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ABSTRACT

The thesis is divided into five sections:

iii

(a) Trigonometric sums involving prime numbers and applications,

(b) Mean-values and Sign-changes of S(t)-- related to Riemann's

Zeta function,

(c) Mean-values of strongly additive arithemetical functioms,

(d) Combinatorial identities and sieves,

(e) A Goldbach-type problem.

Parts (b) and (c) are related by means of the techniques used but

otherwise the sections are disjoint.

(a) We consider the question of finding upper bounds for sums like

Z_ el «p™ |

PEN

and using a method of Vaughan, we get estimates which are much better

than those obtained by Vinogradov. We then consider two applications

of these, namely, the distribution of the sequence

(@p?) modulo one.
p

O0f course we could have used the improved results to get improvements

in estimates in various other problems involving p2
'We also obtain an estimate for the sum
Zi_ elwp®) |
PN
and get improved estimates by the same method.
(b) Let N(T) denote the number of zeros of [(s)

function. It is well known that
N(T) = L(T) + S(T),

where

but we do not do so.

— Riemann's Zeta

-



iv

L(T) = 51; T log(T/2T) - T/21 + 7/8 + 0(1/T),

but the finer behaviour of S(T) is not known. It is known that

. t
St) « \GS v 5 S Slw) da <« \03 t,
o

so that S(T) has many changes of sign. In 1942, A. Selberg showed

that the number of sign changes of S(t) for t € (0,T) exceeds

T (log T)l/3 exp(-A loglog T), (1)

but stated to Professor Halberstam in 1979 that one can improve the
constant 1/3 in (1) to 1 - €. It can be shown easily that the
upper bound for the number of changes of sign is 1log T.

We give a proof of Selberg's statement in (b), but in the process
we do much more. Selberg showed that if k is a positive integer

then
TR 1t

& L
\S(t)\ 4at = Ck H OOS\OST) i I O( (\03\03"‘\ 1)} ' (2)
X

5
where T2 < H §_T2 and Ck is some explicit constant in k. We
have found a simple technique which gives (2) with the constant k
replaced by any non-negative real number. Using this type of result,

I prove Selberg's statement, with (log T)_E replaced by
-4
exp ( - A \l \03\03T (\05\03\03 L)) 7 ]

(¢) I use the method for finding mean-values above to answer similar
questions for a class of strongly additive arithemetical functidns.

We say that f is strongly additive if

(1) f(mn) = f(m) = f(n), if m and n are coprime,



(2) f(pa) = f(p) for all primes p and positive integer a.
Let
VS ( 3\‘(
:é ¢
A&(.x) - F
p<x
Halberstam and Delange showed that if then f 1lies in a certain

class, then one can show that for any k € N

2k ) &
2 \sG) - A ~ Pax-X Az 00

nex

where

Mg = = g t e at.
This ,is a moment problem and was motivated by a paper due to Erdos
and Kac. I use my technique to show that 2k can be replaced by
any positive real number.
(d) This section contains joint work with Profeésor Halberstam and
is still in its infancy. We have found a general identity and a
type of convolution which serves to be the starting point of most
investigations in Prime Number Theory involving the local and the
global sieves. The term global refers to sieve methods of Brun,
Selberg, Rosser and many more. The term local refers to things like
Selberg's formula in the elementary proof of the prime number theorem,
Vaughan's identity and so on. We have shown that both methods stem
from the same source and so leads to a unified approach to such research.
(e) I considered the question of solving the representation of an

integer N 1in the form

N = \)\L ‘*le - Ke3

)

where the pi's are prime numbers. This problem was motivated by

Goldbach's Problem and is exceedingly difficult. So I looked into

getting partial answers.



Let E(x) denote the numbers less than X not representable
in the required form. Then there is a computable constant ¢§ > 0

such that

E(xy <« X

To do this we use a method of Montgomery and Vaughan but the proof

is long and technical, and we do not give it here.

We show by sieve methods that the following result holds true:

N

N = P *?z.l *kPS?L&\)E

We have been unable to replace the product of three primes by two.

vi

Note: k is a constant depending on the residue class of N modulo 12.
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BRIEF INTRODUCTION

Each chapter has a detailed introduction describing the contents

and therefore I shall give at this stage only the scope of my thesis.

Chapters 1 and 2

We study exponential sums over prime numbers, using the Vaughan
identity. Applications are then made to the distribution of the
sequence {«f‘modulo 1 : ¢ prime numbers} , where o« 1is an

irrational number.

Chapters 3 and 4

We introduce a technique that is used to obtain all the moments
of V3 and we use these to obtain results on (a) the sign-changes
of St and (b) the finer behaviour of the limiting distribution

of Sy,

Chapter 5

We apply the method of moments, introduced above, to obtain

corresponding results for the limiting distribution for a general

class of additive functions.

Chapter 6

This is work done in collaboration with Prof. Halberstam. We
introduce a type of arithmetical convolution and a summatory formula
which is then used to derive the combinatorial identities underlying
all the known sieve methods. This account gives a unified approach

to the subject of sieves.



Chapter 7

We apply sieve methods to the problem of representing natural
numbers N in the form

N = pf+p) + Kpyp,ps , Py primes.



SECTION A. EXPONENTIAL SUMS IN PRIMES

Chapter 1. On the Distribution of «p" modulo 1

Chapter 2. Estimate for the Exponential Sum 2 __ elap®)
P<N



Chapter 1.

The Distribution of «¢ Modulo 1

§1.1. Introduction

In 1977, Vaughan [5] introduced an elementary method in prime-
number theory which enabled him to improve known results on the
distribution of the sequence (xp) modulo 1, where &4 is an irrational
number and p runs through the set of prime numbers. We shall con-
sider the corresponding questions for the distribution of (xp*)

modulo 1, The basic result is embodied in

THEOREM 1. Suppose « is a real number and a and q are

positive integers satisfying (o,4)=\ and |« ~%/q\< 9 % . Then,

for any positive integers i and N , given any real number €>o s

we have

[ ™~ N
AGony = 217 Ametnio] @ N (a7 e nTE L gt
h

/]
=l n=y

where the constant implied by the & notation depends at most on €.

Even the case W =1 of Theorem 1 appears to be new and we

record it as

THEOREM 2. Suppose that « and N are as specified in Theorem 1.

Then, given any real number &>o , we have

A

+ ‘J[,N_L)L‘r

N
7 Am el &« NTF (g, N2

Nn=\

J

where the constant implied depends at most on €.

Such results, due to Vinogradov [6,7], exist in the literature
but are weaker in the sense that they are non-trivial only for much

shorter ranges of ¢ . For the ranges of ¢ for which Theorem 2 is



non-trivial, Vinogradov appears to have in i;he exponent nothing
better than l_éZ where we obtain %, but he has a power of a logarithm
in place'r of Ne.

In 1958, Chen [1] showed that, for any real « <*/8,

S (N,%q) = T el gff) « N
P<N

- -
for 0;=LN\ 3 , where o.4 ,N and k are positive integers, and
p runs through prime numbers. Also, (a,q) =V ., For k=2 and
. 7
g =IN"/®)  this shows that S.(N,%4) « N ® , whereas

Theorem 2 implies that

7/3 + €
SN ,L%lg) € N

for all q satisfying N < 9 <N
As has been remarked by Vaughan [3], one would like to eliminate
the term not inolving 9 in the estimate in Theorem 2, This would

A

follow if it were possible to replace the term N2 by N

We shall give two applications of Theorem 1:

THEOREM 3. Suppose « is a real irrational number and g is an

arbitrary real number. Let |6l denote the least distance ﬁ g from

an integer. Then, given any real number ¢ >o , there is a positive

number c¢(<), depending only on £, such that

-\
81—&

hop* —pll < cedp

for infinitely many prime numbers p .

1.The € derives from repeated use of the classical estimate
di(n) « nt for the divisor functions. It follows that, if anything
were to be gained by it, then N® could be replaced everywhere by
exp (e (foglog )™ Vog D , where < is some suitable positive
constant and N 2z Wo(Q),



Heilbronn showed in [2] that for any integer N >\ and every

real number « , integers n can be found such that t<n <N and

-
[

Wntell € ce) N 2
where € is an arbitrarily small positive number and <() is a
positive constant depending on &. We call such a result a 'local
result'. A 'semi-local result' is a result of the same kind but
valid only for N ZWN®&). It can be shown that local and even semi-
local results are unattainable with wn restricted to primes when «
is a Louiville number., 1In general, such results are attainable by
our method if the denominators of the convergents of « do not increase

too rapidly (in some sense).

THEOREM 4. Suppose that o<Y <Y +§ <1 and « , a, and

q are as defined in Theorem 1. Let 38} denote the fractional part

of ¢ and let w*(Y.,$,N) denote the number of prime numbers p<N

such that v < Lxprl <y +$ . Then, for any real number < -o ,

Al
‘R“QY,S ,N) - dT(N) « \\\\—‘.E C C\/“ +N—‘\2— -+ 0\,8\“_2)4 (\0"})‘%)

NS (a7 N

where NW(N) denotes the number of prime numbers not exceeding W

and the constants implied by the & notation depend at most on €.

In 1946, Vinogradov [8] obtained a result like this but with the
weaker error term

L5 .
NCQ™ + N o = 33 (g 24)

for 9 <N . Theorem 4 implies a similar error term, valid for



9 <N, with 9=JL; but at the expense of having the additional

e
term N .

All these results will be proved in §§l.4 and 1.5.

§1.2, Notation

Throughout, every opportunity has been taken to make explicit

important notation used at the point where it has been introduced.

An) is von Mangoldt's function,

d;{(n) is the number of representations of n as the product
of exactly k integers,

Aln) = 4w denotes the divisor function,

f"‘“) is the Mobius function,

R (n) denotes number of primes not exceeding ",

On) = Z{N \ey p , where p always denotes a prime,

el P\is the integer part of &,

s e} is the fractional part of @ , that is &-i#8]l,

ey is the least distance of ¢ from an integer, i.e.
m.mhel in -8y,

e (@) = Cz_rri,-a

14\ denotes the cardinality of the set 4 .

The following shall always denote integers (even if suffixed):
Q,,d,h ,‘(,,\m,n)c‘,,r'}t, \Ai‘a ; H)N,V,W.
The following shall always denote real numbers:

g,eb,o(,(;]y,S,a,’*])w,c,x,t

We shall use Vinogradov's symbol & as an alternative to the

O -notation. We say §=O(9)or §<«¢9 if there is a constant ™M such

that 1§} <My . In all cases, constants implied by either symbol



will be absolute or dependent at most on £ , where the definition

of & 1s specified in the appropriate context.

§1.3. Auxillary Results

The proof of Theorem 1 will occupy us for most of the chapter.

As we shall show, it will be necessary to estimate exponential sums
of the type

v,y = 2 V7 amb, eChminta

‘$h$|—\ m;,n
(\'V\)V\)e‘%

b

where W,V , v', W, and W' are positive non-zero integers satisfying

V<v' <2V > W<w'<2w , and VW<N, and

4 = {(m,n) s V<MV Wensw/ mns\\ik ,

with (™) running through all the lattice points in the hyperbolic
region in RxWR as defined by ‘% . Note that ‘5 is empty if VW 7N
and that I\ <N . The weights (O"‘)me(v,\/'] and (bn)pe(w . wil

will be arbitrary complex numbers satisfying inequalities of the type
Am & A and b <« B

where A and B will be specified variously later.

In the analysis of S(w 4), two classes of sums need to be
distinguished:

Class I: b, =\ for all n in (w,w'];

Class II: b, %! for some n in (W.w'],
As one would expect, Class I sums are easier to estimate and, by the
well-known Weyl procedure, Class II sums can be reduced to Class I
sums in a small number of steps. Essentially, the idea is to apply
Cauchy's inequality to SM,9%) a number of times so as to yield sums

of the type



S 7 17 e(§inona) )| ;

Ny Nz Ny
here n, runs through all the integers in an interval of length 3
which may depend on ™ and "z, and §(n.n) is a polynomial in n,

and nz2 ., Such a sum is then

& 77 e Cmas NElon) 17 ),

nl Ny

and can be estimated by some classical results of Vinogradov (see
Lemma 1 below).

We have, from Cauchy's inequality

(1.3.1) ‘s < (> > (Gm\lf(Z—_ AR D e“""l“‘@r)t

ig <m sV’ 1ghg n
sheH V W (mm)eﬁ

& (H\/Al)li ( Z_Z P tealV’

(v:,n)eﬁ
X
P55 T T i)
h ™ Ny ¥ N2
(mniy ey
L:\;L
L z
(1.3.2) & () A(nigip™ 3 )

say, and 2, will be estimated in one of two ways, according as
S(h,4) is in Class I or Class II.
Suppose that S(wW,4) is in Class I. Then
zZ, = 2. 2 7 e(hw(nit-nyu)
IShsh veamsy' nign,

VTN,



10

(1.3.3)

if

Co 2 2 2 elhetylyeang)

Tshgy Vamsy' ishyi<aw
(mn) 6{1

(W\,n*ﬁ) 6'9

The variable n in the multiple sum above actually traverses an

interval of length

I{ni (m,h)é“\ej amd (m’n*\j\)é“gj}\ £ Nm-

ki

by the definition of 9. Hence, from (l.3.3),

136y 1S\« 2 0 2 we(Ne et yad ™)

V<hell VAmg2v  isigi<aw

and the expression on the right is of a kind to be estimated in

Lemma 2 below.

Suppose now that S(W,4) is in Class II. We may write 2, in

the form

135 T = > 7 D ) elhmta) :

ichell VameV' el 7
(vn,t)é-g‘

where

4, = %(m,t): V<mgV' 5 1<iel s W2, Im?t) éN‘} ,

and (mt) runs through all the lattice points in “é.. Also



W) = 7 ] bpba, & B*a(in) .

n, Ny
P, =€
(Y“lni) € gj

(_"—\)1,

Changing the order of summation in (1.3.5), we have

Z-3 7 swI e,

lehsh Lsigt<w'E
el=W (m, 04,

and this expression will be treated along the same lines as Class 1

sums. By Cauchy's inequality,

— Y
1.3.6) \Z2\ <S> 7 |2\ )

VSheld 18 <w'2

(55 17 etewf)

t<h€ istipigw'z ™

(mx)ed,
& B (S dml)t(j_ 1 g\~ Z;f
R PINWES \SheH ?

say, and

Sl . N -\
14,) = ) ; | < N 2 el &« Nw
N2 RNV
mE el N

and

2.7 2 2 2 ellmiomdya)
LShel 1sitl<w'2 midm,
(mi, Y€,

L=1,2.

Z Z Z 2—_ E(\'\ts(\\-)'?lm)o(>
V<held Vsiwel<w' > \$\3\<V' ™ .

(m,t) 6-@5.
(mlt1j) 6‘91

!

11
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7.\<¢ > 2 > | > eQantyma))| ’

Vehe sl <qpw? 1elyt<ay
(.m)'t) 6‘(31

(m*:))t)é‘gl
and the inner-most sum actually extends over all integers of a

certain interval, Thus, summing over  , we have

137 12,0« D Z Z m.n(L(t,gu,\llht3x\\"},
SR A AR

1eh <) z \$\3\<1V

where L(’f»3) is the length of the interval traversed by m . Indeed,

(1.3.8)  Lib,y) = | §m: (mi) ey and (may,eded )

A S N T I N T

Vimey'
m>lE) SN*
(m+9)* 161 € N*
so that, by (1.3.6), (1.3.7), and (1.3.8),

(1.3.9) 2., < er it (2 4o ) .

Ve <iwe

A
(w2 2 2 rw(N g1z ,\\2“‘?3“\\_‘}1 >
ot

and this we shall evaluate after Lemma 1 below, which we shall now

state,

LEMMA 1 (Vinogradov). Suppose that X and Y are positive

integers. Also suppose that \« —-%/q\ <« 9°* | where « is a real

number with a and q integers satisfying (a,4)=1. Then




13

Z ™Min ( Y , de-“ﬂ> S XY CL—\ -~ (X ‘\‘CI,) \03 LC"

x <X

7 e XY/ ™) < (xvamt w X xq)(log 2x79)

x <X

These inequalities are essentially Lemmas 8a and 8b of

Chapter 1 of [9]. We are now in a position to prove

LEMMA 2. Let N,H ,V ,V' ,W, and W' be positive integers

satisfying V<V'<2V , W< w' <2w, and VW €N ., Suppose «,

0, and q are defined as in Lemma 1 with the additional requirement

that \03% <& \03 N

Let (a,,) and (bh)yg_two sequences of complex numbers such that

there are positive numbers A and B , depending on N, such that

On, & A and bn <« B .

Define the sum

S.o= :2_. \ :2_ R ;1_ b e(xhm?n®)
lshsl Veam sV’ Wensw

mn SN

Then, for any fixed real number €70,

(a) if b=l for all ne(w,w], we have

(1.3.10) S, & ANYTCHNTY +unviq s+ (Wvg)E) |

(b) otherwise, we have

. - Lo 3 N y L
(1.3.11) S, @ AB CNRDTCRNTVE N W™ g Nt e ® ),

Proof. (a) It will suffice to bound the expression in (1.3.4).

We put



14
(1.3.12) L= 2hmiy s that L LA < 8NV

and A will run through all the integers in the interval shown. Also,
the number of representations of Y in the form (1.3.12) is not more
than 4;(UB1). Next, note that Nm= = N 12Zhmg| 17 & N LY,

Thus, from (1.3.4),

(1.3.13) L >\ < > A0 min N S Wbl
1Ll < 8NWY

&« (t\n—\\/)8 Z mm(NZH\M",\'\L«H“),
LAL< SNRY

and by Lemma 1, this is

& (NLH)Q (N g™ 4 uNy + gD (log 2nNzviq),
By the conditions on 9, and from (1.3.2) and (1.3.13),
Ai A .
g & ACHNVE + Wy Z)7T)
& A CHNEVE D TRINTY G ey~ Rvg ) )

& AT (nEY chnyEgTE + (HvgdT ).

(b) We shall evaluate the multiple sum in (1.3.9). In (1.3.9)

put

W

(1.3.14) L = 2wty , so that 1 <11 <16 HNW L

Also,

NIEVTE = N aneRy) < NTR LT
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The number of representations of . in the form (1.3.14) is at most

d;(14)) and so, from (1.3.9),

2, & BlHt( 2 c\ll’c))t <HN\N * Z da(m)mm( ‘\T‘}f\l ;\u«\\-‘»lo

Pl S pwWE 1<l SlbHN W

For our purposes, it will suffice to have

7 Aty & NEwr
ISk<byw*

By Lemma 1, we then have that

T« NBWWHNW £ NN H ' v NWW +q) log (nThg)) "

and, since log g, & ‘g N,

2 L .xi
Z, & B (W s inw g E gt )T

and the result follows from (1.3.1) and (1.3.2).
We now establish a consequence of Lemma 2 which will be a

principal tool in the proof of Theorem 1 in &.

Suppose that « , a , 4 , and N are as defipned in

LEMMA 3.

be positive integers such that

Lemma 2, TLet M™M,, M, , N, , N,

M\(‘\"z_’ N\<Nl, ._a_rﬁ'. M\N\QN.

Also suppose that (dw,) and (b.) are complex sequences as in Lemma 2,

with

Am < A and b, < B,

Define the sum

S 1D a2 beethen |,
Ny <n &N,
M < N

S, =

he iy Mi<m< M,

i
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Then, given any real number ¢7vo

b

(a) if by=\ for all nelni,N.]Y,

A i - -&
(1.3.15)  S2 &€ AW (ANTM, + NI q T o (wmeq)? ),

(b) otherwise

.

A L Al L
(1.3.16) S, < AB(NW (HNZM,” +HN3”NL* *\*NCL“L* *HBMN‘%“}‘

Proof. We shall indicate the proof of (a) only since (b) is
analogous. We subdivide the interval (™M,,™M2.] (also (Ni,,N2] )
into‘O(\°3N3 subintervals of the type (V,V'] (also (w,w')) such
that M ¢V < v ' gy« ™M, (a_lso N W <W!' €2wW<£ Ny ) respectively.
Moreover, we may assume that VW <N 35 otherwise the contribution
from integers in these intervals to the sum below is zero. It is
clear that

Sz < %2‘__{ \ 2 G T Z b G(Hm"nlo()\}

i<hel Vamgy! Wenew'

mn < N

2

and the sum in brackets is estimated by Lemma 2 for the cases (a)

and (b). For case (a), this gives

€ —_— ~ A AR -1 ji
S, <« A(Nw) ) ) iHNL\/ +HNVZq % + (hvq) }
vV W

A L i
& AT (HNT™M, BN g7+ (BMag)™ )

which is as required with 3€& replaced by ¢
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81.4. Proof of Theorem 1

We shall show that

Sy < . Lt - _ B _lt
(1.6.1) gcwn) = D V2 A e(h-wloc)\ £ HN (47 N7 qH N>

(1) Suppose that 4 >N, Then, the expression on the right of

<
(1.4.1) exceeds HN' . This is clearly a trivial estimate for

.A(H;N) and so (l1.4.1) holds for Qj7NZH.

(ii) Next, suppose that W?>N and qsN*W. By Cauchy's

inequality
AGH, N < "~ ( P Pl /\&n)e(knzﬂ\ly

A

& HL< HNlogn + 2 D) AlndAlaz) e(h(ml—n;w\)
‘el midne "

0. &N
Now put

2 D Mmooy 4 (legN) d (i)

NLEN N2 4N
n.2 “V\LL = il
AT 147

Sa( L)

1t follows from above that
L A — — 2
ACHN) & RNElegnY + RTL D D s ethid |

tcher e\ <N?

