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ABSTRACT 

Some genekal eOn6idenation6 about multiple-loop 
6eedbael< Me d.L6C'-£L6f..ed, and il JA C'-onC'-lude.d tha-t: 
inC'-onpohation 06 a eunne.nt-pnognammed powe.n ~tage. 
-<-nto a "ne.w" powe.n ~tage. model JA both j£L6tiMe.d 
and Me6u!. A new C'-ineuil-onie.nte.d model On the. 
C'-unnent 6eedbael< pa-t:h JA de.nive.d whieh augme~ the 
welt-I<nown powe.n ~tage. eanon-<-C'-al einC'-uil model. 

The C'-unne.nt loop ga.i.n, though wide.band, JA 
alway~ ~table. i6 the. C'-onve.nt-<-onal ~tabil.<.z-<-ng namp 
JA e.mployed, but hM a ne.la1:.(vely ~maU low-
6neque.nC'-y value. COMe.quently, the. "new" powe.n 
~tage JA mone. Me.6ully modelte.d by a y pMamete.n 
model in whieh the. C'-unne.nt loop JA not e.xplieit. 
ExpneM-<-On6 60n the. y pMameteM Me. give.n tha-t: Me. 

exten6ion6 06 tho~e. pnevio£L6ly de.nived. 

Although C'-unne.nt-pnognamming te.n~ to mal<e the 
powe.n ~tage output be.have. M a C'-unnent MMC'-e, the 
eontnol to output voltage. tnaM6e.n. 6unC'-t~on 
exhibw, -<-n addit-<-on to the. 6am.i.liM dom.i.nant pole., 
a ~e.C'-ond pole a-t: the. C'-unne.nt loop ga.i.n eno~~oven 
6ne.que.nC'-y, whiC'-h may lie. 6nom one.-~ixth to two
thin~ a 6 the ~wUC'-hirtg 6ne.que.rtC'-y. 

1. INTRODUCTION 

Current-programming has become widely adoptee 
as a useful technique for easing the design and 
improving the performance of switched-mode 
regulators. The basic principle and the resulting 
advantages of current-programming were discussed in 
two papers at PESC 1978 [1,2]. 

A small-signal model was presented at PESC 
1979 [3J. A current-programmed power stage inside 
the conventional output voltage feedback loop 
constitutes an example of mUltiple-loop feedback, 
and the approach taken in [3] was to find a general 
model of the current-programmed power stage so that 
its relevant transfer functions could be used as 
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factors in the rema1n1ng output voltage loop gain. 
Thus, the "minor" current-programmed feedback loop 
was absorbed into a "new" power stage model so that 
design of the "major," or overall, output voltage 
feedback loop could proceed on the conventional 
single-loop basis. 

At PESC 1984 the claim was made [4] that the 
loop gain of this major output voltage feedback 
loop does not provide meaningful information on the 
stability or the dynamics of the regulator system, 
and that the "proper" loop for study is the one 
that is "inside" all of the identified loops. 

In the presence of mUltiple loops, the simple 
concepts related to single-loop feedback systems 
become fuzzy, and the first objective of this paper 
is to try to clarify some of these concepts in the 
mUltiple-loop case. Actually, all the useful 
properties of a linear system, such as transfer 
functions, stability, and sensitivities, can be 
defined and determined without "loops" ever being 
mentioned. The trouble with this formal approach is 
that insight into the physical system is sacrificed, 
which makes design difficult in spite of the 
existence of the analysis. On the contrary, one 
would like to retain and extend the simple single
loop concepts as far as possible, and to this end 
one is at liberty to identify any number of loops 
one wishes. The objective, of course, is to 
establish a model that retains as many of the 
distinct features of the physical system, and at 
the same time lends itself to useful and simple 
analysis. This is the essence of "design-oriented 
analysis." The discussion of multiple-loop systems 
in Section 2 leads to a reiteration of the modellin~ 
objective stated in [3], namely, that absorption of 
a current-mode loop into a "new" power stage model 
inside the output voltage major loop is both 
legitimate and useful. 

A second objective of this paper is to extend 
the equivalent circuit model of the "new" current
mode programmed power stage, and to derive it by a 
circuit-oriented method which is both analogous to 
and an extension of that by which the original 
canonical model of the duty ratio programmed power 
stage was derived [5]. In [3], the "new" current
programmed power stage model was derived by formal 



application of the state-space averaging method [6], 
and the y parameter equivalent circuit model, in 
which the current-feedback loop is no longer 
visible, emerged full-blown at the end, perhaps 
leaving the reader uncertain as to how or why it 
happened. In contrast, the derivation presented 
here attempts to retain as much physical signifi
cance and motivation as possible, both for the 
duty-ratio and current-programmed modes. 

One new result of this approach is that a 
current-programmed loop gain can be quantitatively 
defined. It turns out that this loop is always 
stable (as long as the well-known stabilizing ramp 
is employed), contains yet another "minor" voltage 
loop in the case of the buck converter, and may have 
a rather low gain. All of these results are hardly 
surprising, since absence of knowledge about them 
has not prevented rapid increase in the successful 
implementation of current-programming. These 
results also lend weight to the argument that the 
current-programmed loop is not worth identifying 
and should be absorbed into the "new" power stage 
model. 

The basic objective of current-programming is 
to make the power stage into a current source feed
ing the output capacitance and load. The input 
also, incidentally, approaches a constant current. 
Since duty ratio programmed discontinuous conduction 
mode has the same effects [7], it is not surprising 
that both modes are suitably represented by a y 
parameter model. Moreover, quantitatively, the 
"conduction parameter" K introduced to characterize 
the discontinuous conduction mode also plays an 
integral role in the current-programmed model. 

Some additional aspects of the current
programmed model are considered in Section 5. The 
y parameter model apparently has no resemblance to 
the original canonical' model for the duty ratio 
programmed mode, and so in Section 5.1 an attempt is 
made to manipulate the output part of the y 
parameter model into the original LC filter format. 
This shows that current-programming introduces a 
series damping resistance and reduces the effective 
inductance value, which is why the output approxi
mates a current source. Comparison is made with 
storage-time modulation in the power switch, which 
was shown in [8] to lead to exactly the same result. 

Current-programming, which may be considered 
an extreme case of storage-time modulation, causes 
sufficient damping that the two poles of the LC 
filter become real and well-separated so that the 
lower one becomes dominant, corresponding to the 
well-known "single-pole response." However, an 
important result of the model derived here is that 
the second pole is still present, and may lie at 
one-sixth to two-thirds of the switching frequency. 
This two-pole filter transfer function enters into 
the control-to-output transfer function, which is 
derived in Section 5.2. The presence of the second 
pole may therefore have a significant effect on the 
phase margin of the regulator major voltage feedback 
loop. 

