms of expected values. Still, numbers matter, essentially because

E[C{\)\ and E[C(2)] move closer together as the size n of the sample is increased.

The gap between these statistics determines the aggressiveness of pricing because

the price function has the form p*(c) = (1 — P) + fie with

„ _ ! 1 - E [C(2)]
P -= = - „ rn -, • (8.110)

n \-E [C(i)J
Example 8.9 (Extension to Price-Elastic Demand*) Suppose demand is a de-

creasing function of price, as is usually assumed in oligopoly theory.53 Specifically,

assume the simplest possible inverse demand function P(X) := 1 — X. Otherwise,

maintain the assumptions of the previous example. Then the equilibrium is charac-

terized by the following markup rule p* : [0, 1] —> [0, 1]:

Obviously, p*(l) = 1 and p*(0) = l/(/i + 1).

Compare this with the equilibrium markup rule in the inelastic-demand frame-

work analyzed in the previous example, which was p*(c) = [1 + (n — l)c]/n.

Evidently, pricing is more aggressive if demand responds to price. Of course, if

the auction were second-price, bidding would not be affected, since p*(c) = c is a

dominant strategy in this case.

We conclude: If demand is a decreasing function of price, a first-price auction

leads to higher expected consumer surplus. This may explain why first-price sealed

bids are the common auction form in industrial and government procurement.

53 This case was considered by Hansen, as already noted in Section 8.3.6.
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This is just the beginning of a promising marriage of oligopoly and auction theory.

Among the many interesting extensions, an exciting issue concerns the analysis of

the repeated Bertrand game. The latter is particularly interesting because it leads to

a dynamic price theory where agents successively learn about rivals' costs, which

makes the information structure itself endogenous.

8.8.2 Natural-Gas and Electric Power Auctions

As a next example, recall the natural-monopoly problem discussed in Chapter 2.

There we discussed regulatory mechanisms designed to minimize the cost of

monopoly, when monopolization is desirable due to indivisibilities in production

and associated economies of scale.

In many practical applications, it has often turned out that the properties of a

natural monopoly apply only to a small part of an industry's activity. And vertical

disintegration often contributed to reduce the natural-monopoly problem.

The public utility industry (gas and electric power) has traditionally been viewed

as the prime example of natural monopoly. However, the presence of economies

of scale in the production of energy has always been contested. An unambiguous

natural monopoly exists only in the transportation and local distribution of energy.

This suggests that the natural-monopoly problem in public utilities can best be

handled when one disintegrates production, transportation, and local distribution

of energy.

In the U.K. the electric power industry has been reshaped in recent years by

the privatization of production combined with the introduction of electric power

auctions. These auctions are run on a daily basis by the National Grid Company.

At 10 a.m. every day, the suppliers of electric power make a bid for each of their

generators to be operated on the following day. By 3 p.m., the National Grid Com-

pany has finalized a plan of action for the following day in the form of a merit

order, ranked by bids from low to high. Depending upon the random demand on

the following day, the spot price of electric power is then determined in such a way

that demand is matched by supply, according to the merit order determined on the

previous day.

Similar institutional innovations have been explored, dealing with the transporta-

tion of natural gas in long-distance pipelines and in the allocation of airport landing

rights in the U.S. Interestingly, these innovations are often evaluated in laboratory

experiments before they are put to a real-life test.54

A similarity between auctions in a regulatory setting and oligopoly with price-

elastic demand is that bidders typically decide on a two-dimensional object: a price

bid and a nonprice variable. For example, the nonprice bid could be quantity, as in

the oligopoly application, or quality of service in a regulatory problem. Formally,

the oligopoly problem with elastic demand is equivalent to a procurement problem

where the social planner faces a declining social benefit function.

54 See for example Rassenti, Smith, and Bulfin (1982) and McCabe, Rassenti, and Smith (1989).
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The literature that discusses optimal mechanisms in this kind of environment

includes Laffont and Tirole (1987). Che (1993) showed that the optimal mecha-

nism can be implemented by a two-dimensional version of a first- or second-price

auction that uses a scoring rule of the kind often seen in auctions by the U.S. De-

partment of Defense. Typically, the optimal scoring rule gives exaggerated weight

to quality.

8.8.3 Treasury-Bill Auctions

Each week the U.S. Treasury uses a discriminatory auction to sell Treasury bills

(T-bills).55 On Tuesday the Treasury announces the amount of 91-day and 182-

day bills it wishes to sell on the following Monday and invites bids for specified

quantities. On Thursday, the bills are issued to the successful bidders. Altogether,

in fiscal year 1991 the Treasury sold over $1.7 trillion of marketable Treasury

securities (bills, notes, and bonds).

Prior to the early 1970s, the most common method of selling T-bills was that of

a subscription offering. The Treasury fixed an interest rate on the securities to be

sold and then sold them at a fixed price. A major deficiency of this method of sale

was that market yields could change between the announcement and the deadline

for subscriptions.

The increased market volatility in the 1970s made fixed-price offerings too risky.

Subsequently, the Treasury switched to an auction technique in which the coupon

rate was still preset by the Treasury, and bids were made on the basis of price.

The remaining problem with this method was that presetting the coupon rate still

required forecasting interest rates, with the risk that the auction price could deviate

substantially from the par value of the securities.

In 1974 the Treasury switched to auctioning coupon issues on a yield basis.

Thereby, bids were accepted on the basis of an annual percentage yield with the

coupon rate based the weighted-average yield of accepted competitive tenders re-

ceived in the auction. This freed the Treasury from having to preset the coupon rate.

Another sale method was used in several auctions of long-term bonds in the early

1970s. This was the closed, uniform-price auction method.56 Here, the coupon rate

was preset by the Treasury, and bids were accepted in terms of price. All successful

bidders were awarded securities at the lowest price of accepted bids.

In the currently used auction technique, two kinds of bids can be submitted:

competitive and noncompetitive. Competitive bidders are typically financial inter-

mediaries who buy large quantities. A competitive bidder indicates the number of

bills he wishes to buy and the price he is willing to pay. Multiple bids are permitted.

Noncompetitive bidders are typically small or inexperienced bidders. Their bids

indicate the number of bills they wish to purchase (up to $1,000,000), with the

55 For more details see Tucker (1985).
56 In the financial community, a single-price, multiple-unit auction is often called "Dutch" (except by the English,

who call it "American"). Be aware of the fact that in the academic literature one would never call it Dutch.
Because of its second-price quality one would perhaps call it "English."
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understanding that the price will be equal to the quantity-weighted average of all

accepted competitive bids.

When all bids have been made, the Treasury sets aside the bills requested by

noncompetitive bidders. The remainder is allocated among the competitive bidders

beginning with the highest bidder, until the total quantity is placed. The price to be

paid by noncompetitive bidders can then be calculated.

T-bill auctions are unique discriminatory auctions because of the distinct treat-

ment of competitive and noncompetitive bids. Compared to the standard discrim-

inatory auction, there is an additional element of uncertainty because competitive

bidders do not know the exact amount of bills auctioned to them.

Another distinct feature is the presence of a secondary after-auction market and

of pre-auction trading on a when-issued basis, which serves a price-discovering

purpose where dealers typically engage in short sales.

In many countries, central banks use similar discriminatory auctions to sell

short-term repurchase agreements to provide banks with short-term liquidity.57

Several years ago, the German Bundesbank switched from a uniform-price auction

to a multiple-price, discriminatory auction. The uniform-price auction had induced

small banks to place very high bids because this gave them sure access to liquidity

without the risk of having a significant effect on the price to be paid. Subsequently,

large banks complained that this procedure put them at a competitive disadvantage,

and the Bundesbank responded by switching to a discriminatory auction. However,

this problem could also have been solved without changing auction procedures

simply by introducing a finer grid of feasible bids (see Nautz (1997)).

In recent years, the currently used discriminatory auction procedures have be-

come the subject of considerable public debate. Many observers have claimed that

discriminatory auctions invite strategic manipulations and, perhaps paradoxically,

lead to unnecessarily low revenues. Based on these observations, several prominent

economists have proposed to replace the discriminatory by uniform-price auction

procedures.

The recent policy debate was triggered by an inquiry into illegal bidding practices

by one of the major security dealers, Salomon Brothers. Apparently, during the early

1990s, Salomon Brothers repeatedly succeeded in cornering the market by buying

up to 95% of a security issue. This was in violation of U.S. regulations that do not

allow a bidder to acquire more than 35% of an issue.58 Such cornering of the market

tends to be profitable because many security dealers engage in short sales between

the time when an issue is announced and the time it is actually issued. This makes

them vulnerable to a short squeeze.

Typically, a short squeeze develops during the when-issued period before a se-

curity is auctioned and settled. During this time, dealers already sell the soon-to-

57 The procedures used by the Federal Reserve are described in The Federal Reserve System: Purposes and
Functions, Board of Governors of the Federal Reserve System, Washington, D.C.

58 Salomon Brothers circumvented the law by placing unauthorized bids in the names of customers and employees
at several Treasury auctions. When these practices leaked, the Treasury security market suffered a substantial
loss of confidence. For a detailed assessment of this crisis and some recommended policy changes consult the
Joint Report on the Government Securities Market (Brady, Breeden, and Greenspan (1992)).
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be-available securities and thus incur an obligation to deliver on the issue date. Of

course, dealers must later cover this position, either by buying back the security

at some point in the when-issued market, or in the auction, or in the post-auction

secondary market, or in any combination of these. If those dealers who are short

do not bid aggressively enough in the auction, they may have difficulty in covering

their positions in the secondary market.

Are discriminatory auctions the best choice? Or should central banks and the

Treasury go back to single-price auction procedures? This is still an exciting and

important research issue. Already during the early 1960s, Friedman (1964) made

a strong case in favor of a uniform-price sealed-bid auction. He asserted that this

would end cornering attempts by eliminating gains from market manipulation.

And, perhaps paradoxically, he also claimed that total revenue would be raised

by surrendering the possibility to price-discriminate. Essentially, both claims are

based on the expectation that the switch in auction rules would completely unify the

primary and secondary markets and induce bidders to reveal their true willingness

to pay.59

8.9 Bibliographic Notes

There are several good surveys of auction theory, in particular Phlips (1988),

McAfee and McMillan (1987), Milgrom (1987), Milgrom (1989), Wilson (1992),

and Matthews (1995b). Laffont (1997) reviews some of the empirical work on auc-

tions. Cramton (1998) debates the pros and cons of open vs. closed (sealed-bid)

auctions. And Krishna and Perry (1998) provide a unified treatment of optimal mul-

tiunit auctions and public-good problems based on a generalized Vickrey-Clarke-

Groves mechanism.

Friedman and Rust (1993) review the literature on double auctions, which we

have completely ignored here. Milgrom (1997, 1998), McMillan (1994), and

Cramton (1995) review the experience with the auctioning of spectrum licenses

in the U.S. And Schmidt and Schnitzer (1997) discuss the role of auctions in the

privatization of public enterprises.

8.10 Appendix: Second-Order Conditions (Pseudoconcavity)

When we derived the symmetric equilibrium of SIPV auctions, we (implicitly)

employed the first-order condition

U'b(b, v) = p\b)v - £\b) = 0, (8.112)

which underlies the envelope theorem. But we did not verify that a sufficient second-

order condition holds. Here, in this appendix, we make up for that omission.

The second-order condition that we employ is not your usual concavity or quasi-

concavity condition. Instead, we show that U(b, v) is increasing in b for b < b*(v),

59 For a discussion of Friedman's ideas, see Goldstein (1962) and Bikchandani and Huang (1989, 1998).
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and decreasing for b > b*(v). Naturally, this implies that bidders' payoff is max-

imized at b = b*(v). In the optimization literature this second-order condition is

known under the name of pseudoconcavity.60

Differentiate Ub(b, v) with respect to v, and one has

U^v(biv) = p/(b)>0. (8.113)

Now, suppose b < b*(v). Let 0 be the valuation that would lead to the bid b

if strategy b* were played, that is, /?*(£>) = b. By the strict monotonicity of b* it

follows that one must have v > v. Therefore, by (8.113), for all b < b*(v),

Uf
b(b, v) > Uf

b(b, v) = Uf
b(b*(v), v) = 0. (8.114)

In words, U(b, v) is increasing in b for all b < b*(v).

Similarly one can show that U(b, v) is decreasing in b for all b > b*(v). There-

fore, b*(v) is a global maximizer, and hence b*(v) is an equilibrium.

60 A differentiable function / : E" ->> R is called pseudoconcave if for all x, y e Rn, (y — x)V f (x) <
0 => f(y) < f(x). Pseudoconcavity is a sufficient second-order condition, because if / is pseudoconcave
and the gradient vector is V/(**) = 0, then x* maximizes / . Note that if n = 1, as in the present context, the
graph of a pseudoconcave function is single-peaked.
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Hidden Information and Adverse Selection

More will mean worse.
Kingsley Amis

9.1 Introduction

This chapter studies the interaction in markets when there is one-sided private

or hidden information. The emphasis is on markets rather than simple bilateral

relationships.

The key assumption is that the party that sets the terms of the contract lacks

information about some relevant characteristics of its customers. This is often para-

phrased as the uninformed-party-moves-first assumption.

The main conclusions are:

1. Hidden information gives rise to an efficiency problem. But the nature of the distortion

differs radically according as one has adverse or positive selection.

2. There is an incentive to introduce self-selection or screening of customers in the form

of rationing or nonlinear pricing.

3. In a screening equilibrium, the least preferred customers exert a negative externality

upon the more preferred types. This externality is completely dissipative.

4. A screening equilibrium is generally improvable.

5. However, a screening equilibrium does not always exist.

The chapter closes with an in-depth analysis of bilateral trading between a mo-

nopolist and his customer, which generalizes the theory of second-degree price

discrimination from Chapter 1 to a continuum of types. Bilateral trading relation-

ships do not pose the existence problem that plagues the analysis of markets under

hidden information.

9.2 Adverse Selection

Consider a market for goods of different quality. Sellers can observe the quality

of what they sell, but buyers can only assess average quality. In the absence of

some device to allow buyers to identify quality, bad products will always be sold

together with good products, and, provided buyers' and sellers' quality ranking
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is the same, the best products are withheld from the market. This introduces an

adverse selection bias that generally leads to inefficient trade and sometimes even

a complete breakdown of trade.

Economists have long recognized that adverse selection may interfere with the

efficient operation of markets. Sir Thomas Gresham observed already in the year

1558 that if two coins have the same nominal value but are made from metals of

unequal value, the cheaper coin tends to drive out the other of circulation. This "bad

money drives out good" principle - ever since known as Gresham's law - is the

prototypical example of adverse selection in economics.

Problems of hidden information and adverse selection are important in many

markets. For example:

• A bank grants a loan to fund an investment; typically, the investor knows more about the
probability of failure than the lender.

• An insurance company offers automobile liability insurance; typically, drivers know more
about their driving skills and habits than the insurer.

• A firm hires workers or a manager; typically, the firm knows less about their skills and
work attitude.

Recently, the oldest living woman in France was interviewed on the occasion of

her 120th birthday. When she told the highlights of her life she mentioned that, at

the age of 80, she had sold her house as a "life estate", keeping the right to use the

house until the event of her death. Forty years later, she still enjoyed the benefits of

that house, while the buyer had died years before. Caveat emptor - let the buyer

beware.

9.2.1 The Market for Lemons

The modern treatment of adverse selection was triggered by George Akerlof 's

(1970) paper on the "market for lemons." As the title suggests, Akerlof considered

a stylized market for used cars in which bad cars drive out good.

Following Akerlof, suppose the quality index X of used cars is drawn from a

uniform distribution with support [0, x], x > 0. Sellers' valuation of a car is equal

to its quality x\ but buyers value the same car more highly, at ax, with a > 1.

This asymmetry assures gains from trade. In particular, assuming a sufficiently

large number of buyers, all cars should be sold. However, only sellers know the

quality of their cars, whereas buyers only know the distribution from which quality

is drawn.

If buyers could observe quality, the market price for used cars would be a function

of quality: p(x) = ax, and all cars would be traded. However, under the assumed

incomplete information buyers can only assess average quality, and therefore all

cars traded must go for the same price.

At a given price p a potential seller will only supply if the quality of his car is

sufficiently low: X < p. Therefore, in view of the uniform distribution assumption,

it follows that the expected value of quality is p(p) := E[X \ X < p] = p/2.
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In turn, buyers will buy only if a(p(p)) = ap/2 > p. Hence, trade occurs only

if buyers value the good much more highly (a > 2), and the market breaks down if

a < 2. This danger of market breakdown lurks in the back of all adverse-selection

problems.

9.2.2 Adverse Selection in Labor Markets

We now adapt and extend Akerlof's lemons model to labor markets. This application

will recur later in this chapter when we discuss two important market responses to

adverse selection: screening and signaling. Rather than follow Akerlof's traditional

competitive equilibrium modeling, we will now model adverse selection in a simple

game.

Suppose a worker can work either in one of two firms or in self-employment. If

employed in a firm, the worker's productivity is x, and in self-employment it is y.

The worker knows his or her own productivities (x, y), whereas the employer only

knows the distribution from which they are drawn.

For simplicity, y is either constant or a deterministic and monotone increasing

function of x.1 With slight abuse of notation, this function is denoted by y(x).

Market Game

1. "Nature" draws productivity from the distribution F : [*, x] - • [0, 1]; only the worker
observes the realization x.

2. The two firms, a and b, simultaneously make wage offers wt(y), i e {a,b}.
3. The worker observes wage offers and either chooses self-employment or accepts the

high-wage firm as employer (if both wages are the same, the employer is chosen by the
flip of a fair coin).

Payoffs

All players are risk-neutral and maximize the expected value of their payoff. If

employed, the worker's payoff is w, and if self-employed, y(X). Firms' payoff is

X — w if an offer is accepted, and 0 otherwise.

Subgame

Just as in the lemons model, self-selection is at work in this model of the labor

market. Suppose the highest wage offer is w. Then the worker accepts if that

offer is more attractive than self-employment. Therefore, the worker's equilibrium

strategy is

accept employment <̂=>> y(X)<w. (9.1)

Firms have rational expectations, and they anticipate the worker's equilibrium

strategy when they assess the expected value of productivity. The expected value

of productivity is thus a function of the maximum wage, as follows:

p(w) := E[X | y(X) < w]. (9.2)

1 The case of a decreasing function is covered in the section on positive selection.
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(Of course, if w is so low that the worker goes into self-employment with certainty,

p(w) is not defined; in this case we set p(w) = w.) Evidently, p is increasing in

w, since y is either constant or increasing in x. Therefore, adverse selection is at

work here.

Solution

The subgame-perfect equilibrium of the market game is characterized as follows.

Both firms set the same wage u;*, and that wage assures zero profits and the self-

confirming productivity estimate p(u;*) = w*, as in similar Bertrand competition

games. (If the fixed point w* is not unique, the only wage that rules out overbidding

is the highest u;*.) Therefore:

Proposition 9.1 The subgame-perfect Nash equilibrium strategies of the labor

market game are

wa — vob — w* := maxju; | p(w) = w}, (9.3)

accept employment <^=^ y(X) < w*. (9.4)

Inefficiency: Under- and Overemployment

We now turn to some examples to highlight the efficiency problems of this hidden-

information game. First we assume that productivities are uncorrelated; this gives

rise to strong inefficiency, in the form of either high under employment or high

overemployment. Then we move on to positively correlated productivities; typi-

cally, this gives rise to underemployment. Negatively correlated productivities are

analyzed in Section 9.3.

Proposition 9.2 (Uncorrelated Productivities) Suppose the productivity in self-

employment, y, is constant, and let x < y < x and F(y) e (0, 1). Then the

subgame perfect equilibrium exhibits

1. overemployment if E[X] > y,

2. underemployment if E[X] < y.

Proof The efficient allocation is to send the worker either to employment if X > y

or to self-employment if X < y. However, the subgame-perfect equilibrium pre-

scribes an inefficient allocation for all x because it entails either employment of all

x or self-employment of all x. Thus, the pivotal role is played by E[X].

1. If E[X] > y, then w* = E[X], and in equilibrium all x accept employment. The

associated beliefs p(w*) = E[X] are self-confirming because y(X) < w* is satisfied

for all x, and therefore E[X | y(X) < w*] = E[X].

2. If E[X] < y, then w* = E[X] and no x accepts employment. The associated beliefs

p(w*) = E[X] are also satisfied because we agreed to set E[X | y(X) < w*] = E[X]

if the set of x for which y (X) < w* is satisfied is the empty set. n
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Figure 9.1. Equilibrium with Efficient Employment.

Now suppose the two productivities are positively correlated, i.e., y is monotone

increasing in x. As a particularly extreme case, let y(x) < x everywhere, and

£ x. < y(x)

Then the efficient allocation is again very simple because the worker should be

employed regardless of x. However, this can only be an equilibrium outcome if

the unconditional expected value of X is sufficiently high. Otherwise it exhibits

underemployment or even complete market breakdown.

Figure 9.1 illustrates the extreme case E[X] > y(x) and y(x_) < x_. The function

p(w) starts at (y(x), x), above the 45° line. For all w > y(x) the worker accepts

employment with certainty. Therefore p(w) = E[X], and p(w) has its maximum

fixed point at wage w* > y (x). The equilibrium implements the efficient allocation

in this case.

However, efficiency is easily upset by lowering E[X] below y(x). Figures 9.2

and 9.3 illustrate this case. There, the subgame-perfect equilibrium exhibits under-

employment in the sense that the worker moves into self-employment with posi-

tive probability whereas the efficient allocation stipulates employment regardless

of x.

Proposition 9.3 (Positively Correlated Productivities) Suppose the productivity

in self-employment y is a strictly monotone increasing function of x and E[X] <

y(x). Then the subgame-perfect equilibrium exhibits underemployment and, if

y(x) = x_, even market breakdown.

Proof Figure 9.2 illustrates the equilibrium if y (x) < x. There, the function p(w)

starts at (y(x_), x)), above the 45° line, and the maximum fixed point is u;* < y (x).

Therefore, the equilibrium exhibits underemployment in the sense that the worker

moves into self-employment with positive probability, whereas efficiency requires

employment regardless of x.
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Figure 9.2. Equilibrium with Underemployment.
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Figure 9.3. Equilibrium with Market Breakdown.

The extent of underemployment can go all the way to market breakdown where

no employment takes place. This is illustrated in Figure 9.3, where E[X] < y(x)

and y (x) = x are assumed. Here, p(w) has its only fixed point at w = x; therefore,

in equilibrium no employment takes place. •

9.3 Positive Selection: Too Many Professors?

You have just learned how adverse selection may explain underemployment. Here

is an entertaining and yet equally important variation in which adverse selection is

replaced by positive selection and underemployment by overemployment.

The story is nice for several reasons. First of all, it explains why there may be

too many professors - which you may have suspected all along. Second, and even

less pleasing, this selection bias calls for corrective taxes.

9.3.1 Assumptions

Consider the choice between accepting employment as a professor and self-employ-

ment, say as a plumber. Casual experience suggests that good professors are bad

plumbers and vice versa. On this basis we assume that productivity as a plumber,
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y, is a strictly decreasing function of productivity as a professor, JC, described by

the function y(x) with x_ < y(x) and y(x) < x.

The worker knows his own productivities, but universities cannot observe pro-

ductivity. Hence, x is hidden information. In the face of this incomplete information,

universities view the worker's productivity as a random variable X, drawn from the

probability distribution F with support [x, x] and density function /(JC) > 0.

A professor's salary is w, and a plumber's income y. At least two universities

compete for the worker's service as a professor, and all players are risk-neutral. In

other words, all assumptions of Section 9.2.2 are maintained except that y is now

a strictly monotone decreasing function of x.

9.3.2 Occupational Choice

Who chooses to be a professor, and who takes up plumbing? An income maximizer

becomes a professor if and only if he or she would earn less in plumbing:

choose professorship 4^ y(X)<w. (9.5)

And what choice of occupation is socially desirable? The efficient assignment is

determined by the principle of comparative advantage. Accordingly, one should

become a professor if and only if X > Y.

9.3.3 Positive vs. Adverse Selection

An adverse selection bias occurs if a reduction in price tends to reduce quality.

Similarly, one can speak of a. positive selection bias if a reduction in price tends to

increase quality. The present model is an example of positive selection. For, if w is

lowered, the least productive professors will move into plumbing, which raises the

average productivity of professors.

Stated formally, the expected value of a professor's productivity is a function of

w, as follows:

p(w) := E[X | y(X) < w]

= E[X | X >(/>(w)l (p:=y~l

zdF(z). (9.6)
J(f>(w)

Therefore, (note that <pr < 0 and p > 0)

f(4>(w))<t>'(w)

This confirms that the assumed negative correlation between productivities gives

rise to a positive selection bias.
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p{w)

p(w)

Figure 9.4. Equilibrium with Overemployment.

9.3.4 Subgame-Perfect Equilibrium

What wage do professors earn, and what is the profile of productivities in equilib-

rium? As before, the equilibrium wage is the maximal fixed point

u;* = max{u; | p(w) = w}. (9.8)

Since p\w) < 0, and x_ < y(x), and y(x) < x, existence and uniqueness are

assured (see Figure 9.4).

Proposition 9.4 (Negatively Correlated Productivities) Suppose the productiv-

ity as a plumber, y, is a strict monotone decreasing function of the productivity as

a professor, x. Then the subgame-perfect equilibrium exhibits overemployment of

professors.