Chlanging the order of summation and by Lemma 1, we have

A L L = -1 r
ACnoN) &« HWNT(logN)T + | ( 2 Zad s (Ho A ))
Vel <NE

Ai %: ‘\i 2 T \ E N Aj‘
<‘ HN (\osN) -~ \'\ N (HN %,_ ~ N _‘ﬂ,)

€ - T t “i‘}_
&« N (hNng™" o+ oW T RN REgR)

¢ A i" 3‘*4»1,:{;
<<NCHN<1‘**HN HNC’L>,
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since 9>\ and W7zN, q <N*H,

(iii) We may assume from now on that H<N and q<N'H so that,
in particular, ‘09 ¢ < logN,

We shall apply a method of Vaughan which is very efficient in
estimating sums of the type 2Z- Atmeln=) . For a detailed

description of the method, we refer the reader to {47 and [5]. The

starting point of the method is the identity

Z }(\m) + Z Z_ Tim f’(m,n)

uanaiN van £ Nu™' u<im <Nn"
Y pa) ) ) fldron)
Aa<u W<n<€Nd™Y rENd™wm
where Twa = 2 }’*\C\) . Our choice of the function 5(mn) is

a\

demu

ALY e (hvm™ ) W w<n € Nw='
Flmomy = o o¥herse ,
Al

3
where W is an integer less than N to be defined explicitly later

on. Then, we obtain

/&t - A, — At O(N”3>

il

(1.4.2) > A e(hn*e)

NN

where, using dz, ALY = V3w | ye have
Vo

(1.4.3) A, Z An) e(hd? e n* )

dsu r<Nd"' neNd'¢

)]
~

S
™
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with
(1.4.4) /&\(%) = ;Ei_ rdd) ;Z_ e(\wdlkzd) 5
ASYV\\r\(_u,Nﬁ") €><k<Nd_\
next
(1.6.5) A, = 2 P D A Y e(hdtierw)
Asu nsWw CENd'n
= 2 e ) et
kosu* reNL
where

I

> () A(Y/ :
(1.4.6) c, ;\L M (“d)

dsu

and finally

a7y A = D Tw D A elhminia)

u<ms Nu-! U< € Nm~™'

Observe that /&dﬁ), A. , and ,&3 are sums of a type discussed in

§3. It follows from (l.4.1) and (1.4.7) that

——

(La.8) ANy ¢ O (LAY AN L AD  + olend)
Hen

We shall denote the first three sums on the right of (1.4.8) by 8, ,
P, , and B;,. We proceed to estimate these sums by Lemma 3.
From (1.4.3), it follows that

Bo= 2 A < (C(Z 1A 2

fen \ =hsiy (>



where
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Z_ WAy -y V7 P > (i) |

rshsK VEhEH 4 emimlu,ngTh)

By Lemma 3(a), with M,={ , M, =v.un(u
N2 =N , and noting that |pid) <\

follows from (1.3.15), for any £7 0

p<k=<N
dk<N

,Nﬁ'ﬁ <w » Ny=p , and

(so that A=\ ), we see that it

, that

Z \A\(f’)\ < N (HN u +\—\Nu + (\‘\\.\‘L) )
1<he
Hence
2¢ L Ly L
(1.4.9) P)\ < N C\'\Nlu *\'\Nulq o C\-\UC\,) >.

3
From (1.4.6), we note that ¢y s(\qsl) d(L) < N | We write

(cf. (1.4.5))

(1.4.10) =(> > =+« Z 2 2_

m<u < Nm-! u<W\<N u<\'<N U\.<msN rsw

7 2t

Nt<m$“z redm u<m<N’-
5
> A
= . Az P
ARl
say. Then
5 G
. 3
B, < 2 2> \A7
ishey y=»

S ) et

N <raNm -

()

where the meaning of the notation is plain. We now estimate ¥,

. Q)
(y=1,2, ._.,5) as follows. For ®,

My = , Ny =1 , Na =N, and A =N°®

, apply Lemma 3(a) with ™Mui=1\ |

From (1.3.15), it follows
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W) o 4 y
Bz‘ <« N (hN"u « \-\Nulq—%‘ + (Huq\z>

()

For ., , apply Lemma 3(b) with Mi=WN,=~w , \V\1=N=.’-N1, B =\,

€
and A =N, Then

) A

£ T8 3 Lo L
By & NT(RNT + HNgTE +H*NZ"L4> .

Trivially,

C
B« N Nlihu) )
x

tu)
The estimation of ¥, follows from Lemma 3(b) with ™Mi=WN1=N

b

€
Ma=u', Ny =y, B=|, and A=N , so that

(%)
SN

B

5 \ -+ 3y %
< NEChN G » W TN F o TN )

(s)
Finally, by a change in the order of summation in )57. , we have from

(1.4.10) that

A2 - 2 T e e(hermia)

q -\ < i
N <Nu nwdm <N
ronsN
L

(s) 2
and to estimate ¥, , we now apply Lemma 3(b) with Mi=N2 =N

13
My =Nut, Ny=u , A=l , and B=N, From (1.3.16) it follows that
(5) 28 -5 e -4 3y % ,||4>
Bl & N CHNU + H N —fHNq( +H N 3 .

Combining these five estimates, we arrive at

(L4.11) B, <« No(HNGT L antu BN e RN § "

My ¥ 5 L L 3
+ BN N9 +H\\lulc\,—" + (\‘\u%) >
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We have finally to estimate ¥3, It is clear that ’lwxéCK“ﬂ<¥ff.
We shall rewrite A;, from (1.4.7), as

asewy (22 x> 2 -3 2> )

i <, [P
U<n SN N (m&N“ﬂ u(y\éNm-\ U<W\$N“‘\ N||l<n$Nm-|

x Tw Nn) e(hmin*«)

_ W (2) (3)
- /&3 - /%3 ﬂ-/&B )
say. Then
3 Gy
= 3
(1.4.13) B, < o (2 A ).
3= shelh

(3)
We observe that /&3 , after a change in the order of summation, is

Aln) Z Tm eChm>n o)

Nz gn s NG wim < Nn-!

)
and this is essentially like /&3 --the only difference being in the
position of the weights.

LA

‘ehs

Thus, it would suffice to estimate

Al
. We put Mi= N2 -‘~NL, Me= Nu', Niv=u

b

A=-p=N%, in Lemma 3(b), so that

o 28 -4 1s oy 3y Uty
S 1AL & N GaNGTE o TN TN ),
tehe

for ) = 2 and 3.
o
To estimate zz‘» ‘/53 \

Lehme , we put M=Ni1 =W and

A

M1 = Nq = N in Lemma 3(b) with A =8 = Nz . Then

W 32 748 e 3¢ XL
> 1A &~ (e ‘*HNOL‘*“»H*NL\,“\),
vehely
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Combining these estimates, we see that it follows that

) 3L N R
(1.4.18) By < N (™ L™ 4 ung ® cw N )

Collecting the estimates for ®, , B., and B3 from (1.4.10),

(L.4.11), and (l.4.14), we have
s i
(1.6.15) AN < N Cung T cun™ oW TN )

e S -y s L
+ N RN o+ BN '*HN“‘kl"Q*“%\ >'

We minimize the terms in the second expression on the right of

I
(1.4.15) by an appropriate choice of u <\Q|3, namely by

~ '3 4 . " 3
W = V\f\\h< N ) CL > <\\l HCL \) >)

and note that since 94 < N*W | this expression is well defined.

Such a choice of u gives us (l.4.1) with >t replaced by Et.

§1.5. Proof of Theorem 3 and Theorem 4

We shall follow in the spirit of the proof of Theorem 2 in [5].

For each real number'q satisfying o< M <% , define the function

| > _’YLél 4")1)
(1.5.1) S"\l(’q - o -4 gx<-m oor M oex <X

3

We extend the range of definition of §nh)periodically with period 1

in X . Then, we obtain the Fourier-series expansion of &4})as
By Sin lTTle
— —_— % e(mx)
(1.5.2) S—,\l(L) - Q')L = -Zw Tom )
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1
where 2. denotes summation over wm with values corresponding to twm

taken together.

Let o and ?» be real numbers as defined in the statement of

Theorem 3. It follows from (1.5.2) that

N ey S 2aTm7) N
LA O _200 —— elminteep).
m*o

We write the sum on the right as

Sin 2t S Sin 2
? oot e_QM(n"o(ﬂa)) - ) kA e_(m(nzoi—(sﬂ

T Tm ?
Vaimi < Ay >R

for some integer W>»\ . It follows that

(1.5.3) 2 AW frn(n"d -2 = FH - FK

VENSEN

where

(1.5.4) A > S 2T e(—(sm)Z Aln) eCrnw) |

TTv
S imig R tens<s™N

and
:E__ ( <! S 2mmm e(min«-p>)
(1.5.5) F, = ALnd 2 p— g2,
teneN \my >
Now, let QQ,be a convergent to the continued fraction for «,
with (a,9)=\. Then, l« - ?/q) <aq”* . Next, take
(1.5.6) Ho= UNgmpt] o+




We evaluate 7, as follows. We write 3, as

(1.5.7) &= 2 A > 1§ e Cmtnna-prn) el (oep —f.p)g‘

NSN tm\ 7 W

Note that if either of hlot—(b e is an integer, for some wn , the

contribution of this term to the sum over m is zero. We put

x

G = nlx-p o,

n

+
and assume that &, is not integral. From (1.5.7),

| .\ < —\i(\osw){j__ \ i T%nc(men*)\ + Z\Z' ;\‘\_r—v\ e(mB{)\}

NEN Ami 7K NEN  \mi7 14
+ < x
Put ?n k) = 2-\<m<k e(m®,) . As is well known

1% o) < & ey

2>

and therefore, by Abel summation,

| Y L emeH| < wueanT

\Mmi> |

Moreover, since

\ Z‘ A e(m%nt)\ < 1,

T
imi > K

*
uniformly in W and 9, , we have

LS L etme | & e (1 el

It follows that

158 P« Usgn) 3 e (ot hentop i)

neN

25
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We define the function

Win,w) = min (4, BT w )

>

which is periodic, with period 1 in w ., This function has a Fourier-

series expansion, in the form

Pn,wy = D o elhwd)

o
—
h=-o0

i
where 2 has the same meaning as in (1.5.2). It is easily verified

that

i+ \og \t - .
C.h<<\mm< —— W hkY)

We may write

P, w) = Z_ ¢y, elhw) = Z ¢, e(hw) = O(w \03\*\'

1l sH?* hl > (2

Then, it follows from (1.5.8) that

—

S < (legmwy D (ALY et

I<lhi s W tenae™N

+(ogn) 2 | 7’ ¢, eCnCantp 2 )|+ Ne Gogn)

tsneN thi> H?

—_ D) —1 - z

= g g™ o (g nw) )
) .

say. We estimate —f, trivially as

€ (o) 3. D B & Nn i

renseN (bl 7|2

)
To estimate f}z , we put

V(ay = 22— | ji_ e(hn‘x)\

y<\hl € u vensN
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)
Then, the sum of o},_ is

2

W .
LASARSENEN A5 27 V() Az,

H* H

H

To estimate VW), we apply Cauchy's inequality to obtain

Vol < ow o 4D el

sow(aen v D 2 e(\n(m‘—nﬂoc))

velhlen N
peny M &N

< u(lu\\\ . Z Z \ z__ e(\r‘t(\:*lﬂd)\B

velhleuw (el 4N igns (NN -E)

& uTNox j__ i min (N, ke 2 1™

[ERVAFAV O RN

& wnN o+ ou D 5 eeINL W)
(L €2Nu

where we have put L =2h% and

)y - Do 2 N < adle (W

tethi€uw Ve Wl4nN
2ht = A

Hence, it follows by Lemma 1, that

pl _ L 3
Yiw < (Nug) T (Nug™ v NFu - (ug)').

Next observe that V()R'& NWR™'. Thus, it follows that
: Hl < . A 4 -+ -)
YO VW | Ve e < () (Mg N AR JRL LN
W TR

Hence, we have shown that
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12 A i A A
(105.9) a}l << (NHCL)B (N%— i -~ NL "\'NH-\ + N‘Lq/i-)
be L A
< (N(\,"\:‘) C Na * - NIB P

by (1.5.6).

We now proceed to evaluate ?}|. Define the function

(1.5.10) Gy = > | i/\m f’—(m“l”\A

\emick N<N

In Theorem 1, choose and then fix an &0 70 , Then

Gk < Nk B |

where

> -1g _L -).L L
B = NCONT 4 q7F (N ¥R

From (1.5.4) we have, after an application of Stieltjes integration

at the last step,

F & (L) D A e(\mnla()\

teimi <\ n< N

13 2_ (M, m™ \ j___ INED)! C(\mnlo(\\

tem<ii neWN

H
I A TR
H U

From (1.5.10), we have

(1.5.11) & NAH) Np RO+ NAYD Clog W) |

Since ©(k)is a decreasing function of k and since "M AW & 4S(n7),

we have from (1.5.6) and (1.5.10) that
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(1.5.12) 03—\ < N JS('VL") C \o% lNCL\ .

We now choose € =(%e in (1.5.9). Then, from (1.5.3), (1.5.12), and
(1.5.9),

(1.5.13) Z/&(n){&t(«n‘—(ﬂ -l”ﬂ

neN

to L L
& No@("]‘")(\oc& AN -\—(NOL"L"> C(Ng * + N \ .

For the proof of Theorem 3, we put

M = cleo) NE e

where ¢(&)is a sufficiently large constant, dependent only on ¢..
Since « is irrational, there are infinitely many values of ¢

y 3
satisfying \oL—Ofov\ < q7* , Observe that if WN*¢ 9 €N I then

i
Bley « N FF for R™\ .

For each such 9 , we choose ™N =9 , and so by (1.5.13),

Ty +2Eo
(L.5.18) D A § Enlant -p) -2} & N

n<N

for sufficiently large values of N defined as above. Thus, we have
shown that there exists an increasing sequence of positive integers

NG N, } such that

> Uy + 280
S A § vt p) = 2 D A+ o)

nENy NENY

J‘*Bec

where M, = ¢ Ng—e , for v=1,2,... . Hence, for all

sufficiently large N, from the prime number theorem,
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(1.5.15) > (e p) &ni(‘xpx_fo > cteo N, O

P <Ny

The sum on the left is

Z__ <\°fﬁ?> 5

P s N
Wpret- 3l < ccao)N:‘%ﬁsh

and Theorem 3 now follows.

For the proof of Theorem 4, we may assume $< , as the result

is trivial for %=\ . Note that B in (1.5.13) was an arbitrary real

number. We now choose p =Y *5% and M =%$ , in (1.5.13). Then

(1.5.16) 2 Aty §5,Can*=¥ =18

n<MN

<o [
= S ZA(V\) -+ 0<N ﬁ(L/S)(\O% '-ZN%) “'(NC‘(S“> (N(‘:z.‘.N)‘)-

n<N

The error term is

L e -y X
& NthNm«-Nq"*ﬂrleiq,%x\“%%\ + (N 87 TN AN

Now, fg, (an® = -%$) =1\ if and only if there is an integer h

such that

-3¢ ¢ an™-Y =455 W < 1%
that is, such that N &on” ~h < Y +% | and since Y ~8 <\ it
follows that ' =Lxn*) . Hence &g,,_(oﬁﬁ" —v-%¢) =t , if and only

if Y <¢{an*} < v +§ , which is what we require.

Hence, from (1.5.16), it follows that
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1« tL i
Z log p = SO O( NE chL"tTN $' ")
p <N
Y <3%pry <V 1§

x(\oqq) QNC\,%—')% (N({li -~ N%‘3> ,

and Theorem 4 follows by partial summation.

§1.6. Appendix

It is crucial, in some applications, to have a power of a
£
logarithm in place of N in Theorem 1 (and so Theorem 2). Under the

assumptions of Theorem 1, we can prove the following:

1N

cle _ A i ¢
1Al € B Cogn) ™ (g v T 4 g 'n)” |

where <) is a positive constant depending at most on &.
The main point is an improvement in the estimate for the sum in
(1.3.13). An application of Holder's inequality (for details of the

technique, see the proof of Lemma 4 in §2.2) gives
" CLK&) -\ - H-|N-—l>\"£
L Z.) < N2H (log 2WtRg) 0 (97 v vNT v 9 ‘

A similar improvement is obtained in §1.4(ii). The next improvement

is required in the estimate for

Z Z. oV ’

1s\eV< W' t

in (1.3.6). We show here that for any ™M\,

) £y
S_ojamlt o« ™M Qam)

RS AR

>
{

By the definition of &(1), we note that
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(1.6.1) A < ; 2 a?(n) a2(m)
’ tem , Ny -:—MJ’-'
C =L,
m.’"—nml" =" Aan,t

(a) Suppose that nNz=w,, Then, we must have vw.=n, so that

the contribution to A from the sum above is

(1.6.2) < ™* Z a*lm)  « M(\ogm)‘s_

m< \v\%-

rr

(b) Suppose Mi=n,+t , and |\ <\\ <™ Then, the sum in

question is

DA OO R TE DI (Y c\(m\)LZ 1

Ay e, VY, m 5
;_7 )Y, my, N <My * ey, ny
Ny Aana = md ot (netg)”

t(lnz_*t) ":n|1"W'\|l

& > dn)” dlmo™ d Cind-mi=1)

nomMes/m 2

Applying Cauchy's inequality twice, to the final sum gives us a

contribution of

A
aen < (2 aw)C > AE‘”'L‘M'LD} )

ﬁﬁM"L n‘)m.é‘v\"l

¢ i) (D @)

(RSP RIEN

where

‘,
PES
S
~
il
—m
IN

aCta)

so that (1.6.3) is
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& M (g ™)

Collecting this estimate and that of (1.6.2) gives us, by (1.6.1),
the stated result.

There is no other new difficulty elsewhere,
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Chapter 2.

- 3
Estimate for the Exponential Sum e{=%p?)
PEN

§2.1., Introduction

We use the method given in Chapter 1 to prove the

THEOREM 5. Suppose « is a real number and o and q are positive

integers satisfying (a,q)=\ and (« - %/g\<q™* ., Let N be a

positive integer. Then, given any real number & vyo , there is a

positive number <(t) such that

—%_*E_ ‘70> \ <e)
(2.1.1) Z_ Aln) e(n’x) X <l\\ + NA (_03 N) ,
N &N
where
~ _ -\ -3
(2.1.2) A=A = (a7t v N 9,) ,

and the implied constants depend at most on &.

The result is of a poorer quality than Theorem 2 (one may hope
to replace the exponent %6 by %), but is better than similar results
available in the literature. Thus, Vinogradov proves in [8] that the

sum is bounded by

\
| = 53¢ ok

N ~  NA
le
valid for \031 > 1% . \03\@5\\\

§2.2. Proof of Theorem 5

Throughout this section, <(9) will denote a generic constant

depending on £€7© only. We also put
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A = (97 A wTEe)

As in the proof of Theorem 1, we shall require some preliminary

results corresponding to Lemmas 2 and 3.

LEMMA 4. Let N, V, V' ,w ,w' be positive integers satisfying

V<v! < av s W<wW'<2wW , and VW4N . Suppose « , & , and 9,

are defined as in Lemma 1 with log q « log N

Let (an) and (b,) be two sequences of complex numbers, and

define the sum

~ 3
(2.2.1) T = z A, 2 b e(m n5o(>
\/<m$\/‘ Wen €W
rmn £ N

Then, for any fixed real number <70, there is a constant «(£) o

such that

(2.2.2) (a) if bn=\ for all ne(w,w'l , we have

& i - (&)
T « ( 2 \am\zs <N \Nt *N%ﬁ_\]t *NA{; £>(\°9N) - ,

y<msy'

(2.2,3) (b) otherwise, we have

T, & VT (5 \om\) (2 il f +(me\1>t(—2;_\bn\q)t,

Vamev! WwWansw?

P

g a3

L . <)
%(wa‘ W N W /\'“ (\°%N3£

Proof.

(a2) By Cauchy's inequality, we have

(2.2.4) << ( Z__ \OM\\) ( VW LZL€(¢Yh5('\ -ns))}

V<msy! VemaVv' niing
WwWeng ew'

mn, <N
L=\,
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We denote the triple sum in (2.2.4) by ‘2. Putting

N, = Ny v ;o W(Ch,n) =h (W « 3hn, *?)nl)
b

we get

225 o= > > > elm¥lnn«)

V2 mayl thisn Ny 2

where the sum is over the integers

2N N -
V< hY £ van (W) Th) p) W<V\1$'“'V\(VV')W"\")L&)N )

Applying Cauchy's inequality to (2.2.5), we get

2.2.6) VT & yW 2 D\ D elwmd plhma )|

m \hi Ny

£ YW ZL( W + Z e(m?’(W(h,n;\—\}’(\n)nq))x\)

™ Aw) ny Iy

Now, note that

(2.2.7) Wh,ms) - Y(hong) = 3hMa-ne)Ch+nz «ng)

so that putting

Ny = Ny =t , Yilh,t,ng) = 3kt At +2ny)

we get from (2.2.6) that

j—_ Z Z:__ e(msk\—"(h;t,mﬂ“)>

(2.2.8) \T\T « \/w(\/wl
Ik Ny

M

.,
—
cr
PN
Y
=

& \/W(\/w"‘ “ Z ZZ_ \j_?—(""‘}\‘t”*‘*)\s

TSR b2 Ny

& \/\N( NIV Z Z—_ Z—\“\n(\[\‘)\\UM3ht°\\\—)>

Wi yelart
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Putting

(2.2.9) V= 6w ht , WL & VEWE & NV

and letting $') denote the number of representations of vV in the
form (2.2.9), so that $O is bounded by dulv) , we have from (2.2.8)

that

——

(2.2.10) \T\* « vw(vwz . D Aelv) min (W ,\\w\\")>

Wl & NV

By HOlder's inequality, the sum in (2.2.10) is bounded by

e o JB- - l“‘g"
(2.2.11) ( 2_ duly) ", \N\) <2_ mm(\/\l,\\«v\\")>

for any ©>' . Using Lemma 1, and the fact that

y Criw
Z A (n) &L ™% (\03 x) ,

ng X

for some C¢w, the expressions in (2.2.11) are bounded by

s G c(®) 7/ N*Vw ay T
2.2.12) W= (AN*V)T (log M) < N q,)

c{e)

& <NL\/\N\/6 + NZ’A\—A*;} (1og )

J

and we choose ¥ ’éf . Hence, collecting the estimates from (2.2.12),
(2.2.10), and (2.2.4), we have (2.2.2).