2. MULTIPLE-LOOP FEEDBACK 

Any function of a linear system of constant 
lumped elements, such as its gain G, can be 
expressed as the ratio of a numerator N(s) to a 
demoninator D(s), each of which is a polynomial in 
complex frequency s: 

G( ) = N(s) 
s D(s) 

(1) 

The seminal work on the properties of such systems 
was done by Bode [9]. The roots of the numerator 
are the zeros of the function, and the roots of the 
denominator are the poles of the system which are 
the natural (unforced) frequencies, and are the same 
regardless of what function G is being represented. 

The system is stable if no natural frequency 
has a positive real part, that is, if no system 
pole lies in the right half-plane (rhp). The Routh 
criterion [10] is a test for determining if there 
are any rhp poles. 

Stability against oscillation is a necessary 
but not sufficient condition for acceptability of 
a system design. One also needs to know how 
various functions of the system, for example its 
output impedance, depend upon certain element values 
and, in particular, how such functions vary when the 
element values change. To find this, one can 
derive the numerator and denominator of the function 
each into two groups such that one group, N1(s) and 
D1(S), does not contain a certain element Wk and the 
other group, N2 (s) and D2 (s), is proportional to Wk 
and so can be written N2(S) = WkNk(s) and 
D2(S) = WkDk(s), so that 
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G(s) 
N1(S) + N2 (s) 

D1(s) + D2 (s) 

N1 (s) + WkNk (s) 

D1 (s) + WkDk (s) 

(2) 

This involves merely arranging G(s) as a bilinear 
function of Wk , and this can always be done since 
it is easily shown that Wk cannot appear in the 
numerator or in the denominator to any power higher 
than the first [11], although one or more of the 
N's and D's in (2) may be zero. Hence, Wk is 
explicit in (2) and, by differentiation, 

:G • ~ + ~2/Dl 1 + :/NU !:k (3) 

This gives the fractional change in G that results 
from a given fractional change in Wk, that is, the 
sensitivity of the function G to changes in a given 
element Wk. 

The stability of a system, and the dependence 
of various functions upon certain elements, and 
their sensitivities, are all that one needs to know 
about a system. Significantly, in the above 
summary, no mention has been made of "loops" or, 
indeed, of whether any "feedback" is present or not. 
"Feedback loops" are conveniences in modelling a 
system identified so that constituents of various 



functions can be associated with certain physical 
properties. 

For example, suppose that a system gain G is 
written as 

G = ~ = 
N 

D D + D 
P q 

N/D Gl 
9 

1 + (N/D )(D IN) -
1 + GlHl 

q P 

(4) 

(5 ) 

The final form is that obtained from the ideal block 
diagram of a single-loop feedback system whose 
forward gain is Gl and feedback path gain is HI' as 

o-~}(~----------~GI~------------~----o 

~----------~HI~--------~ 

Fig. 1. A -6il1gle.-loop 6e.e.dbac.k. -6tf-6te.m. 

in Fig. 1. The product GIHI can be defined as the 
loop gain Tl' so that G can also be written 

G 

N/D 
q 

+ D ID 
P q 

(6) 

Stability can now be examined by means of the 
Nyquist criterion [10J, which states that for 
stability a polar plot of the loop gain Tl must 
encircle the critical point (-1,0) counter-clockwise 
as many times as the number of rhp poles of Tl' In 
the simplest case, this number is zero. 

The usefulness of form (5) or (6) lies in the 
identification of Gl and HI with separate blocks in 
the model of the physical system, and Tl as a loop 
connection of these blocks. If this can be done, 
yet another form of (5) exposes one of the funda
mental properties of feedback: 

G (7) 

This form says that the closed-loop gain approaches 
the reciprocal of the feedback path gain if the 
loop gain is sufficiently large, and that the 
sensitivity of G to variations in any element to 
which T1 is proportional is reduced by 1 + T1 from 
its open-loop value. These, and other well-known 
properties of single-loop feedback, are true only 
if every element in the system is inside either Gl 
or HI' but not both. 

There are two disadvantages of forms (5), (6), 
or (7). First, there are two requirements for 
stability that need to be examined: whether or not 
Tl has rhp poles, and then whether or not Tl 
satisfies the Nyquist criterion. In the simplest 
case, the system is "open-loop stable" and Tl does 
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not have rhp poles; then, the Nyquist criterion can 
be replaced by the test for gain and phase margins 
on a Bode plot of Tl' 

The other disadvantage is that not all of the 
system elements appear as a proportional factor in 
Tl' This is because the particular Tl = Dp/Dq that 
corresponds to the physical loop may not be defined 
in terms of the Dp and Dq that correspond to Dl and 
DZ of Eq. (Z), that is, a certain element Wk in 
general appears in both Dp and Dq so that the 
sensitivity of the gain to that element is not 
necessarily determined by Tl' However, there i-6 a 
Tk = Dz/D1 that is proportional to ~, so there are 
at least as many "loop gains" as there are elements 
in the system, although some of them may be the 
same. Actually, there are more "loop gains" than 
this because the system denominator D can be divided 
quite arbitrarily into a Dp and a Dq , regardless of 
how any element enters into one or both. 

Thus there are an infinite number of loop 
gains, each with a gain and phase margin, and each 
of which must satisfy the Nyquist criterion for 
stability. In general the margins are different, 
although they all converge to zero as the system 
approaches instability. 

The function Gl = N/Dq in Eq. (5) is also a 
ratio of two polynomials in s, and its denominator 
can also be separated into two groups, so that Gl 
can be expressed as a function of two new 
parameters GZ and HZ' Also, a factor G3 can 
arbitrarily be taken out of the original N, so that 
Gl can be written 

(8) 

Hence, the original G can be expressed as 

G (9) 

1 + G3 1 + G H HI 
Z Z 

This is the form that would be obtained from a 
system block diagram that has a minor loop TZ = GZHZ 
inside the major loop T1 G1H1, as in Fig. Z. 

~----------~HI~--------~ 

Fig. 2. A two-loop 6e.e.dbac.k. -6tf-6te.m. 

Stability of the system in Fig. 2 can be 
examined in the same way as before: the gain GZ is 
examined for rhp poles, and then the Nyquist 
criterion is applied to TZ' The procedure is then 
repeated for Gl and T1' This process can obviously 
be extended to any number of minor loops [lZJ. 