Proof Since we — c/)(we) < p(we), the efficient allocation cannot be an equili-

brium. As you can see from Figure 9.4, the equilibrium wage w* must be higher than

we. Hence, in equilibrium every X > 0(w*) becomes a professor, which includes

the efficient assignments, X > 4>{we), plus others. Therefore, overemployment of

professors occurs. Society would benefit if all X e (0(tc*), u;*) could be moved

into plumbing. •

Example 9.1 Suppose that X is uniformly distributed on the support [0, 1], and

that y(x) := 1 — x and (j)(w) := 1 — w. Then the efficient occupational choice

is reached at we = 1/2. However, this cannot be a subgame-perfect equilibrium

because p(we) = 3/4 > 1/2 = we.

The unique equilibrium wage is w* = 2/3. It gives rise to overemployment of

professors because every X > 1/3 becomes a professor, not just those with X > 1/2.

9.3.5 A Corrective Tax

Can one implement the efficient choice of occupations by a corrective tax, and if so

how? The answer is simple. By imposing a proportional tax t on professors' income

one can move the equilibrium to the socially desired outcome. This is achieved if
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Figure 9.5. Corrective Tax.

one finds a tax rate t** and resulting equilibrium wage u;** that make the after-tax

equilibrium wage equal to we and yet satisfy the zero-profit condition

u,** = p(u;**).

Why does the tax shift the equilibrium in the right direction? Given w, levying

a tax t > 0 drives the least productive professors into plumbing and hence raises

the average productivity of professors. In Figure 9.5 this effect is illustrated by the

rightward shift of the average productivity curve. The only question is whether one

can always find a tax that exactly implements the efficient allocation.

Rather than dwell into a general proof of existence of corrective taxes, we

close with an example.

Example 9.2 Using the assumptions of Example 9.1, the unique corrective tax is

t** = 1/3.

In order to induce efficiency, the after-tax wage must be equal to we, i.e.,

tu**(l — £**) = we = \. Therefore, the corrective tax must solve the condition

The unique solution is w** = | , f** = | .

Note that this corrective tax reduces professors' after-tax wage from | to ^;

so, please, do not tell anybody about it.

Perhaps you do not like some aspects of this model. Make a better one. This

may very well contribute to your first job as a professor.

9.4 Adverse Selection and Rationing

Adverse-selection problems are also prominent in insurance and credit markets.

For example, when a bank raises its interest rate on loans, it tends to crowd out
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Table 9.1. Probability of investment

returns R

0
2.2
3.8

1/2
1/2
0

R Pr(7? | I) Pr(J? | h)
3/4
0

1/4

low-risk investors, which, in turn, contributes to reducing the bank's profit. In the

face of this adverse selection effect, credit markets break down altogether unless

banks invent some device that prevents this market failure.

As a simple example, suppose two investors want to borrow $1. One investor is

a high (h) and the other a low risk (I). The bank knows the probability distributions

of investment returns (Table 9.1) but not the identity of the investor. Liability is

limited to the collateral, which is set at $ | .

With these assumptions, the demand for loans is a function of the rate of

interest r, as follows:

. 2, r < 0.45,

D(r) = I l , r G (0.45, 0.55],
1 0, r > 0.55.

Note: as the interest rate is raised above 45%, adverse selection comes into effect

because the low-risk investor is crowded out, while the high-risk investor remains

in the market for all r < 0.55.

Suppose the bank can attract $1 deposits at a low interest rate, say r — 0. Then

there is no interest rate at which the market is cleared, for in order to match the

demand, the interest rate would have to be r e (0.45, 0.55), at which the bank

would suffer a loss. Therefore, the competitive credit market breaks down.

However, this market failure can be avoided by some credit rationing scheme.

Let the bank set the interest sufficiently low, at r — 0.45. Then both low- and

high-risk investors apply for the loan. And if the bank picks one of the two loan

applications by the flip of a fair coin, the low-risk investor has an equal chance

to be served. Altogether, this is profitable because it raises the bank's expected

profit to a positive level equal to 0.0125. Hence, in this example, the introduction

of credit rationing improves the market outcome even though rationing obviously

cannot establish maximum efficiency. This observation is at the heart of the theory

of credit rationing proposed by Stiglitz and Weiss (1981) and Wilson (1980).

9.5 Adverse Selection and Screening

Both adverse and positive selection call for more complex market arrangements.

In the previous section you have already learned that rationing may improve the

equilibrium outcome. Here, we discuss another more common market response:

screening ox self-selection of types.
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Screening can only be achieved if the party that sets the terms of the contract is

able to:

• play with at least one additional variable, in addition to price, that affects customers'
marginal willingness to pay;

• restrict customers to choose among particular combinations of variables from a menu of
choices.

Such additional variables are, for example, quantity in monopolistic price discrim-

ination, coverage in insurance, collateral in lending, and output in labor contracts.

If these conditions are met and the marginal willingness to pay functions are

single-crossing, one can generally design a menu of contracts in such a way that

it is in each type's best interest to pick the contract designated for this particular

type. Moreover, in the face of competition, pooling of types cannot be part of

an equilibrium. This suggests a strong case for screening. However, existence of

equilibrium is generally not assured.

9.5.1 Screening in Insurance Markets

Consider an insurance market with (at least) two insurance companies and a large

population of customers. Customers come in two types, either high (h) or low

(£) risk, in the proportions k and 1 — A. The customers' type is their private in-

formation. Insurance companies offer complete insurance contracts that stipulate

different combinations of insurance premium p and insurance coverage c, from

which customers are free to select one. After insurance contracts have been signed,

nature draws either one of two states, called good (g) or bad (b).2

Customers' initial endowment is described by the binary lottery

L ° : = [w°g, w°b; Pi], w°g > w°b, i e {h, 1), (9.9)

where w® denotes wealth in state g, w® wealth in state b, and pi the probability of

state b for customer type i. The difference w® — w® > 0 is the loss, in case state b

has occurred. The only distinction between types is that high-risk customers suffer

that loss with greater probability:

1 > Ph > Pi > 0. (9.10)

Buying insurance with coverage c and premium p means trading the lottery L?

for the lottery L,-, i e {h, £},where

U^lwlw^pil (9.11)

wi:=wl + ch (9.12)

u?g\=w]-Pi. (9.13)

Insurance companies are risk-neutral, and customers risk-averse. All customers

have the same utility function u{w) with u'(w) > 0, u"(w) < 0.

2 The following model is due to Rothschild and Stiglitz (1976). This seminal contribution is often referred to as
the Rothschild-Stiglitz model
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The Market Game

1. Insurance companies simultaneously offer a menu of complete contracts (for convenience

we state contracts in terms of wg and Wb),

C:={K,^),(«,J ,^) ,(«,»,u,J)}. (9.14)

The contract (w®, wp represents no trade; it is included because market transactions are

voluntary.

2. Customers pick the best contract from the menus offered by insurers and sign it; if both

insurers offer the same contracts, the demand is divided equally.

3. Nature draws either state g or state b, that drawing becomes common knowledge, pay-

ments are made, and the market game is over.

Payoffs and Marginal Rates of Substitution

Customers' expected utility E[U(L)] and insurance companies' expected profit

E[n(L)] are (type index omitted)

E[u(L)] := pu(wb) + (1 - p)u(wg), (9.15)

E[n(L)] := p(w°b - wb) + (1 - p)(w°g - wg). (9.16)

Therefore, one obtains the following marginal willingness-to-pay or marginal rate-

of-substitution (MRS) functions (type index omitted)

dwb

8 E[u(L)] = const

dwb

1 - p u'(wg)

\ - p

(9.17)

E[n(L)] = const P (9.18)

Note: Since pn > p^, the MRS of h is always lower than that of I. In words, h

is willing to forgo less wealth in state b in exchange for one extra dollar in state g,

because the event in which this extra dollar is obtained occurs with lower probability.

Similarly, insurance companies' MRS is lower if they deal with customer h. These

are the single-crossing properties that you have already met in our introduction to

monopolistic second-degree price discrimination in Chapter 1.

Efficiency and Equilibrium under Complete Information

An efficient allocation of risk requires that customers' and insurers' MRSs be made

equal. An immediate implication is that marginal utilities must be the same across

states (uf = ub), which in turn implies the optimality offull insurance: (wg = wb).

If insurance companies knew their customers' type, the efficient risk alloca-

tion would also be the equilibrium outcome of the market game. Indeed, in the

market equilibrium under complete information both insurers allow each group of

customers to trade in their initial endowment L? for that riskless lottery L,-:

Li = (w^w*; Pi), (9.19)

wl := E[L9] := piwl + (1 - pi)w°g, (9.20)

which pays out the expected value of L? in each state realization.



Hidden Information and Adverse Selection 255

Figure 9.6. Efficient Risk Allocation.
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Figure 9.7. Pooling Cannot Occur in Equilibrium.

Figure 9.6 illustrates the efficient risk allocation. There (uA w®) is the initial

endowment, the lines n^, ^ are the zero-profit lines (assuming exclusive service

of either h or £, respectively), and the convex curves are customers' indiffer-

ence curves. The equilibrium contracts exhibit full insurance and zero expected

profits.

Sub game-Perfect Equilibrium under Incomplete Information

Suppose insurance companies pool risks and offer the same contract to both h and

£. Can this be part of a subgame-perfect equilibrium of the market game?

If pooling occurs in equilibrium, the pooling contract has to yield zero expected

profits, as at point Cp on the zero-expected-profit line associated with pooling n in

Figure 9.7, because otherwise insurers have an incentive to underbid. Now recall

that the MRS of type I exceeds that of type h at all (wg,Wb). Therefore, at the

equilibrium pooling contract Cp the indifference curve of type £ must cross that of

h from above, as illustrated in Figure 9.7.

Now consider the shaded area in Figure 9.7. Each contract C in this set satisfies

the following properties: 1) C >t Cp (£ prefers C to Cp); 2) Cp >h C (h prefers

Cp to C); 3) insurers prefer C to Cp, provided C is only demanded by low-risk
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customers. Due to the single-crossing relationship between the MRSs, the set of

contracts that share these properties is not empty.

Proposition 9.5 (No Pooling) A pooling contract cannot be part of a subgame-

perfect equilibrium.

Proof Suppose, per absurdum, that one insurer offers a pooling contract that gives

a zero expected profit if a representative sample of customers is served. Then the

other insurer can exclusively attract all low-risk customers by offering a contract

from the shaded area in Figure 9.7 (which has already been shown to be not empty)

at a positive expected profit. This upsets the pooling property of the rival's contract.

Therefore, pooling cannot be part of a subgame-perfect equilibrium. •

If the market game has an equilibrium, it has the following properties: High-risk

customers are offered efficient insurance (no distortion), and low-risk customers

are offered that contract (w*wl), which keeps high-risk customers indifferent

between this contract and the contract designated for them. The latter exhibits

underinsurance, w*; > w^.

Proposition 9.6 (Screening Equilibrium) Suppose the market game has a sub-

game-perfect equilibrium (in pure strategies). Then both insurers offer the same

menu of contracts, which satisfies the conditions

wh
g = wh

b = wh, (9.21)

phu(wl
b) + (1 - ph)u(wl

g) = u(wh), (9.22)

pt K " *>i) + (1 " Pi) K " wlg) = °- <9*23)

And each customer type picks the contract designated for that type. These contracts

are independent of the proportion of high-risk customers in the population.

Proof Assuming existence, the equilibrium contracts must induce self-selection

(by Proposition 9.5), yield zero expected profits, and not be improvable. As you can

see from Figure 9.8, these properties are only satisfied for the asserted contracts. 3

•

Existence of Equilibrium?

Unfortunately, an equilibrium does not always exist. The reason is quite simple. We

have already noted that equilibrium contracts are independent of the proportion of

high-risk customers. In order to induce self-selection and zero expected profits, low-

risk customers have to suffer a severe deviation from the efficient risk allocation, just

3 Exercise: Suppose we give low-risk customers the efficient insurance. Why can this not be part of an equilibrium?
Which requirement is violated? (Hint: Show that one cannot induce self-selection and zero expected profits in
this case.)
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Figure 9.8. Screening Equilibrium.
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Figure 9.9. Nonexistence If High-Risk Customers Are Rare.

in order to keep high-risk customers away. This arrangement becomes ridiculous if

the proportion of high-risk customers is small. For in that case, the cost of sorting

by far outweighs the gain, and low-risk customers are better off if risks are pooled.

This induces insurers to offer pooling contracts, which, however, cannot be an

equilibrium.

Proposition 9.7 (Nonexistence of Equilibrium) Suppose the proportion of high-

risk customers is small. Then the market game has no equilibrium (in pure strat-

egies).

Proof If the proportion of high-risk customers is small, the zero-expected-profit

line associated with pooling risks is close to the one associated with serving low-

risk customers only. Now suppose one insurer offers the candidate solution of a

screening equilibrium (as described in Proposition 9.6). Then the rival insurer's

best reply is to offer a pooling contract from the shaded area in Figure 9.9, which

attracts all customers and thus destroys screening. That shaded area is not empty

if X is sufficiently small. Since a pooling contract cannot be part of an equilibrium

by Proposition 9.5, no equilibrium exists in this case. •
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Welfare Properties

The presence of high-risk customers exerts a negative externality on low-risk cus-

tomers. That externality is completely dissipative - there are losses to low risk

customers, but the high-risk customers are not better off than they would be in

isolation. As Rothschild and Stiglitz put it:

If only the high-risk individuals would admit to their having high accident probabilities, all
individuals would be made better-off without anyone being worse-off.

However, make sure you understood why high-risk customers would never vol-

unteer that information.

9.5.2 Screening in Labor and Credit Markets

The above analysis of insurance markets can be applied to many other markets

simply by changing words.

Consider a labor market where (at least) two firms compete for workers that

are either able (£) or not so able (h). Ability is workers' private information. Both

workers produce a random output or revenue that has one of two realizations.

Ability only affects the probability distribution of outputs, and I obtains the greater

output with higher probability than h. Firms set menus of screening contracts; each

contract stipulates wages contingent upon output, workers can be restricted to these

choices, and workers either accept or reject.

This labor-market model is nothing but a reinterpretation of the insurance-market

model. Simply interpret w®, w® as high and low output, and wg, Wb as the wages con-

tingent upon the output realization, either g or b. If workers remain self-employed,

they have the initial endowment lottery Lf, i e {h, I}. Once they enter employment,

they exchange their initial endowment L° for a wage lottery L,-.

In an employment relationship the employer is residual claimant (he "owns" the

output or revenue) and the worker has a contractual claim on wage payments. In

the present framework, each wage contract is essentially a piece-rate contract.

With this reinterpretation of variables, the entire analysis of the insurance market

applies to this model of the labor market.

Similarly, one can apply the Rothschild-Stiglitz model to credit markets. Bester

(1985) explored this application using the assumption that collateral is used as

screening variable, whereas Milde and Riley (1988) linked repayment and loan size.

9.5.3 Alternative Equilibrium Concepts

The Rothschild-Stiglitz model was examined independently by C.Wilson (1977a).

His work has two additional features that received some attention in the literature.

First, Wilson considers an alternative definition of equilibrium and shows that

with this definition existence of equilibrium is always assured. His notion of equilib-

rium drops the assumption that firms will introduce any new menu of contracts that

makes money, provided all other menus of contracts remain in the market. Instead,
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Wilson assumes that firms only introduce new menus if these make money even if

some other menus are withdrawn by other firms, so that all menus of contracts that

exist break-even.

Second, Wilson analyzes the role of government intervention to bring about

Pareto improvements in these markets. He shows that in many instances cross

subsidization schemes and compulsory insurance requirements can bring about

Pareto improvements.

Miyazaki (1977) utilized the benefits of cross subsidization in the framework of

labor contracts.

9.5.4 Limits of Screening

Many people seem to believe that screening models make the earlier vintage of

adverse-selection models obsolete. This overlooks the fact that screening is often

not feasible.

First of all, recall that screening requires an unambiguous ranking of marginal-

willingness-to-pay functions, which was called the single-crossing assumption.

Such an unambiguous ranking is, however, quite restrictive. Second and perhaps

more important, screening is often not feasible because customers cannot be re-

stricted to the set menu of choices, for they can undermine it by engaging in arbi-

trage. Using the insurance example, insurers cannot even pick an arbitrary pooling

contract in this case, because by engaging in side dealings with each other, cus-

tomers can buy any volume of coverage at a fixed unit price per dollar of coverage.

Therefore, the only feasible contract is an incomplete contract in the form of a linear

price, where each customer is free to buy as much coverage as he or she wants.

9.6 Screening without Competition*

Before closing the book on adverse selection, one should at least address two more

issues: 1) to add an example of screening without competition, and 2) to show how

to generalize the simple two-type models.

As we have already mentioned in the introduction, screening without competition

is much easier because it leads to a straightforward maximization problem and

avoids problems of existence of equilibrium. This is why it is advisable to take up the

task of generalization in the simpler framework of screening without competition.

As a particular application we now return to the topic of second-degree price

discriminiation, which was already spelled out in full detail in a simple model with

only two types of customers in the chapter on monopoly, Section 1.4. We will

extend this analysis to a continuum of customer types and thereby exercise some

more advanced techniques.

9.6.1 Price Discrimination with a Continuum of Types

In Chapter 1 on monopoly we showed already how hidden information may give

rise to second-degree price discrimination. There we covered the simplest case of
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two types of customers. We are now ready to exercise more advanced techniques

and extend that analysis to a continuum of customers.4

The basic notation and assumptions of Section 1.4 are maintained. However,

the monopolist now faces a continuum of customer types from the type space

0 := [0, 0], 9 > 0. Customers' type is their private or hidden information. The

monopolist only knows that types are drawn from the probability distribution F :

0 -> [0, 1], which is common knowledge.

From the revelation principle we know that every sales plan is equivalent to a

direct incentive-compatible sales plan. 5 Accordingly, the monopolist announces a

sales plan composed of the functions x(9) (quantity) and T(9) (total payment):

S := (*(0), r(0)), (9.24)

and invites customers to choose a combination of quantity and total payment,

(JC(0), 7(0)), by self-declaring their type 0 e 0 . Since the monopolist does not

know customers' type, they may cheat and declare some 9^9. However, an

incentive-compatible sales plan induces all customers not to cheat and to declare

their true type, 9 = 9.

As in Section 1.4, customers' payoff function is

U(x,T;0) :=W(x-,9)-T. (9.25)

Here W(x; 9) denotes 0's willingness to pay for the quantity x,

W(x;9):= fP(y;0)dy, (9.26)
Jo

and P(x;9) = dW/dx the associated marginal willingness to pay. Customers

maximize their payoff by self-declaring their type.

Assuming constant unit costs that are normalized to zero (as in Section 1.4), the

monopolist's profit from a certain customer type is that type's total payment T(9).

Therefore, the optimal sales plan maximizes the monopolist's expected profit (F(9)

is the cdf of customers' types):

max / T(9)dF(9), (9.27)
{x(6),T(6)} Jo

subject to the following participation (9.28) and incentive constraints (9.29):

t/(jc(0), T(9); 9) > C/(0, 0; 0) = 0 V6> e 0 , (9.28)

9 e argmax C/(JC(0), T{9)\ 9) V0, 9 e 0 . (9.29)
9

Further Assumptions

In Section 1.4 we assumed that marginal willingness-to-pay functions are decreas-

ing and single-crossing and that unit costs are constant. We now adapt and strengthen

these assumptions and add assumptions concerning the probability distribution:

4 We follow the seminal contribution by Maskin and Riley (1984a), simplifying some proofs and leaving out
some extensions.

5 The revelation principle was stated and proved in Section 8.5.2.
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(Al) P(x; 0) is twice continuously differentiable with the partial derivatives Pi < 0,

P2 > 0, P22 < 0, and unit costs are constant and normalized to zero.

(A2) The price elasticity of demand is increasing in 0; stated in terms of inverse demand

P,

a f-xdP
x'p>0 * Te{ir^

(A3) The cdf of 0, F(0), is continuously differentiable with F'{0) > 0 everywhere on 0

and F(0) = 1 - F(0) = 0.

Auxiliary Results

Fortunately, the optimization problem can be simplified, due to the following aux-

iliary results.

Let U*(0) denote the indirect utility function of customer 9:

U*(0) := max U(x(9), T(9); 9). (9.30)

Lemma 9.1 (Monotonicity) The sales plan S is incentive-compatible if and only

if

dW

ou

and

x\9) > 0. (9.32)

Proof Necessity: Applying the envelope theorem to the customers' maximization

problem (9.30) gives

dW

u*'(0) = —
ou

which is positive because P2 > 0. Note that (9.31) incorporates the first-order

condition of the customers' maximization problem.

Moreover U*(0) is convex;6 therefore,

0 < U*"(0)

d2W , d2W

((oyo)'(e)

= P2(x(9); 9)x\9) + P22(x(9); 9).

And since P22 < 0 and P2 > 0, we conclude that x\9) > 0.

The proof of sufficiency is by contradiction.7 Consider a sales plan that satisfies

the two conditions, yet suppose type 9\ prefers to "cheat" and declare 92 ^ 9\.

Define the customers' payoff as a function of their true and declared type (9,9), for

a given sales plan, as 0(9, 9) := U(x(9), T(9)\ 9). Then U(9U 92) > U(9U 9X),

6 The proof of convexity is a standard exercise in microeconomics; it was sketched in Section 8.2.5.
7 The proof is adapted from Laffont and Tirole (1993).
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T

T(6i)

X(0i)

Figure 9.10. Incentive Compatibility and Monotonicity of x(0).

and after a few tautological rearrangements, also using the first-order condition

U2(9, 9) = 0 (third line), one obtains

0<

\= / (U2(9uz)-U2(z,z))dz

2 pOl

r,z)drdz

rO2 r6

h\ Jz
P2(x(z);r)xf(z)drdz.

Let 92 > 9\; then z > 9\ for all x e [9\, 92], and the inequality cannot hold. Simi-

larly, let 9\ > #2; then z < 9\ for all z e [#2, #iL which is again a contradiction.

•

The monotonicity of x{9) is illustrated by the indifference curves of two distinct

types, 92 > 9U in Figure 9.10. There, if type 9\ gets (*(0i), T(9X)), the price-

quantity combination offered to type 92 must be in the shaded area, above 9\ 's and

below 92's indifference curves that pass through the point (JC(0I), T{9\)). Hence,

x(92) must be either the same as x{9\) or exceed it.

Lemma 9.2 An incentive-compatible sales plan satisfies all participation con-

straints if and only ifU*(0) > 0.

Proof Follows immediately by the monotonicity of U*(9). D

The monotonicity of x{9) implies that x(9) is differentiate almost everywhere.

In the following we consider the smaller class of piecewise differentiate functions.

This is a prerequisite of using the calculus of variations or optimal control.8

! A piecewise differentiable function has continuous derivatives almost everywhere, and when it has no derivative
it always has left and right derivatives.
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Lemma 9.3 (Total Payment) Consider a nondecreasing function x(9). Incentive

compatibility is assured if and only if

; 0) - [ ^-
J0 dz

T(9) = W (x(0); 0) - [ ^ - (JC(Z); z) dz - U*(0). (9.33)
J dz

Proof Since x(9) is nondecreasing, incentive compatibility is assured if and only

if U*'(0) is set as in (9.31). Integrate U*'(0), and one obtains

r9 *, * r9 3 ^
U*(9) = U*'(z)dz + U*(O)= —(x(z);z)dz + U*(O).

Jo Jo oz
Solving U*(0) = W (x(9); 9) - T(0) for T{9) gives (9.33). n

Proposition 9.8 The monopolist's decision problem is equivalent to the variational

problem

max \ { U(x(9); 9) dF(9) \ x'{9) > 0 \ (9.34)
{x(e)} [Jo J

where

Yl(x(9);9) := W(x(9);9)-
h(9)

and

F'(9)
1 ^ T (hazardrate) (9.36)
Y — t (V)

(provided T(9) is set as in (9.33) and also f/*(0) = 0).

Proof The monopolist maximizes the expected value of T{9). By the above lem-

mas, the incentive and participation constraints are equivalent to choosing 7(0) as

in (9.33) combined with £/*(0) > 0, x'(9) > 0.

Leaving a surplus to the lowest type, f/*(0) > 0, is costly. Therefore, the mo-

nopolist sets C/*(0) = 0. In view of (9.33) the expected profit is hence equal to

re fe fo dw

/ W(x(9);9)dF(9)- / —(x(z);z)dzdF(0). (9.37)
Jo Jo Jo OZ

Apply integration by parts to the second term and substitute the hazard rate /z(0),

defined in (9.36). After a few rearrangements this gives

fe re dW fe dw j
/ ^r(x(z)',z)dzdF(9)= —(x(e);0)—-dF(0). (9.38)

o Jo dz Jo 30 h(9)

Finally, insert (9.38) into (9.37), and one has the program stated in the

proposition. •

Complete Sorting Solution

Consider the program obtained from (9.34) by omitting the monotonicity constraint

x'{9) > 0. Call it the restricted program, and denote its solution by Jc(0), f(9).
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Lemma 9.4 (Restricted Program) The solution x(9) of the restricted program is

characterized by the conditions

x(9)>0 =* P(x(0);9) = -^-P2(x(0);9). (9.39)

It exhibits distortions, P(x(9);9) > 0, everywhere on © except at the top, where

P(x(9)\ 9) = 0 ("no distortion at the top").

Proof In a variational problem the principle of optimality is that of pointwise

optimality (Euler's equation).9 In other words, x(9) maximizes II for every 9.