(b) By Cauchy's inequality

(2.2.13) T\ « ( Z_ \amﬁ){ v D lenl? +

VameV' weansw!

-~ 2 2 \vn.gh,_ EQ"“Z’(”I}'V\E)"()}

\/(vﬂS\/. nednz



38

After a change of summation, the inner sum in (2.2.13) is bounded by

(2.2.14) 2 e\t Z e (otm® (N3 mé‘)\

Ny E Ny m ’
with

W<n,ne =W 5 Vem < mm(V,Na™ Nni')
Put

", = Ny ah ; W(hom) = k(5 + Dhng +3n1)

so that (2.2.14), say V., is

(2.2.15) > Z\bm\L \ Ze(\r\n}\l’(hu\m)o{)\ ,
N

L, ™
with

2

V< tha\ & W 5 W < s v (W LW =)

Vem 2 min( V' NCnaand™ 5N

By Cauchy's inequality, we have

(2.2.16) \Tl\z & \l\/( Z\\:’ \ >i 2_ \ Ze(\V(h.,nL)\h ot)\ }

th Ny

- \NC 2__\\9 \"“>% Z 2_ 2_ e_(t\f(h\mq(m.—mt o()

\\,\‘\ Lo B My

+ oC \11\/\13‘15

the O -term coming from the case V™ =", The multiple sum in (2.2.16)

we shall denote by V3 , and we put

m, = ma + B , Wik ,m) = e 43t 43mi)



so that

V<\e )\ <V 5 V <my; <« W“"‘(\/| )\l”’tlv R

and we have

(2.2.17) Ty K 7 >— ?\Ze(q’(htmﬂ\-P(t:uml)o()\

1L Ny 160 mo

By Cauchy's inequality,

(2.2.18) (1 T\* « Wz\,< > D D Z e (Wl m)( Wik, me)

R M g madwmy

- W(t,m) &) o W‘V‘>

Put

2

Wlko,my) ~Wwltoma) = 2t (ki+b. t2ma) = ’*\(t\;tl,,m-ﬁ)
)

say. Also, note that
V<ms & mn (Ve NG N G b e b6, )
Lo ezl él M (V) NCaean) ™ ) Nma ) "V\ <V .

The multiple sum in (2.2.18), say 7V,, is then

(2.2.19) ZZZZZ e (W) MCEnta, ma) « )

\\m\ Ny el ‘t).\ MNa

«c S 5SS DD M (6o by ms) Y home) «)

thi [ S P ma, Nz

By Cauchy's inequality

39
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(2.2.20) \T,\* « W\f5<w1\r”

—

_* Z Z Z Z Z_ e(”\“c\)tl—;”\a)i‘\’\.“unw) '\'v(h.,nj)}“)>
\ My )

Putting

Ny = iy vy 5 Mok, n3) = S Chithe = 2n)

in the multiple sum in (2.2.20), the said sum is

(2.2.21) <« Zizzz \ ZQ(’q“\)tl—,‘m3)"’]\%\)\nz,n;)O()\

Wl e el ma T} N

- Z_—j 5 j Z \—)—_ﬁ("]\’n,twms).gh.hzn-bo«)\

el Ml s ) N3

<< Z z —i_ ZMW\(\N,“"\th.,n’)s),b\'\\\fll"(“-‘)

Putting

(2.2.22) v =6hh MlEnbr,my) WL & WAV & NPV

and noting that the number of representations of v in the form

(2.2.22) does not exceed dulv), the sum in (2.2.21) is

(2.2.23) « E dutydy min Cw, v
Wik N2y

24 ‘- <e)
& CNTFV + Nt ™) (legn) 7

by the argument given for the estimate of (2.2.10). Collecting the
estimates from (2.2.23), (2.2.20), (2.2.18), (2.2.16) and (2.2.13)

gives us the result (2.2.3).
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For our purpose, the sequences 3awm} and §b.} are going to

satisfy the property:

(2.2.24) 2 e & V(\O%V\> < \/(\o%N?‘,

Vamey!

< »
2 oal® & W (\O%W\} < W (g )T
W<en gsw’ .

where A is dependent on k only, and the value of which need not
concern us. Indeed, we shall always absorb A into <(¢) in the

analysis that follows.

LEMMA 5. Subject to the conditions of Theorem 5 and the

conditions given above, in (2.2.24), let ™M,, M., N, , N, be positive

integers so that

M|<M’_ 3 ‘\\\‘(NL

Define the sum

(2.2.25) T = Z A, 2 b, €(m n®«)

Mi<m <M, Ny<n SNo

Then, for any ¢>o , there is a constant <(¢)vo such that

(2.2.26) (a) if b=t for all ne(N, N} , then

‘ [y Dy tE 5 %t cte)
T & (\\’\E*N AN VICE NN ) QO%N\

(2.2.27) (b) otherwise,

i
T)g L 2 4

J__ -
A ™ -t
NEVICEVCAAN A BN

1 L <€)
T & ( My N ) .

¥
+ N2 N

Proof. This follows on using (2.2.24), with Lemma 4 in a manner

analogous to the proof of Lemma 3.
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For the proof of Theorem 5, we may assume that q,«tﬂ3 since
the result follows trivially otherwise. So, we have ‘sy<q < 3logWN.

Using Vaughan's identity (cf. §1.4), with

A(n) elm®n® o) ., u<n < N®m

S’("\ H’\) =
0 , oYveftnse

A . . '3
where W is an integer not exceeding N = , and is made explicit in

(2.2.42), we have

, ’
NsWN

N
(2.2.28) 2 Aln) e(n®) = S\ )3.((5) %E - AL - Ax fo(N""‘)

with

—

2.2.29)  Alp = Z_ pld) 2_ e(d*k¥«)

dsmwmu,Ne™) p<k<Nd™

(2.2.30) AL = Dy > el@ea)

with €4 as in (1.4.6), and finally

N

T 2 Aln) e(m>n3x) ,

u<m S Nu™' U< N £Nyn~!

(2.2.31) /&3

where

T\m = Z r\&d)
Alm,dgu

Note that the sequences s_r"c\} R L Caf R Slfcmk , and SLZ\(")}
satisfy the condition stated in (2.2.24).
By Lemma 5(a), with ™My =V, My = W\m(u,NP—l))N‘—_P )N‘L:N,

it follows that
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AP € CRTE LG (O

so that

(2.2.32) & Al (p) o« (usm Nskuz . " NA%* ~€ )(\O%N‘)di) ‘

To estimate /&1, we write it as

(2.2.33) (Z S - j_ Z +Z L‘ N

~> Com 2(m7 2 )

y

;M

g
M

i
'r\jiu‘
N
P

)\\/\L‘—U , W =N >

We then have by Lemma 5(a), with ™M v =\

say.
cle)

2.2.30 AL « (WY L aat ) Q™)

L
ML=N1 :Nl 5

by Lemma 5(b), with ™M,= N,=u ,

(N%ﬁa 4 'b£>Kb%N)

(2.2.35)
trivially

(3) 5 cle)
(2.2.36) A, & uNT (leg ) 5

z M, = U™, W=

from Lemma 3(b) with ™Mi=N2 = N 5



Lb

) 3 A - L'E, cte)
(2.2.37) AL << (\\\ U -+ u? \\l‘ -+ NAH’ \> C\ova\\l)

A

and from Lemma 3(b) with ™M,=u ™M, = N, =N~ , Ny = Ny ;

(5) 3 - cle)
(2.2.38) AT (N 2 e . TG ey ™)

Collecting the estimates together from (2.2.34), (2.2.35), (2.2.36),

(2.2.37) and (2.2.38), and using (2.2.33), we have

3 Bje tE —3‘\-\8 - \ -L-g
(2.2.39) A_)_ & < U WN ¢ “+ NBL +~ Nu i +u oNAY

A
-+ N /Slb £ ) &\o% \\‘XC(E’) .

To estimate /&3, we write it as (after a change in the order of

summation)

— —_—

(2.2.40) ( Z_ Z T Aln) Z_ Z__ [\\n)’tm> e(msnbo()

i - 1 -
uem < 2 baneNw ! a<ne T uam NG
mn <N win <N

Applying Lemma 5(b) to both sums in (2.2.40) with ™M, =N, =u ,

]
Ma =N~ and Ni=Nu"' | we get

£ «le)

L e AT ey .,

ELN
32
(2.2.41) A, <<(N

Collecting the estimates from (2.2.41), (2.2.39), (2.2.32) and

(2.2.28), we have

A

=1 §
+ u NA

4 le e g

3)
S A e« Cu TR N

NEN

3\

34 w-e (e)
“ Nnﬂa ~ NA\ )(\°‘})N>C :



Choose

(2.2.42)

to get the result.

™Min ( N

24

A—’-l; > )

45
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SECTION B. THE METHOD OF MOMENTS AND ITS APPLICATIONS

Chapter 3: On Riemann's Zeta-function--Sign Changes of 5(t)
Chapter 4: Mean-values and the Distribution of \SUoO\,

Chapter 5: On the Distribution of a Class of Additive
Functions
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Chapter 3.

On Riemann's Zeta-function--Sign Changes of S(t)

§3.1. Introduction

Let
Sy = = am. SCE+it)
where the amplitude is obtained by continuous variation along the
straight lines joining 2 ,2-fit and ¥ +it | starting with the value
zero. When t is equal to the imaginary part of a zero of 3%(s) | we

put

S(ey = M L{sto) vs-ar)

€20

The variation of 3() is thus closely related to the distribution
of the imaginary parts of the non-trivial zeros of (%), 1t is also

well-known that

€t -t

t 7 A
N(E) = St + 'y 3% e ol ¥)

where the term O(t™) is continuous in €,
In a comment on Littlewood's pioneering work on S(t), Selberg is

reported as having said that "it is possible to show that the number

£

of changes of sign of SW), for te(0,7) | exceeds TC\D%—\B‘_ :

T that with a bit more effort,

and indeed, he added the observation
one could even replace (Voy T§—£ by an explicit slowly decreasing

function.

TIn some notes given to H. Halberstam, one of the editors of
Littlewood's collected papers, to be published by Clarendon, Oxford.

The above comment is in connection with Littlewood's paper '"On the
zeros of Riemann's Zeta-Function,'" Proc. Camb, Phil., Soc. 22 (1924),

295-318.




48

The best, unconditional, result available in the literature is

due to Selberg [1] himself, and has

L
(\05 T>3 exP<" A \I \09 o T ) s
in place of (\03T§‘-E above,

We provide a proof of Selberg's statements.

Cad

THEOREM 1. 1If (T+1) <W < 7T , where 4 <« <\ , and

is an arbitrarily small real number, there is an A = A(x,$§) >0

and 2 To =Te(%,$) > © such that when T >T, , Stt) changes its

sign at least

.L“_S

K (log T) exp( - A (Yoqlog T ( \oglogioq T ) ) ’

times in the interval (7, v+ n).

In particular, there exist positive constants A(%) and To(%)

such that SW) changes sign at least

| 35
TQ\oca T) A N (_ - A (\03\09 T)( \JS\OS\OST) > y

times in the interval (o,T), for T 7 V.(5).

Note. If we assume the Riemann Hypothesis, the theorem 1is true
with ¢<% <}
For the proof of this theorem, we shall require asymptotic

formulae for integrals of the type

THH
2k
S VS de
4
and
T bR
[ Vs -sio| ae
L
where

t
S, () ‘S S(a) Auw

¢}
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with the error terms uniform in integers K%\ and %»>¢ | with a

suitable value of h . (The results given in this direction in [1]

are not uniform in k ,) These formulae are established in Sections

3.2-3.4. We shall prove

THEOREM 2. If T <\ <7

, where 4 <« <\ | there is a

constant A,= Ax) >0 such that for any integer k satisfying

l/‘:
<k <X (‘QB\DQ T)

5

THn

2k (2R R k R k—’i)
ST SO\ de = 'ZL‘_\ H (foglog T) «Q((A,\O H (loglag T) ,

where the implied constants depend at most on « , and

o
THEOREM 3. If (T+h) <1 < T , for ¥ <« =<\ , there is

an absolute constant A, = A.lx) >0

such that for any integer k , with

i
ek <« (\05\03 T) ¢ ,
and any | sza,tisfyingJr
= -1 L oq T
(og 1Y < ™ < ZpteaT
T+ W
~ 2k @GR! [ W TR AR

+

Q( (Alk)kk-\ W (Moglog T)k B ) _

fThe lower bound given here can be relaxed, as is clear from the
proof, but is itself more than we will need.
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As a consequence of these theorems, we shall prove in Sections 3.5

and 3.6 the following two results.

THEOREM 4. If T <W <7 and L <« <\ , given any §$ ”o

we have
THH
2, H
j{ L S(6)) A =~ In ogloq T +

: -4 +$
~ OS( H \}\os\osT ( \09\0%\03 —\) 3 y

the implied constants depending at most on « and % .

THEOREM 5. If (T*w)" < W < T and L<w =<\ , given any
$ >0 and any \ satisfying
4 \og V
Nz -1 9
008 \\) < h < \05\03\05_1-
for some suitably chosen constant €, = €.(=) > 0 , then
TAR N v
. H . 2\
| At -si0) 4 - = S e
T
-4 15
“ ( Hh ‘)\OS\OST C \03\03\03 ) >)

where the implied constant depend at most on « and §

Notation. All implied constants are absolute and depend at most
on ¥ , Moreover, we shall use A to denote the generic constant of
this kind (thus, for example, we might write A* =A ete.).

The rest of the notation is made clear in the context, with p

and q (with or without suffixes) denoting prime numbers.
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§3.2. Preliminary Lemmas

We first state a lemma which will be needed later, on several

occasions.

LEMMA 1. Let T be a real positive number and suppose that §$(w)

are complex numbers, satisfying

()Y 2 C
for some fixed constant C 70 , Then for any integer k >\ , we have
— $Cpy ... 5Cpe) §(30) .. $(9,) < sup\
(3.2.1) ) L RLLIg k! ( ) %
( P""Fk qu th\) P
o Fucs P

Gy --- 4 <y
B- Py =% G4

ol ez e

P<y

Proof. Suppose first that all the Pss in the sum on the left of

(3.2.1) are different. Then we shall have a contribution of

< GSHpyy . . PR
3.2.2 \
(3.2.2) W2 (o™
Fl,. ')?\"«(j
where z denotes the sum over those primes P> ----- > P such that
Pe*+ PJ > \'t) »
since to each choice of distinct p.,.... ,P, » there are exactly k'
ways of choosing 9.,..., 9 so that Qui---- Gy =P P - We can

write the sum in (3.2.2) as
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< s \® SHEY ... . $2(ey)
on (2 5F) - 2 oy
Py Py, Py CIRRE

Pi%P some %)

The second expression in (3.2.3) is

2% ~ -2.T — ~4T
& c > Coroibpe) 2 Bl

Pl)-- ,Plk_z 43 Pk__i <j

il

(53 e )T (),

r<y P<y

Next, the contribution from the remaining terms in the sum on the

left of (3.2.1) is

——

(3.2.4) & L (?.,...Pk\—n ’

Proos Pr<y
45 W<y

Prir Py =90 Qe
Pi=p; some «*}

Now, there are at most K-\ ways of choosing 9,., such that

Qk-v and P,_, are the same. Hence, the above estimate for (3.2.4)
is
2%k N . S S
(3.2.5) & k(r-OC D (P Pea) ) b
P\)")Fk-z.<3 ?<“'3 b
Qoo Iy

P Pg-a i TREEL: RWPY



since there are at most k choices for P.,

inductive procedure, that (3.2.5) is

¢ ket (T )T (Y e

<y P<3

+ Clk k (k-0 (k-2)" (i‘)_nyk—w( lp-n\)L
P<y <y ’

and the result follows.

Define the number Gx4 for x»2 , t >o in the following

manner:

(3.2.6) c,

]

x
X
Pl

i 2
+ 2 wmax F'l > 1 ,
f’ 05)‘

where f runs through all those zeros P +.Y of §(s) for which

(p-% _
(3.2.7) le-v] < x | )Uog)k)‘

LEMMA 2. Suppose that T < W <7, where %+ <« < \ , and

: _ vy
xz»2 , L < & < x%k , :fgl é(HT "L‘\) ! . Then, we have
v (o3¢ -4 k -V
(3.2.8) S (cx’t—i) 3 i K A S H(\og x ) .
1

This is Lemma 12 of [l1], but with the error term made uniform

in k and1 . The result is implicit in the proof of Lemma 12,

53

. We may now show, by an



54

LEMMA 3, Let H>\, k -\ and 1<y < H”k . Suppose that o

are complex numbers satisfying

\o
(3.2.9) ol < B 3 , for  p<y .
P \03 Y 3
Then
H N 2k y
_ e )
(3.2.10) S 15 wr ™| ar < (A87R) 0,
o P13
and if
(3.2.11) Lelp) < B,
then
W o2k k
(3.2.12) 0D« P*"M\ dt & (ABR) 1.
[s] P<%

Proof. Write
— k

(S5 <o) = Pl pan

<3 "

It follows that

loc ‘ \o
\)U_..)(’k<3 J\j 3 j
N=P -
k 2 \og p k ‘Oih k
< E) ( \033 B \
© )
oln 33
P<y
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Hence, we have

T X .
(3.2.13) ) \ >« P“t“’“\ kdt . S\ \ Z 8. n-‘%‘“’-\l dt

o ?<\3 c f\«jk 2
(3.2.14) @(Bkyki B D 1Baa
r\<3“
= \@n\ lsa ™ -
N ;277 = \togq 2\ }
m«:\<\:\“
Now
< k k -k << logqyp k k
Z Bl n! g( 2_ \49\\7") < B (\0333 <2_ ——3—‘—5 <<(/\B) )
n<j\‘ Py P<y v
Also,

. { Bn -\
(3.2.15) \r%i | oy 72 )

n<y ™M <Ny -”{<m<n
¢ 2 M fmaw) =)
(\<31‘ ' m<n ’
& “fdaj Y Z \(3"\ & E\°33 ( i \O(P\&B 4
n<jk P<y

14 ‘- 13
(3.2.16) & (AB) \31‘ &\03 y) * < (A%) S

Substituting these estimates in (3.2.14), we obtain (3.2.10).

To estimate (3.2.12), write

< ;z; M; P_\_1¢t>k . zi— P; n-\—Lk

Py n«nk
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where

' 13
Bl < B* z 1 = ® <.,
?I)"'}P“<\3
Y\:P\‘...P‘(

say. Hence, the integral in (3.2.12) is

(3.2.17) & W Z_k\gs,'h\ o Zk\ﬁ;(s.i\mwn-'\\og%l-‘ ;

m<\j mgn<3

& .y 2 & 2 -
& BHD cimt BT S Crwmiat g 2T
m<\31‘ m<h<3k

Now
s - -1
(3.2.18) 2 C. M= = ? Cevp)
m<‘j1< F""“"Pﬁ <y
CAPEEEPI S

P Pt = Q-9

By Lemma 1, with T=! and € =\ | the right hand side of (3.2.18) is

— ¥ 4
(3.2.19) & 1 ( 2__\"1) < A K

v <Y

Next,

Z__ C’_i (\mn)“(\o%%‘)” << 2—_ C,,\l n' \o%n ,
%
n<y

m<\f\<3"<

by the argument leading to (3.2.16). This is now
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(3.2.20) <« k(eqy) Z_ﬁ Con™t = Koy D e
r\<3 ?b,‘.,Pjo
ql)"';‘\/k(‘j

PPy =G0 Yk
" L * 13
< f‘-’k-(\% 3)(2_ e 3 & ﬁﬁ\)‘. (\v% \’\3(\03\03 W) ,
0<y
by Lemma 1, with €2\ and T=% ., The result now follows by sub-

stituting (3.2.19) and (3.2.20) into (3.2.17).

Let x>\ and write

f\(“) > 1< n € >
L (%3 — 2.ty (*7a)
,\(n \og ( /Y\\ 03( xghéxL
Ay = ) ?
x = 2
2.‘0«3 X
2 X3
A n) log*( " /n) ) xten = x
2 \eq®n

We quote the following result from [1].