The question of which is the "right" loop gain 
with its gain and phase margins is therefore mean
ingless. The proper question is, which loop gain 
or gains are useful for the designer to examine? 
Obviously, those whose component blocks correspond 
to the physical system blocks, in spite of the 
fact that such correspondence is not always possible 
exactly. One may take advantage of what correspon
dence there is, otherwise one may as well ignore 
the concept of loops altogether. 

Etg. 3. Bioek d.ta.gJta.m on a ~il'lgle-loop voUage 
Jtegu..ea.t:oJt. 

. 
v 

To illustrate this process consider the system 
of Fig. 3, which represents the small-signal prop
erties of a switched-mode regulator. The HI box is 
the error amplifier, the F m box is the ~odulator 
that converts the analog control signal Vc into the 
duty ratio a, and the GI box determines the output 
voltage~. The single f~edback loop is closed 
through the summing junction that compares the out
put voltage with the reference. The line voltage ~g 
also affects the output voltage through the GO box. 
The line current ig is determined by both a and ~g 
through the G4 and GS boxes. All of the boxes 
inside the large box except the modulator Fm con
stitute the model for the power stage. 

Figure 4 shows the block diagram of a voltage 
regulator that includes a current-programmed power 
stage. The diagram has extra gain blocks, G2 to 
identify the inductor current that is being pro
grammed, and H2 to represent the current that is fed 
back to determine the duty ratio. An extra gain box 
G3 indicates that the line input ~g affects the 
inductor current directly and, as will be seen 
later, Vg also directly affects the duty ratio, so 
another gain box G6 is necessary. 

Not only is there now a minor current loop 
FmG2H2 but, as also will be seen later, in the case 
of the buck converter there is yet another loop 
GIH3 closed via H3' This occurs because in a buck 
converter the inductor charging ramp, and hence the 
duty ratio, is determined by the output voltage as 
well as by the line input voltage. The diagram of 
Fig. 4 contains that of Fig. 2 in [4J, and corre
sponding blocks have the same symbol. 

It is claimed in [4J that the only "proper" 
place to determine loop gain and stability margins 
is at TI in Fig. 4, apparently on the grounds that 
this is the only point at which all loops come 
together. However, this is not necessarily true, 
because the error amplifier HI may itself contain a 
local feedback loop. This very commonly occurs, 
and in fact is Eresent in the experimental circuit 
described in [4J. 

Fig. 4. Bioek cUagJta.m oft a mu..Uipie-loop voUa.qe 
JteguiatoJt, il'lc.lucUl'lg a eUJtJtel'lt-pJtogJta.mmed 
loop. 

Feedback loops in general are of two types: 
those that are intentionally installed in order to 
regulate some particular quantity, and those that 
are unintentional and arise from some inherent 
property of a device or circuit configuration. In 
the current-programmed regulator represented by 
Fig. 4, three of the loops are intentional: the 
minor loop in the HI error amplifier, the current
programming loop FmG2H2' and the major voltage loop; 
the minor loop GIH3 is unintentional. 
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Since for analysis purposes identification of 
loops is arbitrary, it seems eminently reasonable 
to choose the intentional loops and to consider them 
sequentially, that is, to treat the innermost 
"nested" loop first, find its closed-loop prop
erties, then use those in treatment of the next 
loop, and so on [12]. The only possible difficulty 
arises when a minor loop is unstable, in which case 
stability of the next outer loop must be considered 
on a more elaborate basis, as discussed in [4J. 
However, this situation rarely occurs in practical 
power supplies. 

This procedure emphasizes the quantities that 
the intentional loops were put there to regulate, 
and gives the most help in design. It contains no 
inherent approximations, and is an entirely correct 
procedure that will be followed in the later 
sections on modelling the current-programmed loop. 



3. DERIVATION OF EQUIVALENT CIRCUIT MODELS 

The state-space averaging technique has been 
;applied to modelling dc-to-dc converter power 
stages in duty ratio programmed continuous conduc
tion mode [6J, dutl ratio programmed discontinuous 
conduction mode [7J, and in current-erogrammed 
continuous conduction mode [3]. In L6] and [7], 
alternative circuit-oriented derivations were also 
presented, which have the advantage of retaining 
insight into the physical operation of circuit. 
The principal purpose of this section is to present 
a corresponding circuit-oriented derivation of the 
model for current-programmed continuous conduction 
mode. 

Current-programming consists of a local feed
back loop closed around a converter operating in 
the duty ratio programmed mode, usually in contin
uous conduction. The approach, therefore, is to 
find a model of the local feedback path that can be 
added to the already established model of the con
verter. This is done in Section 3.2, after the 
derivation of the duty ratio programmed model is 
reviewed in Section 3.1. 

3.1 Model for Duty Ratio Programming 

The key to a simple model of a switched-mode 
dc-to-dc converter is the averaging out of the 
switching frequency, which is accomplished by 
replacement of the single-pole double-throw switch 
by a transformer having a conversion ratio equal to 
an appropriate duty ratio of the switch. 

The basic representations of the buck, boost, 
and buck-boost converters are shown in Fig. 5, as 
established in [6] for the continuous conduction 
mode. The buck-boost converter is shown with a 
noninverted output to facilitate comparison with 
the models of the other two. The straight and wavy 
lines through the transformer symbol are a reminder 
that the conversion ratio is valid for dc as well 
as ac . The large-signal, time-dependent line in
put and output voltages are.vg and v, t~e inpu~ and 
output currents are ig and 1 (the capac1tor C 1S 
counted as part of the load), and the inductor 
current is it. The switch duty ratio is d, refer
enced to the inductor energy storing fraction of 
the switching cycle, also time dependent, and d'is 
its complement I-d. 

The models of Fig. 5 are sufficient to solve 
for the linear line to output transfer function, but 
are nonlinear for variations in duty ratio d. The 
models are linearized by adoption of a small-signal 
constraint. Each large-signal, time-varying 
quantity is replaced by a large-signal dc component 
and a superimposed small-signal ac component, 
v = V + V, d = D + a, etc. 

The buck-boost model will be discussed as an 
example. The first step is the replacement of the 
transformer by an equivalent pair of generators, as 
in Fig. 6(a), which applies to the d':l transformer 
of either the boost or the buck-boost converter. 
Each generator is divided into its components, and 
those proportional to D' are restored into a trans-

buck 

L 

c 

I: d 

boost 

L 

+ c 

d': I 

buck- boost 

L 

+ c 

d': I 

F~g. 5. Ba6~c ~tate-~pace aVekaged mod~ 06 the 
buck, boo~t, a~d buck-boo~t co~ve~e~. 

former with a constant conversion ratio D':l. Those 
proportional to a are separated into independent 
generators, and the remaining components in the 
products of ac quantities are eliminated subject to 
the small-signal restriction. 