Hence, either x{9) = 0 or x(9) satisfies the first-order condition 3n/3;c = 0.

Therefore,

x(9)>0 => P(x(9);9)--^~P2(x(0);9) = 0. (9.40)

Note that P2 > 0, h > 0, and l/h = 0 <=> 9 = 9. Therefore, P(x{9)\ 9) > 0
everywhere except at 9 = 0, where P(x(9); 0) = 0. D

We now show that the solution of the restricted program also solves the full

program, provided the probability distribution function satisfies a certain concavity

condition. That condition is weaker than the assumption of a monotone increasing

hazard rate that plays a prominent role in the incomplete-information literature.

Proposition 9.9 (Complete Sorting) Suppose the probability distribution func-

tion F(9) is log-concave.10 Then the solution of the restricted program, x(9), also

solves the full program (9.34).

Proof F is log-concave if and only if

(9.41)

is monotone increasing. Since x(9) maximizes Y\(x(9)\ 9), either

3n
x(9) = 0 or —(x(9);9) =0.

dx

Totally differentiating the latter gives

a 2 n/3x d9
x\9) = - ' . (9.42)

dzY\/dxz

Therefore, if at x(9) one has d2Y\/dx2 < 0 and d2ll/dx 89 > 0, the solution of

the restricted program x(9) also solves the full program.

9 For an introductory exposition of the calculus of variations and optimal control consult Kamien and Schwartz
(1991).

10 F is log-concave if In F is concave. A monotone increasing hazard rate h{6) is sufficient for log-concavity,
but not necessary. Many standard distributions are log-concave; examples are normal, uniform, and exponential
distributions. See Bagnoli and Bergstrom (1989).
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From now on all terms are evaluated at x{9) > 0. By (9.39) one has \/h = P/P2.

Compute 32n/3jc2 — P\ — P2\/h, substitute l/h, and use the monotonicity of the

elasticity of demand (A2), and one confirms

32n P2lP P2 d ( xPx\
P )

Similarly, compute d2U/dx d9 = P2 - (P22h - P2h')/h2, substitute p, and utilize

the monotonicity of p. After a few rearrangements (also using P2 > 0, P22 < 0)

one confirms

dxdO

In Section 1.4 we showed that the optimal second-degree price discrimination

may also exhibit bunching. Evidently, the fairly strong assumptions imposed in

this section exclude bunching over a measurable set of types. However, if these

assumptions are weakened, bunching occurs in some subsets of 0 . In that case, one

must reintroduce the monotonicity constraint into the optimization program and

preferably state it as an optimal-control problem. Optimal control is better suited

to deal with such inequality constraints.11

9.6.2 Implementation by Nonlinear Pricing

At first glance the direct incentive-compatible sales plan discussed here seems hope-

lessly unrealistic. Have you ever seen a monopolist playing a direct revelation game

with customers? Therefore, it is important to realize that the frequently observed

second-degree price discrimination, where all customers are charged the same non-

linear price function - that makes payments exclusively a function of quantity - and

are free to buy as much as they want, is nothing but a direct incentive-compatible

sales plan in disguise.

Proposition 9.10 (Second-Degree Price Discrimination) The optimal incentive-

compatible sales plan is equivalent to second-degree price discrimination with the

following nonlinear price function:

f(x) := T(<p(x)) = [ P(z\ <Kz))dz, (9.43)
Jo

where </>(z) is the (generalized) inverse ofx(6):

1 | x(9) = z}. (9.44)

Proof We apply a change of variables using the inverse function 0 := x~l. That

inverse exists, since x(9) is monotone.

11 In principle, one can also adapt the calculus of variations to deal with inequality constraints; but the procedure,
due to Valentine, is cumbersome and hopelessly old-fashioned. See Pierre (1969), p. 95 ff.
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Start from the optimal T{6) function (9.33) using C/*(0) = 0, and employ the

change-of-variables theorem12; after a few more manipulations one obtains

T(<Kx)) = W(x; <Kx))
rx

- /

Jo
Trrrriz; 4>(zW(z)dz
30 (z)

= W(x; 4>(x)) - / —{z\ <Kz)) - — (z; 0(z)) dz
J0 V dz dz )

rx QW

= / _ ( Z ; 0 ( Z ) ) < / Z
Jo dz

= f P(z;<Kz))dz,
Jo

as asserted. n

An interesting follow-up problem is to look for necessary and sufficient condi-

tions for the frequently observed quantity discounts in nonlinear pricing. Quantity

discounts are equivalent to strict concavity of the price function f(x).

9.7 Bibliographic Notes

One disturbing aspect of the screening model is the possible nonexistence of equi-

librium. The literature has responded in two ways: One approach is to establish

existence in a larger strategy space that admits mixed strategies (see Dasgupta and

Maskin (1986) and Baye, Tian, and Zhou (1993)). The other is to consider modi-

fications of the equilibrium concept (see C. Wilson (1977a) and Riley (1987)).

Another disturbing aspect of the screening model (and of all models presented

in this Part of the book) is the restrictiveness of the stochastic order assumptions

invoked here. One would like to know what remains if these strong assumptions do

not hold. An important recent contribution to this issue, in the context of insurance,

is Landsberger and Meilijson (1999).

The screening model assumes that the uninformed party makes the first move

and offers the contract. An obvious alternative is to let the informed party offer the

contract. This leads us to the signaling models presented in the next chapter.

We mention at this point that signaling models have radically different proper-

ties. This is another disturbing property. All these models are necessarily grand

simplications of reality. However, if market outcomes are so sensitive to seemingly

arbitrary modeling choices, one may be led to conclude that these contributions

have little predictive ability (see Hellwig (1987)).

There are many applications of the adverse-selection and screening model. We

just mention two contributions from the area of finance: the explanation of the bid-

ask spread by Glosten and Milgrom (1985) and the analysis of security design by

Rahi (1996).

12 See Bartle (1976), p. 234, or in any other good calculus text.
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Hidden Information and Signaling

He's a sheep in sheep's clothing.
Winston Churchill on Attlee

Oh, what a tangled web we weave,
When first we practice to deceive!

Sir Walter Scott

10.1 Introduction

Another market response to the problems of adverse selection is signaling. Here,

the informed party makes a first move and attempts to reveal his or her private

information by signaling his or her type. Regarding the labor-market applica-

tion, we allow workers to signal their productivity with their educational achieve-

ments.

Signaling is also widespread outside the realm of education. For example, a joint

stock company may issue debt instruments in lieu of equity in order to indicate to

potential shareholders that the market underestimates its future earnings. Similarly,

a firm may engage in costly advertising just in order to tell its customers or rivals that

it is not a fly-by-night outfit. Or a monopolist may choose a high-cost product supply

- despite forgone monopoly profits -just in order to warn potential entrants that they

face a low-cost supplier (see Milgrom and Roberts (1982a, 1982b)). In animal pop-

ulations, high-quality males may advertise their quality by displaying handicaps,

such as a longer tail or brighter plumage, that make it more difficult to survive.1

In the following, we consider one particular signaling model, Spence's (1973)

justly famous job-market signaling, and we state it explicitly as a noncooperative

game. As it turns out, the analysis requires the employment of several advances

in game theory. In particular, the presence of asymmetric information between

workers and employers leads to a game with incomplete information, the timing of

decisions and absence of commitment mechanisms to the application of the idea

of subgame perfectness, the combination of both to the concept of a sequential

1 In biology, the idea that cost might be associated with signals in order to ensure their honesty was proposed in
the so-called handicap principle. See for example Grafen (1990).
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Table 10.1. Correlation between productivity and

signaling cost

Marginal Cost of Prior
Type revenue product education probability

1 0 y 1-tfo
2 1 y/2 q0

equilibrium (introduced by Kreps and Wilson (1982)), and the plethora of sequen-

tial equilibria to the adoption of equilibrium refinements.

10.2 The Education Game

Suppose a worker may be either of tow ability (type 7) or of high ability (type 2). The

worker knows her talent; the employer does not. However, the worker can attempt

to signal her ability by her educational achievement. This relationship becomes

interesting because the employer has an incentive to deduce the worker's type from

such a signal while the worker may have an incentive to mislead the employer.

Suppose type 2 occurs with probability qo G (0, 1), which is common knowledge.

The worker chooses an education represented by an index y > 0 of educational

achievement. Education does not affect a worker's productivity; however, ability

is positively correlated with productivity and negatively with the cost of education,

as summarized in Table 10.1.

After the worker has completed the education, two firms, compete over her ser-

vices in Bertrand-competition fashion. Firms can observe the educational choice,

but not the underlying type. Therefore, hiring involves a gamble. Each firm quotes

a wage, and the worker picks the more attractive offer.

Altogether, there are four players: worker type 1, worker type 2, and the two

identical firms a and b. The market game that they play is specified by the following

sequence of rules, payoff functions, and equilibrium concept.

10.2.1 Rules of the Game

1. "Nature" draws the type (either 1 or 2), the worker learns her type, and nobody else does.
2. The worker chooses an education y > 0, which becomes common knowledge.2

3. Firms simultaneously make wage offers wt(y), i e {a, b}, contingent upon the obser-
vation of y.

4. The worker observes wage offers and chooses the high-wage firm as employer; if
wa(y) = Wb(y), the choice is determined by the flip of a fair coin.

2 Implicitly this requires that workers can reliably commit themselves to a certain education. If educational
achievement is interpreted as enrollment in a certain program, this kind of commitment is difficult to justify,
simply because a student can always quit school. But in the absence of a commitment mechanism, the pooling
equilibria described below break down: firms would hire students immediately after they have enrolled and thus
sorted themselves - at a discount. But then, of course, all types would enroll, and hence the sorting would break
down. This criticism was made by Weiss (1983).
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10.2.2 Payoff Functions

All players maximize expected payoffs. The payoff to a type- n worker who chooses

the education y is w(y) — y/n. In turn, a firm's payoff is equal to (n — 1) — w(y) if

a type-n worker who chose education y is hired, and equal to zero if the firm fails

to hire.

10.2.3 Subgame

By the rules of the game, firms cannot reliably precommit to a wage schedule

prior to the worker's choice of education. Therefore, for given beliefs about

workers' type there is a well-defined subgame: the price competition game be-

tween the two firms that compete over the services of a worker with given and

known education.3

The solution of this subgame depends upon firms' beliefs concerning the rela-

tionship between observable education and unobservable types. Such beliefs are

described by the probability function

q(y) := Prjworker is type 2 | y], (10.1)

which gives the probability that the firm assigns to the worker's having type 2,

conditional on observing the educational choice y.

Given beliefs, the subgame has a unique solution with the following properties:4

wa{y) = u)b(y) = w(y) (symmetric equilibrium), (10.2)

w(y) = q(y) (zero expected profit). (10.3)

10.2.4 Sequential Equilibrium

The solution of the market game is the collection of strategies and beliefs that have

the following properties:

• given equilibrium beliefs, the strategies have to be a subgame-perfect Nash equilibrium,
• given equilibrium strategies, beliefs have to be self-fulfilling.

We describe the solution by the functions (a\,a2,q,wa, Wb)9 where a,-(y) de-

notes the probability that type / e {1,2} chooses action y, q(y) denotes the prob-

ability that firms assign to the worker having type 2, conditional on observing y,

and Wj(y) denotes the wage firm j e {a, b} offers in this case. The first three

functions have to be probabilities. In addition, (a\,a2,q,wa,Wb) has to satisfy the

equilibrium conditions (10.2), (10.3), and beliefs have to be consistent with equi-

librium strategies. Using Bayes' rule, the consistency requirement can be written

3 If firms can commit to a wage schedule prior to workers' choice of education, one obtains a screening game, as
shown in Section 10.5.

4 If a firm hires, its expected payoff is q(y)l + (1 — q(y))0 — w(y). Since we have Bertrand competition in the
input market, the equilibrium expected payoff is equal to zero.
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in the form

q(y) := Pr{worker is type 2 | y} (10.4)

Pr{y | worker is type 2} Pr{worker is type 2}

Pr{y}

(whenever possible). (10.6)

And, for given beliefs and wage schedules, the worker's best-reply requirements

are

di(y) := Pr{worker type / chooses y} > 0

r y~\
=$> y e argmax \w(y) . (10.7)

y L i\

Condition (10.4) requires that beliefs be consistent with Bayes' rule whenever the

right-hand side is defined (that is, whenever y is chosen with positive probability).

Condition (10.7) says that a worker of type / puts positive probability mass on

action y only if that action is a maximizer of her payoff, given the wage schedule

w(y) and the belief system qiy).

10.3 Equilibrium - Embarrassment of Riches

The signaling game has pure- as well as mixed-strategy equilibrium solutions. The

disturbing part is that it admits an infinite number of such equilibria. We will now

describe the different classes of equilibria and inquire into the reasons for this

multiplicity.

There are two kinds of pure-strategy equilibria: separating (or revealing) and

pooling (or nonreveating) solutions. In a pooling equilibrium, both types of workers

choose the same signal. Therefore, that signal does not reveal the underlying type

of worker. In a separating equilibrium, different types choose different education,

so that education is a perfect signal of the underlying type. Both kinds of equilibria

occur.

Proposition 10.1 (Separating Equilibria) The following strategies and beliefs

are separating (or sorting) sequential equilibria:

q(y) = i * lf y ^ y J (equilibrium beliefs), (10.8)

wa(y) = wt,(y) = q(y) (equilibrium wages), (10.9)

a\ (0) = 1 (type 1 chooses y = 0 with certainty), (10.10)

= 1 (type 1 chooses y = y* with certainty), (10.11)

y* e [1,2] (equilibrium threshold). (10.12)
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Proof The proof is straightforward.

Take the beliefs (10.8) as given. Then the action y — 0 is type l's best reply

to the wage schedule (10.9), since type 1 cannot raise her payoff by choosing any

other y. Similar reasoning applies-to type 2. In turn, the firms' wage schedule

is the best reply to workers' choice of education (10.10), (10.11), and they are a

solution of the price competition subgame because they satisfy conditions (10.2)

and (10.3).

Take the equilibrium strategies as given. Since type 1 chooses y = 0 and type 2

chooses y = y*, the beliefs (10.8) are self-fulfilling. Hence, (10.8)-(10.12) are a

separating sequential equilibrium. •

Since the threshold level y* can assume any value between 1 and 2, there are

an infinite number of such separating equilibria. However, since firms have no

benefit from raising type 2's cost of education above level 1, these equilibria can be

ranked by the Pareto criterion. The unique Pareto-dominant (or efficient) separating

sequential equilibrium is obtained by setting y* = 1.

Proposition 10.2 (PocBing Equilibria) The following strategies and beliefs are

sequential equilibria with the pooling property:

(10.14)

(10.15)

y*e[O,qol (10.16)

Proof The proof is left as an exercise. •

Again, there are an infinite number of such pooling equilibria, and the unique

Pareto-dominant (or efficient) pooling equilibrium is obtained for y* = 0.

In addition to the plethora of pure-strategy equilibria, the game has also equilibria

in mixed strategies where type 1 mimics type 2 with positive probability less than

one. It is appropriate to refer to them as hybrid equilibria. Hybrid equilibria

are supported by the following strategies and beliefs: firms set a threshold level

y* e (qo, 1); type 1 randomizes over the educational choices y e {0, y*}; and type

2 chooses y* with certainty.

Proposition 10.3 (Hybrid Equilibria) The following strategies and beliefs are

sequential equilibria where type 1 mimics type 2 with positive probability less than

one:

if y = y*,

VJ* (10-17)
if y ^ y*,

wa(y) = wb(y) = q(y), (10.18)
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Table 10.2. Equilibrium payoffs for different

threshold levels y*

Pooling Hybrid Separating
Player / € [ 0 , g 0 ] / € (go, 1) y*6[ l ,2 ]

1 go-/ 0 0
2 go-//2 //2 1-//2

Firms 0 0 0

1 — #0 y*

ai(y •) =

(qo,

u

l,

i).

(10.19)

(10.20)

(10.21)

Proof The proof is in three steps:

1. First, type l's asserted equilibrium strategy is obviously optimal, given w(y) and q(y),

since the two actions over which type 1 is supposed to randomize, y = 0 and y = y*,

yield the same payoff and no other actions are superior. Thus, a\(y*) e (0, 1) <=>

y* e too, 1).
2. Similarly, type 2's asserted equilibrium action y* is obviously optimal, given w(y) and

q(y).
3. Finally, beliefs are consistent with equilibrium strategies, since by (10.4),

^ ^ = v* (10.22)
( i - ^ o ) y

D

Again, there are an infinite number of such hybrid equilibria, and the unique

Pareto-dominant hybrid equilibrium is obtained by setting y* = 1.

Summary The complete set of equilibria is summarized in Table 10.2. Also note

that the efficient pooling equilibrium with the threshold level y* = 0 is the unique

Pareto-dominant equilibrium, provided type 2 is sufficiently predominant (the exact

condition is qo > \). However, if type 2 is rare (qo < \), equilibrium selection

poses a conflict of interest: Type 2 then prefers the efficient separating equilibrium

(y* = 1), whereas type 1 prefers pooling, as always.

10.4 Equilibrium Selection: Intuitive Criterion*

Why does the signaling game admit so many solutions? The cause of this multi-

plicity is that the concept of sequential equilibrium does not restrict firms' beliefs

concerning all those educational choices that do not occur if workers stick to their

corresponding equilibrium strategies. This comes out most clearly in the above

pooling equilibria. Here firms can entertain fairly arbitrary beliefs as long as the

threshold level y* is so low that the inference to be drawn from observing any



Hidden Information and Signaling 273

reasonable educational choice y =fi y* is never put to a test, because no one ever

chooses any education y ^ y* when firms are assumed to stick to the beliefs un-

derlying that pooling equilibrium. The question then is: Can one somehow restrict

admissible beliefs and thereby arrive at a unique equilibrium? This leads us to

consider refinements of the sequential equilibrium, in particular Pareto dominance

and the so-called intuitive criterion.

The intuitive criterion was proposed by Cho and Kreps (1987) (see also van

Damme (1987, pp. 289-293)). It weeds out all equilibria except the best separating

equilibrium with y* = 1. However, its application is only convincing if qo < \.

For qo> \ the criterion is not "intuitive," to say the least. In turn, Pareto dominance

applies only when the intuitive criterion is not meaningful (that is when qo > \),

in which case it selects the best pooling equilibrium with y* = 0.

10.4.1 The Criterion When Type 2 Is Rare

The intuitive criterion is best explained by the following hypothetical events and

dialog, assuming qo < \: Suppose players consider to play a particular pooling

equilibrium with some threshold level y* e [0, qo]. Now, let something unexpected

happen: One worker chooses education y e [1, 2] in the expectation that she can

convince firms to revise their pessimistic assessment, recognize her as type 2, and

pay w(y) = 1.

As an illustrative device, suppose the worker who chose y e [1,2] addresses

firms with the following speech in order to convince them to change their pessimistic

assessment:

Speech 1 (Worker): Look, I have worked hard in school, and acquired the education
y € [1,2], because I was sure this would identify me as the type 2 who I really am. Surely,
I would not have done this if I were type 1.

Firms are not so easily convinced and respond:

Speech 2 (Firm): Your point is well taken. We can see that your choice of action raises
your payoff if we follow your advice and recognize you as the type 2 who you claim to be.
While this indicates that you make this speech if you are type 2, how can we be assured
that you are not type 1 in disguise?

Finally, the worker puts all remaining doubts to rest with the following reply:

Speech 3 (Worker): If I were type 1,1 would earn the payoff qo — y* > 0 if I did not attempt
to revise your beliefs; this is more than what I earn if my attempt is successful (l—y < 0).
Therefore, you can safely exclude that I am type 1 and recognize me as the type 2 who
lam.

Stated more formally, the intuitive criterion requires:

Definition 10.1 (Intuitive Criterion) Consider an equilibrium and associated be-

lief system. The belief system satisfies the intuitive criterion if, for all out-of-

equilibrium actions y, it puts zero probability on that type who is sure to lose by

taking this action y9 relative to that type's payoff in the assumed equilibrium.
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All pooling equilibria evidently violate the intuitive criterion because they fail

to rule that q(y) = 1 for all y e [1, 2],

At this point you probably wonder where and how it matters whether the proba-

bility go is smaller or greater than \. Recall: So far we have assumed that qo < \.

This played a role in showing that type 2 does indeed gain if she makes that speech

and is able to convince firms to revise their beliefs accordingly.

10.4.2 The Criterion When Type 1 Is Rare

Now suppose go > | and consider the efficient pooling equilibrium, with threshold

level y* = 0. Then it is still true that the speech would never make sense if the

worker were type 1; but (and this is the catch) it would not make sense for type 2

either.

Clearly, it would not make sense to choose y > 1 and make the speech, not

even for type 2. Check this. However, type 2 might choose either y e (qo, 1) (the

education that is supported by a mixed-strategy equilibrium) or y e (0, go), y # y*

(the education supported by other pooling equilibria). Does that make sense?

At first glance, it seems that one can find an out-of-equilibrium y at which the

above dialog applies. Consider y := 1 — qo + e, with e > 0 and small. Then type 2

is better off choosing that y than in the best pooling equilibrium, if firms recognize

her as type 2 with certainty:5

1 - -y = 1 - - (1 - q0 + 6) > qo. (10.23)

At the same time, type 1 would definitely be worse off if she chose y, even if she

were identified as type 2 with certainty, because

1 - y = 1 - (1 - qo + 6) = q0 - e < qQ. (10.24)

Therefore, we can summarize:

Proposition 10.4 (Equilibrium Selection) The intuitive criterion rules out all

pooling equilibria, regardless o/go-

However, the intuitive criterion is not compelling if qo > \> For firms could

never believe that they face type 2 with certainty if y e (1 — qo, 1) is observed.

Indeed, if go > \, all educational choices y e (1 — qo, 1) are only consistent with

either a pooling or a mixed-strategy equilibrium.

In other words, if the worker chose the action y = 1 — qo + e and made a speech

similar to the above, firms should counter along the following lines:
Speech 4 (Firm): Your argument sounds all right. However, as you must also know, in
equilibrium I will never believe that anybody who chooses y e (1 — qo, qo) is type 2 with

5 Proof: 1) Type 2 is already better off if she chooses y' := 1 — qo, provided she is recognized as type 2 with

certainty, because 1 — ^y' > 1 — y' = 1 — ( 1 — go) = #o- 2) Of course, this inequality is preserved if v is

slightly increased from y' = 1 — qQ to y = 1 — qo + e.
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certainty. And if instead I use the equilibrium belief that corresponds to your choice of y,
then I cannot see how you could benefit from choosing this action. Therefore, your action
leaves me confused - not convinced.

We conclude that the intuitive criterion is successful in weeding out pooling

equilibria, but it should only be applied if qo < \.

Also notice that one can meaningfully employ either the intuitive criterion or

the criterion of Pareto dominance to weed out all separating equilibria except the

efficient one with the threshold level y* = I. This is left as an exercise.

10.5 Screening vs. Signaling

In the introduction to this chapter, we indicated that in a signaling game the informed

party makes the first move, whereas in a screening game the uninformed party is

the first mover. This suggests that by reversing the sequence of moves one should

always be able to transform a signaling problem into a screening problem, and vice

versa.

In this vein, let us modify the signaling game from Section 10.4. Suppose firms

make the first move and offer the worker a menu of contracts

C = {(wuyi),(w2,y2)}. (10.25)

Then each type of worker chooses the best contract, if any. Both contracts are

declined only if the worker's payoff is negative. Firms compete by means of

contracts, and in equilibrium they earn zero expected profits.

The equilibrium contract is either pooling (only one contract is offered) or sepa-

rating (each type is induced to choose a different contract). The question is: Which

case occurs in equilibrium, and when does an equilibrium exist at all?

Since we have already treated screening games, the analysis can be performed

quickly with the help of two simple diagrams.

In a first step, we establish that pooling contracts cannot be part of an equilib-

rium. For this purpose, look at Figure 10.1. Suppose, per absurdum, that firms

offer a pooling contract. Such a contract would have to yield zero profits, as at

point C of this diagram. But if one firm offers C, it follows immediately that the

other firm could gain by offering a contract from the shaded area in Figure 10.1.

For such a contract would only attract type 2 workers and give rise to a positive

profit.

If the equilibrium contract cannot be pooling, either it must be separating, or no

equilibrium exists at all. Suppose it is separating. Then the equilibrium contracts

must be represented by the points (w\, y\), (u)2, yi) in Figure 10.2. For these are

the only contracts that induce self-selection and give rise to zero expected profits.

If qo is sufficiently small (the precise condition is qo < \\ such an equilibrium

does exist. However, if type 1 is sufficiently rare (the precise condition is qo > \),

the separating contract cannot be an equilibrium either. For if one firm offers it, the

other can gain by offering a pooling contract from the shaded area in Figure 10.2,

which attracts both types, and yet earns a positive expected profit.
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Figure 10.1. Pooling Contracts Cannot Occur in Equilibrium.
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Figure 10.2. Nonexistence of Equilibrium When q0 > \.

We have thus shown that the signaling game can be transformed into a screening

game. That screening game has a unique (separating-contract) solution whenever

it is plausible to apply the intuitive criterion in order to select a unique (sepa-

rating) equilibrium in the associated signaling game. Yet, for all values of the

parameter qo where it is not plausible to let the intuitive criterion select an equilib-

rium in the signaling game, the associated screening game does not even have an

equilibrium.