LEMMA 4. Suppose that te\lLT,7+Ww], where Tie g T and

Ll g\ . Put

Then

(3.2.21) S ~®" W———ﬁ—f—’f’i’) <(rens e @
3

pP< X

where
— Alp) — Ax () it
(3.2.22) B ) = ; - Ve \O;SP




/\x(PL) .
(3.2.23) BEalt) = 2 T ekt
32 P \03 P 2

P<x

(3.2.24) E 3 1t

il

(o—x;t ‘xi) \o% v,

and
> A<tp) |
Sx,¢ % o | < *\P) log *p
(3.2.25) Bty = (6x,t "\5_\ x< S x \2__ P0-+'\t
4 pex’

58

LEMMA 5. Suppose that T%<\ < 7T and Y <o <\ . Then

T
(3.2.26) S | sty + =

T

%\V\(t\o&\‘?)

(x=%£) 20k Ve
<7

Proof., By Lemma 4

2k %
\ at < (AR) W

2% * — * 2%
(3.2.27) 1S ~x' 2wl &« A CHEO™ 4o 2 1B )

where the notation is plain. Now, by (3.2.10), with B =0(1),

T+H ot
3.2.28) [ 1T ae o« (AR W

\

and by (3.2.12), with B=0W),

TR 1t "
(3.2.29) g 1B, 10l de &« (AR) W
T

By Lemma 2, with €=\ and ¥ =2k, we obtain
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T

(3.2.30) 3 \Eg(t)\ﬁd
.

[as

2k -2 2
<& (Atk) H (\351) &(\03‘()&

&
& (AR) W

Next
T+H T+
. 2k 24(Ox,e "1)
(3.2.31) S VB 16" a¢ g (Toe -5)
v T
" 5 S Axlp) log xp 2k
x%g > 2- —————&':E—- \(JO' dt ,
p S 2 P
z p<x
THH Ea
bR 4t (She 1)
(om0 )
T
e N Axl )\ogx; W\
Y-\ N x\p \
x (& Sl& x* \?_ o it \d‘% ) ,
1 Yy p<x.> P
and by Lemma 2, with
ak
v o= 4k £ = x 9
the first factor in the product on the right of (3.2.31) is
L
4t -4\ " ek 1 1k
(3.2.32) « ((Aﬂ B (Log =) ) < (AR) K (legx)
The second factor is, by Holder's inequality
D bk by
(3.2.33) < S {Sx x 2_ S As ,
D y pe

0
oy + -~ = /\x()\O
(\oax_;(‘+ <&X— Gj \2__ P)wtgtxet dt ’10‘>
L
Z



and by (3.2,.10) with ®=0()  ¢tpe integral over t is

2k
(3.2.34) < (ALY W,

Hence, (3.2.33) is
| Lok 2k
&< (AL) R .(\03 :(.) )

Thus, from (3.2.32) and (3.2.34)

T+H

2% >k
(3.2.35) g \Eul)] dr <« (AR} W

T

Hence, combining (3.2.27) with the estimates (3.2.28), (3.2.29),

(3.2.30) and (3.2.35) the result follows.

As a consequence of Lemma 5, we have

THEOREM 6. Suppose that T <« W<V with % <« <\ . Then

if K>\ 1is an integer and

V‘(
220k
(3.2.36) o= T =z =R
TR 2k 2
LT Swiltlegp) t *
(3.2.37) g | Sit) » 7T ';2:; -—~:ﬁ;—~— \ at & (AR) w |
T p<

60

Proof. We may write the expression between modulus signs in the

integrand of (3.2.37) as

-
Sy + © 2 o st 2 =
L3A\><%

Taking the %% -th power and then integrating over C1,7+n]) , the

integral on the left of (3.2.37) is
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e

T4
k - 2 o2k
(3.2.38) & i {B ISty + =73 (0] ac +S AN S

! 1 X Lp<

By Lemma 5, the first integral in (3.2.38) is
4k
&« (A) W,
while by (3.2.10, with B =OY) the second integral is

bk
& QAk\ H

(In the notation of Lemma 3,

V<‘> - | = \asp \océ% < \03?
gz logp log &

Y

so that (3.2.9) is satisfied with 2 in place of y.)

§3.3. Proof of Theorem 2

Put

P

5k
(3.3.1) z = T :

S\n(t\oap)
(3.3.2) Aty = Ay = Sl + T Z_ e
p<E
Then
2k 2% ) - )1k-L
(e VS ()b () 2
(3.3.3) >x) = (W T) + Z- 1 Aleyl -r =
p< L= pLt

The last sum on the right of (3.3.3) is at most
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2%

N & - 2k - 4,
A [ ST

2= 'r3

Pz ’

PR

= AD) Z (i‘:() ‘A\t)\ } Z~ S\v\(t\ogp)i 2k-1-%
L=0 pP< 2
2k-1\ 26 -)
& kin| Z ( ) LALE))] \ L sm(t)osP)\
' L=0 P<z ’

-—

_ S 2k -
= T AL, <\A(Jc)\ + \ 2__ E;—\;\iﬁ)\>

p<t )

t 2R -\ . 2k -
£ Lk lam) LALE)) \ Sinltlegp)
( V1 mme

P<t
Thus, we have
T4
THh . Lk
Sin (tlogp)
(3.3.4) S Loty P ar - S S (togp ) At
| e ), (25
T Pt
Wab A " LA 2 -\
2 ' < Swltleqp)
(3.3.5) & AS lato) Tag + A S Iator] > \ dt
T4w
2%
& A S VALE)) At
T \ l—i‘fg
T+H 210 /5t Sen (k1 ) 2k
in >
(3.3.6) A“( g NG dt> < S l 2_ 3" \ At
T pez ’
by Holder's inequality. Hence, by Theorem 6,(3.3.5) is
¢ T+ \‘:th,;
I 2 Vg S \(t\e< P)
(3.3.7) & (AR) R+ (AK)H (g D \ “) :
p<

subject to the conditions of Theorem 6, which are easily verified
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To evaluate

T Sl ) X
(3.3.8) {1 D nltlwe | e
T Pt Ve ?
we write
Sin b e p) 1 —
(3.3.9) Z ;_F__SE - Ly -7y,
p<z v
where
: N -k -t
(3.3.10) h = e = 2 P ,
P<

and the integral (3.3.8) then has the binomial expansion

. * . _
(3.3.11) (—;—)2T< ‘Z‘(—‘)’(l_f‘) ST”H o gy
J=o0
L THh
O (Mot Lo (M A ]),
o ST ‘

The integral inside the error term in (3.3.11) is

(3.3.12) & ) Z ("""'Pﬂ“““%-sf\“ﬂ;‘-f»—fﬂw\

Pl)")f"i(z: q«‘)"‘)%)_k_:‘ <3

Using the fact that

\\03(%5\ 7 v (&, ) ;

for any two distinct positive integers ¢ and b , the logarithmic term

in (3.3.12) is greater than

-2k
z P
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so that the contribution from (3.3.12) is

%7'\‘ ( Z F—%:)u « Ak _L_st & A&H ’

P<t

and the error term in (3.3.11) is then easily seen to be

(3.3.13) &« Mhu.
Next
THA
& -
(3.3.14) S \’*\(t)\z dt = K E (P""‘PL)
T \’U"')Pt<{-

i<t
Pio Pr = 90

N Q( Z—— QI Ca)) \\03 PCL Pik\)

2P, R, Qg <2
4B P * A4 ‘1(‘

The error term in (3.3.14) is, as in (3.3.12)

(3.3.15) & Af< S

By Lemma 1, with <= and T=% , the first term in (3.3.14) is
— 1 — -2
\<\.‘ W ( 2 "\,—) + O(R‘-H( ) P") \
p<t p<?
Now

(3.3.16) Z_ p-' = leglegz ¢ + o( ™),

v<t

so that from (3.3.14), (3.3.15) and (3.3.16)

THH { t -
(3.3.17) 5 ”l(“\ ap = k' H(legleg T) ?O((Aﬁ)ﬁF\(\og\ogT) )

T
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Hence, from (3.3.8), (3.3.11), (3.3.13) and (3.3.17), we obtain

TR St legp) 2K (C1 .
—_— = A 5 lory\ T
(3.3.18) S \ - } dt = (torleg T)

e ol (A 1 (sl )

This, when substituted into (3.3.7) gives us the estimate for

the error term as

A

4k k k-3
.39 & (ALY W+ (AK) H (Iegleg T)

Hence, from (3.3.4), (3.3.5), (3.3.18) and (3.3.19), our theorem

follows.

§3.4. Proof of Theorem 3

With the notation of Theorem 6, put

- Swltlogp) .
Az (t) = Al = Sty + ¢ 2 —7s o T SWIE QW)

p<r
say. Then
£k t+h £th
%\(t"h) —gl“,_) 25 S‘u) du = ‘—Lﬂg ZL(“) du - S A[u) Adun ’
b t £
and
£k 2k \ t+h 2k
(3.4.1) l S S(w) o\v\\ = ik \ S 21(“)du\
t t

1 tth 28 -
) O( N lSMAM du\“‘) 4 ()(AL \CZ{u)dqu 5, Au\ . ) )
.

t t
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exactly as in the analysis of (3.3.4). Now

tth 2% 2h -\ tth 2t
1| awanl < & LAW) T A,
t t

and therefore, with the help of Holder's inequality,

TtH tth 2% \ J4u b1k 2%
(3.4.2) S \S Slu) du dt = T?,QS 'S Alu) du at
1 £ T t
THH ¢ty
P 2K
,+Q(Af<k g S (AW du at>
Ty
THH til Yok
& 2%-1 1%
+O(A {\n S S LAWY db\d’c}
T €

THH  tih 2t RT3
. { S l S S, du dt}
A

Next, note that

Tau~H

Ten , Bt 2t h PR
(3.4.3) S g [AW] didt = & du \ |Ate)]  de

T t 0 T+tu
so that by Theorem 6 with

(—r+k)°( < h <7 5 Leoar
and o -3 / N e
(‘T"Hr\)k ) 20 < 2 < W

(3.4.4) THR
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Thus, subject to these restrictions, we have

TR £1h T4+ 1 it K

(3.4.5) S \& 3wy o\u\mo\t - n-mg H §_L(u>au\o\t
Tt Tt

Lo R W (AR W

4H 3 -
X s«( ST \\ szLwau\ZJ ) '

T t

We now proceed to evaluate the main term in (3.4.5). The

integral is

COS((“E*H“OCj\)) — Gos{ th’SP) \L& |
t

T+
(3.4.6) S \
3 P)Zt_ Voo lege

Now

(3.4.7)  Gs( (vlogp) -~ Gs(kloqp) =5 P (=) e (p7N )

so that
Ges (W)L - (s (klogp) -
o dl “‘Wz 3¢ L +7),
p<t Ve °yP
where

o

(3.4.9) 'YL = "\}f) = 2‘ P_li_‘\'t (\039).‘ ( ?_(\n_\\

P<t

The integral in (3.4.6) is therefore equal to



T y=o
PR AT
Now, if j#\x , the integral within the sum in the error term in

(3.4.10) is

=
(3.4.11) & 2 (P\'-—-P)'Oy\“-ctzy:s)
Pr,.,Py <2
q‘)“') q;_f(-s <3

. th 2 i - )
J \ P "\\ \qh _.\‘ \o LP)
® mr:\\ _—\v:—a—P: D\ \°3‘\m \ 9 ‘1""‘11%-5\ ,
— 2%
< (D)

since

e o) = 2V sm(Ehige) ) < hitege

and by the analysis used in dealing with (3.3.12). Put
=2
Sk
r = 1

Then, from (3.4.11), the error term in (3.4.10) is

2k k
(3.4.12) & h A H,

Now

T+rn —

(3.4.13) S \nm\l&a\t H 2’ (PP g qﬂ-i

T P\)"’/ ?'Q<}
Qv <t

LI o A e

13 n,u‘- -\h—\ 1k K
x\‘\(\g ‘)(qx) ) +O(‘_\ A HB)
3=

Sl

(\ °q ?)) “0'3 %) )
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in exactly the same manner as we evaluated (3.3.14) and (3.4.10). By

Lemma 1, with 'C={ ,

(6 =) oy p;)

1

%(?33 =
i -1
(" -) Qogvs)
and C=h , the sum in (3.4.13) is
(3.4.14) k3‘<\ 2 p \og® ¢

p<t

bl

, k=) 2%,

\Q“-ﬂl>*H + O(\fxﬂ(z_%%kiHv )

P<E

- \q‘.H(L¥ Z% {M3}1§ « O ((Aﬁ)t( \\zk (\03\037)&—2 \'\B

\03 \J
Pt

Now, assuming that

_ \ v
b < bt < \E \°3T

we write the sum in (3.4.14) as

(3.4.15)

The first sum in (3.4.15) is then

L, o(r )

TN

(3.4.16) & 2 b7

p<<

" ilw

P<e

by (3.3.16).

(3.4.17)

e’" ~nct

\ -0
<< Z Y\\O(jb\f\ < \O%

< \0%2- 5

g\v;(—\i\q\oﬁf’) *

R I R

o

The second sum in (3.4.15) is

(eI/h\ & W
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whence we have

S Ehie W o | .
(3.4.18) Z_ { 3\))} e \Oj\" + O(\\ )

p<z 103P

Collecting these estimates in (3.4.13) gives us

T+H
S w\w)\ qt < klhhe ( oy +o(\)) +o((/\t<) h H(\eg\oal) >
.

Substituting this result and (3.4.12) into (3.4.5) gives us Theorem 3.

§3.5. Proof of Theorem 4

The main idea in the proof is to relate the integral to integrals
involving the even powers of SW), This is done by noting that for any

real number [ |

L (s QRN ,
(3.5.1) \Fy = ES "
[+
Put
N _ A Yeqlegq T
(3.5.2) ;e’ = &(4 \3 - LH_L_L 3 3
and
"‘\i )
(3.5.3) wity = & 7 S

Then, we may write

hY )l 5 Q < ( wi )1.
Sin{ Wit u 2 " 0o
(3.5.4) Wi\ = %g (_i‘__._____> dw o+ — S K—.—T._) du ,

o w 0



for any real number AZ0 (but ) will be chosen sufficiently large

later on). The second integral in (3.5.4) is, trivially, at most
-1
Y A . Therefore

THH NRALL X By
(3.5.5) S W at = %g g {Sm(ww)uﬂx du -~ O(HX )
T o T *
Next, note that

N 3*\ L") 2Nt
o, _ (-y  C2x) (1"') >
(3.5.6) Stinx =T E (2" N O( (s t2)Y g

=1

so that the main term in (3.5.5) is

Ny T T ‘

A =)
(3.5.7) —7‘_;8 T D oo ST WD) at

=

N P AL 2N
+ 0< (z:ﬂ)\_ ( S W d“y( S Wi O\tyx)

o T

where N is chosen to be of the form
‘ L
(3.5.8) e log )

with & a sufficiently small positive absolute constant. Thus, by

Theorem 2, the error term in (3.5.7) is

N R (‘).N'\l)‘~ » { PUNEER
(3.5.9) << 4 (2.\\\11)\~ @_“)\. 21 l )
Cav™

Nt ~NE

71
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Now, again by Theorem 2, noting the condition on %=} , which is

satisfied, the main term in (3.5.7) is
9\ N VA . -e A)J A ©

H A (=) L) " (A} & 2y -2 >

3.5.10 2 ("5 ) Sy @07 du o(re "D 22\ WP )

0 )= 3= °

The error term in (3.5.10) is

Ao
i

N
(3.5.11) & P TEA" 2
J=1

2

& Hp TA e

In the leading term in (3.5.10), the sum is

PX ) AN 2
(3.5.12) bme . o 5 Gw > ‘

Hence, the error term in (3.5.12) contributes to the leading term in

(3.5.10)

x | N
(3.5.13) & 4" —HTg W e < ’H; (22
N N

[

A

2N\

The first term in (3.5.12) contributes, when inserted in (3.5.10),

. AR -
(3.5.14) i& L -¢  dw __‘L*.g LZ€  au = Z ka0,
p)

2
T ux T uz Ve

Collecting all the estimates together, we have

THH

@™
(3.5.15) | \wionar =
A

W= O(H)"*r W _i‘T 2Rz EAN e )

S

)

from (3.5.9), (3.5.11), (3.5.13) and (3.5.14).
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Choose

where 5 >° 1is an arbitrarily small absolute constant. This gives

us

T4+n

-5+ %
(3.5.16) S Iwie)) de = (—l_r; Hoo Og(“ (leg &) >,
I

and hence Theorem 4, by the definition of WIY),

§3.6. Proof of Theorem 5

The proof of this theorem can be carried out in exactly the same

way as the proof of Theorem 4. We put

Wit

N

) tah
Wik,h) = W&, S Sy du
t

where

il

= (lgn™)

x&‘ L\.-ﬂl

To use Theorem 3 in the same way as we used Theorem 2 in the
previous section, we shall assume that
L {
(\03 T)z < W' < o 003 T)
with N defined in (3.5.8). So, we may use Theorem 3 for each k¥ €N |

The analysis then carries through as in Section 5, with Wlt) in place

of W) and L. in place of & giving us

T+ ias
g bW dg = W O%( H (103 L) 5

=
3 Vit )
with the previous value of A . Theorem 5 now follows from the

definition of Wb,



83.7. Proof of Theorem 1

The method of proof is standard and is given here only for

completeness. Put

ho= e (g ),

where (cf. (3.5.3))

(3.7.1) e gk < T < (log 7).
Define
£+
T(h,e) = 1 = X{; S(u) du
and
th
JCw,ey = 3 = S { St du .

t

Let € denote the subset of (1,1*H) gsuch that for each t€E |

J(h,E) > LIl

Then
S 3(B) dt = 8(3\#) S1TIWOL) dt «g 11l at
E E =
TR TR
7 g Jlt) de -~ g 1T () Ak
T T
Also
v T+ W 1
S Iy ar < w(®) (S 3 d»c\ )
= 1

where ™(E) denotes the measure of ®. So, we have

74
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T+1 2

T4H
(3.7.2)  m(8) » (S-; Jtode - &_r \Il‘c)\c\t)

Ttw 5
S L TIO) dt
.

The numerator in the expression given in (3.7.2) is, by

Theorem 4 and Theorem 5

L hH
AR RS SR AN

-5 +9
- Qs( HW \)\o3\0¢3 Y (\03\03\03 TB \> ,

subject to (3.7.1) and the conditions of this theorem (this is because

T4 N Truth
S ) v = ISl d¢ du )
T % T+
Now
\oq ¢(T) | \05 P(T)

i - 3 - = _71 paS——
Fegio T = Tl = (s ) [ies

So, if T is sufficiently large (i.e. T 2 To(%,x) ), and

- SO
(3.7.4) ¢(Y) > exp(C\ loglog T (\03\03 log 1) )

J

for some suitable €. = Ci(%,x) 70, we have the expression (3.7.3) as

\o (1)
> CL(8)hH -—Si——— )

J logleg T

for some suitable €2(%) >0 , The denominator in (3.7.2) is simply
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TR -tk
(3.7.5) < h & St du at ,
T k
h T+u 1A
= W So IS\ 46 du y

T4

<< hLH \03\°3—\- »

by Theorem 2. Thus, we have seen, subject to (3.7.4), and sub-

stituting (3.7.5) into (3.7.2) that

\ SRR
m(E) > C3(8) H (_?é_cb_—>
\03\031' )

for some suitable C3(%)>0O

Now, divide the interval (T,>T+%W) into Lunw']  subintervals
S , G(m\_‘] , where each of the intervals is of length W , except
possibly for the last. If &G; contains a point of E, then S%) must
change sign either in G, or G;, . Since at least (h"m(E) -2)
of these intervals contain a point of &, then Si) must change sign
at least

, , \oa T { log PCTYY
Ji(\n" m(,E_) —-1) > CLQ,(&) R ?(_\_) < \;\OST 2

xS
7 R \o%"\’ exp ( - Cs(g) \03\03'\' (\oc}\o%loca_\') )

2

times in the interval (T,T+w), where Cu(3) and Cs($)are suitable

positive constants.
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Chapter 4.

Mean-Values and the Distribution of

§4.1. Introduction

In Chapter 3, we showed how one can derive the asymptotic formula

for the first mean of 3\, 1In this chapter, we shall prove the

following extensions of Theorem 2 and Theorem 4 of Chapter 3.

THEOREM 1.

Suppose T

<YW <7 , where %<« <) | TLet A be a

positive real number. Then, for any $»o and for Y% To = To(«,8) |

some suitably large T, >0, we have

THh " (£ -$)A
2 j\- Z—T 4 O<)£\ ’
Ll s ae - Yy K
(4.1.1) " S hy (3-8) -
T Ma £ N7
subject to the condition that
L -3
4.1.2) 3 = ( z. > ’
where
‘08\03\03 T
T = —_— ]
(4.1.3) Z+ g \og log 1og T
and
| At
(4.1.4) vy = P [ﬂ< 2 > -
K z
Corollary. If T nsT , T < =\ , then for any A 2O

we have

for some sufficiently large number 7T.(3) > O |

b




TR

A
(4.1.5) 3 1S(t))  dt
T T

"
T
—
[#)

o
a
e
]
\_/))
~
+
a
—
g
\_/

We then apply Theorem 1 with A€L to obtain some information

on the limiting distribution of ISW)\, Put

(4.1.6) Wt = wigy = St :

J \°3\°5 T

and denote by M{s,T) the measure of the subset in (T, T+W) such tha
Wiy < o |

where 0 1is a non-negative number. Put

Plo, T) = W' M™ML6T) .,

78

t

Then, P(6,T) is a distribution function with characteristic function,

say, ?TQQ , defined by

T+
- LS Wit)
$.(Z) = H e at

T
Now, P(s,T) tends, weakly, to a limiting distribution, namely

&

2

2. -
Pls, ™Y — Pl = = So e dz

The corresponding characteristic function is

o)

B(Z) 3 %S eLSt—tl At

NTC o

Our purpose is to evaluate the discrepancy between P(e,T) and Pla)

for ¥V sufficiently large. We do this by means of the Berry-Esseen

Theorem (see §5.3). We find a relationship between ¢+(3) and ¢(3

by means of moments, using Theorem 1 and prove
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THEOREM 2. For any s »o, we have

Pls, T) = pPls) -+ Oc‘( (\0‘3 ZT>—A{->

J

where Z: was defined in (4.1.3).