The result of these steps is shown in Fig. 6(b), 
which also includes substitutions for It. First, 
the dc inductor current If is equal to liD' times 
the dc converter output current I. Second, I = VIR 
where V is the converter dc output voltage and R is 
defined as 

R _ V 
I 

dc output voltage 
dc output current 

(0) 

Note that R = RL if the converter dc load is RL, but 
R is not necessarily equal to RL if, for example, 
the converter has a constant-current load component, 
or if the load RL is a negative resistance such as 
the input of a switched-mode regulator. That is, R 
represents the output dc operating point of the 
converter regardless of the nature of its load, and 
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0) 

L 

b) 

n': I 

c) 

d) 

d'i/ " (D'-d) (1,+ i,) 

0': 1 

0': 1 

, I' 
I,d" D'd 

" ...Y... d 
D'R 

e) 

f) 

v , 

D,2R d 

slY " Vd 
D,2R d 

0':1 

i, 
-;i~-------{ - + 1----, 

V I---d ( 
sL ) , 

D,2R 

v ' 
0,2 R d 

0': 1 

F-t9, 6, Step.6 -tn the. emeJtgenc.e a 6 the fthp zeJto -tn 
the model on the boo.6t Oft the buc.k-boo.6t 
c.onveJttefL. 

may be called the "output operating point 
parameter." 

In the next step, Fig. 6(c), the current 
generator is reflected to the transformer primary, 
toward the objective of moving the generators to the 
left of the model and the inductance to the right. 
Interchange of the current generator and the induc
tance can be accomplished in the two steps of Figs. 
6(d) and 6(e): first, the current generator is 
separated into two equal generators in series, and 
their junction connected to the other side of the 
inductance. The Norton equivalent formed by the 
parallel generator and the inductance is then 
converted into the Thevenin series equivalent. Note 
that the effect of these steps is to move the 
current generator "through" the inductance, with the 
appearance of a new voltage generator that accounts 
for the drop in the inductive reactance due to the 
current generator. The two voltage generators can 
then be combined as in Fig. 6(f), and the inductance 
is at the same time passed through the voltage gen
erator and reflected to the transformer secondary. 
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The same process can be performed on the other 
transformer of the buck-boost converter, and the 
complete model to this stage is shown in Fig. 7(a). 
In Fig. 7(b), all the generators are moved to the 
left, and the voltage generators are combined. The 
two current generators could also be combined, and 
indeed this is the last step taken in the original 
derivation of the "canonical model" [6J, in which 
the "modulation" generators are at the left, the 



0' • 
V(I-.2L) d 0) -Vd 

02 0,2 R 

+ 
~9 

C 

V • RL 
--d 
0,2R 

I: 0 0':1 

b) . 
Oi, 

+ 
v. 

I c 
v A OV • 
-d -d RL 
O'R 0,2R 

0' : 0 

F-i.g. 7. Two 6~h~ ~tep~ -i.n the development On the 
canon-i.cal model 60~ the buck-boo~t con
ve~e~ -i.n duty ~o p~oglUlmmed mode. 

"conversion transformer" is in the middle, and the 
"e ffective filter" is at the right. 

Here, however, this last step is not taken, 
because the next objective is to consider current
programming in which the inductor current is sensed 
and so must not be lost from the modeL With this 
in mind, the inductor current il was identified in 
each of the successive manipulations of Fig. 6, in 
spite of the departure of the "effective" inductance 
L/D'2 from the location where il exists. In Fig. 
7(b), il is still identified but as Dil, the current 
on the other side of the I:D transformer; but, this 
is as far as one can go in reduction of the model, 
because combining the two current generators would 
cause the branch in which Dil is identified to be 
l ost. 

It may be noted that the rhp zero factor 
(1 - sDL/D'2R) in the voltage modulation generator 
arises because the power switch separates the Land 
C, and in the model derivation the current modula
tion generator is moved "through" the inductance. 
A similar result occurs for the boost converter, but 
not for the buck because the power switch is already 
at the left of both the L and the C. 

3.2 Model for Current-Programming 

In duty ratio programming, the duty ratio of 
the power switch is directly determined by the 
control voltage Vc in the modulator, which is 
usually a simple comparator. The block diagram of 
the modulator and power stage is shown in Fig. 8. 

lLrLJ/ power 

sloge 

--:.rLILJ 

modulator 

(comporolor) clock 

~~4 \ 
conlrol v, 

0 

F-i.g. 8. Funct-i.onal ~elat-i.On6h-i.p~ -i.n the modutato~ 
ar:d pow~ ~ta.ge und~ duty ~at-i.o p~oglUlm-

m.tng. 

-
~ fLfLr/ 0---

~ 

fLJLJ 
I flipflop I 

~~ 
/\ clock 

I 

~+ 
4uu ~nlrOIV' 

~-SlObililing romp 

F-i.g. 9. Funct-i.onal ~etat-i.On6h-i.p~ -i.n the modutato~ 
and pow~ ~ta.ge unde~ c~ent-p~og~ng. 

The clock signal, in the form of a voltage 
ramp, is applied to one comparator input , and turns 
the power switch ON uniformly at the clock, or 
switching, frequency fs = 1/Ts. The ON-time is 
terminated after an interval dTs when the ramp over
takes the control signal Vc applied to the other 
comparator input . Since the ramp is linear, the 
duty ratio is determined as 

d 
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v 
c 

V 
m 

(11) 



where Vm is the height of the ramp. This relation 
can be divided into dc and ac parts: 

D 

v 
c 

V 
m 

d 

<i 
c 

V 
m 

(12) 

These relations represent the transfer function of 
the modulator, and are used in conjunction with the 
canonical model of the power stage to determine the 
control to output and line to output transfer 
functions, and any other function of interest. 

In current-programming, shown in Fig. 9, the 
clock as before initiates the switch ON-time uni
formly at the frequency f s . However, the clock 
signal applied to the comparator is now replaced by 
a voltage proportional to the current flowing in 
the power stage inductor, which is also a ramp. 
Thus, the switch ON-time is terminated when the 
inductor current reaches a value proportional to 
the control signal, where the proportionality factor 
Rf is the ratio between the voltage presented to the 
comparator and the current ramp that produces it. 
Clearly, a physical "current" feedback loop exists. 