10.6 Bibliographic Notes

We mention that the equilibrium refinements discussed in this chapter fail to ac-

complish a unique prediction if there are more than two types of workers. For

an account of the stronger requirements that need to be invoked in this case see

Fudenberg and Tirole (1991).
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There are many other applications of signaling besides education, insurance, and

labor. Some other examples from the literature are warranties (Grossman (1981),

Emons (1988,1989)), delay in bargaining (Admati and Perry (1987)), limit pricing

(Milgrom and Roberts (1982a, 1982b)), and jump bidding in auctions (Fishman

(1988)).

Finally, we mention that costless signals, called cheap talk, may also affect

equilibrium selection if a coordination-game aspect is present (see Farrell (1987)

and Crawford and Sobel (1982)).
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Hidden Action and Moral Hazard

If you want something done right, do it yourself.
Benjamin Franklin

"Sorry to hear about the fire, Joe."
"Ssh - it's tomorrow."

Anonymous

11.1 Introduction

In the previous two chapters we analyzed market relationships when, at the time of

contracting, one party has private information concerning the quality of the traded

good. Now we turn to bilateral contracting problems when relevant private informa-

tion is expected to emerge after contracts have been signed. This problem has been

named the problem of postcontractual opportunism, or simply the principal-agent

problem.

Postcontractual opportunism is endemic to relationships that involve the dele-

gation of activities to another party. The prototypical example is the employment

relationship, where a person called the principal hires another person to act as

his or her agent. But there is an abundance of other applications. For example, a

principal-agent relationship exists between a landowner and a farmer, a car owner

and her no-fault insurer, a doctor and her patient, a lawyer and her client, a borrower

and a lender, and a regulator and a public utility, to name just a few.

It is useful to distinguish between two kinds of informational asymmetries that

may emerge in a principal-agent relationship: hidden information and hidden ac-

tion. If a manager is put in charge of sales, in the process of doing his job he typically

acquires a better understanding of the firm's market; thus, he acquires private or hid-

den information.1 Similarly, if a saleswoman is assigned to sell the firm's products

in a certain region, her employer cannot observe precisely how much diligence she

put into her job; hence, the principal-agent relationship involves a hidden-action

aspect.

1 Other examples are: the relationship between the branches of large firms, between public utilities and the
regulator, or between citizens and the tax authorities.
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Hidden action is also known as the moral-hazard problem. This characterization

has its origin in the insurance literature, where it describes the hazards, additional

to the risk covered by the insurance, that are due to the lack of precaution induced

by insurance.

In the present chapter we focus on the hidden-action version of the principal-

agent model. The hidden-information model is ignored, since it is closely related

to the adverse-selection problems, which were already covered in Chapter 9.
Two variations of the hidden-action model are distinguished:

1. The contracting between a risk-neutral principal and a risk-averse agent under unlimited
liability (covered in Section 11.2);

2. The contracting between a risk-neutral principal and risk-neutral agent who is subject to
limited liability (covered in Section 11.3).

In addition we discuss the renegotiation problem and possible solutions (Section

11.4).

The particular issues of contracting between one principal and several agents are

addressed in Chapter 12.

11.2 Risk Aversion and Incentives

The most frequently used hidden-action model analyzes the contracting relationship

between a risk-neutral principal and a risk-averse agent under unlimited liability.

This model offers a framework to analyze the trade-off between the efficient risk

allocation and effort incentives and to show why implementing high effort makes

it necessary to expose the agent to some income risk (coinsurance).

Consider, for a moment, the contracting problem when both parties are risk-

neutral and subject to unlimited liability. Then, the contracting problem has a simple

solution: The principal offers a franchise contract that "leases" the job to the agent

in exchange for a fixed rental fee. This contract exposes the agent to high income

risk, while it fully insures the principal's income. But since the agent is risk-neutral,

he does not mind taking that risk. The advantage of this contract is that it sets

full-powered effort incentives. The private and social marginal benefits of effort

coincide when the agent is made into a residual claimant who collects the entire

surplus (net after deducting of a fixed rental fee). Therefore, if the agent is risk-

neutral, the contracting problem has a trivial solution, and there is no trade-off

between efficient risk allocation and effort incentives. Such a trade-off occurs only

if the agent cares about risk or if limited-liability considerations preclude efficient

incentive schemes.

11.2.1 A Simple Model

We start with a simple 2 x 2 model, with two states and two effort levels, that

gives some basic insight without a great deal of technicalities. In terms of tools and

procedures, this model is quite similar to the analysis of insurance and screening



280 Incomplete Information and Incentives

in Section 9.5.1. If you have read that section carefully, you may just skim through

these pages until you reach the general analysis in Section 11.2.2.

Consider a risk-neutral principal who may hire a risk-averse agent (from a pool

of potential agents).2 If a contract is signed, the agent performs a certain task and

chooses an action from the action set {ai,ah},ah>ai, where h and £ are mnemonic

for high and low. The agent's action is his private or hidden information. The

principal earns a random output or revenue Y e{yg, yb}, yg > yb, where g and b

represent the good and the bad state of nature, respectively. The agent's choice of

effort affects the probability distribution of Y, but the support is the same for all

actions. In particular, high effort gives rise to a higher probability of the good state

output yg. Denoting the conditional probability of Y = yg, conditional on the choice

of effort ai, by pi,i eh, £, it is assumed that 1 > ph > pi > 0.

Rules of the Game

1. The principal offers a complete contract, C = {wg, Wb, at}, that stipulates the agent's
effort and remuneration, contingent upon the state realization / e {h,£}.

2. The agent either accepts or rejects the contract; rejection earns him the reservation
utility u.

3. If the agent accepts, he exerts effort, either high (h) or low (I).

4. Nature draws either the good (g) or the bad (b) state, with probability pt or 1 — pt,
respectively, that drawing becomes common knowledge, payments are made, and the
market game is over.

Payoffs and Marginal Rates of Substitution

The expected utility of the agent who accepts the contract C and exerts effort at is

U(at) := ptu(wg) + (1 - pt)u{wb) - c(at), i e {h, 1}

where u is a strictly concave function (risk aversion). And the associated expected

utility of the principal is

n,- := Pi(y8 - wg) + (1 - pi)(yb - wb), i e {h, £}.

Therefore, the marginal rates of substitution (MRS) are, for / e {h,£},

dwb _ Pi u\wg)

~ 1 - Pi u\wb)'
£/(a/)=const y i v DJ

dwb Pi

FI/=const ^ '

Since pu > pi, the MRS of the high-effort agent is always higher than that of

the low-effort agent. In words, the agent who exerts effort an is willing to forgo

more wealth in the bad state b in exchange for obtaining one extra dollar in the

good state g because the event in which this extra dollar is forthcoming occurs

2 The risk neutrality of the principal reflects the possibilities of diversification of financial assets; the risk aversion
of the agent reflects the fact it is difficult to diversify human capital.
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Agent
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contracts

Wg

nb

Figure 11.1. Efficient Allocation.

with higher probability. Similarly, the principal's MRS is higher if he deals with

a high-effort agent. These are the single-crossing properties that you came across

already in several places in this book.

Efficiency and the Optimal Contract under Complete Information

An efficient allocation is fully characterized by three requirements:

1. The MRSs of principal and agent are equal.
2. The agent earns his reservation expected utility: Ufa) = u.

3. The agent's effort a\ maximizes the principal's expected utility.

An immediate implication of the MRS condition is that marginal utilities must

be the same across states: u'g — u!
h. Hence, efficient wages are state-independent

(wg = Wb), i.e., the principal offers full income insurance to the agent.3

The Edgeworth box diagram in Figure 11.1 offers a useful illustration of the

efficient allocation. There, the Uh and Ui curves represent the agent's indifference

curves that assure the reservation expected utility u. Similarly, the Y\h and F^

curves represent the principal's indifference curves if the agent exerts high and low

effort, respectively. The marginal rates of substitution of principal and agent are

the same on the fixed-wage contracts line, whereas the principal's expected profits

Tlh, Tli can be read from the intersection of the principal's indifference curves

with the franchise contracts line. Evidently, in this illustration one has Ylh > Tl£.

Therefore, in this case ah is the principal's best choice and the optimal allocation

is as follows:

a = Wg = Uh=u, = n*

3 It is often overlooked that the full-insurance property is an artifact of the assumed additive separability of the
utility. With more general utility functions, equality of the MRSs entails either over- or underinsurance, depending
upon the income elasticity of the supply of effort; for a full characterization of the optimal risk allocation see
Brown and Wolfstetter (1985).
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If the principal could observe the agent's effort, the efficient risk allocation

would also be prescribed by the optimal contract. However, since the principal

cannot observe effort, the provision of complete insurance to the agent destroys

effort incentives. Indeed, if the agent is offered the (first best) efficient contract, he

will shirk and exert only the low effort. Therefore, the principal has to deviate from

the (first best) efficient contract, and either settle with low effort and maintain full

income insurance or give up full income insurance and implement high effort.

The Optimal Contract under Hidden Action

It is useful to decompose the search for the optimal contract under hidden action
into two steps:

1. find the optimal wage schedule {wh, wi)\ that implements a given action at at the lowest
expected wage cost;

2. find the action that maximizes the expected profit, given the cost of implementation
determined in step 1.

Obviously, if he wants to implement the lowest action at, the principal minimizes

the cost of implementing that action by offering the expected utility u combined

with full income insurance, as in the efficient allocation (see point A in Figure 11.1).

The intuition is straightforward: start with another wage scheme on the same in-

difference curve of the low-effort agent. Then the principal can lower the average

wage and still keep the agent indifferent by offering a smoother income profile.

The lowest expected wage is reached at the point of full income insurance.

However, if one wants to implement the high-effort action ah, full income insur-

ance (as in point B of Figure 11.1) is not feasible, because if full income insurance

is offered, the agent shirks and exerts only low effort a^. It follows that implemen-

tation of the high effort is only possible by exposing the agent to some income risk

in the form of paying him more in the good than in the bad state of nature.

The intuition for this necessity of income risk is straightforward. If one increases

pay in the good state by a certain amount, the high-effort agent is willing to give up

more income in the bad state than the low-effort agent, simply because high effort

reduces the probability with which the bad state occurs.4 Therefore, if one moves

sufficiently far along the indifference curve Uh towards the right, one can induce

the agent to work hard, and thus implement an.

In Figure 11.2 the shaded area represents all wage schedules {wn, w?) that im-

plement an, because there the agent earns his reservation expected utility or more

and prefers high effort. The least-cost implementation of an is reached at point B,

where the two indifference curves Uh, Ut and the principal's indifference curve n^

all intersect.5

Finally, which effort should be implemented? Evidently, in Figure 11.2 the high

effort is optimal for the principal, since X\!h > Tli, even though the presence of

hidden action lowers the expected profit from Tlh to n^.

4 Of course, this is really the meaning of the assumed single crossing of the MRSs.
5 Make sure that you see why all other points in the shaded area give rise to a lower expected profit, given a = ah.
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Agent
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Figure 11.2. Optimal Contract under Hidden Action.

However, the optimality of an can easily be turned around. As an exercise, just

play with Figure 11.2 and make high effort less attractive by lowering the parameter

yg. Then, the ranking of expected profits can be turned around and from some point

onwards the low-effort fixed-wage contract is optimal.

Example 11.1 Suppose U(w, a) := <Jw — a2, ah = 2, at = 1, ph = 0.5, pt —

0.25, u = 2. Then, the optimal contracts implementing ah and at are respectively

wg = wt> = 9 (optimal contract implementing at), (11.1)

wg — 144, Wb = 0 (optimal contract implementing ah). (11.2)

The associated maximum expected profits of the principal are

= 0.25yg+0.15yb - 9.

(11.3)

(11.4)

Therefore, it is optimal to implement ah using contract (11.2) if and only if yg >

yb + 252.

Digression: The Linear Principal-Agent Model*

Here we digress briefly and describe a simple version of the hidden-action principal-
agent model, which we refer to as the linear model. This model is sometimes used
in the literature, and it plays an important role in the extension to multitask problems

by Holmstrom and Milgrom (1987, 1990, 1991).
The key assumptions of the linear model are6:

1. Linearity of agent's wage in output: W = w$ + sX.

2. Linear production function with additive noise Y: X = a + Y.
3. Normal distribution: Y is normally distributed with mean zero and finite variance a2 .

' What makes these assumption special and somewhat unappealing?



284 Incomplete Information and Incentives

4. Constant risk aversion: the agent has a constant-absolute-risk-aversion utility function
U(W, a) := u(W) - \a2 with u(W) := -e~rW, where r > 0 is the absolute degree of
risk aversion. The agent's reservation utility is normalized to zero.

5. The action variable is continuous: the agent chooses from a real-valued interval of pos-
sible action levels.

Note that the wage is made conditional on output rather than on the signal. Of

course, since output is monotone in 7, the choice of format does not matter.

Proposition 11.1 (Linear PA Model) The linear principal-agent model has the

following solution:

a*(s) = s, (11.5)

1+ra 2 ' ° 2(ra2

2(1 + ra2)
(11.7)

Proof If a random variable is normally distributed, its linear transformation is also

normally distributed. W = (a + Y)s + wo is a linear transformation of Y. Therefore,

W is normally distributed.7

By a well-known formula, the assumption of constant absolute risk aversion,

combined with a normal distribution, implies the following certainty equivalent of

W, denoted by w:s

u(w) = E[u(W)] ^ ^

where \xw is the mean and a2 the variance of W.

Due to the assumed linearity of the sharing rule,

sa, a^ — s2a2.

Therefore, the agent's expected utility, U(a) := E[u(W)] — ^a , is

U(a) = w--a2

r 2 2 1 2

= wo + sa — -s a a .

Given the contract (s, wo), the agent solves maxa U(a), which gives

a*(s) = s.

The principal anticipates the agent's choice of action, computes the reduced-form

expected profit function, and solves the optimal contract (s1*, WQ). The principal's

profit is n(a, s, wo, Y) := (a + F)(l — s) — wo. Therefore, the reduced-form

expected profit function is

7r*(s, wo) := E[n(a*(s), s, wo, Y)] = s(l — s) — wo.

7 Of course, if s = 0 the wage is no longer random.
8 Consult (R14) in Appendix D (Section D.4.3), where this rule is stated and proved.
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Given s1, the principal sets the smallest wo that assures participation by the prin-

cipal; therefore,

wo(s) = -s2(rcr2 — 1).
2

Finally, the principal solves max5 n*(s, WQ(S)), which gives

1

l+ra2

* _ ra2-!
W°~~ 2(ra2 + \)2'

and the principal's equilibrium payoff n* := n*(s*, wo(s*)) follows immediately.

•

Note that the principal prefers more noise in the production technology (a higher

a2), and he prefers to deal with a more risk-averse agent (a higher r). This is due

to the fact that the principal's source of income is insurance.

Essentially, the principal trades a risky lottery for a less risky one. In exchange he

collects an insurance premium. Of course, that premium is increasing in the agent's

measure of risk aversion, r, and in the measure of risk, a2.

If there were competition among principals for the services of the agent, the entire

gain from trade would go to the agent, and the entire gain relative to autarky would

be the agent's benefit from obtaining insurance. Of course, insurance is limited due

to moral hazard.

This concludes the digression on the linear model with a continuum of actions.

11.2.2 Generalization

We now return to the main theme, and generalize the simple 2 x 2 model from

Section 11.2.1. In particular, we allow for more than two actions and more than two

states. The main objective is to give a general account of the optimal implementation

of a given action, and to find sufficient conditions for the monotonicity of the

associated wage schedule.9

Assumptions

We maintain the assumptions of Section 11.2.1 except that we permit n > 2 states of

nature and m > 2 action levels. However, we also add some assumptions concerning

the probability distribution of events. As we show, these assumptions are sufficient

for the monotonicity of the wage schedule.

After the agent has exerted effort, both principal and agent observe a real-valued

signal Y e {y\,..., yn), n > 2, which may be interpreted as output or revenue,

drawn from a family of probability distributions {ps(ai), i = 1 , . . . , m, s =

1 , . . . , n) with the following properties:

9 The presentation follows the seminal paper by Grossman and Hart (1983) and adopts some simplifications due
to Kreps (1990, Chapter 16).
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Assumption 11.1 (Full Support) The (conditional) probability distribution/?^,)

:= Pr{F = ys \ at) is positive for all s and /, and twice continuously differentiate

in at.

Assumption 11.2 (MLRC) Higher effort gives rise to a stochastically larger signal

in the sense of the monotone likelihood-ratio condition:10

Ps(at) Pr(at)at>ah s>r => — ^ > — ^ . (11.8)

ps(aj) Pricij)

Assumption 11.3 (CDFC) The cumulative probability distribution of F,

s(ai), (11.9)
s=l

is convex in at for alls = 1 , . . . , n and/ = 1 , . . . , m ("convexity-of-the-distribution-

function condition").

Interpretation

If the family of probability distributions pSi satisfies the MLRC, it also satisfies the

first-order stochastic dominance FSD relationships:11

at > ar => Pr{at) < Pr(a/) Vr = 1 , . . . , n.

In words, higher effort gives rise to a stochastically larger random signal. Note,

however, that FSD does not also imply the MLRC; therefore, the MLRC is stronger

than the already restrictive FSD relationship.

In contrast, the CDFC says that an increase in effort has a negative but increasing

marginal impact on the probability of low outcomes. Equivalently, it says that

higher effort has a positive but decreasing marginal impact on the probability of

high outcomes. Essentially, this is a "law of return" (diminishing marginal product)

assumption.

Optimal Contract

Denote the agent's expected utility for a given contract C = {w\,..., wn, at} by

Uiai) := ^ps(ai)u(ws) -c(at). (11.10)
s=l

Then the optimal contract offered by the principal maximizes his expected payoff

subject to the following participation and incentive constraints:

n

max V ps {at) (ys - ws) (P)

s.t. U(at) > u (participation constraint),

U(ai) > U(aj) Vj = 1, . . . , n (incentive constraints).

10 For some useful relationships between the MLRC and FSD, you may wish to go back to Section 4.3.3 in the
chapter on stochastic-dominance theory.

11 Consult the chapter on stochastic dominance, in particular Proposition 4.3 in Section 4.3.3.
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Therefore, uf(wr) > uf(ws), and hence (due to the strict concavity of w), ws > wr,

which proves the asserted monotonicity.

It remains to be shown that incentive constraints are indeed only binding "down-

wards" as assumed above. This is where the CDFC assumption comes in. The proof

is a bit long and hence relegated to an appendix (Section 11.6). •

Can Contracts Fail to be Monotone?

We close with an example that shows that monotonicity of the wage schedule can

easily be destroyed. This should not be terribly surprising, given that strong assump-

tions had to be invoked to assure monotonicity.

Example 11.2 Suppose u(w) := ln(w), n = 3 (three states) and m = 2 (two effort
levels), and assume the conditional probability distributions summarized in the
following table (y3 > y2 > y\, a2 > a\):

i P\i Pli P3i

I 1/3 1/3 1/3

h 1/9 5/9 3/9

Then the optimal wage schedule implementing an is not monotone. In fact, em-

ploying (11.11), one obtains (note that X, \x\ > 0)

( Pu\
w\ = X + /xi 1 < A,

V PihJ
( Pu\

W2 = A + \x\ 1 > X,
\ PihJ

1 _ E*L
P3h

Hence, ws is not monotone.

11.3 Limited Liability and Incentives

Now suppose the agent is risk-neutral but faces a liability constraint. This also gives

rise to an incentive problem that is, however, easier to solve and generalize.

At the outset it should be clear that if risk neutrality is combined with unlimited

liability, the incentive problem has a simple solution. Just make the agent a residual

claimant who pays a fixed sum to the principal, collects the entire revenue, and thus

bears all risk. Such & franchise contract, as it is often called, is efficient because

it makes private and social benefits of agents' effort coincide, while risk does not

matter under risk neutrality.

In some circumstances franchising is quite meaningful. For example, in London

taxi drivers typically pay a fixed rental for their cab and then keep their entire

revenue. In the taxi business, revenue fluctuations are probably not terribly signifi-

cant. Therefore the benefits of effort efficiency may outweigh the unfavorable risk

allocation.14

14 However, this raises a puzzle: why are cab operators almost everywhere except in London remunerated like
sharecroppers, earning a 50% share of their daily revenue?
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However, in many cases franchising is not feasible. Often agents have insufficient

wealth for bonding, or the law severely restricts penalties.

In the following we consider a framework where franchise contracts are not fea-

sible because their adoption would violate the liability limit in some states. We will

characterize the optimal contract that implements a given action. Again we start with

a simple two-state model, which will then be generalized. Unlike in the previous

section, we admit a continuum of actions right from the beginning.15

11.3.1 A Simple Model

Consider the two-state principal-agent model from Section 11.2. Only two assump-
tions are changed:

1. The agent's action space is the interval A := [0, a], a > 0.
2. The agent is risk-neutral and has the utility function u(w, a) := w — c(a), where c(a)

is the twice continuously differentiable cost-of-effort function with c(0) = 0, c'{a) > 0,
c"{d) > 0.

After the agent has chosen his action, both principal and agent observe a binary

signal y e Y := {yg, yb}, yg > yb, which may be interpreted as output or revenue.

Here g is mnemonic for "good" and b for "bad" signal realization. The signal is

drawn from the family of twice continuously differentiable probability distributions

p(a) := Pr{F = yg \ a], a e A, (11.12)

with the following properties for all a e A:

p(a) G (0, 1), p\a) > 0, p"(a) < 0. (11.13)

The first of these requirements excludes the trivial case of a moving support, the

condition p'{a) > 0 means that Y = yg is favorable information with respect to the

agent's action, and the concavity requirement p"(a) < 0 assures that the agent's

decision problem is well behaved.

Optimal Contract to Implement a Given Action

Suppose the principal wants to induce the agent to choose the given action a > 0 at

the minimum expected wage cost. The optimal contract {wg,Wb} solves the follow-

ing optimization problem (note that max — E[w(Y)] is equivalent to min E[w(Y)]):

max - (wb + p(a)(wg - wb)) (11.14)
Wg,Wb 6

s.t. U(a) := wb + p(a)(wg - wb) - c(a) > 0, (11.15)

a e argmax[/(5), (11.16)
aeA

wb + L>0, (11.17)

wg + L>0. (11.18)

15 The presentation in this section borrows heavily from Demougin and Fluet (1998, 1999). Some results were
also derived by Sappington (1983, 1991), Innes (1990), and Park (1995).
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Here (11.15) is the participation constraint (the agent's reservation utility is nor-

malized to zero), (11.16) the incentive compatibility constraint, and (11.17)-

(11.18) are the liability constraints.

Proposition 11.3 (Optimal Contract) The optimal contract, implementing the

given action a > 0, is the following increasing wage schedule:

Wg = wb + ——- > wb, (11.19)

wb = max(-L, c(a) - £J^-C'(a)\ . (11.20)

The associated expected wage cost Cw(a, L) is

Cw(a, L) = maxj-L + ^ - c ' ( a ) , c(a)\ . (11.21)

Proof The first-order condition of the agent's decision problem (11.16) implies

c'(a)
W W >o

The concavity assumption concerning p{a) assures that this condition holds at a

global maximum and not elsewhere.

Having shown that wg > wb, it follows that (11.18) is implied by (11.17).

Therefore (11.18) can be eliminated. And assertion (11.20) follows immediately

from the remaining constraints (11.15), (11.17), after substituting (11.19). Assertion

(11.21) follows easily. •

Is the optimal contract implementing a given action efficient? Efficient implemen-

tation means that the expected wage cost equals the cost of effort: Cw(a, L) = c(a).

Proposition 11.4 (Inefficiency?) The optimal contract, implementing a given ac-

tion a > 0, is

1. efficient if and only if liability constraint (11.17) is not binding;
2. inefficient if the liability limit L is sufficiently small

Proof 1: By (11.21), Cw(a, L) = c(a) if and only if c(a) >-L + [p(a)/pf(a)]

cf(a), which is equivalent to wb = c(a) — [p(a)/p'(a)]cf(a). This is the solution

that one would also obtain if the liability constraint were omitted from the program.

2: The optimal contract is inefficient if Cw(a, L) > c(a). By (11.21)

Cw(a, L) - c{a) = -L + ^j\c\a) - c(a).
pr(a)

We will show that [p(a)/p'(a)]c'(a) > c(a). Therefore Cw(a, L) > c(a) if L is
sufficiently small.
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The assumptions c(0) = 0, c\d) > 0, c"(a) < 0 for all a > 0 imply c(0) >

c(a) — ac'(a)\ hence for all a > 0

c(a)
a > c'(a)

Similarly, the assumptions p(0) > 0, p{a) > 0, pf{a) > 0, p"{a) < 0 imply for

all a > 0

p(a) - p(0) p(a)
a < — < ——.

p (a) P (a)

Combine the two and one has [p(a)/p'(a)]cf(a) > c(a), as asserted. •

We summarize: The optimal contract pays a fixed wage plus a bonus equal to

d{a)jp\d) if yg has been observed. The value of the fixed wage depends upon

whether the liability or the participation constraint is binding. If the liability con-

straint binds, the fixed wage is equal to — L, the expected wage cost to the principal

is Cw(a, L) > c(a), and the agent earns rent. If the participation constraint binds,

one has efficiency Cw(a, L) = c(a), and the agent earns no rent. Inefficient imple-

mentation and rent occur in tandem.