We then have the following corollary, which we label as

THEOREM 3. For T®<wW<T, %<« <\ , the measure of the set

contained in (7,7+n) for which

lsit)y < o \’\03\037 5

for any 6 20 is

-1
H Pls) + O( Ale) W (\03 Z-T) )

J

where Als) depends at most on ¢ and « .

In particular, we have the

Corollary. Subject to the conditions on W, as above, the measure

of the set contained in (7,7+R) for which

1Sty < § \JloglogT

for any &vo , is A(sH) for T T-($) , for some T-($) 70O,

It is clear from the mean-value theorems that the measure of the

set contained in (7,7tW) for which
\StoHy > S‘\ \)\03\09"[ s

for any »7° | is also O(4H) for T7Te(%) ., The result of our
corollary appears to be new and says that S\ has normal order.
We defer the proof of Theorems 2 and 3 to the next chapter, where

corresponding proofs are given for additive functions (the method

being identical).



.2, Proof of Theorem 1

Define W(t) as in (4.1.6) so that by Theorem 2 of Chapter 3

0 T 2t
(4.2.1) [ ST W) dt

I
T

for

(4.2.2) <t & (loglog T

We consider two cases, depending on the size of A,

(a) O< A<\,

We start with the formula

2
2 A (7 (sw IRV
(4.2.3) \Fy\ = C)S - A,
° W
X > \ ,
o S (Swn 1El) 4 O( — X 7‘)
Ca gt “ t ACa

o

for any complex number F , and real number X7© and with

()

S Sem ()

VA
u

- du
(4.2.4) ¢y =

0

Note that in the proof of Theorem 4 of Chapter 3, we had used A=\,

(b) Define the non-negative integer m and the real number ¢

uniquely by

(4.2.5) A = Amat + T )

We use the formula

1A Y
ool @A )

80
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2m BN L
(4.2.6) T S (Sw 1Fl)
u7_19

m
=V (S Flu ) '\ x V7€
ce ) - ol S
DG 219 152 R

with

du

(4.2.7) Dy T

The proof of Theorem 1 for ¢<><\ g similar to the proof of
the special case, namely Theorem 4 of Chapter 3, and so, we shall give
the details only for Theorem 1, for A7\,

Put

and integrating over v, we have from (4.2.6)

TR L T+h

i -2-9 m o W ,

(4.2.8) S Wie) dt = E@g u %ﬁ& W™ Sur (Wie) u) O‘t}d“
T o T

T+H

4 O( X' —Q-\ Wy dtv
: .

We assume that

A
4.2.9) x <« (legtog T)©

so that by (4.2.1), we have the error term in (4.2.8) bounded by

V-0

(4.2.10) V. X + (Aw) XX

2

—-\-9

Next, by Taylor's Theorem, with the remainder term, we have
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ANA4 2

™~ .
4.2.11) (S u)' = 4 Z\os Ve G ) )

(an)) )

where

i

(‘_\)j‘n ) )
4.2.12) o, o T )

and N is an integer, exceeding 2, which will be made explicit later on.

The error term in (4.2.11) contributes, in (4.2.8), an amount

TR 2Nt x
L wWip) 2N -0
4.2.13) & — S NTC i Cowier) g u du At
1 (2m2)! o
L\_lN'il \ gT+\—\ (AN \> XINT\‘B
< 2 5
< (’LN—tz)\, ( H - Wit) dt 2N+ B
& L‘_IN-HL XLN‘\'\‘“B 5{ N AM)‘V\&‘ﬁg
¢ -+
(LNﬂ‘)\. 24\ -0 2(™M11) ( 5

where we have used (4.2.1), with the notation
Ve
M = wm=+ N < (\03\03 )

The main term in (4.2.11) contributes, in (4.2.8)

TR X ™~ 2)
(4.2.14) '48 \N\t)z“‘% w2 5 ) b (Wit ) ~ du dt
)=12

L WO
Dg W

T o
X AR ' TR ()
[ S Wr® ) b W™ {Jg& wig) dt\g du
B 3 Do -
) 3=z T
™
N 2 a
S S L2® > by w >V (may o
LA -
):

N
-A X — : :
b g 19 \b'\u‘l)(/—\\\(\)m*)'
u J du
+ Q( Do 3 2—3:1 )
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The error term here is simply

LN (may) 07O
(4.2.15) & & * D il (A™) x;-)-\—g >
=2 . :
- M —y- -
€ TR (Am) X770

To estimate the main term in (4.2.14), we write

ool
2. 2(m+)) P
N ol €

'L'Z.h-.—tz' . d«
A} 22y
T

o

so that we get

$ a2 Sw ﬁLz_\,( )3} ™™ dx du

{
(4'2'16) Q‘Dg 5 U ‘nlm‘t‘\i
) % 2N+2
B Wl uod LI E*_\,‘."i) g du A
. £ A \O( - l& u-z G%SW‘ (’T—g—) * O(('LNTIL)\. I )
7_m—+“* D
T o o

The interchanging of integrands justified by absolute convergence.

The error term in (4.2.16) is
N
) A o 11%)
2 2N - : ,
(402017) << _B\—<S 0(1‘\‘*26—0( do[)(& U Ada (l\\'tl)\. Rl\"\—tz.f/z
°* .
2N+ -9 N
Vom+2 X b
<< _— 3
De 2N -® (1N+2ﬂ
PRS- 4
Vomaz (L{-—)\)

&

De N (2n2)!
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The contribution from the main term in (4.2.16) is

xR

2 im0 [osin* (e -2 E |
(4.2.18) E_;n_*.‘i& X e {ﬁ — 5 du O(X ) Ax

u
e} (o}

2 o \\ TP
— m - o
- ..lm*‘\i S % = T 3 XS

- O( nvz\m X—\_e) R

= v, ~+ O( Vo x“'*’)

Collecting the error terms from (4.2.18), (4.2.17), (4.2.15), (4.2.13)
and (4.2.10) we have shown that

TrH
A -\ - ~L - 2
(4.2.19) T«L& W db - vy o« Y x0T ey xR
T
N XLN+\—9 N
Mo -t
+ s %vzm«z +(AM) i‘ &
NNt :

We use the bound

Nt2 N2 N
—VZ-V"\*zN 2 £ (lm) Vaom vzn-r)_ << (Zm) Vo (AN) .

We make the following choices:

, \ x -t
X = \b ., >
\33 L
= €
N \°5\°3 L ?

and assume that
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where © 70 is a small positive number. The errors induced by these

choices in (4.2.19) are
_%_S

< Y% < —————“\03 * »
< 2 ‘Oc:) \03 1,

for some positive number % . This concludes the proof.
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Chapter 5.

On the Distribution of a Class of Additive Functions

§5.1. Introduction

Let $(n) be a real function, for each positive integer n ,

satisfying the following conditions (of strong additivity):

(1) F0mn) = $0m) 4 £(n) for all integers (m,n) =1,
(i1) £Cp*) =5 for all primes p and all integers
w7

For any k=t , put

At = Z b ’

p< X

where p runs through the primes.

Now suppose that §(W belongs to the class of additive

arithmetical functions satisfying :

(5.1.1) (a) A2(x) tends to infinity as x tends to infinity,

(5.1.2) (b) there exists a number ™M such that

LS(p)\ <™

for all primes p .
We shall denote this class by c.
1t was shown by Halberstam [6] and Delange [3] that the following

theorem then holds:

THEOREM. If fe¢ ¥ , then for any integer <=2\, and for «x

sufficiently large, we have

2k 4 N
(5.1.3) z (‘E(fﬂ - A‘(x)) = P x Aa(x) -+ °< ~ AL(x) ) ,

n<x
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where

This complemented the famous result due to Erdds and Kac (4]

that, if Nolw) is the number of integers n not exceeding x such

that

.
(5.1.4) fFn) < A urA,_ (x) ,

then for any real number v, as x tends to infinity,

wr

\ ' ~dgr
(5.1.5) — NEx,w) —> = S e at .

0

The main purpose here is to show that asymptotic formulae of the
type (5.1.3) can be obtained for any real number A70 ip place of %k,

We shall prove

THEOREM 1. Suppose §e T ., Let A be any positive real number.

Then, for any &£vo and for x sufficiently large, we have

. -(¥-e)A
A A ZX J 0<}$\
N << G - Avlx)
(5.1.6) — )———————- -pa <€ .
X '%‘ JALG0 r o 7. (3-9 , Az

subject to the condition that

where
\03 Al (%)
—_—_
(5.1.7) Zx = \.;‘) \mﬁ Ap_(x)

with the implied constants depending at most on Mand < .
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In particular, we have

Corollary. Suppose ¥€¢C . For any A70 and x 7 %e(}) for

b

some sufficiently large number x.(3), we have

p A xay A2 e
(5.1.8) 2 Ve - Ao = lﬁ.’ (= ) x Aatx) (| ()> _
N& X

This follows clearly from Theorem 1 on noting that

Mo A
(5.1.9) My = ln, r(2)

Such results were previously not within the scope of the methods
of Halberstam and Delange. More specifically, their methods made use
of the fact that since there are no modulus signs in the sum in
(5.1.3), one can interchange orders of summation in the subsequent
analysis. This, of course, would not be possible in (5.1.6).

Our proof uses the method introduced in Chapter 3 and Chapter 4.
We shall require the result (5.1.3) with an explicit error term

uniform in k . We have

THEOREM 2. If §fet , for any integer %k »\ , and x sufficiently

large, there is a constant A =A(m) such that

— 2k & 4k k-3
(5.1.10) D 14D -AGol = pog x A0 & (AL)  x Ao

ng X

where the implied constants are absolute.

Delange's method will give this result without difficulty. In

fact, what we need is to prove Theorem B of [3] with an explicit error

term, Let
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§0 = 2§l

P\n, P<y
M(y) = > 5p)
Py
THEOREM 3. Let §¢Z , and k be any positive integer. Suppose

that Y is a real number satisfying

gsx 5 3——-»00 as X —> oo

Then, for x sufficiently large, there is a constant B=B(™M) such that

(5.1.11) Z_ £ gy - A\(p\zk - P % Azw)k

n<X

R

7~T< k-z_ ZR
« (BL) = Al * 4 B mgyy

where the implied constants are absolute.

Our next object is to apply Theorem 1 with ML to the question
of the limiting distribution of £(n), to obtain a result of the type
(5.1.5). Put

-1
(v = | §n - Ao Al =,

and let Nl k) denote the number of integers 4 <k such that
3‘2(,&) < 6,

where S 4is a non-negative number,

Put

PCo, k) = 1 NSLK)

Then, P(=,%) is a distribution function with characteristic function,

say, 4>&_[§) , defined by
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(5.1.12) $e(3) = ?E E RESNCY

Now, Pls,k) tends, weakly, to a limiting distribution, namely

2L -5 x*
per = JE e,

for 7o , The corresponding characteristic function is

[

L3t -t
$(z) = %% et? /2 At
[s]

Our purpose is to evaluate the discrepancy between P{(s/%) and
Pl for & sufficiently large. We do this in §5.3 by means of the
Berry-Esseen Theorem (see [2] and [57). We find a relationship between

$2) and HS) by means of moments (using Theorem 1) and prove
THEOREM 4. For any §¢ € and <320

-4
P(a, K) = Ple) =~ O( OO% Z¢) ),

where Z; is defined as before.
We then have the following

Corollary. The number of integers l<k such that

5 - ARl < & ALRY

for any o»o0 1is

EPey + O( & (e z)E)

Results of this type were obtained before by LeVeque [8],
Kubilius [7], Turan and Renyi [9] and others, with estimates of the
discrepancy substantially better than that above, but for very

special classes of functions or for a general class (cf. (7] but
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making use of the probabilistic model for additive functions., Since

our method depends on the moments of $n), one would need to improve
the error-terms of Theorem 1 to get the corresponding improvement

in Theorem 4.

Notation. Throughout, A will denote a generic constant
depending at most on M (thus, for example, we will write A" =A ete.).

The letter p (with or without suffixes) is reserved for prime
numbers.

Other notations are made clear in the context,

§5.2. Proof of Theorem 1

Define

it

(5.2.1) Wn) ($0m = AL0) Aatey ?

Then, Theorem 2 implies that

(5.2.2) “\; Z \\l\'(m)\zr< = r*p_g B O( (AR)QR I._l) )

nex

S

where we denote Axlx) by £, for simplicity.

We shall consider two cases, depending on the size of 2.
(a) o< <)

We start from the formula

2
2 \ gM (gim \0(\“)

= —_ d\L
le< | 3

o u

— . 2
L g\ (sm toia ) ‘o +o(—‘—T"&)
AC) )
. u\f’)«
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for any complex number 4 , real number 77° and with

oy . 2
Ca :S (St a)
—= "
o (S

(b) A1,

Define the non-negative integer m and the real number @ uniquely by
A = 2ma + & N 0< S < 2 .

Here, we shall use

Y
2 A}
\ S [T VA
(5.2.3) \M\) - <\ S ( tn ) du
De, zt9
[o]
\ 2Am T (S\n \ﬁ(\u\q \0(\2“4 -1-¢
S ) au - oo
V3 ° u’“"% o ’
with
P (S\L\ u\)q
- a
D{} 8 149 “
[\} U

We give the details of the analysis only for case (b) as case ()
is similar. So, putting
o = Wn) ,

in (5.2.3), and summing over all n not exceeding x , we get

(5.2. ) x D L ns)”

NgX

\ T
- -2-¢
Do S . %

0

*x |-

Z bWy (S W(MU)LF} du
N X

. 0( LS et T
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By Theorem B, in the form (5.2.2), the error term in (5.2.4) is

bounded by

(5.2.5) P‘lm -‘-—\'6 N (Am\‘-\’mi’_\T—\-&

Now, by Taylor's theorem with the remainder term, we have

N R C’-&- ’c)lN‘tJ
. T bt J C)( >
(5.2.6) S ) -3 \ZZ— > ’ Czn=2)

=2

where

RS L -
by = SO (W -0
CINE

’

and N is an integer (exceeding 2) which will be made explicit later

on.

The error term in (5.2.6) contributes, in (5.2.4), an amount

Nt
— (4— W(n'}) o - O
5.2.7 « m - 3 w duw
( ) <& x 2 Yw (i G ) )
33 4
1 2N+2 ‘ 2Am N D) T 2N -&
L A |y ) -
< (lN‘QQ\)\. ( x Z_ V(n )\ . e 9
ngoc
PANE o} — 2N+ -0
4 | 4o
& $ Facmay Ay 2}
(an+2) 2N+ -

where we have used (5.2.2), with the notation

M = ™ tN,

The main term in (5.2.6) contributes, in (5.2.4)



ngx o

T N
L2, LI 2 zm - < 2
(5 8) Do < wn) S w"* e-, '; 2 bj (W(n)u)) du ,
i=a

T N _ :
S F ) e D (e
)=

NsSxX

T o :
\ -2~ § 1y

= g uw*® b:) w M 2Gm+)) du
8% :):l

0o

a
o

T N
_ - e X : 4Cm+y)
o 27 ve) W ) g ey g
i '

The error term here is simply

N WS < 2y ~\ -
- < J
(5.2,9) & z 2 \\:’j\ (A\v\‘) —_—
3=2

9_3-\ -o
~N l)'
- Um _ - N
& % \Q\M) 7 2 (2 ')
= )Y

- M L -e Tt
& L7 (Aam)y T e

To estimate the main term in (5.2.8), we write

(=1
2. 2(m=)) 3™
]’Lzrwﬂ_') = = S £ ) e T d<

so that we get
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~N
S 2 - -3 S ' 2 . =m
(5.2.10) 8%8 u T );;Tg e - % 2 b; \utP} t 4t du

0 [s) \'):2
" % ANt 2
: bhuk )
= 2 ..L- = ‘3&_'\21 -2-6 % Y4 ( (
\]r\, Dy S t < S u { w(ug) + 0 (an+2))
V] 0

the interchanging of integrands justified by absolute convergence.

The error term in (5.2.10) is

\ 0 2™ +1 T T 2N - '6N
(5.2.11) <K ‘_]—);(g % e * dt\><g w eo\u\\) )
o

‘ (2.N + 1)\.

o

2Nt -0
| T ™

TE YA
2M+ —
€ Dy M2 2N+ -© GINETRY:
2N+ -2
\ 4T)
& — l\*nm—tz (
Dg N Can+2)!

The contribution from the main term in (5.2.10) is simply

)

0
2 am  -%E* _\_,S Sunt*(“t)du
(5.2.12) = g t e 52,])9 ulﬁg
-+ Q( T-“a) } dt
_ = Smtlm_ﬂ-e _.;:t?-d O( ,42 T-\-G)
SR e £ x ™ 5
My At o
+ -
(5.2.13) = U 5) *O(I"‘lm 1 >
JT

Collecting all the error terms from (5.2.13), (5.2.11), (5.2.9),

(5.2.7) and (5.2.5), we have proved that

)y s
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MMz

(5.2.14) Z_(wm\) ~ :\lh__ r(y) « ,-&M\T_"ef
=X
T R TN
+ 27 (A e T

We shall use the bound

(5.2.15) Mamtan+a S (zm)Nn Mim Mamer

< @-m)N*L Ma2wns (AN)N,

which is easily verified. We now make the following choices:
i-¢
(5.2.16) T = o N )

(5.2.17) N = £ lg %

and assume

where € is a small positive number. So, from (5.2.15), (5.2.16) and

(5.2.17), the errors in (5.2.14) are bounded by

-+ +§
Ha (]\—;3%%)

for some positive number & . This concludes the proof of Theorem 1.
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§5.3. Proof of Theorem &4

We first state the Berry-Esseen Theorem:

If F(x) and G{x) are two distribution functions, G'x) exists for
all x and '&'(Ol<« | §€(w) and g the characteristic functions

of F¥) and G{x) respectively, and the following condition is satisfied:

S.T | 1) - qlud)

(5.3.1) w < ey,
A
-7
then for -0 <X <=0 ,
(5.3.2) 1Ex) - oy < K (€ +;°;_) )

where K 1is an absolute constant.

We shall apply this result with GUL)=P) (implying + = J;%),

and restrict ourselves to the domain Yo,%). We put

gy = Pe(3) .

Now, by Taylor's theorem, we have

. N
™Y 1 X\
P_X = _J_.\... + O .Y

y=o

Substituting this into (5.1.12), we get

\ N
N (z) ., = ) 12V p =1 T n
(5.3.3) F(5) = 2 (——~— (2wl *‘0( K 3&’\.
j:o 3 .LEQ J'$Q

We apply Theorem 1 to the above, noting that for the case 3-=o s

the error term does not exist, to get



N ) N- ) -4 -¢)
— (D —; 1Z\° >
y=o SRl
151" R -(i‘“)
4 Z
N C>< N P Nt P * s

where 4« is as in Theorem 1 (with X replaced by k ), and subject to

the restriction

N = o( Zz‘&).

The main term on the right hand side of (5.3.4) is

0 N-y (‘Qt):\
& —"'tz< L
(5.3.5) |z g e E = > at

i}
H}p
o\—-———ﬂg
®
t
[N
ct
'v
~N
()
N
-+
4
N
2|7
e’
e
S-
cr

N

s+ o Z5p)

Collecting the error terms from (5.3.4) and (5.3.5), we get

iz N = (-0 l§\3
$.(3) = $() +O(’&T?‘” i 2— i “3,

Peyen-t

We apply this inside the formula (5.3.1) to get the bound

,T T -\
b (3) - P(g) N
(5.3.6) | Pl as <<S = pnods
) |5l N
i} [s]
B (0
“(%-8) ) 3=
w oz pa T& 2> ac
1<) €N o
_(’i__ ) 2
<& _I\_‘\.lj_ 'TN + Zk © €.T
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We choose

and

where $70 is a suitably small absolute constant., Then, the left

of (5.3.6) is

-1

% (o9 Zg)

and Theorem 4 follows from (5.3.2).

85.4, Proof of Theorem 3

For each positive integer 9 , put

RO R

n<sx

and

Vgl = P

pins Py

For any positive real number Y , and any integer w >\

Y E $lpy N Te A
§3 (n) \

o+ -+ A =9 B “Pr‘:)
v S'V\AC“) F\\V\)“' )Pr\f\

where the notation is clear. Summing over n , we get (cf. §2.1 of
(2]

Fq Oy = ;;i._ 2?::*_ _—————————_ f(?d - §Ce) Y:R~ Pe

e =9 e PEEY
rsnkg)
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Omission of the integer-part brackets introduces an error of

? ¥ _2 Vool Gy
< PRI Spol o PO

Ayt =9

Pr<--- '<P‘-<3
\‘sT\Z\t))
so that
_ | %
94" Spa™. . Slpr) "
(5.4.1) F(L(x,\j) = x : ; AL oLt P\- - Pr
S r
v B Loy MY,
where

Lol <)

Define the entire function

z §(p)

c -\
(5.4.2) Gylz) = T (v o+ __;__>

P <y

On expanding (ﬁﬁz) in a Taylor expansion

00 .
(5.4.3) Gylz) = —_2 ajly) 2>,

) =o

it is easily checked, from (5.4.1), that

(5.4.8)  Faloyy = x a4 Gy« Bglug) Mip*,

Now,

N
(Fylmy = Ay \1 = 2_(“)\" (1) A" §900)
h=o

100
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implies that

- 2
(5.4.5) Z__ (§4e - A‘tﬂ = L("‘)h(a Ay Fq-n(79)
h=0

&) Q \ (%—h)\. /\\\3‘)\" Ag-v () =

ch\) A\\j) 9(:'/

The second sum in (5.4.5) is, in absolute value, at most

1
yw :

h=o

4k 4
(5.4.6) Z( N tacpl it = (adpie i)’ < 2 migy !