As discussed elsewhere [1,3J an inherent 
instability exists in this current feedback loop for 
duty ratios greater than 0.5, unless a stabilizing 
ramp is introduced. This principle is also illus
trated in Fig. 9, in which a negative current ramp, 
also derived from the clock, produces a proportional 
voltage that is added to the control signal. For 
convenience, the same proportionality factor Rf is 
employed as for the inductor current. 

Thus, in current-programming mode, the switch 
duty ratio is not uniquely determined by the control 
signal, but by how long it takes the inductor 
current to reach the value determined by the control 
signal. The, essence of the modelling objective is 
therefore to find the relationship between the duty 
ratio and the quantities that determine it, in a 
form compatible with the'averaging technique already 
employed for the power stage. 

The relationship is determined at the compara
tor input, whose detailed waveforms over one switch

Vc I Rf 

F..i.g. 10. 

1----- dT. -----~--

Wave6o~ at the modutatoh ..i.~put ..i.~ 
c.uJ!Jte~-phogMmmed mode: the duty MUO 
v., dete~~ed by ..i.~eMec.t..l.o~ 06 the 
..i.~duc.tOh c.uJ!Jte~ Mmp with the c.o~of 
voltage pfus ~tab..l.i..l.z..i.~g hamp. 
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ing period Ts are shown in Fig. 10. The voltage 
waveforms are scaled to equivalent current waveforms 
by the proportionality factor Rf . One comparator 
input carries the control current vc/Rf plus the 
negative stabilizing current ramp of slope -mc; the 
other input carries the inductor current with 
average value if. However, the instantaneous induc
tor current has a positive ramp of slope +m1 when 
the power switch is ON and a negative ramp of slope 
-m2 when the switch is OFF, and the duty ratio d is 
determined by intersection of the two comparator 
inputs which, from the geometry of the waveform 
diagram, is given by 

dT 
s 

2 
mdT 

c s 
(13) 

It remains only to find the dc and small-signal 
ac solutions for d = D + d. As in the power stage 
modelling Rrocedure, we set if = !f + if and 
Vc = Vc + v c ' and also m1 = M1 + m1 because the 
inductor ramp slope is affected by the voltage 
across it which also has dc and ac components. On 
the other hand, we set mc = Mc because usually the 
stabilizing ramp is constant. 

The dc and ac solutions of (13) are 

2 
D 

nM1Ts G: -I~ (14) 

2 D 
d 

nM1Ts G: -i,) --m 
nM l 1 

(15) 

where 

(16) 

Products of ac quantities are ignored according to 
the usual linearizing small-signal restriction. 

All the above equations apply to any converter. 
The differences between converters result solely 
from how the inductor ramp m1 is dependent upon 
operating conditions. 

Buc.1< CO~veUeh 

During the switch ON-time the inductor is 
connected between line input and output voltages Vg 
and v, so 

(17) 

The dc conversion ratio is V = DVg , hence 

D'V v - v 

M1 = DL and 
g 

(18) 
L 

Substitution into (15) gives 

~ KRD (~ A \ D2 D2 

d = nD'V R: - if) - nD'V Vg + nD'V v (19) 



where 

K - 2L 
= "ifi: 

s 

BOMt ConveJrX:eJt 

During the switch ON-time the inductor is 
connected across the line input voltage vg• so 

The dc conversion ratio is V V g/D', hence 

D'V 
M1 = Land 

which leads to 

Bu~k-boo~t ConveJrX:e~ 

As for the boost converter. 

v 

m = J 
1 L 

However, the dc conversion ratio is V 
hence 

D'V 

M1 = m:- and 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

The parameter n is a function of the stabi
lizing ramp Mc. by (16). If Mc = M2. the negative 
slope of the inductor current during the switch 
OFF-time D'Ts ' which is a common choice. then 
n = 1 + 2M2/Ml' It is obvious from the geometry 
of Fig. 10 that M2/M1 D/D' so that. for Mc = M2. 

(27) 

Therefore, for all three converters, n is between 
unity for zero stabilizing ramp and (l+D)/D' for a 
stabilizing ramp with Mc = M2' 

Equations (19). (23), and (26) show how the 
ac duty ratio a is determined by not only the 
£ontrol voltage ~c but also by the inductor current 
il and. in general. also by the converter line in
put and output voltages ~g and~. The coefficients 
of the various contributing terms can be represented 
by gain blocks connected between appropriate points 
in the canonical models of the three converters 
already discussed. The results are shown in Figs. 
11 through 13. The circles representing the modu-

lation generators are replaced by squares to 
indicate that they are now dependent upon signals 
elsewhere in the same system. 

The current feedback loop identified in the 
general current-programmed mode configuration of 
Fig. 9 is evident in all three specific equivalent 
circuits of Figs. 11 through 13. However. there is 
also a voltage loop in the model of the buck con
verter of Fig. 11; this occurs because the inductor 
current ramp during the switch ON-time is a function 
of the output voltage v as well as of the line input 
voltage ~g. 

It is now clear why the two current modulation 
generators in the buck-boost model were not 
combined: the sensed inductor current il must be 
identified, and since it appears in the model as Dil 
the extra factor D must be cancelled by the addi
tional l/D gain box in the equivalent circuit of 
Fig. 13. For comparison with the block diagram of 
Fig. 4, the gain boxes in Figs. 11 through 13 are 
also labelled with the corresponding symbols. 

4. PROPERTIES OF THE CURRENT-PROGRAMMED 
POWER STAGE 

The equivalent circuit models of Figs. 11 
through 13 contain all the information necessary to 
determine various transfer functions. However. 
since there is at least one physical feedback loop 
present in each model, it is of interest to deter
mine appropriate loop gains and to see whether the 
simple concepts of feedback illuminate the system 
properties. This is done in Section 4.1, and it is 
concluded that the current loop gain is not large. 
Therefore, in Section 4.2. an overall model is 
derived in which the current loop is absorbed and no 
longer identified. 

4.1 Current Loop Gain Tc 

Because the buck converter model exhibits two 
feedback loops. it will be considered last. 

Boo-6.t ConveJrX:eJt 

To determine the current loop gain Tc for the 
boost converter. the control signal Vc and the line 
input voltage Vg are set to zero. and a current lz 
is injected at a suitable point in the loop. as 
shown in the corresponding reduced model in Fig. 14. 

The loop g~in is Tc = ly/lx = il/lx ' where the 
sensed current il can be found as the sum of the 
currents ia and ib identified in Fig. 14. Hence 

T 
c ~ (1-SL/D' 2R) V) 

F + -- (28) 
m D,2(ZL+SL/ D,2) D,2R i 

x 

which reduces to 

K ZL + R 

Tc = nD,3 ZL + SL/D,i 
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~th 2L RLI I(l/se), this becomes 

T 
c 

(30) 

where Q~ = RL/~~ but may be considered 
general~zed to include damping sources other than 
the load resistance RL . 