Discussion

Why does efficient implementation not follow already from the properties of the

optimal franchise contract spelled out in the introduction to this section? And how

could one get efficient implementation of a certain action if the franchise contract

violates the liability limit in some state?

True, the optimal franchise contract implements the optimal action a* at which

marginal revenue equals marginal cost of effort: pf(a*)(yg — yb) = cf(a*), but it

does not implement every arbitrary action a e A. It may very well occur that a cer-

tain action a^a* admits efficient implementation: Cw(a, L) = c(a), even though

a* cannot be implemented efficiently because Cw(a*, L) > c(a*). Efficient imple-

mentation of a given action and implementation of the efficient action must be

distinguished.

11.3.2 Generalization

We now generalize the model to n > 2 signal realizations. Amazingly, the results

of the binary signal model generalize in a strong sense. Indeed, the optimal contract

to implement a given action is a bonus contract that pays a flat wage in all states,

unless the most favorable signal is observed, in which case it adds a bonus payment

to the flat wage. An immediate implication is that the principal can, without loss

of generality, aggregate information and distinguish only between a good state (the

most favorable) and a bad state (all other states). Therefore the w-signal model can

be reduced to the simple binary signal model.
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Assumptions

After the agent has exerted effort, both principal and agent observe a real-valued

signal y e Y := {yi , . . . , yw}, w > 2 (which may be interpreted as output or

revenue), drawn from a family of probability distributions {/?(y, a), a e A, y £ Y}

with the following properties:

Assumption 11.4 The probability distribution

p ( y , a ) : = P r { Y = y \ a }

is positive and twice continuously differentiable everywhere.

Assumption 11.5 (MLRC) Y satisfies the strict monotone likelihood-ratio

condition

a fpa(y,ay

dy \ p(y,a)
> 0 WaeA.

Assumption 11.6 (CDFC) Y satisfies the convexity-of-the-distribution-function
condition, i.e.,

P(y',a):= X>(y,a)
y<yf

is convex in a for every yf e Y.

Optimal Implementation

The optimal contract implementing a given action a > 0 minimizes the expected

wage E[w(Y)] (equivalently, maximizes — E[w(Y)]), subject to the constraints of

participation (U(a) > 0), incentive compatibility (a e argmax5GA U(a)), and

liability (w(Y) + L > 0).

Assumptions 11.4-11.6 assure that the first-order approach to the principal-agent

problem is valid. This allows us to replace the incentive-compatibility requirement

by the first order condition of the agent's maximization problem (see Rogerson

(1985b)). Therefore the Lagrange function of the maximization problem can be

written in the form

yeY

where a, /5, and y(y) are the multipliers associated with the agent's incentive

compatibility, participation, and liability constraints.

Proposition 11.5 (Bonus Contract) The optimal contract implementing the given

action a is a bonus contract. It offers a base wage wt> in all states, plus a bonus

b := wg — Wb > 0 if and only if signal yn is observed, exactly as in the binary

signal model summarized in Proposition 11.3.
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Proof Suppose yS = 0 (the participation constraint does not bind). Compute the

first-order condition concerning w (y). Since the multipliers y (y) associated with

the liability constraints are nonnegative, one obtains

0 = ~P(y, a) + (*Pa(y, a) + y(y) > -p(y, a) + apa(y, a).

Therefore

c < ^ - , (11.22)

where the equality holds if and only if the liability constraint does not bind (y = 0).

Now recall that p/pa is strictly decreasing in y, by the MLRC. Therefore, (11.22) is

satisfied either with inequality for all y (which is equivalent to y > 0 everywhere) or

with equality at and only at y = yn (which is equivalent to y (yn) = 0 and y(y) > 0

elsewhere).

The case y (y) > 0 everywhere can be ruled out. For if it were true, one would

have w(y) = — L everywhere, and hence

Pa(y, a)w(y) - c\d) = -L ^ pa(y, a) - c\y)
yeY yeY

= -c\a) < 0.

But this contradicts the first-order condition concerning the agent's effort decision.

We are thus left with

y(yn) = 0 and y(y) > 0 Vy ^ yn.

Hence the optimal contract is a bonus contract

w(y) = -L Vy^yn, (11.23)

w(yn) = -L+ C
r
(a) . (11.24)

Now suppose ft > 0 (the participation constraint binds). Then the optimal im-

plementation of a is efficient: Cw(a, L) = c(a). Therefore the limited liability con-

straint cannot bind, and the optimal contract is

w(y) = w0 := c(a) -c (a) Wy ̂  yn,
P(ya)

Define the binary statistic (where yg and y\, are reals with yg > y^, for example

yg -= yn, yb := y\)

x . = fyg i f Y = yn,
* \yb if Y±yn.

Then the optimal contract implementing a is exactly the solution of the simple

binary static model summarized in Proposition 11.3. •
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Remark 11.1 (Further Generalization) This result can be further generalized.

Remove Assumption 11.5 (MLRC), and assume instead that the likelihood ratio

has a maximum for some y e Y. Then Proposition 11.5 also holds with the proviso

that the maximizer of the likelihood ratio takes the place of yn (see Demougin and

Fluet(1998)).

11.3.3 Monitoring and Incentives*

Having shown that signals can be summarized by a binary statistic, we are now

able to extend the principal-agent model to include monitoring and the associated

choice of information system. This puts the principal-agent problem into a broader

perspective.

We now assume that the principal can choose between different information sys-

tems characterized by a family of binary random variables: Yi 6 {yg, yb}. Naturally,

we assume that more precise information requires more monitoring, which in turn

involves higher cost of monitoring. Therefore, "more precise" means that a given

action can be implemented at lower expected wage cost.

Signal Precision

Proposition 11.3 indicates that the likelihood ratio plays a pivotal role in the ranking

of binary information systems. In the following we employ the dimension-free

elasticity of the probability of the favorable signal as a ranking criterion.

Definition 11.1 Consider two binary signals, Yi, Yj, with the associated proba-

bility distributions Pi(a), Pj(a). The signal Y( is called more precise than Yj for

implementing a if the elasticity of pi (a) is greater than that of pj (a):

9i(a)>9j(a)i (11.25)

0(a) := afJ®l (elasticity of p(a)). (11.26)
p(a)

Lemma 11.1 The elasticity of the probability of the favorable signal is bounded as

follows:

9(a) e [0,1]. (11.27)

Proof 9 (a) > 0 follows from the fact that p(a), p!(a) > 0. In order to prove that

9 (a) < 1, note that, due to p"{a) < 0,

p(P)<p(a)-ap'(a).

Rearrange, and one obtains

ai ^ ap{a) <r A P(0) ^ 1
9(a) := — — < 1 — < 1. a

p(a) p(a)

Proposition 11.6 Consider two binary signals, Y( and Yj. The expected wage cost

of implementing a given action is monotone decreasing in signal precision:

C?{a, L) < Cf(a, L) «=> 9t(a) > Oj(a). (11.28)
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Proof Using (11.25), the expected wage cost of implementing a, which was given

in (11.21), can be written in the form

C?{a, L) = max{-L + ^ - ^ , c(a)\ . (11.29)

Also recall that Cf(a, L) > c{a) if and only if liability constraint (11.17) binds,

which necessarily occurs if the liability limit L is sufficiently small (see Proposition

11.4). Therefore Cf (a, L) is either increasing in 9[ (a) (which occurs if and only if

(11.17) binds) or independent of 9[ (a), u

Optimal Monitoring and Incentive Package

Now suppose there is a continuum of binary information systems, characterized by

the precision measure #, and let the cost of monitoring be a continuously differen-

tiable function of 9 with C™(a, 9) > 0 everywhere.

Then the total cost of implementing a given action, Cf (a, L), is the sum total of

the expected wage cost and the cost of monitoring. And the principal's problem of

implementing a given action at minimum cost is to solve

C\a,L):= min Cm(a, 6) + Cw(a, L, 9)
#€(0,1)

= c(a) + min {R(a, 9) + Cm(a, 9)}, (11.30)
0e(0,l)

where

R(a, 9) := Cw(a, L, 9) - c(a) (11.31)

denotes the agent's rent.

If the liability constraint (11.17) binds, the agent earns rent. In that case the

optimal monitoring intensity 9* must equalize the marginal cost of monitoring and

the marginal benefit due to a reduction in the agent's rent,

C£(a,9*) = R0(a,9*). (11.32)

If the liability constraint (11.17) does not bind, and thus the agent earns no rent, the

optimal monitoring intensity is the smallest 9 compatible with zero rent, which, by

definition of R and 9, is

{^} (11.33)
L

By construction, if 9 — 9, the agent's rent is equal to zero, and if 9 < 9, his

rent is positive and strictly decreasing in 9. Therefore, using the definition of rent

R, one can rewrite the principal's problem (11.30) as follows:

C\a, L) = min -L + ^ - ^ + Cm(a, 9). (11.34)
e<e 9

And the marginal condition for an interior solution 9 e (0, 9) can be written as

0C%'(a,9) = a^-:=B(a,9), (11.35)

where B(a, 9) is the expected wage bonus.
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Figure 11.3. Optimal Monitoring Intensity.

Comparing (11.34) with (11.30), we conclude: the optimal monitoring is equal

to 9* unless 0* > 0, in which case the solution is to set 6 = 6.

Figure 11.3 illustrates the solution of the optimal-monitoring problem. There 6

is the monitoring intensity at which the bonus curve B(a,6) intersects the no-rent

line L + c(a), and 0* is the monitoring intensity where the bonus curve intersects

the 6C™ curve. The optimal monitoring intensity is defined by the point E. In part

a) of Figure 11.3 the solution is 6 = 0*, and the agent's rent is the vertical distance

between E and L + c(a), whereas in part b) the solution is 6 = 6 and the agent

earns no rent. The latter occurs if the liability limit is high or the marginal cost of

monitoring is small.

Comparative Statics

Suppose the liability limit L is increased. This pushes up the no-rent line L+c(a) in

Figure 11.3. In case a) both 6 and B are unaffected and the agent's rent is diminished,

whereas in case b) monitoring is lowered and the expected bonus is increased.

Therefore, stronger incentives are substituted for monitoring expenditures.

Next, suppose the marginal cost of monitoring Cf is increased. In case b) this has

no effect on monitoring and incentives, whereas in case a) monitoring is reduced

and the expected bonus is increased. Again, stronger incentives are substituted for

monitoring expenditures.

Example of Monitoring Technology

We close with a nice example of a monitoring technology introduced by Demougin

and Fluet (1999).

Suppose the agent makes mistakes in carrying out his job. The agent's action de-

termines the probability distribution of mistakes, and the principal's monitoring in-

tensity determines the probability distribution of mistakes detected by the principal.
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Denote the number of mistakes by the random variable F, and the number of

mistakes detected by the principal by Z. Both random variables are Poisson-

distributed:

Xk

Pr{F = k} = e~k — , k = 0, 1 , . . . , (11.36)
k\

Pr{Z = k} = e-°
k(^-, k = 0, 1 , . . . (11.37)

kl

By a well-known property of Poisson distributions, the parameter X is the expected

number of mistakes, and 9X is the expected number of detected mistakes, given the

monitoring intensity 9. As an interpretation, you could look at Y as the number of

defective output units and the monitoring intensity 9 as the proportion of outputs

that are quality-inspected.

Next, measure the agent's action a by the probability of no mistake,

a := Pr{F = 0} = e~k. (11.38)

Putting pieces together, one obtains the following probability distribution of de-

tected mistakes:

Pr{Z = k\a} = ae(-0l*a) , k = 0, 1 , . . . , (11.39)
A:!

which is decreasing in a and increasing in 9.

A contract implementing a given probability of no mistake conditions the wage

on the number of detected mistakes, w(Z). Given a cost-of-monitoring function

Cm(9,a), the principal can compute the contract and monitoring package that

optimally implements a given action a.

11.4 Renegotiation Problem

A fundamental yet frequently overlooked problem in information economics is the

fact that optimal contracts are not renegotiation-proof. At some point in the contract

relationship both parties have an incentive to renegotiate the original contract. Both

parties can gain from it. However, the anticipation of future renegotiation typi-

cally destroys incentives. This suggests that the contractual solution of information

problems requires a reliable commitment never to renegotiate, which is, however,

difficult to achieve.

In order to explain the renegotiation problem in the present context, suppose

the two parties have signed the contract that implements some effort level greater

than a\ at minimum expected wage cost. Then, once the agent has exerted effort,

but just before the signal realization is observed, both parties have an incentive

to tear up that contract and replace it by a fixed-wage contract. For, once the
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agent has executed his action, effort incentives are superfluous, and all that matters

is the allocation of income risk. At this point, the agent is willing to trade the

initial contract for a fixed-wage contract and pay an insurance premium in the

form of a lower expected wage cost. This way, both principal and agent are better

off.

However, once this is understood, the agent anticipates that the original contract

will later be replaced by a fixed-wage contract. And therefore, the agent will chisel

and exert only the lowest possible effort level. Effort incentives are thus completely

destroyed. This suggests that optimal implementation cannot work unless the prin-

cipal commits himself never to renegotiate, no matter how much he could gain from

renegotiation.

Of course, such a commitment may be difficult to achieve. Therefore, one would

like to know how bilateral trade is affected if one adds a renegotiation stage to the

principal-agent game.

If one assumes that one party makes a take-it-or-leave-it renegotiation offer, there

are still two quite different specifications of the renegotiation game. Essentially, it

matters a great deal who makes the offer. If it is the principal who makes the offer,

he does so without knowing the agent's effort choice, whereas if it is the agent, he

can use the offer to signal his effort choice, which turns the renegotiation game into

a signal game.

Both approaches are pursued in the literature. In Fudenberg and Tirole (1990), Ma

(1991), and Maskin and Tirole (1992) it is the principal who makes the renegotiation

offer. In Ma (1994) and Matthews (1995a) the informed party, the agent, makes the

offer.

If the principal makes the renegotiation offer, the equilibrium is fairly compli-

cated. The principal offers a menu of renegotiation-proof contracts, the agent uses

a mixed effort strategy, and altogether payoffs are lower than if renegotiations are

ruled out.

If the agent makes the renegotiation offer, the equilibrium is a very simple ar-

rangement. The principal simply offers a franchise contract as initial contract and

waits for the agent to renegotiate it to the contract that yields the optimal implemen-

tation of the desired effort; the agent chooses the desired action, and equilibrium

payoffs are unaffected by renegotiations.

Specifically, in the 2 x 2 framework, the principal proposes the franchise contract

described by point A! in Figure 11.2. If this initial contract is not renegotiated, the

principal earns as much as he would earn if he had optimally implemented the

lowest effort at. However, the franchise contract A' sets high-powered incentives,

and the agent chooses effort an and makes the renegotiation offer to replace A!

by contract B. Evidently, this renegotiation offer makes sense only if the agent

has indeed exerted high effort ah. Thus, the renegotiation offer signals the agent's

choice of high effort. The principal accepts the offer, and altogether both, parties

earn the same payoffs as in the world without renegotiations.16

16 The details are spelled out in Matthews (1995a).
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11.5 Bibliographic Notes

The most influential contribution to the principal-agent model with risk-incentive

trade-off is probably Holmstrom (1979), even though a number of similar

contributions was published at around the same time (see for example Harris and

Raviv (1979)). The further literature focused on variations and extensions of the

basic model and on other applications surveyed in Hart and Holmstrom (1987).

One important extension concerns repeated agency relationships, with the aim to

understand whether a long-term relationship may ease the trade-off between insur-

ance and incentives (see Rogerson (1985b) and Holmstrom and Milgrom (1990)).

Another important contribution by Holmstrom and Milgrom (1987) shows that

long-term contracts may be simple linear contracts. This indicates that complicat-

ing the model may actually give rise to simpler and more realistic contract formats.

(Recall: a similar conclusion was reached in our analysis of the renegotiation prob-

lem.)

While most contributions assume one-dimensional effort, Holmstrom and

Milgrom (1991) focus on multitask principal-agent problems.

Another branch of the literature contributes to the ranking of information sys-

tems, the characterization of optimal monitoring policies, and problems of collusion

associated with the employment of third parties engaged with monitoring. Some

of these issues were already sketched in Section 11.3, in the framework of the al-

ternative limited-liability principal-agent model. There, however, the role of third

parties in monitoring and the related problems of collusion were left out.

Work on collusion and the role of third parties is still in progress. Early con-

tributions on collusion and collusion proofness are Tirole (1986) and Brown and

Wolfstetter (1989). Important recent contributions are Kofman and Lawarree (1993,

1996), Laffont and Martimort (1997), and Dittmann (1997).

An alternative perspective on monitoring that combines the renegotiation prob-

lem with the problem of optimal monitoring is sketched in Cremer (1995). He makes

the interesting observation that lowering the cost of monitoring may actually be

counterproductive because it tends to make a commitment not to renegotiate less

credible.

Among the many applications of the principal-agent problem we mention finance

and health economics. An excellent survey of the corporate finance literature on

security design that focuses on agency costs and corporate control is Harris and

Raviv (1989). A useful collection of papers on health economics is McGuire and

Riordan (1994).

For a more applied outlook take a look at Lazear (1995a, 1995b). The latter in-

cludes an account of some real-life experiments on reward structures for production

workers, carried out at Safelite Glass Corporation.

We close with a note on a technical issue. If one assumes a continuum of effort

levels (as in Section 11.3), one has a continuum of incentive constraints. This raises

technical difficulties. Researchers at first attempted to circumvent these difficulties

by replacing the continuum of incentive constraints by one first-order condition:
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a e arg maxfl[/(a), which lead to a tractable problem known as the first-order

approach to the principal-agent problem (see for example Harris and Raviv (1979),

Holmstrom (1979), and Shavell (1979)). However, as Mirrlees (1975) pointed

out, the first-order approach may lead one astray. Subsequently, researchers have

searched for conditions under which the convenient first-order approach is justified.

As long as one sticks to an additively separable utility function of the agent, the

equivalent of the assumptions (11.1)-(11.3) is sufficient for the validity of the first-

order approach (see Rogerson (1985a) and Jewitt (1988)). However, more stringent

requirements are needed if one allows for more general utility functions (see Brown,

Chiang, Ghosh, and Wolfstetter (1986) and Alvi (1997)).

11.6 Appendix

Here we spell out the last part of the proof of Proposition 11.2. The proof is split

up into two lemmas.

Lemma 11.2 Consider a monotone nondecreasing wage schedule: w\ < w^ <

• • • < Wn- Then U(ai) = X)"=i Psiu(ws) — c(at) is concave in at.

Proof Let 8S := u(ws) — u(ws-\) for s = 2 , . . . , n, and S\ := u(w\). Then17

where Pr(tf;) := 1 - Pr(ai). By the assumed CDFC of Pr(a,-), the function Pr(a,-)

is concave in at for all r. Hence, U(ai) is the sum of a linear combination of

the concave functions Pr(ai) (with nonnegative weights), the constant S\9 and the

concave function —c(ai). The sum of concave functions is also concave (see Section

C.3 in Appendix C). Therefore U{a{) is a concave function of a,-, as asserted. •

Lemma 11.3 Consider the optimal implementation of at, i > 1, ignoring the up-

ward incentive constraints, Le.,ls

n

max- y^WsPsiat) (P2)

s.t. U(cii) >u,

U(ai)>U(aj) V/ = l , . . . , i .

Every solution of program (P2) is also a solution of program (PI).

17 Use pencil and paper to check the step from the second to the third equality.
18 Note: compared to (PI), in program (P2) the incentive constraints for a,-+i, ... ,am are missing.
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Proof From the first part of the proof of Proposition 11.2 we know that in the

absence of upward incentive constraints the optimal contract implementing at is

monotone nondecreasing. Suppose the incentive constraint r < i is binding.19 Then

one has U (at) = U(ar). Now consider an action ay, for j > /.Obviously, the action

at can be represented as a convex combination of ar anday,i.e.,^ = aar+(l— a)aj

for some a e (0, 1). Therefore, using the concavity of U(a) established in Lemma

11.2, one obtains

> aU(ar) + (1 — a)U(dj) (since U(a) is concave)

= aU(at) + (1 - <x)U(aj) (since U(at) = U(ar)).

Hence, U(at) > U(cij). In other words: the solution of the program that omits

upward incentive constraints also satisfies these constraints. And therefore every

solution of (P2) is also a solution of (PI). •

Finally, notice that the solutions of both (PI) and (P2) are unique, because both

are concave maximization problems. Therefore, the optimal contract implementing

cii,i > 1, has the monotonicity property established for the solution of (P2). This

completes the proof.

19 Some incentive constraint must be binding, because otherwise the optimal contract entails a state-independent
wage, which can only implement the lowest action a\.
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Rank-Order Tournaments

Well in our country, said Alice, still panting a little, you'd generally get
to somewhere else - if you ran very fast for a long time, as we've been
doing. A slow sort of country, said the Queen. Now here you see, it takes
all the running you can do to keep in the same place.

Lewis Carroll

12.1 Introduction

In our analysis of the principal-agent problem we explained why labor contracts may

have a piece-rate component. While piece rates reward workers according to their

absolute output, we now turn to incentive schemes based on relative performance,

known as rank-order tournaments.1

A rank-order tournament is a competition between several workers who perform

similar tasks. The employer announces a set of prizes to be awarded in the order of

observed output. Workers then compete with their effort to gain rewards for high

and avoid punishment for low performance.

In many applications an important advantage of tournaments is that they re-

quire only a ranking or ordinal measurement of outputs. The latter may already

explain why tournaments are popular in academics, for example in the awarding of

assistantships and scholarships to graduate students and tenure to professors.2

12.2 A Simple Model

Suppose a risk-neutral firm engages two workers / = 1, 2 to perform similar tasks.

Their production functions x and utility functions U are

(12.1)

, (12.2)

1 The seminal paper on tournaments is by Lazear and Rosen (1981). For further developments and empirical
evidence on tournaments see Lazear (1995 a).

2 In industry, the most commonly used tournaments take the form of promotion schemes. For an empirical study
of the use of tournaments in managerial compensation see Antle and Smith (1986).
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where at denotes the action or effort, wt the wage, and 9[ a random output dis-

tortion. Output distortions are independently and identically distributed (iid), with

zero mean, E[9] = 0, and variance a2. Both u and c are twice continuously differ-

entiable, with

w', c' > 0, u" < 0, c" > 0, lim c\a{) < lim uf(wt). (12.3)

Workers do not know the output distortion 0,- before effort is chosen, and the

employer only observes output and neither 0 nor a (hidden action).

The firm's problem is to design a reward structure that maximizes their expected

value of profits.

12.2.1 First Best Effort and Wage

As a point of reference suppose, for the moment, that workers' effort is public

information. Then firms can write complete contingent contracts [w(9), a) with

each individual worker. These contracts stipulate effort a and a wage w(9) as a

function of the output distortion 9. In principle, the contract can condition on both

output distortions, but that is of no use as long as output distortions are stochastically

independent.

The first best optimal labor contract maximizes the firm's expected profit subject

to workers' participation condition. Normalizing workers' reservation utility to be

equal to zero, this gives

max E[x(a, 9)] s.t. E[u(w{9)) - c(a)] > 0. (12.4)
{w(6),a}

The optimization problem is well behaved. Therefore, the optimal contract solves

the Euler-Lagrange conditions3 (X is the Lagrangian)

w(9) : u(w(9)) - X = 0 V0, (12.5)

a : c\a) - X = 0, (12.6)

X : E[u(w(9))] - c(a) = 0. (12.7)

If workers are risk-averse, the solution is unique. In this case, the optimal contract

exhibits a state-independent wage w* and a choice of u;* and a* that satisfies the

following requirement concerning the marginal rate of substitution between income

and effort:

dw

da C/=const

u'(w*)

c'(a*)
= 1 (12.8)

and the participation condition

u{w*) - c(a*) = 0. (12.9)

In contrast, if workers are risk-neutral, the optimal contract has many solu-

tions. One particular optimal contract is the already familiar franchise contract that

3 See Kamien and Schwartz (1991).
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makes workers into residual claimants who effectively "lease" their job from the

employer:

w*(0) = w% + 9, w% = c(a*), c'(a*) = 1. (12.10)

This contract has the distinct advantage that it works even under hidden action.

12.2.2 Tournament Game

Tournaments are an alternative to individual contracting. A tournament game is

played between workers who compete for given prizes with their effort.

In the present context, the players are two identical neutral workers who perform

a similar but independent task, and the firm that sets the prizes. The game has the

following stages:

Stage 0. Nature independently draws output distortions from the same distribution. That

drawing is not revealed, either to workers or to the firm. However, the distribution of

output distortions is common knowledge.

Stage 1. The firm sets two prizes wg > Wb, and commits to pay wg to the high- and Wb to

the low-output worker (g is mnemonic for "good" and b for "bad").

Stage 2. Each worker chooses his or her effort without knowing the rival's choice; outputs

are observed, the firm collects revenue, prizes are paid out, and the game is over.

The game is solved by backward induction, using the prior beliefs concerning

nature's drawing, as follows: First solve the tournament subgame for given prizes.

Then compute the firm's reduced-form expected-profit function and find optimal

prizes.

12.3 Tournaments under Risk Neutrality

Assume workers are risk-neutral. This simplifies the analysis, even though tourna-

ments are an unnecessarily complicated incentive system scheme in this case.

12.3.1 Tournament Subgame

Two workers, who have signed on with the firm, simultaneously choose their effort.

Denote the probability of winning the high prize wg by p. Then worker /'s expected

utility is4

Ui = wb + pi(wg - Wb) - c(ai).