On the other hand, the first sum on the right of (5.4.5), namely

9! 2_ (”T)“ A Aquly)

h=o

is the coefficient of 2 in the Taylor expansion of

Gg(z) cxy(—A.sz) = Z_bj(t) 2’ ,

so that

9 9
(5.4.7) z (5'3(") - A\\S\) = xo‘". bC\(\‘j) + lq' eg(x)j) (Y\\j)

ngx

where

\ea(x)g)\ <\

Define the entire function

. ezﬂ?)_\ e%&(?)— \ )
(5.4.8) Hy(z) = |V (v ——“) exe( P ’
P<Y ¢

o0

pum—— g

- Z— C_)'\b) '1_‘3

i =o
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where, obviously,
COKS) = Hj(v) =\

It is easily shown (cf. [3], §2.51) that Wy&) converges uniformly in

any compact set as 4y—>= , to R(®), say, Now
Gylz) exp( —AUYEY = hylz) Cx?i( Z_ - Lo —‘} ,
Py ¢
so that
- " o
(5.4.9) ij(j) e ( Z_Cjw) f3> ex?ilzﬁg—?‘) zf‘ls
Y=o y= e k=2 ‘

We are interested in Yql4) ., TFor this, it is necessary to find a

bound for
\Cj(j)\ , o<y <q,

uniformly in 4y and 9 . We have

H
\ ylz) as
C‘ﬁ) = - B ’
) 2m %J*‘
L
where £ denotes the unit circle with centre at the origin. So, we
have
(T -
IR R B S IHy( e\ ae
)
Putting
ezﬂps 4
Xy = P p)
M
™Mz e 4 -
ixn < © |\ = on 2V = |

P e
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Hence

o0 ) .
: J , Jt : )
\Hg(e‘e)\ < \_\ ( Vot ZC)*_\)‘,(QM-“) P ST ) |
P<y )=
% (CM"\)J

< TV Coetemante™ D St v )
)=0

G (S e )

‘9

Hence, we have
\C)'(:))\ <A

Now, from (5.4.9), it is clear that bgly) can be written as a poly-
nomial involving Coly),- ... ,Cq'y) and Aa24),A3(y).... , which is linear

in terms of the Cjy's , Put

(5.4.10) balyy = Py LG At

where Pﬁ‘;Qﬂj\BAi(3)] is the polynomial expression. Replacing %
by 2 , we get the transformations

bty > N by

Gy — X Gy

Aj (3\ ¢ 7 3‘) Ajbj) J

so that
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’)q batyd - Y-’Ql Cityy s A ()

- 3
Py LG A Aayd |
From this, we deduce that the terms in the polynomial are of the form

. ) Az Ay
C(_J y Ko , %3 5 D C")\\'j) Al (.\j) s A‘. (\3) v

where

J o Lxy * Doy v TA =

- 9

The constant depends only on j)%x,---- and not on Y .

Since
t -
ALY < M ALY
we have
oLy v tde Ar v (- Dd¢
oy o 3

G.4.11) 1GWALy) o Aty | € A TAp) "M

Now, we have

(5.4.12) oy vkg + --- v = H(q-y -z - T (Vﬂ*r)

< + G-

unless all the ),«3,...., &

are zero, in which case we get

Ky A3 4 - + «A¢

Put

q = 2% i k7 an integer.

Then, from (5.4.12), the right hand side of (5.4.11) is bounded by

-y 2k
A LAY ™M
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if at least one of },«:,%4,..-. is non-zero. Consequently, the

contribution of these terms of the polynomial (5.4.10) is

k-4 < .
(5.4.13) <A IRl mMT D | e,y 2o )|

‘.))d\).)-“}o(\'

:)‘tld';.-v-» +rdAr =9

The main term comes from the polynomial when
3:0(3=,_,. = & =0 ,
to give the contribution
Mag Ax(g)&
It remains to find an upper bound for the sum in (5.4.13). First note

that each of the summands is non-negative, and the sum is really the

. v,
coefficient of Z in

( ‘“Z:_gzs ) exp(

M

A 2k
m*),

= ‘\{ e,xp((’_t-i“\>)

xo

=2

where we assume that '*T!<! |, Hence, the sum in (5.4.13) is

| \ -q -t
(5.4.14) EE S \‘:;: exP( et -¢ ~\) z dz ,
4

where &, is the circle of radius % with centre at the origin. The

expression in (5.4.14) 1is easily

2
<« 2% =1

We have shown that

A 2Lyo
b‘i\j) = \)1‘,‘\33 = Pae Az‘j) O 3

Substituting into (5.4.7) gives us the theorem,
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§5.5. Proof of Theorem 2

Put

(5.5.1) $Gog) = L5 - st - {AGo ~ ALY

Then, we have

(5.5.2) §Grh) — Ay = S’n(n) -Ady) o« S(x)j),
so that
1% ‘ 2%
(5.5.3) (S0 - ALY = (54 - Ady)
g 21t A
2k 4
+ ? ( l) (ﬁ)‘") -l\\(gp) Q(x,j)
2=\

Summing over n 1in the expression in (5.5.3), we have

2 ~ IQ
(5.5.4) D (§(na) - M) D 2_(\}3(“) AU

Nng X N<x
ey 1t = 2k~
- ? ( 1}) $609) 2 i¥3(n) - Al\j\}
_‘Q"-\ h <0
The last sum above is bounded by
I
& 22k-1) 4 *
ZE 26y 1 4 <
L=\ n< X

Next, we have that

(5.5.5) () — Fqm = 2 e & M 1
\)\n;\)7/j pin , ‘)7/\6

log P \ogq x
v 9
<< ™ 2— \033 << ™M \03 9



Also,

(5.5.6) Ao - ALY

> o

3$\D<1

\ log
%\ 9 \035
“« ™ oor
<
\03\3 2
using the well-known fact that
(5.5.7) > L < legegxr + ¢ 1 o(

v
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for some constant <. So, from (5.5.6), (5.5.5) and (5.5.1), we have

(5.5.8) SOoy) < oy >
\05\3

Applying Theorem 3 to the sums in (5.5.4), and applying the bound

(5.5.8), we obtain the estimate of

1tk k-4
kK Y < leg
(5.5.9) <« A x* D ( ( 1e33> S[ Py X A ) N
X =
26-A -3 26 2.(22..1,)'}Ai
v o2 (AR 1Aty <A ML)
2& o 2k 2€ \ 1 1 2
o i -
& (A & 3 (x)(\%) ixlAzxj)
L= °3Y
N k-t -4 2k -1
Lo Aty -~ MNly) |
26-) \od x Nt 2k-4-1 2&-1 -
ok L (2% \ ( S % AL (W + MUy
« (ot D (IERIGSS) i :
1-0
2% - N toa % 2k -y
: log x X > = + M)
1k [ leg X ) (4) + X 9
KL (AR) (\03}3> { x( \03\3 T ALY ) \033 )

|

|

b



We choose

5.5.10 &
(5.5.10) 4 o= x ,
and with the condition

(5.5.11) ko= «(lgx) |

we see that y has the necessary property.

Mly) = § \Fpl € Ml «
<y

Since

lo9x 4
\033 g

the error from (5.5.9) is clearly

™Mt

Moreover,

A
4%
x

\09 x

4
5 2% -\

e k-3 T
(5.5.12) <« (Ak) SL ~ Axty) *ox ( ‘°‘31>

et k-%
< (AK) = Aty

as desired in Theorem 2 To evaluate the second sum in (5.5.4), we

apply Theorem 3, to get an error term bounded by

2% ket Koy ( =
(5.5.13) (Ak) x A, C x‘“") ~ N = ( logx

uk k-%
X (AR) x VAW

\
Trf 1%

)

Finally, the main term in Theorem 3 contributes

i
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RV 73
(5.5.14) Mae > Az( <)

L S
(5) taco - Ay | A )

Mx‘

k
= Plﬁ x A x) “+ O( r\lQ x

—
[

\

and the error term is easily contained in (5.5.13), by noting that

i
P AZ GO —Al(x%)\ & ™7 Z \F v

i
<
LA S P Lx

lo P - ke
&y ‘\l“w\«) v ox ,
03 x

& loy bk
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SECTION C. SIEVES AND AN APPLICATION

Chapter 6. Combinatorial Identities and Sieves

Chapter 7. An Analogue of Goldbach's Problem
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Chapter 6,

Combinatorial Identities and Sieves
(with H. Halberstam)

§6.1. Introduction

The theory of sieves has played a very important role in the
general study of the distribution of prime numbers and various
representation problems involving primes. Sieves fall into two general
categories; Local Sieves and Global Sieves.

Local sieves derive from functions that are, essentially, weighted
characteristic functions of primes or of numbers with at most a fixed
number of prime factors. Such are the Generalised von Mangoldt
functions [\p(“\ , defined by

«
A = 2w Qegay 0 k=ua,
din

which have the important property
N¢ny =0 if RN

(that is, if n has more than k distinct prime factors).

Perhaps the first, and most celebrated, instance of a local sieve
is the famous Selberg formula, used in the elementary proof of the
prime number theorem (see [141):

(6.1.1) Z__[\,,_(n) = xlogx OCx) y

LARSP

or what is the same thing,

(6.1.2) Wix) togx > Am Y(E) = 2x g o O (<)

NEX
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The Global sieves rest on the observation that if one sifts out,
from a finite set of integers, all multiples of small primes, then,
the remaining--unsifted--integers have only large prime factors, and

consequently only a few of them. 1In particular, one has the inclusion-

exclusion principle

al) - Z_ a(p) = Z_ P(d)z aldm)

A '
N*<ps&N d\E(Nh) 1emeNg™

for any function &(.) , where r&@) is the Mobius function,and fer z>2

Po(%) = \\\ v .

PLE
A particular choice of a(.) (letting @{*) be the characteristic
function of the odd natural numbers) yields the Erathosthenes-Legendre
formula

TTCNY = WLNLL) -1 Z— N“I%\] ’

1< dip ()

where 1>*1 denotes the integer-part of * .,

Developments of these ideas have led to many varieties of Global
sieves, e.g. the Brun sieves, the Selberg sieve, the Rosser-Iwaniec
sieve and more recently, Greaves' sieve,

As far as the mechanism of the two categories of sieves is con-
cerned, one can say that

(i) local sieves isolate numbers with few prime factors, and

(ii) global sieves isolate numbers without small prime factors.

There have been instances recently where a combination of both
kinds of sieves have led to significant progress: for example, the

work of Iwaniec, with Jutila [8] and then with Heath-Brown [9],
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W

showing that the interval (x-2*, <) contains primes if X is
large enough,

My purpose here is to report on work done, with Prof. Halberstam,
which unifies in one way the two categories of sieves. This leads to
a general and elegant approach to sieve theory, from which all known
sieves can be deduced as special cases.

In §6.2, we introduce a new type of inversion principle which
will then lead us to the Fundamental Sieve Identity. 1In §6.3, we

discuss Local Sieves and in §6.4, Global Sieves.

§6.2. The Fundamental Sieve Identity

Let H(N) denote the hyperbolic region in Z x L. defined by

(6.2.1) HN) = 5LCm,n)e Z xZ - \smn sN} , N 7.

Let ¥(mm) be a function defined over H(N), and with it associate the
summatory function ©(mn) by the relationship

(6.2.2)  Flmm) = D §lwmd > , (mmye W
din

We shall introduce a convention whereby the original functions will
be in lower case while the associated functions will be in upper case
e.g, Y¢<F | & @ , etc.

If $(mm) =5 for all m, and if

Fiy = 2§y = 2§,

din dawn

then, by the Mobius inversion theorem, we have

(6.2.3) oy = 0 pl FCA)

L\ \n
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These may be considered to be '"projections'" of our definitions above

to the one-dimensional case (i.e.L*L->Z ), Ve have the following

LEMMA 2.1 (Inversion principle). If § and F are defined and

associated as above, we have

(6.2.4) Flmn) = Z_ pid) F(md)‘:‘) :

L\\ﬂ

Proof. By (6.2.2), the expression on the right hand side of

(6.2.4) is

T opd D e, )

Aln tl Va
LD R S ) 5 2 Sl ) D pa
fd\n Ain 414
= %(w\,n).

Let & and ® be another pair of functions related in the same way.

Then, we have

LEMMA 2.2 (Hyperbolic Inversion Principle)

(6.2.5) 2 @) ) = Z 8(L, ) F(&,1)
CmmER(N) (L) e RN

Proof. By (6.2.2), we may write the sum on the left hand side

in (6.2.5) as

5 st (D 8maT) = 2 Sk B0

< <N Aln remkd =N

-—

- > a0 (D) s 1) > s FGG L)

e ke C“.L \SifiSN
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Corollary 2.1 (Fundamental Sieve Identity)

(6.2.6) ; §Gomwm) (M, = _—Z 'B‘CW\,V\)F(V\,M)
< <N 1EmneN
_ 7 7 @(M)h)S(n)M) .
I<NEN rsmeNn

This simple identity forms the basis from which everything else will

follow by suitable choices of the functions §(min) and ©0mm),

$6.3. The Local Sieves

Choose

(6.3.1) {—(V\)m) = alnm) /\f((m) ) 1(7/

where a(-) is an arithmetical function. Then, it is clear that

‘:(V\)Y‘ﬂ) = E g'(hd)m/d) = 2_‘ Q(h\m) /\Q(m/d> ,
dim ditm

= C\(V\m) (‘03 m\)k

Substituting this into (6.2.6), we arrive at

LEMMA 3.1 (Local Sieves Identity)

&
(6.3.2) > alm)Agled ®Gmy = ) alnm)(legm) & (m.n)

tam N VEvmnmeN

D Al D Al @)

I<ng N Veme Ny ™

We shall derive from this various well-known formulae and

identities in the next sections.
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$6.3.1.

The Selberg Formula
We take k =\

and choose © in the following way:

(6.3.3) Plminy = rk(ﬂ)\OB\m ,

so that

- Z_ H(“T) tog (ma)
din

S () tegd 4 ey 2 P
A\n din

Thus, if "3\ , it is clear that

®@mm) = A,

and we get

log
(6.3.4) ®(m,n)

A

Substituting into (6.3.2) gives us

(6.3.5) E abwINbmdlogm = 2 Q(""”)t*("’\o‘)lm - 2 alm)AGmIAG) |

{<m <N 1E$™Mng N VamnasiN
Of course, this formula is no other than
(6.3.6) > atwrAlm) = D abmn) pla) leg® m
tEmsN

ISmneiN

- Z_ alw) 5)\ Z_ }U(d) {031\01

1,
MAN AV m
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but it is interesting that it should come from specializing (6.3.2),
and, more important, it suggests other variationms.

In [147, Selberg made the choice & =\ | and after some cal-

culation, derived the formula (6.1.2). It is also noted here that

Bombieri [27] shows the existence of formula of the type (6.1.1) with

welghts @n which are constrained to satisfy certain conditions (see

§6.3.3 in these notes).

§6.3.2. A Variation on the Selberg Formula

The formula (6.1.2) allows one to deduce information about ()

from properties of the average function

(6.3.7) Y=y o= QWO

nex

We show here that one can get a similar formula involving AR

LEMMA 3.2.

(6.3.8) Wi(x) \ng + Z“/\(V\)\V‘(%\") = x* logoc OC<*™)

n <X

Proof. First of all, write

(6.3.9) V()

M
<
N\
\/
Z
z

n<x n<xX msn
- D A D= ZALm)(D‘\"'“*‘> ,
m & X mshneX "< X

“ O(,)L)

M
®
|>
(e
3
r\
H
rl3
-

9

. L S o« 06,
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say. Take &=\ and 1let

Q(V\) = (\" %)

> < ’

and

(6.3.10) 8Cmmy = ply (- ‘\_f}_i) C igmmex
ij

so that

n log "/
(6.3.11) ®Cmny = Z_ pCF) (- \231 ) )
din

= Z r,\(c\) - \_o\g—x 2_ r*kA)\oaA

A\n An ¢
- { A(ﬂ)/\csx ) n oz \
, N =\

Thus, we have from (6.3.2) that

(6.3.12)(69,<Z~ Ay (V- 2) & Z A D Aw(- e

>~
taw S0 : </,
tSh X Ve s /n

- Z_r&(w)los)%z ‘og)m<“m

»
lengx 1eme X

Observe that we may write the expression on the left hand side

of the equality in the form

() Nog x + j>: ANy SC7)

Nns x

which is, by (6.3.9)
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\V(('K)

(6.3.13) g =+ > namW(%) -~ 0(=x)

X

So, to prove the lemma, we need only find an asymptotic expression

for the right hand side of the equality in (6.3.12). To do this, we

use the following, easily verified, formulae:

(6.3.14) D (ogm)(1-2) = 4xleax o+ cx - Ollegx
Nn<x
~ 2 loq %
2 \?\"3"‘ = “;_(\031) -\CL\0<37L A Cy O( 2 )}
Nex

Z—,'L\_ = \oax N O(J{),

x Z ':X(_.:J—? = OCX) 9

and

;___ \oﬁl(x/d> = O()C) B

Ad<x

where <€i,.--,C4 are absolute constants whose exact values need not

concern us. Hence, we have

(6.3.15) Z rA(V\) \03 if"— 2— lof)m (\_ mj;)

nex m< X/n

i

S omenlyE L EEWT e + O(leg T

[ ANy &

() 2 < }-\C”) 7
= ‘\5_1 ? P—;i \og }rT + G x 2 Loy = 4+ OGo

n<xX nsx
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To estimate the first sum here, we put (using (6.3.14)),

(6.3.16) + x Z “:” y* = = x Z?*_:\i’ {L S ‘3?_:;

n<xX n<x m<n

\oq */n
— Cl\og‘f_\— -C3 T OC Sx/h )})

I

x 2w A cGxH MY 060

N < x

N<sx
The first sum in (6.3.16) is simply, by Mertens' Theorem

\03 x + OO0V ,

so that we need only estimate

P DR A L
Nn<x

N <x

< n)
= 2 r:nn +~ o)

mn<x

= O

Collecting these estimates together give us the lemma.

At this stage, it is worthwhile pointing out that formulae of the
type (6.1.2) and (6.3.8) can give upper (or lower) bounds provided we
have the corresponding lower (or upper) bounds by some other means.

In particular, it was shown by Erdos in [5] that

(6.3.17) (}§3z ~g)x & W) ¢ (Rl xE)x

for any €70 and X »X.(g¢) , for some suitably large =*<(¢> . By
formula (6.1.2), it is clear that the lower bound in (6.3.17) gives

the better upper bound
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Y(x) < (CL-\OSZ +£) x

without any further work. (This has not appeared in print before,

although the result (6.3.17) has been frequently quoted.)

§6.3.3. The Twin-prime Problem

In [1], Bombieri showed that

(6.3.18) 2 Ay ACavz) ~ o [T (1 C;T.y) - Nlogw
nex P72

on the assumption of the Halberstam-Richert conjecture:

™Max rmax . - M -A
(6.3.19) Z o= L w(™iq,a) ¢(aw\ &« N (logn) )
q<nE

(N*—)CO),

for any fixed € >0 and every large A . The method of Bombieri is an

instance of the local sieve (with alm)=Alm+2) in formula (6.3.2))

but an additional idea (using the Global sieves) was required to

carry the analysis through. It has not been noticed before that the

result (6.3.18) also follows, more simply, from the following

)
Conjecture. Let Gl=tu\ where ¢§(~) 1is a positive

function such that

%3 N —> 0
(6.3.20) i) logny  — o as _
Then

N , N - .

(6.3.21) D LGl Ny SNy, 2) i (Nsgn) .

q4=Q

This conjecture contains the stronger form of the Halberstam-

€ _ «
Rickert conjecture, where N = is replaced by ¢Xxp L - Qogm)™



122

oL &4 < %
. The novelty of (6.3.21) is that the changes of sign
of Mn) is left intact and so, it may be that (6.3.21) is easier to

show than (6.3.19).
To prove (6.3.18) subject to the conjecture, we write

™

2 2 ,
\03 T = \03 _l}_ - 2(\03%)(\03%) -\QSZ% ,

in (6.3.6), to get

(6:3.22) T alm)Am) = D abm) 2__ R () log™ N

m<N mEN Am

-2 atn sy &y D pwiegSF - )

m<N dim maN

Q(M)\O(SL% ? I*Kd)
Alm

= D a2 plgt 2 -2 ) abwleg 7 Al

"M SN A\ M<N

— a(y \oglvi

We choose

(6.3.23) alm) = ACm+2) |

so that the second sum in (6.3.22) can be written as

N — At
(6.3.24) | €S At Ama) T o

\ mst

and by Selberg's sieve

2 Alm) N(m12) & t

ms<t
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so that (6.3.24) contributes an error of CN) in (6.3.22). Rewrite

the main term in (6.3.22) as

(6.3.25) ) Almuz) § Z_ p@ (5~ ) r*“d)\”%l(%w ,

W\<N c‘\m
d<& arQ

= Z ey \°‘;QN33 Z Alm~2) +

A MEN
mz=o (med &)

“ O( \°°B Z_ Alm2) Z\ﬁ(d)\)

A< m <N
d>GL

The error term in (6.3.25) can be rewritten as

oy & 2—_ Almany D PR

< £ N *im

k<"

& gt Z_ 2__ AlmAaz)

NG Qem <N

m=0 wmod k

—

K \031_& g _—2 \Oﬂf‘ + 2— losN ,(E(Nﬁz;k,z) -(@+2, k,L\}

Q<NQ—‘ f<<NQ-'
(&,2) > 2Vt

bl

so that by the Brun-Titchmarsh inequality, this is

— N -Q
TN
(6.3.26) & \03 a \OSN _ ) N ~ 7
NG A8 log (721D
loa, C NQ™Y)
2N 3
€ g NN log @ ’

— o(_N\ok)NS,



124

subject to the conditions on Q. The main term in (6.3.25) is simply

.1-
.3.2
(6 3 7) Z rk(d) \0% h. \*)(N‘VL 5 }7_) “ O(&\oa &3
A<A
Put
WiN, d,2) = N + EB(Nyd,2) .