Buc./z-baobt COYlveltten 

The model is similar to that of Fig. 14 except 

for differences in the way that D enters into some 
of the factors. The result is 

T 
c 

DK 

nD,3 

DK 

nD,3 

Buc.1z COYlve.Jtte.Jt 

The reduced model for calculation of T is 
shown in Fig. 15. There is now an inner voltage 

loop, whose loop gain Tv is easily seen to be 

(31) 
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T = ~ DH D2 = DID' H 
v D2 e nD'V n e 

(33) 

where He = ZL/(ZL + sL) is the effective voltage 
transfer function of the loaded output filter. It 
is to be~noted that this is a posit~ve lo~p gain, 
so that d = Fmfx/(I-Tv) instead of d = Fmix as it 
would have been in the absence of the voltage loop. 

In accordance with the sequential procedure 
for examining nested loops advocated in Section 2, 
we may determine the stability of the voltage loop 
itself by examining I-Tv for rhp roots. The result 
is that (unless RL is negative) I-Tv does not have 
rhp roots if DID' < n. However, this is the same 
condition required for the stability of the current 
loop as a whole, from which the value of the 
stabilizing ramp is determined. To see this, 
consider the requirement on the stabilizing ramp 
slope Mc for current loop stability [3J: 

(34) 

This is equivalent to 

(35) 

which is the same as 

D 
Ii' < n (36) 

Therefore, it may be concluded that choice of 
the stabilizing ramp to meet the conventional 
criterion also ensures stability of the inner volt
age loop, and therefore precludes the presence of 
any rhp poles in the current loop gain Tc, which can 
then be found from Fig. 15 as 

~ ~ 

T 
c 

i i l V 
=J=-=-D ___ _ 

i i D2 

F 
m 

(37) 

x x 

K 
= nD'D 

n 

K R 

nD'Dn ~ 

where 

R 

D == 1 - D/nD' 
n 

1 + s~C 

1 - T 
v 

(38) 

(39) 

(40) 

The magnitude asymptote construct ions for the 
loop gain Tc for the three converters from Eqs. 
(30), (32), and (39) are shown in Fig. 16 . The 
actual values at the apexes, not shown, depend on 
the particular values of Qe . 
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The most interesting feature is that the high
frequency asymptote is the same for all three 
converters, and has a crossover frequency W given 
by c 

KR 2 

Wc = nD'L = nD'T 
s 

W 
s 

rrnD' 
(41) 

Thus, the current loop gain crosses over on a 
-20dB/decade slope at a frequency that is a frac
tion of the switching frequency dependent only upon 
the duty ratio and not upon any other operating 
condition or load. If the stabilizing ramp is 
chosen so that n = (I+D)/D', Wc = ws /rr(I+D), so the 
crossover frequency varies at most from about a 
sixth to a third of the switching frequency. If 
there is no stabilizing ramp, n = 1 and the cross
over frequency yaries at most from about a third to 
two-thirds of the switching frequency (if n = 1, D' 
cannot be less than 0.5 for stability). In any 
case, the current loop may be considered wide.-bal'!d, 
at least in relation to the bandwidth of the major 
voltage loop of typical regulators, and also in 
relation to the validity limit of the state-space 
average model. 

Another feature of interest is the low 
frequency value of the current loop gain Tc(O) -
Tc(s = 0). For each converter, this value is 
proportional to K = 2L/RTs , which is identical with 
the "conduction parameter" defined in relation to 
duty ratio programmed ~eol'!t,{.l'!uo~ conduction mode 
[7]. Hence, K is a measure of the low-frequency 
current loop gain Tc(O) and is a factor in the gain 
box Fm in Figs. 4 and 11 through 15. Physically, 
high K (large L) means high current loop gain 
because the inductor current slope in Fig. 10 is 
shallower, so that less error between il and the 
control waveform is needed to provide the required 
duty ratio. In other words, the inductor current 
approaches more closely the value demanded by the 
control signal. 

It was shown in [7] that in order to maintain 
eol'!t,{.l'!uo~ conduction mode, K must exceed some 

critical value KCri 2' where Kcrit has the respective 
values D', DD'2, D' for the buck, boost, and buck
boost converters. In terms of the appropriate 
Kcrit, the values of Tc(O) are: 

Buck. COl'!ve.Jt-te.~ 

T (0) = _K_ D' R 
c Kcrit nD' - D ~ 

(42) 

Boo~t COl'!ve.Jt-t~ 

D 

nD' 
(43) 

Buck.-b06~t COl'!veM:e.~ 

T (0) = _K_ 
c Kcrit 

D 

nD' 
(44) 

If the stabilizing ramp is chosen such that n 
(I+D)/D', and if R = RL, these results reduce to 

(45) 

where A = D', 2D/(I+D), 1 respectively for the 
buck, boost, and buck-boost converters. In all 
cases, A is of order unity. 

Regulator design considerations usually 
dictate use of the smallest K, which must be greater 
than Kcrit to avoid dropping into discontinuous 
conduction. This lower limit occurs at minimum load 
current, typically 10 percent of maximum load 
current. Hence, the lowest Tc(O) is also of order 
unity, at minimum load current, and may be an order 
of magnitude greater at maximum load current. 

Therefore, the current loop gain may be 
considered to be low, at least in relation to loop 
gains typically employed to regulate a given quan
tity, in this case the inductor current, and is in 
fact dM~e.d to be low in order to keep the induc
tance value as small as possible. 
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4.2 The y Parameter Model 

It has been shown in the previous section that 
the loop gain of a current-programmed power stage 
is not large, so the quantity being sensed, the 
inductor current, is not very tightly regulated. 
Despite the wide bandwidth, crossover occurs on a 
single-pole slope and so there is no question of 
stability as long as the conventional stabilizing 
raw.p is employed. 

These considerations, plus the fact that the 
quantity being regulated is not the output current 
(except for the buck converter), so that two 
separate blocks Gl and G2 are required in the model 
of Fig. 4, suggest that the current feedback loop is 
not a particularly useful modelling concept, and 
that the control voltage to output transfer function 
v/vc might be just as well modelled by an equivalent 



circuit, representing a "new" power stage as in [3], 
in which the current feedback is absorbed and not 
identified as a loop. 