It is obvious that pi must be increasing in the own effort and decreasing in that of

the rival worker. However, we need to know the exact relationship. For this purpose,

follow each step of the following consideration. It will establish that /?,- equals the

cumulative probability distribution (cdf) of the difference of two random variables,

4 The possibility of a tie is payoff-irrelevant because the probability distribution is continuous, as we show below.
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| := 9 j — 9~i, evaluated at § = a,- — a7- (the cdf of £ is denoted

= Pr(| < at - aj), f := 0; - 0,-

=:G(ai-aj). (12.11)

The equilibrium effort levels {a*,aT) satisfy the best-reply requirements (for

U = l ,2, i # y )

af = argmax(^ + G(a,- - a*)(u^ - wb) - c(at)). (12.12)

Provided the objective function is quasiconcave,5 best replies are unique and the

tournament subgame has a unique symmetric equilibrium in pure strategies, a*,

which satisfies the first-order conditions together with the requirement that equal

efforts entail an equal chance to win the high prize:

g(0)(wg - wb) = c\a% (12.13)

Pi = G(0) = ^, i = l , 2 . (12.14)

Note that, since c(a) is strictly increasing and strictly convex, the equilibrium

effort a* is strict monotone increasing in the wage spread wg — Wb. By choosing

an appropriate wage spread the firm can induce any feasible effort level as the

equilibrium of the tournament subgame.

12.3.2 Equilibrium Prizes

Now we turn to determine equilibrium prizes. Using the solution of the tournament

subgame, firms choose those prizes that maximize the expected value of profits,

subject to the workers' participation condition (market exchange is voluntary):

Wg,Wb 2 (a*(wb, wg) - -(wg + wb)j (12.15)

s.t. wb + -(wg - Wb) - c(a*(wb, wg)) > 0. (12.16)

Recall that the firm can induce any feasible effort level by choosing an appropriate

wage spread. Therefore, one can also view the firm as directly choosing the effort

level. After substituting (12.16) in the form of an equality into (12.15), the firm's

decision problem can thus be reduced to

max2(fl-c(a)). (12.17)
a

5 The quasiconcavity requirement is not met for arbitrary distribution functions G, but we will assume it here.
Recall that the sum of two quasiconcave functions is not necessarily quasiconcave. Therefore, the quasiconcavity
of G does not assure the quasiconcavity of the objective function. Of course, if G is concave, the objective function
is concave. And concavity implies quasiconcavity. Therefore, the concavity of G assures well-behavedness.
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Therefore, the equilibrium effort level solves

c'(a*) = 1, (12.18)

and the firm sets wages in such a way that they make this effort level an equilibrium

of the subsequent tournament subgame and assure participation.

We have thus all the pieces together to characterize the equilibrium outcome

(a*, wg, Wb) of the overall game,

c'(a*) = 1, (12.19)

(wg - wb)g(0) = c'(a% (12.20)

^(wg + wb) = c(a*), (12.21)

and conclude:

Proposition 12.1 If workers are risk-neutral, the equilibrium tournament imple-

ments the first best effort and expected utilities.

12.3.3 Two Illustrations

We close with two examples that explicitly solve the tournament game for differ-

ent probability distributions of the productivity shock. Both examples assume the

quadratic cost function

c(a) := l-a2.

Example 12.1 (Normal Distribution) Suppose the 0's are normally distributed

with zero mean and variance a2. Then f := 0j — 0/ is also normally distributed

with zero mean and variance a} = 2a2.6 The probability density function (pdf) of

Therefore, g(0) = l/(2a^/n) and

a* = 1, wl = --cr^/n, w* = -+

Example 12.2 (Uniform Distribution) Suppose the 0's are uniformly distributed

on the support (— ,̂ +5). Then f := 0 j — 0,- has the following triangular pdf:8

{' for § G (-1,0) ,

for £ e (0,1),

otherwise.
6 The sum of independent and normally distributed random variables is again normally distributed.
7 Recall that the variance of the weighted sum of two independent random variables Z := aX + bY is a^ =
8 See Appendix D, Rule (R16) in Section D.4.4.
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Therefore, g(0) = 1, and

a* = l, wt=0, w* = l.

12.3.4 Discussion

If workers are risk-neutral, tournaments are not the only incentive scheme that

achieves optimality. Just recall that the franchise contract is both incentive-compa-

tible and efficient in this case. Therefore, unless you like the idea of using a steam

hammer to crack a nut, tournaments must be judged as useless, unless they prove

themselves in a framework of risk aversion where no individual-performance-based

contract is able to implement the first best expected utilities.

However, as Green and Stokey (1983) showed, individual-performance-based

contracts Pareto-dominate tournaments if output disturbances are stochastically in-

dependent and workers are risk-averse. Therefore, the introduction of risk aversion

leads us to reject tournaments in favor of individual-performance-based contracts,

unless further modifications are introduced.

At this point you may wonder whether tournaments are ever superior to individual-

performance-based contracts? Luckily, the picture changes if you allow risk aver-

sion and replace idiosyncratic output disturbances by a common shock. Then, at last,

tournaments are optimal incentive schemes that implement the first best optimum,

despite risk aversion - unmatched by individual-performance-based contracts. We

close the section with an illustration of this claim.

12.4 Tournaments under Common Shocks

Suppose the output distortion is a common shock. Consider a tournament with a

continuum of prizes where worker / is awarded a prize wt that depends upon the

first best effort a* and the difference between his and his rival's output, according

to the following rule (where / > 0):9

(u-Hc(a*)-(Xi-Xj)2) if xt>xh
wt = < (12.22)

[U l(~f) if Xt < Xj.

Then, at last, the tournament game implements the first best expected utilities, even

if workers are risk-averse. This result should be compared with the well-known

finding that individual-performance-based contracts, such as the familiar piece-

rate system, cannot implement the first best if workers are risk-averse. Therefore,

tournaments are superior labor contracts under some circumstances.

Proposition 12.2 (Common Shock) Suppose the output disturbance is a common

shock. Then, given the reward scheme (12.22), the first best effort a* is an equili-

brium of the tournament sub game - even if workers are risk-averse.

9 Notice: this tournament requires that outputs can be ranked on a cardinal scale.
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Proof Due to risk aversion, the first best optimal labor contract prescribes the fixed

wage w* and the effort level a* that satisfy conditions (12.8), (12.9). We show that

a\ = d2 = 0* is a Nash equilibrium of the tournament subgame if prizes are given

by (12.22).

1. Suppose aj = a*. Then at < a* cannot be a best response, since for all a < a* worker
fs expected utility Uiia^aj) drops, as

Ui(ai9 a*) = - / - c(a) < 0 = Ui(a\ a*).

2. Suppose aj = a*. Then for all at > a* the right derivative is

^ (at, a*) = -Ha - a*) - c'fa) < 0.
aai

Hence, deviating from <z* to higher effort does not pay either. •

Notice, however, that there is a continuum of alternative equilibria. Indeed, every

feasible a < a* is an equilibrium of the tournament subgame.

12.5 Bibliographic Notes

The basic model of tournaments under risk neutrality follows Lazear and Rosen

(1981), Hirshleifer and Riley (1992, Chapter 10), and Lazear (1995a). For a variation

of this model that uses multiplicative rather than additive shocks see Nalebuff and

Stiglitz (1983). Multiplicative shocks affect the marginal product of effort and

therefore lead to somewhat different results.

For a deeper understanding of tournaments consult Holmstrom (1982) or Green

and Stokey (1983). Green and Stokey assume additive shocks but introduce a com-

mon shock component. Their main result is that tournaments dominate individual-

performance-based contracts only if the common shock component is sufficiently

strong. While Green and Stokey assume additive shocks and compare tournaments

only with linear piece-rate contracts, Holmstrom admits both kinds of shocks and

examines arbitrary contracts. His main result is that the mean output is a sufficient

statistic for all of the information concerning the common shock. Therefore, an

optimal contract makes the wage dependent only upon workers' own output and

upon the mean output of the entire pool of workers.

Tournaments are only part of the literature on the relationship between one prin-

cipal and many agents. The more recent literature has focused on conditions under

which efficiency can be achieved. For example, Legros and Matthews (1993) use the

framework of Holmstrom's deterministic team model and show that, with limited

liability, efficiency can be achieved almost completely.
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Appendix A

Nonlinear Optimization: The Classical Approach

Nothing gives such weight and dignity to a book as an appendix.
Herodotus

A.I Introduction

We begin with the simplest case of unconstrained problems and then proceed to

nonlinear optimization under constraints that are in the form of equalities. The

mathematics involved dates back a few centuries - hence the name classical.

The more modern approach deals with constraints in the form of inequalities. All

the classical results can be obtained as special cases of the modern theory. Also,

many economic problems do involve inequality constraints. You may thus ask: why

bother with the classical approach at all?

There are at least two good reasons. First of all, the classical approach serves as

a bridge between standard calculus and the more advanced subject of mathematical

optimization. As it is more accessible, it gives a much easier introduction to the

subject. More important yet, the tools and methods of the classical approach are

utilized anyway in solving inequality-constrained optimization problems. So you

can rest assured that your time and effort are not wasted.

A.2 Unconstrained Optimization

Consider a real-valued function f : D -> R, D c Rw an open set. / is said to

have a local maximum at x* e D if there exists a 8 -neighborhood, N&(x*) := {x e

D\\\x-x* || < <$}, such that

Vx € N8(x*), f(x") > f(x). (A.I)

If the inequality is reversed, we say that / has a local minimum, and if the inequalities

are strict (except for JC = JC*), we say that the maximum (minimum) is strict. Also,

if the inequality holds for all x e D and not just for a small neighborhood of JC*,

we say that we have a global maximum (minimum).
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An extreme value is either a maximum or a minimum. Not every real-valued

function has an extreme value.1 Of course, a global extreme value is also a local

one, but the converse is generally false.

Suppose* G D C Rwisapointwherethepartialderivativesof/,3/(x)/3x/, i =

1 , . . . , w, exist and are continuous functions. We then say that / is in the class of

functions that are continuously differentiable (C1), at x. Define the gradient of /

at x as the vector V/(JC) given by

^ (A.2)
L 9*i dxn J

direction vectors y e l " , the directional derivatives of / at x

direction y,

Df(x;y) :=hm
t^O t

exist. In fact, Df (x; y) is then equal to a linear combination of the partial derivatives,

with the components of the direction vector serving as weights:2

Df(x; y) = yT • V/(*).

If / is twice continuously differentiable at x, we say that / is in class C2, / e C2,

and define the Hessian matrix of / at x as the n x n matrix V2 / (x) given by

i , y = l , . . . , / i . ( A . 3 )

As / is in C2, V 2 / ( JC) is symmetric, and the second directional derivative of / at

x in the direction y is equal to

D2f(x;y) = yT.V2f(x)'y.

For convenience, from now on we will use the abbreviation

whenever there is no risk of confusion.

There follows a collection of major results without proofs.

Proposition A.I (Necessary Condition) Let JC* be an interior point ofD at which

f has a local extreme value. Also, suppose f € C1 at x*. Then

V/(x*) = 0. (A.5)

1 If / : D —>• R is continuous over D and D is compact, it is known by the Weierstrass theorem that / must
have at least one extreme value. But so far we have not assumed compactness of the domain. Incidentally, a set
D c Rn is compact if and only if it is bounded and closed. (This equivalency does, however, not necessarily
apply to spaces other than Rn.)

2 To be more precise: if the directional derivatives exist for all directions and are equal to a linear combination
of its partial derivatives, one says that / is Gateaux-differentiable. We will not be concerned here with other
notions of differentiability.
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Proposition A.2 (Sufficient Condition) Let x* bean interior point ofD at which

f e C2. If

V/(JC*) = 0, (A.6)

V Z G E " , Z ^ ( 0 ) , ZT • V2/(JC*) • z < 0, (A.7)

then f has a strict local maximum at x*. If the inequality in (A.7) is reversed, then

f has a strict local minimum at x*.

The conditions in Proposition A.2 are only sufficient but not necessary. In other

words, for many purposes Proposition A.2 is far too stringent. It is easy to generate

functions that have a local extreme value, yet violate condition (A.7). An obvious

example is a function that is constant in a small neighborhood of JC*. But, should

not Proposition A.2 be sufficient for a strict local extreme value? Plausible as it

may seem, this conjecture is wrong. There follows a proof by example.

Example A.I Let f(x) = x2a, a e N+, with domain D = R. As you can easily

confirm, / has a strict global minimum at JC* = 0. Of course, at this point one has

V/(0) = 0. For a = 1, V2/(0) = 2, and the conditions of Proposition A.2 are

satisfied. However, if a > 1, V/2(0) = 0, and the sufficient condition stated in

Proposition A.2 is violated at JC = 0 even though / has a strict global minimum at

this point.

Propositions A. 1 and A.2 refer to the behavior of / at JC*, its local extreme value.

The following results investigate the behavior of / in a 8-neighborhood of JC*,

denoted by N5(JC*) := {JC e D | ||JC - J C * | | < 8}.

Proposition A.3 (Necessary and Sufficient iVa-Condition) Let JC* be an interior

point ofDc Rn, and f e C2 on D. Necessary for a local maximum off at JC* are

the conditions

V/(JC*) = 0, (A.8)

Vz e R\ zT • V 2 / (JC*) • z < 0. (A.9)

Sufficient for a local maximum are that condition (A.&) holds and that

33 > 0 , VJCGA^JC*), V Z G R " , ZT • V 2 / (x) • z < 0. (A.10)

If the inequalities in (A.8) and (A.9) are reversed, the proposition applies to a local

minimum.

Again, you may ask: are the conditions (A.8) and (A.9) not also sufficient? The

answer is: no. The proof is by counterexample.

Example A.2 Let D = R, and assume

(JC4 if JC > 0 ,
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Obviously, at JC* = 0 the function / satisfies (A.8) as well as (A.9); yet / does not

have an extreme value.

Finally, we present a sufficient condition for a strict local extreme value that is

also based on a neighborhood of x*.

Proposition A.4 (Sufficient iV^-Condition for Strict Extreme Value) Let x be

an interior point o / f l c f and f e C2 on D. If

= 0, (A.ll)

38 >0, VxeNs(x*), VZGR",

z ^ ( 0 ) = > zT - V 2 / W - z < 0 , (A.12)

then f has a strict local maximum at JC*. If the inequality in (A.12) is reversed, the

proposition applies to a strict local minimum.

To compare Proposition A.4 with Proposition A.2, go back to the case a > 1 in

Example A. 1. Obviously, Proposition A.2 does not recognize that / has a minimum

at x — 0, but Proposition A.4 does.

A.3 Equality-Constrained Optimization

We now study extreme-value problems where the solution has to lie in a specified

region, called the feasible set, described by a finite set of equality constraints with

constraint functions gl : D —• R,

gl{x) = 0, i = l , . . . , m < n. (A.13)

The problem is then to find an extreme value of / in the feasible set described by

equations (A.13).

A first and intuitively most plausible method involves the elimination of m vari-

ables. The conditions for elimination will be stated in the implicit-function theo-

rem. This theorem assumes that all gi are C1, and that the m x n Jacobian matrix

[dgt(x)/dxj] has rank m.

However, the actual elimination of variables is often a cumbersome, if not im-

possible, task. For this reason, one tends to apply an alternative method proposed

by Lagrange. Like the elimination method, the method of Lagrange transforms the

constrained optimization problem into an unconstrained one.

The following proposition is the basis of the elimination method, which is also

used in the proof of the method of Lagrange.

Proposition A.5 (Implicit-Function Theorem) Suppose the m < n functions gl :

D -> R, D c R \ are C1 on D, and Vi e { 1 , . . . , m} g((x0, y°) = 0, where

x° e Rm, y° e Rn~m. Assume the Jacobian matrix ^ ' ( J C 0 , y°)/dxj] has rank m.

Then there exists a 8 > 0, an open set E c R"~m containing y°, and functions

\j/k : E -> R, k = 1 , . . . , m, which are Cl on E, such that the following conditions
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are satisfied:

Vy€E, VxeNs(x°), \^^- has rank m. (A. 16)

The following result gives the clue for the method of Lagrange.

Proposition A.6 Let f : D -> R and gl•'. D -> R, i = 1, . . . , m, D C Rn, fee

C1 m a neighborhood of N$(x*)x*. Suppose x* is a local maximum of f for all

points x G Ns(x*) that also satisfy

gi(x)=0, i = l , . . . , m . (A.17)

Also assume the m xn Jacobian matrix [dg1
 (JC*)/3JC/] /zas1 rank m. Then the gradi-

ent V/(JC*) w a /mear combination of the gradients Vgl
 (JC*), i = 1, . . . , m; i.e.,

there exist real numbers A.*,..., X^ such that

V/(x*) =

This leads to the formulation of the Lagrangian L{x, X):

m

L(x,X):= "
i = \

where the coefficients A/ e Rare called Lagrange multipliers and X := [X\,..., Xm].

The method of Lagrange transforms an equality-constrained optimization prob-

lem into the problem of finding a stationary point of L, as shown in the following

result.

Proposition A.7 (Necessary Condition) Suppose x* is a local maximum of f for

all points x e N$(x*) that also satisfy gl (x) = 0, / — 1, . . . , m. Then under the

assumptions of Proposition A.7 there exists a vector A* e Rm, such that3

VXL(JC*,A.*) = 0. (A.20)

P r o p o s i t i o n A . 8 ( S u f f i c i e n t C o n d i t i o n s ) Suppose f : D - > R and g i : D ^ R ,

i = 1 , . . . , m, are C2 on D. If there exist vectors x* e D, X* e Rm such that

and if

Vz e f , z # 0, z r • V # V ) = 0 = > z r • Vx
2L(x*, A*) • z < 0,

(A.22)

3 Generally, V denotes a gradient vector; Vx means that partial derivatives are taken with respect to the vector JC.
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then f has a strict local maximum at x*, subject to gi (x) = 0, / = 1 , . . . , m. If the

inequality in (A.22) is reversed, the proposition applies to a strict local minimum.

This sufficient condition involves the checking of the definiteness of the matrix

V^L(jt*, k*), subject to the linear constraints: zT • Vg'(jc*) = 0, i = 1 , . . . , m.

How does one perform this check? Here, a result due to Mann, which can be found

in Section A.4, is handy.

Suppose now that the n x m Jacobian matrix [gj], glj := dgl (x*)/dxj, has rank

m. Also, let the variables be indexed in such a way that

det : •.. : # 0 . (A.23)

Then we can restate Proposition A.9 as follows:

C o r o l l a r y A . I ( S u f f i c i e n t C o n d i t i o n ) Suppose / : £ > - > R and gl : D - > R ,

i = 1 , . . . , m < n, are C2 on D and condition (A.23) is satisfied. If there exist

vectors x* e D, X e Rm such that

(A.24)

and if V p e {m + 1 , . . . ,n]

(-l)^det

... Llp(x*,k*) g\(x*) ... g?(x*)

L p l(x*,r) . . . Lpp{x*,X*) gl{x*) ...

g\(x*) gUx*)

then f has a strict local maximum at x*f subject to the constraints

£<(**) = 0, i = l , . . . , m .

(A.25)

(A.26)

The corresponding result for strict local minima is obtained by replacing (— \)p by

( - l ) m in (A.25).

Propositions A.7 and A.8 and Corollary A.I assumed that the Jacobian matrix

[3g* (x*)/dxj] has rank m (< n), which is equal to the number of constraints. The

following result does not require this qualification.

Proposition A.9 Assume f : D -* R and gl : D -> R, i = 1, . . . , m < n,

D C R", are C1 over D. If x* is a local extreme value of f for all points x in a

neighborhood of x* satisfying

(A.27)
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then there exist m + l real numbers, AjJ, A.*,..., k^, not all equal to zero, such that

m

) - 5>f W ) = 0. (A.28)

Remark A.I If the rank of the Jacobian matrix [dgl (x*)/dxj] is not equal to the

number of constraints, it can occur that AQ must vanish. This may happen for exam-

ple in degenerate optimization problems where the feasible set has only one point.

Example A.3 Let / : E -> E, g : E - • E, and consider min f(x) = x, subject

to g(x) := x2 = 0. Obviously, the feasible set has only one element: x = 0. At

this point, the Jacobian is [dg(0)/dx] = [0], and hence det[dg(0)/dx] = [0] = 0.

Therefore, at x = 0, the Jacobian matrix has rank 0. From (A.28) we get

A* - **o = 0;

and hence,

A*=0.

This is indicative of what can happen. The derivative characterization addresses

the question: What happens if things are changed a little near x*? In the above

example the feasible set is {0}, so that there is no room for change whatsoever. As

a result we get a characterization of an optimum that is completely independent of

the objective function / . To save us from this embarrassment, we would like to be

assured that A.o ̂  0. The conditions for this come under the name constraint quali-

fication or rank condition. In the present framework, this condition requires that the

Jacobian matrix [VgJ] have rank m at JC*. When it is satisfied, then ko > 0. In fact,

we can then normalize ko = 1, a result that was implicitly used in Corollary A.I.
From here on, there are two urgent issues:

1. to allow for inequality constraints;
2. to find necessary and sufficient conditions for global extreme values.

We address these issues in this order in the next appendix.

A.4 Digression: Quadratic Forms

The propositions in Section A.2 contain conditions that involve quadratic forms:

V 2 / « • z:= E E fijMziZj, (A.29)

where V2/(JC) is symmetric, fij(x) = fji(x)9 and fij(x) := d2f(x)/dxi dxj.
In order to determine the sign of quadratic forms for all z € Rn, z ^ 0 (as

required in the above propositions) one compares the determinants

dk{x) := det

fk\{x) . . .

(A.30)
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One says the matrix V2 / (x) is negative definite (semidefinite) if

Vz eR\ z^ (0), zT • V 2 / (*) • z < 0 (< 0), (A.31)

and positive definite (semidefinite) if the inequality in (A.31) is reversed.

Lemma A.I The n x n symmetric matrix V2 / (x) is negative definite if

V*€{l , . . . ,n} , sign4 = (-l)*, (A.32)

and positive definite if

Wk e { l , . . . , n } , dk > 0. (A.33)

For semidefiniteness, replace the strict by weak inequalities.

Remark A.2 If the matrix V 2 / ( JC) has full rank, the conditions in Lemma A.I are

both necessary and sufficient for definiteness; however, if its rank is less than n, the

conditions are sufficient but not necessary.

These checks are useful when one is interested in the behavior of / at a cer-

tain point, as in Proposition A.2. But they are quite impractical if n is large, and

hopeless if one has to determine the definiteness of the quadratic form in an entire

neighborhood of JC, as in Proposition A.3.

Example A.4 Of course, a symmetric matrix may not be definite. As an example,
consider

C :=

- 2 V6 0

V6 - 3 0

0 0 3

Choose zT = (0, 0, 1), and one obtains: zT • C • z = 3 > 0. Next, choose yT =

(1, 0, 0), and one has yT • C • y = —2 < 0. Therefore C is not definite.

This example is also instructive for another reason. It makes forcefully clear that

Lemma A.I must be applied to all permutations of coordinate labels. For if this

lemma were applied only to the given labeling of the coordinates, one would obtain

dx = det(-2) = - 2 < 0, d2 = det

d3 = det(C) = 3d2 = 0.

Therefore, one would be inclined to infer from Lemma A.I that C is negative

semidefinite, which it is not. However, it is really quite arbitrary which of the two

coordinates is called coordinate 1 and which is called 2. But, if you perform all

permutations of coordinates, there are really three di's:

dx = det(-2) = - 2 < 0, di= det(-3) = - 3 < 0,

dx = det(3) = 3 > 0.

This already proves that C is not definite.
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Let A = [atj] be a real n x n matrix and B = [btj] a real n x m matrix. Denote

by Mpq the matrix obtained from a matrix M by keeping only the elements in the

first p rows and q columns.

Lemma A.2 (Mann's Proposition) Suppose det[£mm] ^ 0,-. Then the quadratic

form

f - A . £ (A.34)

is negative definite for all % eRn, § ^ (0), that also satisfy the linear constraints

B - f = 0 (A.35)

if and only if

PP *~*p

0
(A.36)

Similarly, (A.34) is positive definite for all $ e R", § ^ (0), satisfying (A.35) if

and only if

( - l ) mdet (A.37)

For semidefiniteness the strict inequalities are replaced by weak inequalities.
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Inequality-Constrained Optimization

Economic maxim: everything is twice more continuously differentiable
than it needs to be.

Anonymous

B.I Introduction

In most economic applications one deals with inequality constraints. For example,

a consumer has a limited budget, but who says that he must spend it all? Similarly,

a firm may face a borrowing constraint, but it is free to borrow less than this limit.

As noted before, the introduction of inequality constraints marks the end of the

classical area and the beginning of the modern theory of optimization.

B.2 The Problem

Consider the optimization problem

min / ( * ) , (B.I)
xeD

subject to the constraints (in brief: s.t.)

gi(x)>09 i = l , . . . , m , (B.2)

hJ(x) = 0, j = l,...,p, (B.3)

where the functions / : D -> R, gl : D -+ R, hj : D -> R are all C1 over

D d " . From now on we will refer to this formulation as the general optimization

problem.

In case you have some doubts about its generality, some remarks are in order.

Remark B.I If you are given an inequality in the form 0(JC) < 0, it can always

be transformed into an equivalent inequality \/r(x) > 0 by defining the function

x//(x) := —0(JC). Hence, (B.2) involves no loss of generality.