P(d)

Then, we have the main term in (6.3.27) as

0\22& M) log T D oy v eCMiegn)

subject to the conjecture. It is then easily seen that

)
M) (gqr D pea) N
(6.3.28) N D Gy 9 N )_ B ML
A< Q
- |
N PLO\) @ 2N —_— J\
+ 2N \OJ a3 %0d) \03 /o\ + N \03 a 2 3_

= AN tognN T (V- (“P\_*‘)-L\ « ol WiognNY)
Pra

after a bit of calculation. Collecting together the estimates in

(6.3.22), (6.3.24), (6.3.26), (6.3.27), and (6.3.28) gives us

Bombieri's result, subject to the conjecture,

JrZ_' means sum over all odd integers.
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§6.3.4. A Variation on the Local Sieve Identity

We now choose, in (6.3.2), with %=\ |

(6.3.29) ‘Q'Cm,v\) - { P(“)\OSW‘\ e N N <™,
o > n>VY
Then
(6.3.30) @Cwm)n) = E <\03 mc\) ).A('B—'B = ? (‘03 r%n-) ‘u(d) ,
d\n IMn
g_sv aeV
= \ocjw\ L r\Lo\) * 2 P(d)(\o9 %) ’
dn din
asv d4v
= fo \03 m o~ Yy,
say, where the meaning is clear. So, we have
\Og\m , nN= p)
(6.3.31) @&Cm ;) = A(n) )y l<n gV o,

FDYI t°9m -+ FYn )

and on substituting into (6.3.2) gives us

(633 50,y lgm ZA(mZ £(nym)

m <N reneV m< N
4 _S_ ? (ﬁn \°3VV\ - Yn\ $Cn,m)
Vinse N MmeNn
n<y m= N

We now have the following identities:
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Put
$Cnrm) = almn)Alm) 5 F(hrm) = alam) \Dsm ,
to give
- m
(6.3.33) 7 almy L Amilgm o+ D AGo AT
m <N nim
n<N
* z Q(W\){ _>_ (bn\%% *1,)];
MmN nim
N>V
= Z_-Z__ P ——2 almn) \O%Lm
nsv mMaNn™

which is a generalisation of Selberg's formula. Of course, we can

truncate this even further, namely by putting

aCmn) Aln) , M<m < Nn™

o

'S:CH,M)

with MWV=N | Then, a simple calculation gives us

Flnom) = a(mm)( log wm = Z A(Q\)

*im
k<W

/7

and we arrive at the identity

(6.3.35) D {Alm)logm = D A Ay} alm)

d<m <N nim
n<vV

™
w74

|

Z Iv\Qn) Z alnm) lO%Lvm
- Z Ao Z alnm) 5, leg v

neV U<vmeNn ™



where we have put

(6.3.35) Sm = Z_A(a)

§6.3.5. The Vaughan Identity

127

The identity of Lemma 3.1 may be considered to be a general form

of the famous Vaughan identity, which we derive here. We put

GCm,m) = BUn) ;o @ C(mom) = &Cn) o,

and suppose that IsUW < N | Then we may write (6.3.2) as

(6.3.36) § A(m) alwm) 2 Alw) alm)

LS SN vem< U

]

S (2 Ame(E)) ) atew

teneN min L «Nn™
m<li
SN < < ) at
4 ( % ] 80 2 alwmn) ) ==
! teneNg™ t<mENA"
_ § @ (D E NCm) alnm) |
\<néNu-‘ U<m £Nn-!
(we are using k=1 , but a similar formula will also hold for each
‘(‘-\Jl)--_._~ ),

The particular form of the identity (6.3.36) known as the Vaughan

Identity is derived by putting
'\L(V\) ) T\f\/<N >

Hny =

d , n >V )

so that



®Cny = pay = e,
in
k=<vVv

where V<N is otherwise arbitrary.
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An exposition of this identity can be found in Vaughan [157. We

have already used Vaughan's identity in Chapter 1 but it is not clear

what advantage we would get by choosing the function 6() differently.

To close this section, let us remark that there is no reason why

we should not use other arithmetical functions in place of A to

get an identity like (6.3.2).

For example, if we took
fnym) = plm) for all wm,n

then

F(n,m)

Z}.x(d) =§l ’

dim

Then, formula (6.2.6) would give us

@) :E;_ plmd :E;_ GB(n)‘zi_ Mlm)

tem <N n &N MESNn !

1

so that the choice

|og »
Bny = rx(n) ( v - \OO%N \ 5

gives us the well-known formula

MON) log ™ 4 D Ay (DY) = oy,

where
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$6.4. The Global Sieve

Let’% denote the set of prime numbers and ¥ a subset of LA

Write
(6.4.1) P> = 11 ® , Cew2)

pe¥

P<z
and

(&)
(6.4.2) Plaiey = 2 U1 e, Czezos);
Zy <p<€
define
| , (m, PGzo2)) =1
b Cm) = A

(6.4.3) =R o ,  ofherwise
and put
(6.4.4) by (m) = bz,z(w‘)

Also, define p() =< , and for m=) , let p(m) denote the least
prime factor of m .

Now, let ®(N) denote the region contained in H(N), and defined

by:

(6.4.5) Crim) € BNy 5 0| Plznz) > (m, Pz ed) =1,

where 21< Z. < Z, < 2 . Then, define §(n)m> , for Criym) € BN |

N

by
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P(zz,l-_)):\

n

a(nrn) (Yh,
(6.4.6) ‘S‘Ch,m) =

(o] O\"’\C/\”b\;\se_ .

So, we have

(6.4.7) F(rn,m) = alnm) 2 1 (min) e B(N)

dim |
nd | PCz,,2) ,

Cﬂ , P(z=,®) -\
d nd - )

( m"d_' > P(Zu_t:_\)) =1

The sum in (6.4.7) is simply

; ) (m, ) e B(N) .

dlm

)

P(22,?) _
ALY

—
"
—

(m,
(_3 > P(%u)EL\> =
So, we have

(6.4.8) F(n,m) = alnm) N (min) ¢ BN

>

and zero otherwise. Substituting these into the fundamental identity

in (6.2.6) gives us
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LEMMA (The Global Sieve Identity).

(6.4.9) ? \)z‘)%cm) alm) @(n\)\)

ms N

—

4 z ->- bz.,zz(m) alnm) &min)

v<an €N 1< mMENn™'
n\PC2Z2,2) P22, )\
Cm, PREDEN) =)

= E E b-z_.)?:LCm) C\(nm) -G'(mlh)

\QV\‘QN m&Nn—\
f\\P(EJ.,?:)

Corollary 1. Suppose ©C) =\ | Then

(6.4.10) _—E \)znz(m) alm) = 2 8 Z b?”h(m) alnm)

<N f<n <N

M<NR!
nielz., D "
—2 n Z
- {8‘(\)(”)\ +~B(n)-g bZ.)F(n)CM) alnm)
1<n <N \g¢mesNp !
Y‘\P(Z'L,z)

Proof. We take ©Um,n=80n) for all (mn), so that it suffices
to show that the second term in (6.4.9) is the same as the last term
in (6.4.10). TFor this, we use the method given for the proof of
equation (1.8) in [7]--which is a special case of our (6.4.10). It
is clear that

@Gy -~ Z )y = Z_ {G&d)*ﬂ(dP(“’)i_

n
d | &y P MSey
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So, the second term in (6.4.,9) is

6.4.11 Z 2 2
( ) {-e(d)ﬁatdp(rl))’§ bznzl(v\n) a(nm)

1<n\ PR, m<Ny™

< p(n)
EN (m, P222)) 5

- Z 39(?—&)) *e(fa)} Z Z o by g, alkdm)

‘<f«\P(Z;,%) J,lP(EL,%) mﬁN&"JJ'
ten k

)

P(Q)(e(},) (m) P(?:z.,%)) _
kLl

<k P(z2,) t NE Alt
t =N 4] PCz,®) )
«

The last sum in i ..... } can be written as

(6.4.12) Z 1

L1k , p(?:fi,f)

P(L) 7P((~') ]
- (,t \’)CE?—,E)>
S AR

(% ) \)(E|7EL)3
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The conditions

P(ZL,E)
A = (t) t ) and P(X\ 7P(r<) )
are satisfied if and only if
(6.4.13) (t, PCzr, pCl))= 1

This means that L can only have prime factors exceeding p(k) . The

condition

(“;%') P(Z‘\)EL)) =1\ 5

is, therefore, the same as the condition

(6.4.14) (t, PCzy, zl‘)) =\

Combining (6.4.13) and (6.4.14) shows us that the sum (6.4.12) is 1

if and only if

(t, \’(a,v(t«ﬂ) =1

as required.

Following the example of an argument given in [77], we now put

Gn) = ;-L(Y\) Xln) 5

where XD =t | but is otherwise arbitrary., (Actually we need only
have X() ¥ 0 ), The function %(.) acts as a sort of characteristic
function for some subset of the divisors of P(2.,%) . We then have

a generalised form of the identity (1.8) given in [77.
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Corollary. If X)) =\ , then

(6.4.15) b (m) alm) = ) K(n) ) almn
ZoT M bz, 2,0 )

m=N raen<\N

MENR-
NPz, 2)
+ E H(n){%(é‘a,} «X(n)} ? b?.,P(m(V") alimn)
i<nlP(z,,2) N
NEN

The sieve methods of Brun, Selberg, Jurkat-Richert and Rosser-
Iwaniec each correspond to a specific choice of X) in (6.4.15). Later
on , we shall also show how the sieve of Greaves' fits into our scheme
of things. It can also be shown that the sharp form of the linear
sieve as formulated recently by IwaniecJr [107] follows from choosing

as a certain interval function (letter from Motohashi to Halberstam).

§6.4.1. The Inclusion-Exclusion Principle

Take

XCa) =\ for all n

Then, (6.4.15) becomes

bzuz(m) a(m) = z fﬂn) 2 by, almn),

<
N n<N m<Nn

I PC(z2,2)

M1

3
I

so that on choosing %: =% , we have the familiar formula

Z_bz\,zcm’ alwm) = Z po) Z_ almn)

n <N

m <N
n\P(Z\yf) M ENnN

-t

TThis paper is not without errors but Motohashi and Vaughan have
correct versions of the proofs of the results.
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A
2

L] 'j - —
with the choice ¥ =% , BvF2  and & =W , we arrive at

alvy  «+ Z— alp) = Z_ ) Z almd)

NP € N APIN™) menNa
4N

§6.4.2. Generalised Form of the Meissel-Busthab Identity

Take
\ B n =\
Xln) =
o 5 N>y
Then, it is clear
\ > NS prime
N
(=) - x(™ = |
pr) 3 o) ,  oferuwnse

Thus, we arrive at

(6.4.16) —2_ bz‘)%(m) alm) = E bz”_el(rvﬂ a(m)

m< N m <N

— 22;_ ;EL_ bz, pCm) alpwm)

2,<pP< ¥ i€ <Np~!

The special case of this identity, obtained when Z:=22=2 and aln) =\

for all nw , is the famous Busthab identity. We shall digress here for

a moment and give an application of this version of Busthab's identity.
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§6.4.3. A Weighted Version of a Chen Identity

Let R(n) denote the number of representations of an even integer
n as the sum of two odd prime numbers. By the sieve methods, it is

possible to show that

" 2
(6.4.17) Ry < 8 8w Crogrt

where

i

\ TP

: Sty = WO - =) V5=
Pra pin
p>2

Improvement of the constant 8 in (6.4.17) is very difficult, and
recently, Chen (see Pan [13]) showed that 8 can be replaced by 7.988.

To do this, a crucial role was played by a formula, which is a special

case of the following identity:

(6.4.18) .Z_‘bzm = Zb%z(a) -Z_&mz by (3

we R ae A Z14p<2a aeA
a=o (maod p)

. Z THCp) 256y -1 Z b, (57)
aesh

Tasticp< t PPl

- ¢ 3) b ('2")
_ Z_Q\ (p %’z(’

31$P<Z' P\a
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valid for any sequence 54 of square-free numbers, with 2<%, <%

and any function §(.). Chen's formula ([13]) follows with the choice
_ L
flp) =2 for all p

The question which arises automatically is whether one can do better
than Chen's result by a different choice of 3(.) . For the problem
for R(n) , one is led to solving an extremal problem but which I have
been unable to solve, yet. At any rate, it appears that if S§(p)=7%
is not thé‘optimal function, it is not very far from it and the

ensuring improvement would be very small indeed.

Remark., If the sequence A is not square-free, if flp)l <™
for all p , and  Sup { tat ae AY €N with z <N , the identity

(6.4.18) is still valid but one has an error term <& MN z, ' _

Proof of (6.4.18). Define the function

wla) = Z_ fy

pla
Z2&P< ¢

and zero whenever the sum is empty. Then, it is obvious that

(6.4.19) Zb*(“) - > by () (t-wi)) )

ae A ae st

since W) is zero under the conditions. By the Generalised Busthab
identity (6.4.16), with alm) the characteristic function of the
sequence & , with weight ‘-w({m) , with zv=2 and W™ =", the

sum on the right of (6.4.19) is



138

(6.4.20) Z blz(a) %\ - V\J(O\)} - Z ———7 bp(%) SL\ -W(a)} -
aed

zaepiz  a€A
pla

The first sum in (6.4.20) is

(6.4.21) szz(“ - Z_ ‘r(P)Z by, ()

pe A Z2<p<Z aek

The second sum in (6.4.20) is, after another application of (6.4.16),

3.+ 3, ’ where

(6.4.22) T, = ? 2 ba(%) SL\—wm} ,

Za¢p <z ae i
pla

where in this expression, there is exactly one prime factor of & in

the given interval, namely p . So, we have wta = §(p) | This gives

us
(6.4.23) I = 2 - e 2 bz(%>.
Z24P <2 aesﬁ
pla

Next, we have

(6.4.24) Ja 2_' 'qu ~wl} by ()

ZLSP\ <\71<E a € \74
ppala

Nl
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Now, because the sequencefﬂ is square-free, !"W() is really

Flpo ~ Flpy  ~ 2 10D R

P2<p <z
pla

so that (6.4.24) is

(6.4.25) 2 - FGe0 -flep) Z b (50)

Z’-é\"<PL4Z Qei
Pipaia
- z E(Pz:) E bPzL %)
aej

22 P <P “pP3< Z
P‘\’l—\’}la

Collecting the expressions from (6.4.20), (6.4.21), (6.4.23) and

(6.4.25) gives us (6.4.18).

Remark. In [47], Chen improves 7.988 to 7.8342 by using many
very complicated formulae. Prof. H-E Richert, in a letter to Prof.

Halberstam has shown that those formulae can be deduced from (6.4.15).

§6.4.4, The Brun Sieves

For k a positive integer, take

\ vl gk, niPCza,2)

(6.4.26) X(n) =

o ) o es wise ,

in (6.4.15), where Vv(n)denotes the number of distinct prime factors

of n . This gives us
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(6.4.27) 2 EZUECm\ alm) = ) P(n)z bz_“_él_(m)a(wn)

™M SN "\P(%le) ML N

n <N
Pyl <k

S —
aoen ) ) N O REXCIN

nirCze )
1<n <N
v({n) =k

since

{ 5 V(n) = k 1

fli

N
XW;EE;)) ‘:X(”)
o , ofherwise |

If the %) is non-negative, (6.4.27) tells us that, for any pair of

non-negative integers © and ¢,

(6.4.28) § ).,\(n) L b?_ 2 (w) almn) < 2 \pz()%(m\ alm)

Y\\P(EL,?I) m<NA~ maN

n <N
< ; V(V\) ; bEI/EL(M) Glmn) ’

V(n) < 25+
n\P(2.,2) meNn!
neN,v(n) €21

which represents the content of Brun's "Pure'" Sieve. This simple
beginning suggests the following more general assertion, whenever a(n)

is non-negative.

Given any pair of functions X" and X (with x () =1 ), and
satisfying
(6.4.29) poo § 2°(5G) - x*(Y co < | P(ea,)

and
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(6.4.30) poo 3 () - xl so

, 1<l P(z.,2),

we obtain from (6.4.27)

(6.4.31) ? pCay %70 ) by 2,0m) alnm)

np(za, ) mn <N

\3%\7ECM) Q(Vh) g 2 f\l(l/l) X*(_ﬂ) ? b2\)%7.(m) a(v\m) ,
N “\P(Ez_,l—) mn <N

N1

3
N

and now, we need to make an optimal choice of X and X subject to
(6.4.29) and (6.4.30). Indeed, Brun gave an example which is superior
to the choice (6.4.26), as follows:

Put &\ = 22=2 in (6.4.31). Relative to a suitable partition
L= X 4 X, &L e X (& Xs =B,

of [112) 5 take

' '\’(CVMP(X;)E'))\) < 21 +b =) , S P

3

(6.4.32) x.‘—(n) =

o o Yherase

where b is an additional parameter (as are *i--- ,%r ), Note
that X' =1t if n has not more than 2b prime factors of ¥ from
L% ,%) , not more than 23+ from Lx2, %) and so on. We check that
the definition (6.4.32) indeed satisfies (6.4.29).

Suppose pM(n)=| and suppose that

'X,*(\?n{;,\ - x>0 .

This is only possible if
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"\ﬁ( (PL}"\ ) P("C)E)> < 2 -vb—-\)

and

~( Cn,pe Xeg 8)) 2 2(ic+b )

> SOwe Co <0 .

This means that

pind l P(X(o D)

and in fact, there are exactly 2(ie*b-'D %\  prime factors of n in

[K%,ZD . But these account for all of them and leads to a contra-

diction because it implies P‘“"" . If we assume Pln)=-\ , and
%*Céhﬂ - Xx"(n) <o ,
this implies that
v {( Cri PCx,2d)) 2 2Cisb-0) IS
but
v ( (_é%ﬂ ,P(X%,fﬂ > 2(1g4b <) +1 , Some g &7

This is clearly impossible. Thus, the choice of Brun (6.4.32) is
indeed a legitimate X' and leads to an upper bound sieve. A similar

construction is available for a X .

$6.4.5. Selberg's (Upper) Sieve

Let *q ( n lPCea, 2 ) be any real numbers subject only to the

condition A=\ , Now, in (6.4.15), take

(6.4.33) Xn) = PO z Any D,

Kn,,rh_} =n
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where ™M1}  denotes the least common multiple of ' and "2 .

Then, we have

6.4.38) X(3a) - xCn = —ch% ) T Ay +2_ ?\d.hl}

SLﬂnnz} = ?{n) s\dudl}=h b
= - pmd |
rA " % Z‘ lr\.)‘f\l T AY\‘P(I\))ﬂl 1 Ah,lnzp(n) +;LYI.P({D);kﬂzP(v'l)
- N
iv\\)“‘)_k —m)

"
|
-
—
b]
e
'
3
3
4
>
4
=
s
-~
f\
3
3
~
4
)
3
o
=
3
\./

Substituting this into (6.4.15), we get

(6.4.35) E bz‘)sz} alm)

m SN
- 2_ ( > ,\H.AHL\ ) by 2 (55) atm)
a\P(2,®) $nonat=n m<N
n<N nim

- Z %Z_ ( A, )"’P(V“\)( An, - AV‘ZP(V\D Z‘ bz_\)\)(n)(m) alm) .

" m <N
<N <N {n\)Y\)_} :;';EV‘I)

nim
niP(g2,2)

The first sum on the right of the equality, in (6.4.35), is
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(6.4.36) 2 bz\)zl(m) alm)d E —? 1 ln
s >

m<
N n\P(zLIE) iV\A)ﬂl} =vi
Vi [

= Z by ,z,0m) alm) ( Z An>l

MmN ﬂ( (m,P(zz.,'-?:))

The last expression in (6.4.35) can be rewritten as

(6.4.37) Z Z (Z (Ao * A A, - Anz@) |

?\ P(YZL,%) k\p(%".,?:)

o=k
?(f&)??
Y ™
oD banlE) atm
™ <N
kpim
= : _:_ ‘DZU(’CM) Q(M)L ( { <’L“l*’l”‘\’)()"l1’)‘"’-?>>
9
P\P(z,1) m\&N ™ and = k
P &\P(le%)
Pl) »¢

- Z 2___ ba,,elm) Q("“’< Z <9‘P *’)‘RQ) ,

PANZ.,2)  wmeN TAm
plm ®PCer, )

where P~ denotes the prime number which is the successor of p , in

P . Collecting (6.4.35), (6.4.36) and (6.4.37), we have
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6.4.38 ' < :

maN
malNy nlem
niP(2L,2)
Z_ L by, P(m) alwm) < L (e *)‘LP\>
pIP(z22) mseN khm

For non-negative a(.) , with ¥.= %, = 2 , this gives at once the

well-known form of Selberg's upper sieve; but the point of identity

(6.4.38) is that it suggests that more might be true than is usually

deduced by Selberg's procedure. For example, while the classical

Selberg result reads

(6.4.39) Z b, almy < a(m) 2‘ 3\0\7

m <N d\m
AP ()

(6.4.38) implies that

(6.4.40) 2_ bo(m) alm) < > an) L ld}

Ap(z)

— Z_ v )931 Z ba(m>y alpm)

IS mENp!