These arguments apply with even greater force 
to modelling the line input to output transfer 
function ~/vg. This is because the line input Vg 
affects the output ~ not only directly via the 
canonical model of Figs. 11 through 13, but also via 
the "feedforward" path represented by the G6 gain 
box, so that v/vg is not simply its open-loop value 
divided by 1 + Tc. 

Since current-programming tends (although 
poorly) to regulate the inductor current, and there

v. 

Y1C Vc 
. 
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! , . . 
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fore also the line input and output currents of the 
power stage, in proportion to the control voltage, a 
y parameter model is an appropriate first choice. 
This model, shown in Fig. 17, contains six param
eters and is sufficient to determine the output 
voltage and line input current as functions of the 
control voltage and the line input voltage. 

The y parameters can be found for each current
programmed converter stage by matching each y 
parameter of Fig. 17 with the appropriate function 
calculated from Fig. II, 12, or 13; for example, Y21 
is the short-circuit output current as a function 
of the line input voltage with zero control voltage. 

The results are collected in Table I. All the 
c coefficients, which are introduced merely for 
compactness, are of order unity, and approach unity 
as K becomes large. 

There are several features of interest exposed 
in the results of Table I. Each y parameter has a 
single pole at the current loop gain crossover 
frequency Wc = wslnnD' which, as shown in the 
previous section, may lie between one sixth and two
thirds of the switching frequency wS. Some of the 
y parameters have zeros of order wsln, or one-third 
the switching frequency. If the poles and zeros in 
Wc and wsln are ignored, and if the stabilizing ramp 
is such that n = (I+D)/D' (Mc = M2), the y parameter 
results reduce to those of Fig. 17 in [3], which 
further reduce to those of Fig. 14 in [3] if K is 
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sufficiently large. These "simple" results corre
spond to large current loop gain which, as shown in 
the previous section, is unlikely to occur in a 
realistic regulator circuit. 

Apart from the control parameters Y1c and Y2c' 
the other four y parameters are all inversely pro
portional to the output operating point parameter 
R = ViI. Some of them are inversely proportional to 
KR, which means that they vanish in the infinite 
current loop gain limit. This happens for Y21 and 
Y22 for the buck converter, which results from the 
fact that it is the output current that is being 
sensed and so the output impedance should ap~roach 
infinity (current source) in the infinite current 
loop gain limit. This also happens for Y11 and Y12 
for the boost converter, because it is the input 
current that is being regulated. On the other hand, 
none of the y parameters vanishes in the infinite 
current loop gain limit for the buck-boost con
verter, because the sensed current is neither the 
input nor the output current. 

5. FURTHER ASPECTS OF THE CURRENT-PROGRAMMED MODEL 

Even though considerable information can be 
gained from the y parameter model established in the 
previous section, it may be useful to investigate 
other possible forms of the model. One potentially 
useful form is that of the original canonical model 
for duty ratio programmed continuous conduction 
mode; perhaps some insight can be gained into how 
the current programming causes a divergence of the 
element values from those in this model. 

This possibility is pursued in Section 5.1, 
at least as far as representation of the control-to
output properties. One useful result that emerges 
is that the control to output voltage transfer 
function actually has two poles, instead of the 
single one that is normally associated with current
mode programming. This two-pole function is 
developed in Section 5.2. 

5.1 Manipulation into the Duty Ratio 
Programmed Format 

To manipulate the output half of the y parame
ter model of Fig. 17 into a form resembling the 
original canonical model, the Norton form of Y2c 
and Y22 is changed into the Thevenin equivalent, 
and the conversion transformer l:M is introduced, as 
shown in Fig. 18, where M is the conversion ratio. 

Fig. 18. 
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Evaluation of the effective voltage modulation 
generator and the effective series impedance of Fig. 
18 shows that for each converter the series imped
ance is the sum of a resistance and an inductance, 
and the generator has an rhp zero in the case of the 
boost and buck-boost converters. Thus, this format 
does resemble the original canonical model. 

The boost converter will be taken as an 
example. The results are: 

D,2R 
_ y 2c = ______ -:-_ 

MY22 Rf (1 + nD,3/K ) 

__ 1 ____ R K/nD,3 L 
-~--~ + s --

Y22 + K/nD,3 D,2 1 + K/nD,3 

(46) 

(47) 

The term K/nD,3 = Tc~ can be identified from Eq. (30) 

as the low frequency current loop gain when RL = 00, 

so that the above results can be written 

(48) 

T L 
R _.:::c_oo __ + s -- ---

D,2 
(49) 

1 + T 
coo +T 

coo 

The complete model of the current-programmed 
boost converter can therefore be represented as in 
Fig. 19. This format clearly shows that the output 

D,2R To. (I_~) v 
R, I+To_ D,2 R 0 

D': I 

L I 

-;.z I+Tooo 

Fig. 19. Model. 06 :the c.uJVtent-pJtogJta.mmed bOM:t 
c.ol1veJt:teJt w.Lth :the ou.:tpu.:t pa.Jt:t il1 :the Mme 
60Jtma.t ah the du.:tlj Jta.:t-Lo pJtogJta.mmed model.. 

LC filter remains, as in the canonical model for the 
duty ratio programmed mode; however, the values are 
different. Current-mode programming introduces a 
series damping resistance RTcoo/(l+Tcoo ), which is 
what makes the output resemble a current source 
rather than a voltage source and gives the familiar 
dominant-pole response with the load C and RL• 
Notice, however, that the inductance does not vanish 
except in the infinite loop gain limit (which is 
unlikely to be approached), and so there remains a 
second pole at a higher frequency in the control to 
output voltage transfer function. Therefore, 
current-programming can be considered to increase 
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substantially the damping of the converter LC 
filter, which separates the two poles and makes the 
lower one dominant. 

This damping effect is lossless, in the same 
sense as that produced by storage-time modulation, 
described in [8]. In fact, both arise from effects 
that are the same in principle: storage-time modu
lation causes the effective switch duty ratio to be 
affected internally by the switch current; current
programming is a more extreme case of the same 
effect in which the switch current (which is the 
same as the inductor current) is externally and 
purposely caused to determine the duty ratio. 

Manipulation of the input model in Fig. 19 
could also be undertaken, in order to make the 
complete model resemble more closely the duty ratio 
programmed canonical model. Although this can be 
achieved, the element values are rather complicated, 
and do not seem to give much additional insight 
into the performance. This probably results from 
the inherently complicated way in which the line 
input ~g affects the input current and the output 
voltage, as indicated by the requirement for four 
gain boxes connected to Vg in Fig. 4. 