Also, since a function g(x) reaches a maximum whenever f(x) := —g(x) has a

minimum, there is no need to distinguish maximization and minimization problems.
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An equivalent formulation of the general optimization problem is to define the

feasible set

X:={xeD\ hj(x) = 0, j = 1 , . . . , p] (B.4)

n { * € D | *'"(*) > 0 , i = l , . . . , m } (B.5)

and then write

min f(x). (B.6)
xeX

B.3 First-Order Necessary Conditions

We now say that x* e X is a local minimum if

38 > 0, Vx e X n Afe(jc*), /(JC*) < /(JC). (B.7)

If this inequality holds for all x e X and not only in a small neighborhood of JC*,

the minimum is a global one, and if the inequality is strict, we say the minimum is

strict.

Every point in a neighborhood of x* can be written as the sum of two vectors: the

point x* and the direction vector z eRn. The vector z is called & feasible direction

vector from x* if

3 8 >0 , V0€[O,S], x + 0zeXnN8(x*). (B.8)

Obviously, if x* is a local minimum and z is a feasible direction vector from x*,

then one must have /(JC*) < /(JC* + 0z) for sufficiently small 9.

At x*, the inequality constraints (B.2) may be satisfied with equality or not. To

distinguish these cases, define

/ (x*):={/GAMs'V) = 0}. (B.9)

/(JC*) is the index set of constraints that are satisfied with equality at x*. The

following result should be plausible. Its proof follows easily by taking the limit of

a Taylor expansion of g1
 (JC*).

Lemma B.I Suppose z is a feasible direction vector from x*. Then

) = 0. (B.ll)

It is possible to derive a weak necessary first-order condition, based on the weak

Lagrangian L, defined as

m p

L := Ao/Ot) - 5>V(*) -J2njhj(x). (B.12)
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Proposition B.I (Fritz John Necessary Condition) Let x* e X be a local mini-

mum. Then, there exist vectors A0 = (AQ, A.*,..., A.̂ ) and /x e Rp such that

m p

VxL(x°, A0, /x°) EE A£V/(x*) - 5 > i W ) - $>}V/i V ) = 0,

(A*,/z*)^(0), A*>0.

The main problem with this result is that it is possible for AQ to be equal to zero,

in which case we get again a characterization of a minimum that is independent of

the objective function. To avoid this embarrassment, one would like to assure that

AQ > 0. As in the previous section, the conditions for this travel under the name

constraint qualification.

Imposing a certain constraint qualification, Kuhn and Tucker were able to strength-

en the Fritz John theorem. Subsequently, various weakened constraint qualifications

were proposed in the literature. Here, we ignore this more difficult discussion.

Rather than explaining constraint qualification in its weakest form, we state the

following frequently invoked conditions:

Proposition B.2 (Arrow-Hurwicz-Uzawa) Constraint qualification can be

dispensed with if the p x n Jacobian matrix [V/*7(jt)] has rank p and if any

of the following conditions hold:

1. The functions gl (x), / = 1, . . . , m, are convex.

2. The functions gl(x), i = 1, . . . , m, are affine (this is really a special case of I).

3. The set {x e M!1 \ gl (x) > 0, i = 1, . . . , m} is convex, it possesses an interior point,

and at x* one has Vi e /(**), Vgf"(jc*) ^ (0).

4. The rank of the Jacobian matrix [Vgl (x*) | / e I (**)] is equal to the number of elements

ofl(x*).

With these preliminaries, we now state stronger necessary conditions for an

optimum, known as the Kuhn-Tucker necessary conditions.

Proposition B.3 (Kuhn-TVicker Necessary Conditions) Let x* be a local mini-

mum, and suppose constraint qualification holds true atx*. Then there exist vectors

A* e R m , fi* eRp such that

:= V/(x*) - 5>*Vg'(x*) - 5> ;v / iV) = 0,

X* > 0. (B.15)

In many economic applications, the variables are required to be nonnegative, so

that one has the additional constraints

J t , - > 0 , i = l,...,n. (B.16)
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For this more specialized optimization problem, the Kuhn-Tucker necessary con-

ditions are as follows.

Proposition B.4 (Specialized Kuhn-T\icker Conditions) Let x* be a local min-

imum of the optimization problem with the additional nonnegativity constraints

(B.I6). Then Proposition B.3 holds with the modification that conditions (B.I3) are

replaced by

VxL(x*,k*,ii*) < 0 , (B.17)

x*T -VxL(x*9k*,fi*) = 0. (B.18)

Remark B.2 The verification of constraint qualification is often an impossible

task. In economic applications, constraint qualification is usually not a problem.

Therefore, it is justifiable to assume the existence of (A.*,..., k^), as is often done

in the economics literature.

B.4 Second-Order Conditions

The following complements the Kuhn-Tucker first-order necessary conditions.

Define

Z\x*) := {z e Rn | Vi € /(**), zT • Vg'(jc*) = 0

Vy = 1,..., p, zT • Vhj(x*) = 0}. (B.19)

Proposition B.5 (Necessary Condition) Let x* be a local minimum, and suppose

there exist vectors k* e Rm, /x* e Rp satisfying (B.13)-(B.15). Then

Vz € Z V ) , zT • V^L(JC*, A*, n*)-z> 0. (B.20)

This condition can be useful to reduce the number of points satisfying the first-order

Kuhn-Tucker conditions.

Finally, we turn to sufficient conditions for optimality. Denote by / (**) the index

set for which gl(x*) = 0 and at the same time (B.13)-(B.15) are satisfied with

A.* > 0. Obviously, 7(JC*) is a subset of /(%*). Define

Zx(x*) := {zeRn \ Vi e /(**), zT • Vg'(jc*) = 0

Proposition B.6 (Sufficient Condition) Letx* be a feasible solution. If there exist

vectors A* € Rm, /x* e Rp satisfying

A*,/x*) = 0, (B.22)

kfgi(x*) = 0, i = l , . . . , m , (B.23)

A* > 0, (B.24)

Vz e Z{x% z # (0), zT • VxL(x\ A*, »*) • z > 0, (B.25)

then x* is a strict local minimum.
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Convexity and Generalizations

"Contrariwise," continued Tweedledee, "if it was so, it might be; and if
it were so, it would be: but as it isn't, it ain't. That's logic."

Lewis Carroll

C.I Introduction

Without more specific assumptions there is not much else one can say about the

optimization problem (A.1)-(A.3). However, if the objective function and the fea-

sible set satisfy certain convexity properties, we can characterize global rather than

local extreme values and state conditions for their uniqueness. These issues are of

vital importance. After all, a local extreme value can be almost as bad as the worst

possible choice. So what good does it do to know a local extreme value unless one

can be assured that it is also a global one?

Smoking is a good example for a local maximum that is not also a global one.

Giving it up temporarily makes most smokers worse off; but there are tremendous

gains if you kick the habit altogether.

In this section we explain some basic facts about convex sets and functions and

apply these to characterize convex optimization problems. In addition we cover vari-

ous generalized notions of convexity - such as strong convexity, and variations of

quasi- and pseudoconvexity - that play an important role in economic applications.

C.2 Convex Sets

A set S C M!1 is called convex if every linear combination of two of its points is

also an element of it; or visually, if the line joining these points lies entirely in S.

Consider [xi,x2] := {y eRn \ y := ax\ + (1 - a)x2, a e [0, 1]}. We define

formally: S C M.n is convex if

V J C I , * 2 G S , [*I,JC2] eS. (C.I)

Important families of convex sets are the hyperplanes

H(a,p) := [x G l " \aTx = P), where a e Rn, a^O, p e R, (C.2)
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and the associated half spaces

H+(a, P) := { ^ R w | a7x > 0],

H~(a, 0) := {x e Rn \ aTx < £}.

Obviously, H+ U H~ = Rn and H+ n H~ = H.

The major importance of these sets stems from the following result, which plays

a key role in several proofs of results listed below.

Proposition C.I (Separating-Hyperplane Proposition) Let A and B be two non-

empty, convex, and disjoint sets in Rn. Then there exists a hyperplane H(a, /3) and

associated half spaces H+ and H~ such that A C H+ and B C H~.

You may wish to visualize this result in R2 and ask yourself why it requires

ADB = 0.
Also recall that the intersection of any number of convex sets is convex as well,

whereas the union of convex sets need not be convex.

C.3 Convex Functions

If you draw the graph of a function / : R -^ R, you may find that the chord

connecting any two points of the curve f(x) lies on or above the curve. Functions

that have this property are called convex. They are closely related to convex sets.

Indeed, in the following illustrations the shaded areas above convex curves (called

hypographs) are convex sets. As this property is generally true, the convexity of the

hypograph of / can also be used to define convex functions.

Now consider a function / : D —> R, with a convex domain D c R " . We define

formally that / is convex if Vjq, X2 e D, V X e [0, 1]

f(kxi + (1 - k)x2)SXf{xl) + (1 - k)f(x2). (C.5)

If the inequality is strict for x\ ^ x2, A. e (0, 1), then / is called strictly convex.

Also, we say that / is (strictly) concave if — / is (strictly) convex, which occurs

if and only if the inequality in (C.5) is reversed. Obviously, the sum of two convex

functions is convex, and the difference between a convex function and a concave

function is convex as well. Convexity is also preserved by multiplication with a

positive scalar.

F(x) F(x)

x

Figure C.I. Examples of Convex Functions and Hypographs.
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An alternative characterization of convex functions - already suggested by the

above illustrations - is in terms of the hypograph of / , HG(/), defined as

HG(/) := {(x, y) € D x R | / (*) < y}. (C.6)

In fact, the convexity of HG(/) is equivalent to the convexity of / , so that the

former can also be used as an alternative definition of the convexity of / .

Proposition C.2 Let D C M" be a convex set. The function f : D ^ R w convex

if and only ifHG(f) is a convex set.

Analogously the concavity of f is equivalent to the convexity of the epigraph of

/ , EG(/), defined as

EG(/) := {(*, y)eDxR\ f(x) > y}. (C.7)

One of the nice properties of convex functions is that they are continuous every-

where except possibly at the boundaries of D (if D is not open). Differentiability is

of course not implied by the convexity of f} But if one assumes that / is not only

concave but also in C1 or C2, one arrives at a characterization of convex functions

that is usually far easier to check than the definition (C.5) or the convexity of the

hypograph of/.

Proposition C.3 (First-Derivative Characterization) Let f : D ->Rbe C1 on

the open and convex set D c K " . Then f is convex if and only ifV x, JC* € D

fix) > f(x") + (x- x*f • V/(**); (C.8)

it is strictly convex if the inequality (C.8) is strict for x ^ JC*.

Inequality (C.8) has an appealing geometric interpretation. It says that at any

point of the graph of a convex function the tangent plane to the graph at that point

lies entirely on or below the graph, as illustrated in Figure C.2.

This characterization of a differentiable and convex function involves a condition

on two points. If / is C2, there is a characterization by second derivatives at just

one point:

Proposition C.4 (Second-Derivative Characterization) Let f : D -> R, be C2

on the open and convex set D C Rw. Then f is convex if and only if the Hessian

matrix V2 / (x) is positive semidefinite, i.e.,

VJC G D, V2 / (x) is positive semidefinite. (C.9)

Proposition C.4 cannot be sharpened to cover strictly convex functions by replac-

ing the word semidefinite with the word definite. True, if the inequality in (C.9) is

strict, one can be assured that / is strictly convex; but the converse is not true. For

a simple proof by counterexamples just go back once again to Example A.I, which

gives a strictly convex function, / : R -> R, with a vanishing Hessian matrix at

1 But notice that a convex function is almost everywhere differentiable. It need not be continuously differentiable,
but it will be continuously differentiable on an open set if it is differentiable on that set.
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/(*)

x1
X

Figure C.2. A Convex Function and Its Linear Approximation.

x = 0. We make a point of this because it is frequently confused in the economics

literature.

Example C.I The function f(x) := —x^x^2, with domain R+ and a\, «2 € R+,

is convex if ct\ + 0,2 < 1» and neither convex nor concave if a\ + 012 > 1.

C.4 Strongly Convex Functions

Strong convexity is a slightly stronger requirement than strict convexity. Strong

convexity plays an important role in economics.

A function / : £ ) - > R defined on the convex set D c 1" is called strongly

convex if there exists a convex function \jr : D -> R and a scalar a > 0 such that

(CIO)

similarly, / is called strongly concave if — / is strongly convex.

Since \axT • x is a strictly convex function and since the sum of a strictly

convex and a convex function is strictly convex, it follows that every strongly

convex function is strictly convex. But not every strictly convex function is also

strongly convex; therefore,

strong convexity =>• strict convexity convexity,

but not vice versa.

Example C.2 Go back once again to the function f(x) := x4. As you already

know, this function is strictly convex. Yet, / is not strongly convex. To show this,

suppose per absurdum that there exists a convex function \j/(x) and a scalar a > 0
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so that Vx e D, f(x) = \//(x) + \otxT x. But then, at the origin x = 0, one must

have

and therefore ^"(0) = — a < 0 - in contradiction to the assumed convexity of T/T.

Strongly convex functions can be characterized as follows:

Proposition C.5 (Strong-Convexity Properties) Let f : D -> R be defined on

the convex and open set D C Rn. 7%en / w strongly convex if and only if there

exists a scalar a > 0 swc/i

7. forallx\x2 e D and for all X e [0, 1]

f(Xxl + (1 - X)x2) < Xfix1) + (1

-°^X(\-X) ||JC2 — JC1!!2; (C.ll)

2. iff is also C\ (C.ll) can be replaced by: VJC1, X2 e D

3. if f is C2, (C.ll) can be replaced by: Wx e D

[V2/(x) — a I] is positive semidefinite, (C.13)

where I denotes the identity matrix.

Strong concavity is used in economics, for example, in the theory of the firm. If the

production function is C2 and strongly concave, one can be assured that the supply

and factor demand functions are C1 - if they exist. The differentiability of these

solution functions is a prerequisite for using calculus techniques in comparative

statics. Contrary to what one often reads, the strict concavity of the production

function is not quite enough for this. An example of a production function that is

strongly concave is the Cobb-Douglas function f(x) := ]~] JC"1', with a,- > 0 and

C.5 Convexity and Global Extreme Values

Convexity properties greatly simplify and strengthen the necessary and sufficient

conditions for extreme values. If we deal with an unconstrained minimization prob-

lem, one has

Proposition C.6 (Global Minimum) Suppose f : D -> R is C1 and convex on

the convex and open set D c R " . Then JC* e D is a global minimum if and only if

V/(JC*) = 0.

This gives us a simple procedure for finding a global minimum: simply check

whether / is a convex function, and whether D is a convex and open set, and then

find a stationary point of / over D.
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Proposition C.7 (Maximum Number of Extreme Values) A strictly convex func-

tion on an open and convex domain cannot have more than one minimum.

These results extend to the general minimization problem (A.1)-(A.3) with in-

equality or equality constraints, provided the feasible set X is convex. A key question

is then: under what conditions is the constraint set

X : = { i e R " | gl(x) < 0, / = 1 , . . . , m}

H {x e Rn | hJ(x) = 0, 7 = 1,...,/?} (C.14)

indeed convex? We close this discussion with some results on a specialized version

of program (A.1)-(A.3), known as a convex program.
Program (A.1)-(A.3) is called a convex program if three requirements are met:

1. f(x) is convex and C1;

2. all equality constraint functions hj(x) are affine functions:

hj(x) := (ajf -x-bj, j = 1 , . . . , m,

where aj eRn, b e R, and det[al7] # 0;

3. all inequality constraint functions gl (x) are C1 and concave.
The constraint set X of such a convex program is convex. Indeed, the solution

set of an affine function is convex, the solution set of concave inequality constraints

gl (x) < 0 is convex, and finally the intersection of convex sets is convex.

Proposition C.8 (Kuhn-T\icker Sufficient Condition) Consider a convex pro-

gram. If there exist vectors JC*, A,*, /x* satisfying the constraints (A.2) and (A.3), and

V/(x*) - E^W(x*) - ZtfVh'ix*) = 0, (C.15)

A*g ' (x* )=0 , i = l , . . . , m , (C.16)

A.* > 0, (C.17)

then x* is a global minimum.

C.6 Generalized Convexity: Quasiconvexity

If a convex function over a convex domain has an extreme value, you can rest assured

that it is the unique global extreme value. In this sense, convexity is sufficient for a

unique global extreme value. But convexity is not also necessary; indeed, convexity

is far too strong a requirement. As an economist you should be happy about this

fact. There are several important economic optimization problems where convexity

(or concavity for that matter) cannot possibly be assumed. As an example, consider

the standard consumer demand problem in a deterministic framework. While the

feasible set can be taken to be convex (indeed, for positive linear prices the budget

set is convex), concavity of the utility function cannot be assumed. This stems from

two facts: utility functions are unique only up to positive monotone transformations

(this follows from the definition of an ordinal utility function), yet concavity is
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obviously not preserved by all monotone transformations. Luckily, it turns out that

some weaker notions of concavity have the required invariance property and yet

suffice to guarantee a unique global optimum.

The first and best-known generalization of convexity is quasiconvexity. A

function / : D —>• R defined on a convex set Z) C R" is called quasiconvex if

VJCI,JC2 e D

VA € [0, 1], f(kxi + (1 - k)x2) < max{/(*i), f(x2)h (C.18)

and quasiconcave if — / is quasiconvex.2

Similarly, / is called strictly quasiconvex (quasiconcave) if the inequality is strict

forxi =£x2,ke (0, 1).

Just as the convexity of a function is equivalent to the convexity of its hypograph,

quasiconvexity is equivalent to the convexity of its lower contour set. The lower

contour set of / for the value y, LC(/, y), is defined as

L C ( / , y ) : = {xeD\f(x)<y}. (C.19)

Proposition C.9 Let f : D -> R be defined on a convex set D c R " . Then f is

(strictly) quasiconvex if and only if the lower contour sets LC(/, y) are (strictly)

convex for all J G R . 3

Analogously, / is (strictly) quasiconcave if and only if the upper contour sets

U C ( / , y):= {xeD \ f(x) > y} (C.20)

are (strictly) convex for all J G R .

Every convex function is also quasiconvex. But the converse is not generally

true. Hence,

convexity =>• quasiconvexity,

but not vice versa.

Example C.3 Consider the function f(x) := 12 defined on R. Obviously, / is

quasiconvex, yet strictly concave, and hence not convex.

Unlike convex functions, quasiconvex functions can be discontinuous in the inte-

rior of their domain, and they can have local minima that are not global. Illustrations

are in Figures C.3 and C.4.

The significance of quasiconvexity for optimization theory comes out in the

following result.

Proposition CIO Ifx* is a strict local minimum of a quasiconvex function f, then

x* is also a global minimum.

However, this should not be mistaken to mean that a stationary point of a qua-

siconvex function is a global extreme value. As an example, consider the function

2 Prove that / is quasiconcave if and only if f{kx\ + (1 — k)x2) > min{/0i) , ffa)}.
3 A convex set is strictly convex if for two boundary points x\, X2 all points on the joining line are in the interior

of the set.
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Figure C.3. Discontinuous Quasiconvex Function with Local Minimum That Is Not Global.

Fix)

Figure C.4. Another Discontinuous Quasiconvex Function with Local Minimum That Is
Not Also Global.

f(x) = — x3 with domain R. Obviously, f'(x) = 0 O x = 0. However, the point

x = 0 is not even an extreme value. Therefore, be careful when you apply qua-

siconvexity. If you have found a stationary point, you should first check whether

this point is indeed a strict local minimum. If it is, then it is safe to infer that you

have found the global minimum. But without this check you cannot be sure that

you have found an extreme value at all.

If / is C1, one has:

Proposition C.ll (First-Derivative Characterization) Let f : D -> R be C1 on

an open and convex set DcR". Then f is quasiconvex if and only ifVxl,x2eD

f(xl) < f(x2) (x1 -x2f - V/(;t2) <0,

and quasiconcave if and only ifVx\x e D

fix1) > f(x2)
l -x2f -

(C.21)

(C.22)

Unfortunately, there seems to be no useful first-derivative characterization for

the entire class of strictly quasiconvex functions. But if / is nonstationary, one has:
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Proposition C.12 Let f : D —> RbeC1 and nonstationary on an open and convex

set D c R " . Then f is strictly quasiconvex if and only ifVxl,x2 e D, x\ 7^x2,

f(xl) < f(x2) = > (x1 - x2f • V/Qc2) < 0, (C.23)

and strictly quasiconcave if and only J/VJC1, x2 € D, x\ ^ X2

fix1) < f(x2) = • ixl-x2)T . V / ( x 2 ) > 0 . (C.24)

Second-derivative characterizations of quasiconvex functions are quite compli-

cated. The matter is considerably simplified if we restrict ourselves to the class

of nonstationary, strictly quasiconvex functions. Luckily, this is not a restriction

in most economic applications. But you should notice a further limitation of the

following results. Like the second-derivative characterization of strictly concave

functions, the following characterization provides necessary conditions and suffi-

cient conditions that are not quite the same.

Define the bordered Hessian submatrices Hkix),

Hkix) :=

/
r

11 712

/21 /22

fk\ fkl

L/l /2

= l,

/l* /l

/2Jt /2

fk 0

n, of/:

(C.25)

Proposition C.13 (Second-Derivative Characterization) Let / : D -> R be

C2 and nonstationary on an open and convex set D e l " . Necessary for the strict

quasiconvexity of f is the condition

Vx € D, Hnix) is positive semidefinite. (C.26)

In contrast, sufficient for the strict quasiconvexity of f is the condition

VJC G D, Hnix) is positive definite. (C.27)

To characterize strict quasiconcavity of a nonstationary function, replace positive

definiteness by negative definiteness.

Applying Mann's proposition (see A.4), one arrives at the following necessary

and sufficient conditions for quasiconvexity in terms of the bordered Hessian sub-

matrices Hkix), k = 1 , . . . , n:

Corollary C.I Given the assumptions of Proposition C.12, the condition

V J C E D , detHk(x)<0, it = 1 n (C.28)

is necessary for the strict quasiconvexity of f, and the condition

VJCGD, detHikOO <0, it = 1 n (C.29)

is sufficient for its strict quasiconvexity. To obtain conditions for strict quasicon-

cavity, replace (C.28) by

Vx G D , ( - l )*de t#*( jc ) > 0 , * = l , . . . , n , (C.30)
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and(C.29)by

V;c G D, (-l)kdetHk(x) > 0 , k= l , . . . ,n.

We have emphasized before that even though a convex function is also quasi-

convex, the reverse inference is generally not true. There is, however, an important

class of functions for which quasiconvexity implies convexity, and therefore quasi-

convexity is equivalent to convexity. The class of functions for which this holds

true, comprises all functions / : R++ -»> R that are positive-valued, Cl, and homo-

geneous of degree 1. Since this result is quite useful, we state it formally as follows.

Proposition C.14 Assume f : R++ - • R is C1, homogeneous of degree 7, and

positive-valued. Then f is convex if and only if f is quasiconvex.

C.7 Convexity Properties of Composite Functions

Referring to utility functions, we have already indicated that a monotone increas-

ing transformation of a concave function need not be concave. Here we will see

that quasiconcavity and quasiconvexity are invariant with regard to such transfor-

mations and add some more general results on composite functions. There is yet

another important reason to study the convexity properties of composite functions:

it provides eminently practical results for identification of convexity and quasicon-

vexity that you should try to apply when the conditions on the subdeterminants of

the (bordered) Hessian matrix are impracticable.

We begin with two fairly obvious results.

Proposition C.15 Suppose f : D —> R and g : D —> R are convex functions

defined on the convex domain D c K " . Then f + g is also convex, and so is Xf for

all X>0.

Now consider composite functions in general. Suppose / : D —>• R is defined

on the convex set D e l " , and let g : E —> R be defined on the range of values of

/ , denoted by E. Assume both / and g are convex functions. Does it follow that

the composite function of a function h : D —• R, h(x) := g[f(x)], is convex as

well? The following example shows that the answer is no.

Example C.4 Let f(x) := — In x and g(f) := —/. Obviously, / is convex, and

g is linear and hence also convex. Yet, h defined by h(x) := g[f(x)] = hue is

strictly concave and hence not convex.

Suppose, however, that g is Cl, has the property g' > 0 (is a monotone increasing

function), and is convex. We then call the composition g[f(x)] a convex monotone

increasing transformation of / . This particular transformation preserves convexity.

Proposition C.16 Suppose f : D - • Rw defined on the convex set flcf and

g : E -> Ron the range of values of f. Let g be monotonically increasing, and let

both f and g be convex. Then the convex monotone increasing transformation of

f h : D -» R, h(x) := g[f(x)], is also convex.
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While convex monotone increasing transformations of convex functions are con-

vex, it is not generally true that convex transformations of convex functions are

convex nor that increasing transformations of convex functions are convex. Find

counterexamples.

Now turn to quasiconvexity. Again, one has:

Proposition C.17 Suppose f : D -> Ris quasiconvex on the convex set D c E".

Then Xf is also quasiconvex for all X > 0.

However, the sum of two quasiconvex functions is generally not quasiconvex. As

this may surprise you, take a look at the following example.

Example C.5 Let / : E -> E, f(x) := -x2 and g : E -> E, g(x) := x.

Obviously, both / and g are quasiconvex. Consider the function h : E -> E,

/z(x) := /(JC) + g(x) = —x2 + x. Compute the lower contour set of h for the

value 0, LC(ft; 0), and one obtains LC(ft; 0) = (-oo, -1 ] U [1, +oo], which is

obviously not convex. Hence, the sum of the two quasiconvex functions / and g is

not quasiconvex.