The principal value of the model of Fig. 19 is 
the exposure of the nonvanishing filter inductance 
and the consequent retention of the second pole in 
the control to output transfer function. Even so, 
the quantitative relation is more easily derived 
from the original y parameter model of Fi8 . 17. 

5.2 The Control:t~-Output Transfer 
Function v/vc 

For the purpose of determining the control to 
output voltage transfer function v/vc, the relevant 
part of Fig. 17 can be presented as in Fig. 20, with 
the immittances shown explicitly in factored pole
zero form. The low-frequency values R2c and R22 
can be identified from Table I, as can the rhp zero 
Wz in the case of the boost and buck-boost. The 
current loop gain crossover frequency is Wc = 

ws/rrnD', and the load corner frequency is wL = 1/RLC. 

Hg. ZOo 
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Straightforward analysis leads to 
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subject only to the approximation that the two poles 
are well separated. Since usually wL « wc ' this is 
justified and the result can be further approximated 
to 

v 

v 
c 

1 - ~ 
w 

z 

(+ ':(R22II 'L)V (+ ~;) 
(51) 

It may be noted that this result corresponds to 
neglect of the inductance in Fif . 20; the dominant 
pole is then immediately 1/(R22 IRL)C, and the 
second pole and rhp zero come directly from Y2c. 
The asymptote graph of Eq. (51) is shown in Fig. 21. 
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boost ,buck-boost 

~~ 

Magttdude Mljmptot~ 06 the con.tJtol-to
output tJta~6eJt 6unction v/vc 60ft the 
thJtee bM-<-C conveJt.te~. In addition to 
the dOm-<-nant pole, theJte ~ a 6econd pole 
at the cuJtJtent loop gMYl c.Jt06Mveft 
nftequeYlclj Wc = ws/rmV-'. 

Since the second pole at the current loop gain 
crossover frequency Wc may occur at as low as a 
sixth of the switching frequency wS' its presence 
may significantly affect the major voltage loop gain 
phase margin in a complete regulated power supply, 
especially with the additional phase lag from the 
rhp zero in a boost or buck-boost regulator. 

6. CONCLUSIONS 

If any value is to be extracted from the 
concept of a feedback loop, loops thus identified 
should include those that are purposely established 
in order to regulate some particular quantity. For 
example. in the familiar voltage regulator one 
defines an overall feedback loop whose bandwidth and 
phase and gain margins define the useful purposes of 
the system such as its stability and output 
impedance. 
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This approach is not negated even if there is 
an internal "minor" loop inside the overall "major" 
loop, which is established, for example, by the 
common practice of incorporating local feedback 
around the error amplifier. This "nested" minor loop 
is treated by itself: its stability is established 
(although this is rarely in question), and its 
closed-loop properties are obtained. Henceforth, it 
is simply incorporated as a gain block in the major 
loop gain, and this treatment is entirely consistent 
with the design-oriented analysis approach in which 
the closed-loop properties of the error amplifier 
constitute the frequency compensation characteristic 
to shape the major loop gain. 

A current-programmed loop around the power 
stage of a pwm voltage regulator is exactly the 
same in principle: its purpose is to regulate the 
inductor current and, among other things, to shape 
the major loop gain characteristic. These objec
tives are kept clearly in mind by modelling the 
current-programmed power stage independently of the 
major loop, and then incorporating its closed-loop 
properties, modelled as a "new" power stage, as a 
gain block in the major loop gain. There is no 
more value in considering the current-programming 
minor feedback path in parallel with the major 
voltage feedback path, thus determining the "total" 
feedback around the power stage, than there is in 
considering the error amplifier minor feedback path 
in parallel with the major voltage feedback path. 

These conclusions are reached in Section 2, 
and justify the objective of modelling the current
programmed power stage separately from the major 
voltage loop. This is done in Sections 3 and 4, in 
which the question is considered as to whether or 
not it is useful to emphasize the feedback loop 
characteristics. To do this, a new model is 
established in which the current-programmed loop is 
characteri"zed by appropriate gain boxes that augment 
the well-known model for the duty ratio programmed 
power stage in continuous conduction mode. The 
three versions of this model, for the buck, boost, 
and buck-boost converters, are shown in Figs. 11 
through 13. 

A current loop gain Tc is found from each of 
these models, in Section 4.1. The loop gain crosses 
over on a -20dB slope at the same frequency Wc for 
all three converters, where Wc depends only upon the 
switch duty ratio and the stabilizing ramp, and lies 
between one-sixth and two-thirds of the switching 
frequency ws. Despite the relatively wide band
width, the low-frequency loop gain is low, at least 
in typical designs in which the power stage induc
tor is chosen to have the smallest value consistent 

with maintenance of the continuous conduction mode 
at minimum load. 

Additional features of the current-programmed 
loop are that the line to output transfer function 
is complicated, because the line voltage affects the 
operation in several ways. Also, the quantity being 
regulated, the inductor current, is not the output 
current of the power stage except in the case of 
the buck converter. 
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All these considerations suggest that descrip
tion of the current-programmed power stage in terms 
of its feedback loop properties is not particularly 
enlightening, and therefore in Section 4.2 the 
current loop is absorbed into a y parameter model, 
Fig. 17, that represents the effective "new" power 
stage. The expressions for the y parameters are 
assembled in Table I, and are extended versions of 
the results previously obtained in [3J. The 
extensions consist of retention of an arbitrary 
stabilizing ramp slope contained in the parameter 
n, and retention of poles and zeros of order Wc and 
ws/TI. The presence of the poles at Wc represents 
the only visible connection with the current loop 
gain, whose crossover frequency is wc. 

In Section 5.1 some manipulation of the 
current-programmed model leads to a form resembling 
the original duty ratio programmed model, in which 
the output LC filter is explicit. It is seen that 
current-programming introduces a substantial series 
damping resistance and also reduces the effective 
value of the inductance. The damping resistance is 
lossless, since it arises from a feedback effect, 
in exactly the same way as a corresponding lossless 
resistance arises due to switch storage-time 
modulation. 

This form of the model shows how current
programming tends to make the power stage output 
behave like a current source; however, since the 
effective inductance, although reduced, d~es not 
vanish, there remains a second pole well beyond the 
familiar dominant pole that results from the current 
source feeding the load resistance and output 
capacitance. 

The actual control to output voltage transfer 
function is derived in Section 5.2, where it is 
shown that the second pole is at the current loop 
gain crossover frequency wc. The presence of this 
second pole could have a significant effect on the 
voltage major loop stability margins, especially 
for boost and buck-boost power stages because of 
the additional phase lag due to the right half
plane zero. 
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