Turning to monotone increasing transformations of quasiconvex functions, we

confirm that quasiconvexity has stronger invariance properties than convexity.

Proposition C.18 Suppose f : D -> E is defined on the convex set D C Rn,

and g : E -> E on the range of values of f. Let g be monotone increasing

and f quasiconvex. Then the monotone increasing transformation of f given by

h : D -> E, h(x) := g[f(x)], is also quasiconvex.

More generally than this, the operation of taking monotone increasing transfor-

mations of a function (not just of quasiconvex or quasiconcave functions) leaves

the upper and lower contour sets unchanged in a sense described in the following

proposition.

Proposition C.19 Given the assumptions of Proposition C.18, one has, for all y in

the range of f, the following properties of lower and upper contour sets:

)9 (C.32)

\JC(h;h(y)) =UC (f;y). (C.33)

Of course, since any convex function is also quasiconvex, any monotone increasing

transformation of a convex function must be quasiconvex.

Finally, we mention that all of the above results can be strengthened to strict con-

vexity (quasiconvexity) if the underlying functions are themselves strictly convex

(quasiconvex) and strictly monotone.

Example C.6 This example shows how the above results can be utilized to check

convexity. Let / : Rn -> E, f(x) := (E*?)1 / 2- Define g : Rn -> E, g(x) :=

Ylx2j a nd A : M —• M, h(g) := g1^2. The function g is obviously strictly convex

(its Hessian matrix is a diagonal matrix with positive entries on the main diagonal),
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and therefore g is also quasiconvex. The function h is a monotone increasing

transformation of the quasiconvex function g. Hence, f = h(g) is quasiconvex, by

Proposition C.I8. This result can even be strengthened as follows. Notice that / is

homogeneous of degree 1, since f(kx) = [£(AJC,-)2]1/2 = ME*?) 1 / 2 = */(*)•

Therefore, by Proposition C.14, the already confirmed quasiconvexity of / implies

convexity of / .

We close this section with an application to a frequently used functional form in

economics.

Is the Cobb-Douglas Function Concave? The Cobb-Douglas function

f\ a ; > 0 , (C.34)

is frequently used in maximization problems in economics. Therefore it is eminently

important to know whether this function is concave or at least quasiconcave.

Using some of the above results, we now summarize some of its properties.

Proposition C.20 Consider the Cobb-Douglas function (C.34). It has the following

concavity properties:

1. f is quasiconcave.

2. / is concave ifJ2ai - 1-
3. f is neither concave nor convex ifY^ai > 1-

Proof The assertions are easy to prove if n = 2. In this case you can utilize the
sign conditions concerning the principal minors of the Hessian matrix of / , stated
above. However, these conditions are hopeless if n is large. Therefore, one has to
jfind some other procedure. The following is a sketch of a somewhat ingenious proof
that uses several of the above results in three steps.

1. Consider the transformation of / given by

g :=\nf =

instead of / . Compute the Hessian matrix of g, and show that it is a diagonal matrix.

It is easy to see that g must be concave. Since g(x) = In f(x), it follows that f(x) =

£#(*) Hence, / is also a monotone increasing transformation of the concave function g.

Every monotone increasing transformation of a concave function is quasiconcave (see

Proposition C.I8). Hence, / is quasiconcave.

2. Show that / is concave if £ a?/ = 1. Note that, in this particular case, / is a homogeneous

function of degree 1, is positive everywhere, is C1, and is quasiconcave. Therefore, by

a known property of homogeneous functions, / must be concave.

3. Using a tautological transformation, one has

='.h{xY

The function h is obviously itself a Cobb-Douglas function with a sum of exponents
y/y = 1. Using step 2, it then follows that h must be concave. Let y := £«,• - 1-
Then the function hy is a monotone increasing concave transformation of the concave
function h. Therefore, / is also concave, which completes the proof. D
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C.8 Convexifiable Quasiconvex Programs

The properties of a convex program described in Section C.5 can be extended to

convexifiable programs. The prerequisite for weakening convexity requirements

is that quasiconvex objective functions be convexifiable by means of monotone

increasing transformations and that quasiconcave constraint function be concavifi-

able. In the following we state a sufficient condition and explain why the possibility

of convexification and concavification is so important.

The key insight comes from the following observation: suppose the objective

function is quasiconvex rather than convex, or some constraint functions are only

quasiconcave rather than concave. Also suppose there exists a set of strict monotone

increasing transformations such that the objective function becomes convex and all

constraint functions become concave. Then it is not so difficult to see that the thus

convexified program has the same solution as the original program, after apply-

ing the inverses of these transformations. Therefore, the convexity and concavity

requirements of Proposition C.8 can be weakened to quasiconvexity and quasicon-

cavity - provided the objective function is convexifiable and the constraint functions

are concavifiable.

Formally, we say that a quasiconvex function / : D -> E, D c R n , E C R, is

convexifiable if there exists a strictly monotone increasing and C1 transformation

h : E -> R, such that the composite function h(f) is convex. The definition

of concavifiability is phrased correspondingly. The following proposition gives a

sufficient condition for convexifiability of a quasiconvex function.

Proposition C.21 Assume f : D -> E, E c R, is C2 and quasiconvex (quasi-

concave), D C R" is open and convex, and ft (x) > 0, VJC € D. Then f is

convexifiable (concavifiable).

Example C.7 In economic applications, most quasiconcave functions (such as

utility or production functions) are concavifiable. A simple example of a quasi-

concave function that is not concavifiable is the function / : R —> R, f(x) := x3.

Confirm that / is quasiconcave. Why does Proposition C.21 not apply?

It is surely nice to know which quasiconvex functions are convexifiable. But

how does one actually convexify? The answer is particularly simple if / : D —• R,

D c R, is C2 and monotone increasing and D is convex and open. In this case f~l

exists and is itself monotone increasing, and

r1U(x)]=x=:g(x)

is convex. Therefore, the inverse of / can be used to convexify / .

Unfortunately, this trick does not help as you go from one to several variables.

But even then, convexification is fairly straightforward. For this purpose consider

the monotone increasing transformation g : D -» R, D c R", with image

g(x) = exp(r/O)),
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where r is some positive constant. Differentiation gives

g»(x) = [rf\x)f exp(rf(x)) + rf"(x) exp(r/(x)),

and since f'(x) > 0,

, fix)]
g»(x) = rf\xf exp(r/(*))

fix)2

For all x e D, the factor outside the square brackets is positive. Consider a compact

set C c D. Since / is C2 and f'(x) > 0, the function f" If'1 is continuous.

Therefore, by the Weierstrass theorem, f" If'1, must have a minimum over C. Call

this minimum m e R. Now choose r > —m, and it is assured that the factor in

brackets is nonnegative over C But then g is convex over C; thus, convexification

is assured over C c D.

We may now say that we are dealing with a convexifiable quasiconvex program
if the following conditions are met:

1. / : D —> R is C2, is strictly quasiconvex on the open and convex domain D e l " , and
has/ZOO > OVx e £>.

2. All equality constraints hJ' : D -> M. are affine functions:

hj(x) := (y) r jc - bj, j = 1 , . . . , m,

where a-7' G R71, Z? € R and det[a,7] ^ 0.

3. All inequality constraints gl : D —>• R are C2 and strictly quasiconcave, with Vg* (x) >

OVx € D.

We may then summarize:

Proposition C.22 (Convexifiable Quasiconvex Program) Consider a convexifi-

able program. If there exist vectors x*, A,*, /x* satisfying the constraints (B.2) and

(B.3) and the Kuhn-Tucker conditions (C.15)-(C17), then JC* is a global minimum.

Application: A Concavifiable Theory of the Firm Problem Consider the factor

demand and product supply decision of an egalitarian labor-managed firm (LMF)

that operates in competitive markets. An egalitarian labor managed firm is defined

as follows: It is owned by its employees (called members), and it is committed to

share its net return equally among all members; new members are never charged

an entry fee, and members who quit are never compensated.

Denote the product price by /?, factor prices (for factors other than labor) by the

row vector w e R+, factor demand by the column vector X e R+, product supply

by y, fixed costs by F > 0, and number of members by M. The production function

/ ( M , X) is strictly monotone increasing and strictly concave.

The competitive LMF maximizes the payoff per member, subject to sales and

nonnegativity constraints

pY -wX-F
max (P)

M,X,Y M

s.t. /(M, X) - Y > 0, F, X > 0, M > 0.
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Is program (P) well behaved? Obviously, the constraint function f(M, X) — Y

is strictly concave; but the objective function is strictly convex in M, and hence not

concave.

However, we can transform program (P) into an equivalent concave program.

For this purpose, define the new variables

y := Y/M, x := X/M, m := 1/M.

Apply a change of variables, and one obtains the equivalent program

max py — wx — mF (P')

m,x,y

( \ X\
s.t. mf [ —, — - y > 0, m > 0, x > 0, y > 0.

\m m)
Evidently, the new objective function is linear and hence concave. However, it

remains to be shown that the new constraint set is strictly convex.

Denote the constraint function by g(m, x, y) := mf (l/m,x/m) — y. Consider

two elements of the constraint set, say (mi, x\, y\) ^ (rri2, X2, yi), the real X e

(0, 1), and the convex linear combination

(m3, X3, y3) := k(m\, x\, y\) -\

Then, by the strict concavity of / ,

, X3, y3) = m 3 / ( — , — ) - y3\m3 m3 /
/

= m 3 /

= m 3 /

mi xi m2 x2 \
A — — + (1 - X) — —\ ~ ^3

mx ( 1 xi \ m2 / I x 2 \

m3 \mi mi) m3 \m2 m2 /

-A.yi - (1 - X)y2

^i,Ji) + (l -k)g(m2,x2,y2)

Therefore, the constraint set is convex and program (P') is concave.
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From Expected Values to Order Statistics

All's well that ends well.
William Shakespeare

D.I Introduction

This last appendix lists some important rules concerning random variables, from

expected values to order statistics. It should be a useful source and is geared to the

prerequisites of several chapters in this book.

D.2 Expected Value

Let I , F € R be random variables, O : R2 -» IR+ their joint distribution function

(cdf), and Z : R2 -> R an integrable function with respect to 3>.

The expected-value operator E maps a random variable into a real number.

The expected value can be regarded as the center of gravity of that probability

distribution. It is defined as
f+OQ

E[X] := / xdF(x), (D.I)
J — OO

r+oo

E[Y]:= / ydG(y), (D.2)
J—oo

where F and G denote the respective cdf's of X and Y:

rx r+oo

F(x) := Pr{X < x} = / <D(JC, y) dy, (D.3)

J—oo J—oo

ry r+oo

G(y) := Pr{y <y}= / <P(x, y)dx. (D.4)
J—oo J—oo

The expected-value operator can also be applied to deterministic transformations

of random variables such as the function Z. In principle, one then needs to deter-

mine the cdf of the new random variable Z(X, Y). However, it can be shown that

E [Z(X, Y)] can always be calculated directly from the relation
r+OO r+OO

E[Z(X,Y)]= / Z(x,y)d$(x,y). (D.5)
J—oo J—oo



340 Appendix D

This result has been called the "law of the unconscious statistician" because many

people have been accused of using it without realizing that it is not a definition.

D.3 Variance, Covariance, and Correlation

All three operators, the variance Var, the covariance Cov, and the correlation p,

map random variables into real numbers.

The variance

Var(Z) := E [(Z - E [Z])2] (D.6)

is a measure of the spread or dispersion of the distribution around its expected

value. A small variance indicates that the distribution is concentrated around its

expected value.1

The covariance

Cov(X, Y) := E [(X - E [X])(Y - E [Y])] (D.7)

is a measure of the degree of association between two random variables. Loosely

speaking, a positive covariance indicates that the two random variables tend to

move in the same direction.

Finally, the correlation

f^ /-*r y s •» y x / ^ TT /T T\ \ X

is a measure of the extent to which two random variables are linearly related. If

the joint distribution of two random variables is concentrated around a straight line

that has a positive slope, the correlation will be close to one.

In the following it is assumed that all these quantities exist and are finite.

D.4 Rules to Remember

D.4.1 Expected Value

Rule (Rl)

Va,£eR, E[aX + 0Y] = aE[X] + PE[Y]. (D.9)

Rule (R2)

Cov(X, Y) =E[XY]-E[X]E[Y]. (D.10)

Rule (R3)

E [AT]2 < E [X2]E [Y2] (Schwarz's inequality). (D.I 1)

1 However, both the variance and the expected value can be made arbitrarily large by placing even a very small
but positive amount of probability far enough from the origin of the real line.
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Rule (R4)

Rule (R5)

= argminE[(X-A.)2].

r+oo

E [X] = / [F(x) - F(-x)] dx, (D.13)
Jo

where F(x) := 1 - F(x).

Rule (R6) If X is nonnegative, then

r+oo _ roo

E[X]= F(x)dx= Pv{X>x}dx. (D.14)
Jo Jo

In general, one can write any random variable X as the difference between two

nonnegative random variables X := X+ — X_, where

(X i fX>0,
X+ := \

[0 otherwise,

(-X i fX<0,

[0 otherwise,

Therefore, by the above rule,

= E[X+]-E[X_]

>x}-Pr{X_ >x}]dx. (DAS)

D.4.2 Variance, Covariance, Correlation

Rule (R7) Va, |3eK:

Var(aX + &Y) = a2 Var(X) + 2a£ Cov(Z, Y) + )62 Var(F). (D.16)

Generalization: let Z := (Z\, Z\,..., Zn) be a vector of random variables,

a 6 R+, and M the covariance matrix of Z. Then

V a r ( ^ a , Z ; ) = aT Ma. (D.17)

Rule (R8)

Cov(Z, Y)=E[X(Y -E[Y])]

= E[(X-E[X])Y]. (D.18)

An immediate implication is obtained by setting Y = X:

Var(X) = E[X2] - E[X]2. (D.19)



342 Appendix D

Rule (R9)

Cov(X, Y)2 < Var(X)Var(F). (D.20)

Rule (RIO) The correlation p is bounded with

Rule ( R l l ) The covariance matrix

Cov(Xi,X 2) ••• Cov(Xi,Xn)"

Cov(X2 ,Xi) Cov(X 2 ,X2) . . . Cov(X2 ,X«)
M :=

Cov(X n ,Xi) Cov(X n ,X 2) ••• Cov(Xn,Xn)_

is positive semidefinite.

Rule (R12)

Var(X) = minE [(X - X)2]. (D.22)

D.4.3 Expected Utility

Rule (R13) Suppose U : D -> R is C1, strict monotone, and concave on the

convex set D c K . Then

E [f/(X)] < U(E [X]) (Jensen's inequality). (D.23)

The inequality is strict if U is strictly concave, and reversed if U is convex.

Rule (R14) Suppose U(X) := —e~rX (where r is the constant degree of absolute

risk aversion), and assume the random variable X has a normal distribution with

mean /x and variance a2. Then2

E[U(X)] = -e-
r^-rGl/2\ (D.24)

Moreover, the certainty equivalent of X, denoted by jc, which is implicitly defined

as

= U(E[U(X)]), (D.25)

is equal to

x = fi - -a2. (D.26)

2 This relationship is often used in mean-variance analysis in finance.
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D.4.4 Transformations of Random Variables

343

Rule (R15) Suppose X has a continuous pdf f{x) with support D c K . Let Y be a

transformation of X with support I c K , defined by the one-to-one differentiable

function

y = r(x), or equivalently x = s(y), s := r l.

Then the pdf of Y is

' f(s(y))W(y)\ forye7\
g(y) :=

0 otherwise.

(D.27)

(D.28)

This rule generalizes as follows.

Let X and Y be n-dimensional vectors of random variables, / the joint pdf of

X, and r : D -> T and s := r"1 : T -» D, with D J C R". Then the joint pdf of

Fis

0

where / denotes the Jacobian of s(y),

J := det

otherwise,
(D.29)

(D.30)

Rule R16 Suppose Y is a linear transformation of X:

y = r(x) := AJC, or equivalently x = s(y) := A~ly, (D.31)

where A is a real-valued, invertible n x n matrix. Then the joint pdf of Y is

- l .
g(y) = f(A~ly)

1

|det(A)|
(D.32)

As an example consider the difference between two random variables, Y :=

i -X2. The pdf of Fis

r+oo

g(y) = / f(y
J—oo

z,z)dz. (D.33)

If in addition Xi and X2 are iid and uniformly distributed on the support (—|, +5),

then the support of Y is (—1, +1) and one obtains the triangular distribution

+ y for? € (-1,0] ,

= <( 1 - y forjGfO, 1),

0 otherwise.

(D.34)
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On the other hand, if X\ and X2 are iid and normally distributed, with mean zero

and variance a2, one obtains

The nice feature of normal distributions is that every linear combination of normally

distributed and iid random variables is again normally distributed. This is one of

the reasons why finance people love the normal-distribution assumption.

D.4.5 Order Statistics

Let X\, X2,..., Xn be a sample of n independent random variables, each having the

same probability distribution function F(x) with density f(x) = Fr{x). Suppose

we always rank the realizations of the series in increasing order:

-y* •<" y •<* . . . <" Y" • ^ . . . - ^ V

Then we define the &th order statistic as the function X(*) that assigns to each

realization of the series ( X i , . . . , Xn) the kth smallest value xVk? Altogether, there

are n order statistics

X(\),

Of course, each order statistic is a random variable.

Rule (R17) The £th order statistic X^) of the series of random variables X\,..., Xn

has the following cdf:

j=k \J

[1 - F(x)]n-J. (D.36)
JJ

Rule (R18) F(k)(x) is also equal to

C r"'(1 -rr" *• <D37)

Therefore, the density function f(k)(x) is

f(k)(x) = ( f e 1 ) " (
!

n ^ ) , F ( x ) f c - 1 [ l - F(x)f-kf(x). (D.38)

Moreover, the conditionalpdf of X(r), given X(s) = v (s > r), is just the pdf of

X(r) in the smaller sample size (s — 1) drawn from the parent distribution truncated

3 Suppose n = 2 and JC, e {0, 1}. Then the random vector (JCI,JC2) can assume the following realizations:
(0,0), (0, 1), (1, 0), (1, 1). In this case, there are two functions X(k), namely X(\) and X@)- The associated
realizations of X(i) are (0,0, 0, 1), and those of Xy,) are (0, 1, 1, 1).
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on the right at v.4 Therefore, for x < v,

_ (s-iy. f(x)F(xy-1 (F(v) - F(x)y-r-1

fx(r)\x(s)=v(x) - ( r _ 1 ) ! ( ; J _ r _ 1 ) ! F(vy~l '
(D.39)

Rule (R19) The expected value of the Mi order statistic X(k) is

E[X(k)]:= [Xxf{k)(x)dx (D.40)

If X is uniformly distributed on the domain [0, 1], one obtains

4 (D.41)4r,
n + 1

(lI) = x] = ^ ^ x , (D.42)

( ^ T ^ ) for ' < r '

i . (D.45)

D.5 Proofs

(Rl) is obvious.

(R2):

Cov(X, Y) := E [(X - E [X])(Y - E [Y])]

= E[XY - XE[Y] - YE[X] + E[X]E[Y]]

= E [XY] - 2E [X]E [Y] + E [X]E [Y]

= E[XY]-E[X]E[Y].

(R3): The proof is too long to be presented here; consult your textbook on

statistics.5

(R4): As E [X—A]2 is convex in A., all you need to do is to find that particular k that

satisfies the first-order condition for an extreme value. If you state this condition,

you will see right away that the assertion holds true. Incidentally, (R4) gives you a

nice interpretation of E [X].

4 Follows from Theorem 2.7 in David (1970).
5 See for example DeGroot (1986, p. 213).



346 Appendix D

(R5) and (R6) follow immediately by using integration by parts together with

the fact that6

rO r+oo

/

rO r+oo

/ (/)(x)dx= / (t>{-x)dx.
J-oo JO

(R7):

Var(aX + 0Y) := E[((aX + y6F) - E [aX

= E[((aX + PY) - aE [X] - £E [F])2]

= E [(a(X - E [X]) + j3(y - E [F]))2]

= E[a2(X - E [X])2 + 2a£(X - E [X])(F - E [Y])

+/5 2 (F-E[F]) 2 ]

= a2E[(X - E [X])2] + 2a£E [(X - E [X])(F - E [Y])]

+P2E[(Y -E[F] ) 2 ]

= a2 Var(X) + 2ajS Cov(X, Y) + ;S2 Var(F).

(R8):

Cov(X, Y) := E [(X - E [X])(F - E [F])]

= E [X(F - E [F]) - E [X](F - E [F])]

= E [X(F - E [F])] - E [X](E [F] - E [F])

= E [ X ( F - E [ F ] ) ] .

The proof of the other form is analogous and hence omitted.

(R9): Apply Schwartz's inequality (R3) to the random variables X — E [X] and

Y — E [Y], and the assertion follows immediately.

(RIO) follows immediately from (R9) combined with the definition of the cor-

relation p.

(Rll): In the case of two random variables the assertion follows immediately

by the fact that the variance cannot be negative and by rule (R9). Unfortunately,

this line of proof cannot be generalized to more than two random variables. But

there is a very simple general proof in two steps. Let X be a column vector of

n random variables and E[X] its expected values. In a first step, notice that the

covariance matrix M of X is equal to the expected value of the vector product

(X-E[X])(X-E[X])T:

M := E[(X - E [X])(X - E [X]f],

6 Prove this by using the substitution rule: / , dF{x) = / f{cj){x))(f)f{x) dx.
J(p((X) J Q.
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Now consider any n -dimensional, real-valued vector £ ^ 0 and the quadratic form
r . As one can see easily,

; = fE [(X - E [X])(X - E [X]f]i=

= E[i=T(X-E[X])(X-E[X]ft;]

= E [(X - E [X])r£]2, since (X - E [X])r§ = §r(X - E [X])

Therefore, M is positive semidefinite.

(R12) follows immediately from (R4).

(R13): Since U is C1 and concave, it follows that (see Proposition C.3 in Ap-

pendix C):

V* Gfl, VJc e D, U(x) < U(x) + U\x)(x - jc).

Since E [X] e D, due to the convexity of D, this inequality must also hold true for

x = E [X]. Therefore, one has

U(X) < U(E [X]) + U\E [X])(X - E [X]).

Take the expected value on both sides, and it follows that

as asserted.

(R14): To simplify the notation, let /x := E [X] and a2 := Var(X).

Substitute the assumed normal distribution of X, and one obtains after a few

rearrangements

E[-e~rX] = - f+

J-o

= _ / •
+

J—o

dx

J— \jTjXO

Obviously, the integrand is itself the density function of a normally distributed

random variable with variance a2 and mean /x — ra2. Therefore, the integral must

be equal to 1, and one obtains

E[-e~rX] = - ^ 2 ° r 2 / 2 ^ ~ / X r = _e-r(M-(r/2)a2)^

as asserted.

The inverse of u(x) = —e~rx is

u-\z) = --ln(-z).
r



348 Appendix D

By definition of the certainty equivalent x together with (D.24) one obtains

(R15): Suppose r'(x) > 0. Then the cdf of Y is

G(y) := Pr{y < y}

= Pr{r(X) < y]

= Pr{X < s(y)},

= F(s(y)).

Therefore g(y) := G'{y) = f(s(y))s'(y).

"1
s := r

If r'(x) < 0, the third inequality is reversed; hence, G(y) = Pr{X > s(y)} =

1 — F(s(y)) and g(y) = —f(s(y))s'(y). Putting both cases together proves g(y) =

f(s(y))\s'(y)\.
The proof of the generalization of this rule to vectors of random variables (D.29)

is omitted.

(R16): Note that det(A~') = l/det(A). Therefore, (R16) follows immediately

from (R15).

In order to prove the formula for the difference between two iid and normally

distributed random variables Y := Xi — X2, with support (—|, +\), stated in

(D.34), define Y := Xi - X2, Z := X2. Then

or equivalently

Therefore, by (D.29) the joint pdf of Y and Z is

x2
—1 1

0 1
Y

Z

Integrate in order to obtain the marginal distribution
r+00

g(y)-= f(y
J—oo

z)f(z)dz.

Finally, use the distribution assumption. Note: / ( • ) either is equal to 1 or vanishes.

For y < 0 the integrand does not vanish i f f z e [ — \— y,\], and if y > 0 the

integrand does not vanish if and only if z e [—\, \ — y]. Hence,

g(y) =

f-\-y
d^ for? €[-1,0],

i \ y dz for ye [0,1],

0 otherwise

1+y for? € (-1,0],
\-y for y e [0,1),
0 otherwise.
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The assertion concerning the normal distribution follows immediately from the

well-known fact that every linear combination of normally distributed random vari-

ables is again normally distributed and that o2(X\ — X2) = 2a2, by (Rl).

(R17)-(R19): In order to compute F(k), one heeds to determine the probability

of the event that X(k) < x> This event occurs if and only if in a sample of size n,

the kth smallest observation is not greater than x, that is, if at least k observations

are below x. Therefore,

Pr{at least k among n random variables X; are < JC}

F(x)k[l - F(x)]n~k + ( H
+ i J F(x)*+1[l - F(x)f

HI - F(x)] + F(x)n

j=k

Using partial integration one can confirm (D.37).7 Differentiating (D.37) gives

(D.38), and (R19) follows immediately.

7 See Fisz (1963, p. 439, equations (10.3.7), (103.8)) or Kendall and Stuart (1977, pp. 268, 348).
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