It is not known if there is a better choice of A's than the Selberg
A's , which optimize (6.4.39). Heath-Brown has raised the problem of

optimising the A's in (6.4.40) subject to

\DSP
- “ -\ =
Ay \ tnd Ap (\GSE

For the next two sections, we introduce the following: we write

a typical factor n of P(zsi,2) , n>| in the form
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(6.4.41) n = PPey.... Ps LP(7PL7""7?S))

>

and give X(n) the structure

(6.4.42) Xy = Ko ) = MPOMPR) --- P Ps),

where "() is an arithmetic function to be chosen as follows:

§6.4.6. The Sieve of Jurkat-Richert

With parameters 7o and y»z, , let

v f+
} > B Peav e By <y,
(6.4.43) M- ) =
(o) 5 OWOrw\.se_ 5
so that
n n
666y xCe:) - xo = x(im) (v-me)
B
\ ) Ps Psa - Pv > and
?fh\ Po-y Pv <y For oM L"‘)"'/S“,
o 0 Trerwise

2

whence, in particular, we get a non-zero contribution when

b
Pl

(6.4.45) B €N <y
This choice of X then leads to the sieve of Jurkat and Richert

[11] and may be considered as the sieve that results when one iterates

the Busthab identity infinite times.
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$6.4.7. The Sieve of Rosser-Iwaniec

Again, let (*>° and 4Y>2 be parameters, and suppose that X

has the structure (6.4.42)., Now, the expression

(6.6.46)  ptod X(T) - xnY = pen ) (- min)

is non-positive (so that X is a %+) provided that

\ y Pl =1s
(6.4.47) (VL("') = M*(ny =
e Lo} rL(“) = =,

and (6.4.46) is non-negative (so that X is a X ) provided that

{ N pln) = =\
(6.4.48) M = M) =
€Lonl , My =
Accordingly
+
winy = MG N pieap) - - MTCeipe - P

2840

where &£ =l%¢s-91 | with Hf satisfying (6.4.47), leads to an upper
bound sieve, while

Y"Cn) = MTEPPL) MTCRpaapa) - TPy Ray)
where A =Lis] , and " satisfying (6.4.48) leads to a lower bound
sieve; both in the case of non-negative a(-) , On choosing

EAL
\ > \>$ ?5'—! P\ <\j )

i)

'Y\*(Prm Ps)

o ,  otherwose,

for © odd, and the same choice for N (pi-ps)  with S even gives

us the Rosser-Iwaniec sieve.
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§6.4.8. The Weighted Sieve of Greaves

It has been shown by Kuhn [127], Chen [3] and others that if
certain weight functions are attached to the well-known sieves, and
the resulting expression rewritten in such a way that each component
is really an unweighted sieve, then the results known for such sieves
tend to give improvements over those sieves without any weights. 1In
particular, these weights may not be non-negative but the expressions
can be reduced to several others where the weights are non-negative,
and then, say, the Rosser-Iwaniec sieve could be used to treat the
individual terms.

Recently, Greaves [6] introduced a weighted sieve where the sieve
problem is attacked directly (that is, not by reducing it to expressions
as described before). But, he gives the impression that the Rosser-
Iwaniec sieve is necessarily bound up with his weighted one. We give
here the general setting from which Greaves' sieve follows.

Put
(6.4.49) W(L) = |V - ? wip) ; A7y,
pla
and P
WY =
where WwW() is as yet an arbitrary function. Then,

\ 5 k‘;\ >

(6.4.50) Zw(ﬂ') r\(k) = _“,(P) 5 k=¢ - qr\We >
BANY

I > o wlse
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Now, put

(6.4.51) Blm,m) = BOmn) W)

b

and let ®(mm) and ®(m,n) be the associated functions as defined

in (6.2.2), Then, if n \PCz,%) , we have

D wtma, %) - ) S TIWE)

il

(6.4.52) @ (m,n)

and since (’2\‘ ,d) =t , we have
Wi = wig) - Zwﬁe)
e\d

So, putting this in (6.4.52) gives us

(6.4.53) ®@(m,nd> = WM Z{}.cmo\,%) +2_9\(md,{‘;)2_wcp>
d\n dn P\d

. "
= W) Gh(mon) o« Z_w(ﬂ ®,Crmp \—;) '
pin

We now choose

'e(h) = Bitn)Vwurd 9 a0 =1

in the identity (6.4.16), so that from (6.4.51), we get

(6.4.54) D by p(m)alm) = Z e\cmwwz b, (m) almn)

MmN n\P(z2,2) mENn

N<N

—

—_ -)- @(V\) E \)Z\)ELCWW) a(hvv‘\) .

Vi \P(Z2,E) wrg Npn™
neN Pz, T\ _
(m) _T:L.>-\



150

By (6.4.53), the last expression (6.4.54) is S.+S, , where

6\ = ; ®\CH)W(V1) ; b%\;EL(W\) olmn) )

1<\ P(z.,%) ma™Nn!

n<N (m, P(z;g&)) =
12
and
(6.4.55) <. = —*2 ) n ”2 |
2 ‘()3'(‘7) C@l( P) \92.)}1(‘“) Q(V‘IM))
VanlPCzy,) RN MmENn"
n <N

Cm7 P(E‘L,z))z‘
n

—

) @.(&)L e (p) ) be, 2, () almbp)

i

K\ PCe, el P(22,2) maNK e
g™
(mlp(%z.;%)):‘
ke
¢\Plea,2) R

oy PLELEY)=)

+ 2 @, (%) % w(p) ) b'l:.,?::.(m) almte)

]RRG, ) P|TEEE e
le PCZL!%)\ \
tp
= SS T Sq

say. Observe that S; is actually equal to

(6.4.56) 2 w(p) by, (m)alm)

MmN

(m, Pl=zL,2)) =P

2

7
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We shall now simplify S, and Sy further. We have by the argument

given in Corollay 1, that

(6.4.50  Si = ) o(5m) <o} -

i< bie(z,)

L <N
x § W(LE) 2 ba,z. (M) a(mlit)
) P2, @) meN LT
P(?L z) -
P 7p(13 M, ) !
and since (L,%)=\ | we have
WY = W) - 2_wcp) ,

P\l
so that from (6.4.57),

(6.4.58) S = Z {Q(gﬁ))*e.(i)s (Z_ Wit)

i<1ie(=z,,2) eVP(ze,2>
L&N Plo) »o( )

xZ b%.,%i("” a(wp,\k)> - (2—_—“(?‘3 x

maNgTE! P\l
(m, P(zx,z)):,
At
; z b%t}l—t(M) C\(W‘J&)>
‘t{ P(22,3) W N g
X
o) »ply  Cmy P—C—i%%—)) =\

>

say. By a similar reasoning, we also have
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(6.4:39)  Se = 5 falX yaew)

<Az,
R eN

¥ 2 2 Wie) 2 by, e, 0 allbpm)

EVPRy0) o\ Pae)

) T M
PlEY »p( ) (m, Pch/Z))
Lt p

Now, in the expression in (6.4.59), we may write

Pz, ) pC
, _ p(L), 2)
so that
2 wip) = 2 wlp)  « 2 wip) .
PCz2,2) PCp), &)

Putting this in (6.4.59), and writing k=9¢%¥ , we get

(6.6.60) Sy = 100G 8y D ( Z_*w—(m)»

<A \P(z2,2) Mpcpu),b) plk
A

3 ey 2 e |

msN‘l’—\&‘\

("U PCze,2)
BR%

. Z %q(;’@) g} Z w(pd Z L ber,z.my almitp)

1< LRz, 2 P\ PG c| P(Zo2)  wms 3
1) p(L) el ) meNUpt)
» PLL) =

PO>p (L (m, PRy,
Aty
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The first expression in (6.4.60) is actually equal to

(6.4.61)
Z {6(.‘)(1)) *8(’\) L 2— \32.,,‘:7_("") q(m*“‘“)

<AV PG, ) Q\KV“"” MSNL g
L

(m P(Zz,?:)

Ak

— 65 ,
= 3‘1 - %5 P
say. Denote the second expression in (6.4.61) by S; So, we have

(6.4.62) S+ S = C Ss; -S¢) ~ ( 2 tSy)

)

il

(Ss - S¢) ~ (S22 497 =-S5 +3g)

Now, the method given in Corollary 1 allows one to treat the inner

sums in 51, S3 and S, . We get

(6.4.63) S, -S, = E ie(?w g0} Wi ? b, oy () almd)
1< AP(e, ) meN L

and

(6.4.64) Sy = > a{}( \ﬁ(*)kz_ (e by, (0 ALl

<L A(ELZ L) meNLT

Cm, P(za, pl)) =P

and combining S71-S¢ *+Sg , we can write it as

L N <<

(6.4.65) 2 (e oW} 2_ a(mmi D prdd
< LAP(a,2) MmN d{(m,P(za s L)

(wm,PC2LED) =)

x (\N () - Z_wﬁ")g'

pit
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Combining all these estimates together, taking 33 to the left hand

side of (6.4.54), and simplifying, we get

LEMMA. For any function €(.) , with €O =1 | we have
(6.4.66) ? alm) bzuzl(wﬂ <~ 2 yid)vvhi;>
MmN A\, Pz 2,2))

- 2 B W) 2 by, ,2z,Cm) alom)

n\P(z.,2) MENn!

- Z—__ 39(’\,%3)* 8} Z be, () a(nm)< Z }Nd)\/\l(dn\> |

ien ) P(z2,2) m<Nn™ 4 1Cm, P(22,p(n)

Observe that this is a generalisation of the identity (6.4.16), on

choosing

() =o el pPCzo, 2

so that

W(n) =\ ) n \P(Z—II}) .

The combinatorial argument behind Greaves' sieve is obtained on

choosing #.~%*2=2 | and with the () = p X)) such that the X(m

are those defined for the Rosser-Iswaniec sieve.
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Chapter 7.

An Analogue of Goldbach's Problem’

§7.1. Introduction

Goldbach's Problem says that if N is an even integer, then it
has a representation in the form
N = Py +p,
where the p's shall denote prime numbers. On squaring the above

equality, we arrive at

(*) N = Pg *\712 - l?npl .

This is our motivation in asking for the solability of the

equation

(*%) N = PR AP < Ky

2

where X depends on the residue class of N modulo 12, The problem
(**) is very difficult but is true for almost all integers (as can be
proved by the Circle method.). 1In particular, I have shown that the
measure of the set containing even (odd) integers n<N not satisfying
the representation

AP+ 29, , N ocven

nto= ot 1Pt 1 P ;v odd

is ') for some $>o ., This was motivated by (*) and the proof
is long and complicated--using the Circle method as developed for such
a purpose in Goldbach's Problem by Montgomery and Vaughan [47.

In 1973, J-R Chen showed that every sufficiently large even

integer can be represented in the form

*Notation in this chapter follows that of Reference [2].
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N = P|‘\@7_

2

where G¢ is a number with at more T prime factors. We ask the

corresponding question for our equation (**), and we show the
following

THEOREM 1. Let

K N-?*-p,° P
A = 3(' ‘..\\_«____i ‘. '5$P\)Pz_ émthL] P'

5 v oPrimes ;L =Y, >

N =

= PP 0.t (mod X)) }

Then, for sufficiently large

\1“554\‘ Ca=ast

> 333 @’K(N)

C\oc\) N)j’ )

where

Sy >0 is defined later (see §7.5), while WK takes the
values

| ; N:\)B,'l,q)
2 , N= 5,W,
2 ) N = o0,k (JMOA \L) )
G ) N S,
® > N = 6,10,
Ly ) N = 2

In particular, every sufficiently large integer N can be

represented in the form
N o= Pl ARt x kA

We have been unsuccessful in proving the theorem with (3 re-
placed by ®: --the method of Chen does not apply here because we don't

know how to sieve sums of two squares of primes effectively.

The method of proof of Theoreml is by means of the linear sieve

as given in [2]. The main tool is Theorem 9.1 of [2] but,
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unfortunately, the condition {1, %,L)is not satisfied by this problem.
So, in the Appendix at the end of this section, we verify Theorem 9.1

of [27] under the weaker condition fL,(%,1) | defined as

=
(DG, \ 2 ‘Eéi)\ogp —:KJ\D%*VT\ <L , (zsweE),

WPz

where L may depend on X (to be defined later). For the sake of

simplicity, we also introduce the condition

(2 )

\°3? < A , for some absolute constant A,

x o,
(Note that 0, is a consequence of {L,(¥,.) and is satisfied in most

applications.) We shall also need the following conditions:

: . W A
GONDEE o < —?ﬁj < VT OA for some A7\,

S via)
CRGLYY 2 lu"(o\)3 IRal < A, x(\ogx)d
d<x*(logxy M

Then, we can prove the following:

THEOREM 2.7 €)Y 5 CsyC,n) 5 (RO

If uw and v are two numbers (independent of X ) satisfying

'3 < u <V

and
0< N < Ay , for some absolute A, ,
then
\o%\’
V- A Z_ Cr- w3 )k
W(.?\'):B)\\/V ;')‘3 = Z Sl R \03)( N
ae A \ x¢49<x“
CG,P(x/"W:\ plas pe?

TThis is Theorem 9.1 of [2] with different conditions but same
notation.



satisfies
WCASR, v,u,d) 2 % WX
Y at Ca U
. {gum - ASA FCvix-ty) G- ) = - (—;—3;)%& ,

for X sufficiently large, with ¢, = ¢.(u,v; Ay, ,Aq,x), and

\5
105 x > L

§7.2. Proof of the Theorem |,

We now proceed with the task of proving that the conditiomns

Na(x,v , N, ,0, and RG,x) are satisfied. Throughout,

:P‘o = {p : set of primes} . Put
P2y - 11 p
p<e

. K
We need to estimate IA,| for diP(»  where

7.2y AN - [

3<p,9 <M
N = p? 4 (med )

~o2_aq*
N_P____C.L_. z 0 (wned d)
K
359 /CLQM 3sp:19 ™M
N z=p*49* (mod Kd) N=prag? (med kd)

(pa ,Kd) =\ (eq , Kd) =1

158



The second sum is

<<2;21+in

2sp ™ 349 <M

L 35 P04¢™M
LN
¥ 4Tkd P\Kd , g, \Kd
Nzp 19> (vod kd) Nz ¢t 19> (mod Xd)

™M PR

K (EX +\> Z_ A “+ ( Z— \) )
viKd PV

&« Mg kd 4 lg*xd - R,

3 ‘

say. Let (’(A) denote the number of solutions to:
\su,Vv < 3 Cuv , ) =) N=uwlav? (moo\d)

The first sum in (7.2.1) is

—

2. Coo LD )

(L WAYEES & 3P 3<9€m™
Nz ur4v" (med Kd) p=u (mod W) 9L =V (mod Ka)
(\'\Vl KC\) =\

= Z (™M) Kd,u) © (™ Kd, V)

(EJUPAVE .
Nz=u?4v? (med Ka)

Cuv, Ka) =1

Ly ™M
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We put T, K, 0 = h(ka) E(u,Kd) . Then, the above

sum 1is

(L\. M\ e(KD\) - Ka (d)
$*(Ka)
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where Ra(d) ="M (d) *M2d) , defined as

(L ™) _
M(d) = {t(uma} + E(v,v\a)}
4

(ﬁ(Kd) w,v (V'V\OC\ Kc\)
Nzu?4v? (moed *d)

(uv , Kd) =4

and

,y\,z(_&) = ; . E(U;Kd)E(V}K(\)

UV (Vﬂod Kd)
Nzur4v? (vod KD

/ Cuv, Kd) =\
We now define
X = (Lo ™M)
w
oy (d) = é—e_i_i)
¢*(xa)
IRa\ = IR\W(AOV 2 (RN

We first verify R(U'=) for some «. Clearly

() < 2
(7.2.2) E PO DT IR (L & Migx ) “d(d)s"(‘”
de x* (\03 X)—Al A X (\05 xf’“

(d)
- \o%lx __>_ HL(O\) 3-\)

d$ xo( (\06 X)_AL
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Since d is square-free,

vid) 032 .
3 = T <T@

and for sufficiently large Az, the expression on the right of (7.2.2)
is

& ™M ((03 X)b -+ X'( (\og X)O‘L .

To estimate the contribution from R we follow the method of

Greaves [1]. We give the proof, with « =% , for completeness. First

Mid) = (Lim) § Elu, k) + E(v. )
P(KA) v,V wod Kd ’
Nz=utavZ (mod KA)
(wv) X)) =\

& (Lim) :>: PR Ccodo)

¢(d) C(VV\Oc\A)
(¢rd) =\

since K is a bounded absolute constant. For any ®>o , this is

« (Lim) % LM g Xy B (logx)® () El(c;cﬂ}

$(d)  Tomeday F) Le ™M

(cHrd) =t

& (Li M) (\og x)'B 4 (\05 X)B Z E*(c>yd)
(©d) =)

— 8 1
<L X (\Dgx) s -+ (\\33 x) z Ef(c,d).
c(mo&d\
e d D)=y
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Also

NE

Tl < 2 TE* (0 k) ~ B (v, kdy )}

SRV \’\«\Cd Kad

>

N=u?4v? (ed Kd)
(“Y)Kd ) =\

< 2 E*Cu, Kd)

w wed Kd
(Woka) =

« 2 EHu,a)

4 wmaodd
usad) =1

Hence, we have

Ra(d) « X_ \o -B 3 BN L
Sy oy X) + (bgxd™ D £ “(u,d )

4 mod d
(urd)=1
Consequently
V() - Trd)
2 2y 3 IR 2 (d)\ <« x (\ © ?

ds o —AL
X (\0(3 X) dé x°< (\o?’x\-ﬂl

-+ (\05 X}B ; }u\z(d\) ) ? EMerd)

el s

Using the Brun-Titchmarsh theorem in the form

p

¢(k) tog %

b

T(x; &k, L) <K

valid for ‘'1&% <x and (&, =\ , we have
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A 1
r =( 2 - N MAx 2\*
Z THA Z_ e« ( ) $) Tlay o \ELC;c\J\>
-A (erd)=1

a&x (\ogx) = ¢ (nodd)d A

(eHrdy=\ c\éXKQosx) *

M
" ~ f N

2 D eew)

A (logy ™™ Eat
<H =\

and so is

1
.

& (mz Z c*(a)/cpco\))t( Z_ 2_ E"(c,&))

dsx"((\\%x)'/\z dg x“‘(\OSKW-P"- (c (wod &)
<y d)=|

The inequality of Barban-Davenport-Halberstam in the form

AN 2 5-Ag
2 E° Ce, A, x) <« x* (\oax) )

L <x GOE)X)‘AS

(C(W‘Odvl)
CyA) =
gives us
»(d) -B+5
D PR RO« x (lsgxY

d < x‘%' (\%x)_l\l

R4ty — 3 A,
- X (\as)()

and a suitable choice of A, and ® gives us RlLHx) ywith «=3% |

§7.3. Evaluation of {(4d).

We shall consider the properties of the function ‘() which will

be required to verify -1, ,Jlt and (Li(y,L), The function ¢¢(d) is a
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multiplicative function of d : for if .d-d,4, such that Cd.,d.) = |

b

we have
()(‘d"dl—) = L 1 b ; L _ 1
WHV (nod Ay da
( A ) UI)VI(YV\Qddl\ U ,vy Lmaf)\dl) 7
(.uV> d\\dz)‘-‘-\ (.U\\I\,A\):\ (vav, ;A1) =\
N=zuryy2
1V Q/Y)\)d d\&),) N = C“‘L+\,‘l) d]_l ‘\'(ULL R Vf_)dﬁ—
(mod dlo\x‘),
where we have put % =uda+urd, ; Vv=vd2a «vad: . Since
(d->o\13 =\ >
p(dida) = 2 2_. 1 ’

Ul)\/r(VV\odd)) uL)Vq_QVV\odo\zﬁ

Wwvisa)= (Mave ,dz2) =0
Nz a® a2t (wmad 4)
W= w2t 2Vt (mod d2)

= Rldn eldy)

We next consider the properties of €(p) where p is a prime:

e
el = (l— ZBZ(&P) e (o m) |
a=\
where
n
? a .
B(an) = e—(_rTr \)
C =
(r,n)z\
So
P\

¢ (e * -
(7.3.1) elpy = 2 PERSCESICF LY



(1) Suppose pVﬂ . Then the second sum in (7.3.1) is

A =\

p-L P )
(7.3.2) g Bl = ) (sap o)
a =\

where

°

S(asp) = ? e(%vl)

=\

We use the well-known properties of Slasp) namely:

a .
(a) 3(01?3 = ( P)L %(‘)P) ) s ?)(Ck y
Vo » PV (med w)
(b) SChp) =
0 ) P =2

>

.y , op=3 (meduw)

Hence (7.3.2) is

P -\
Z ERO Y -l(?)Ls(qu} = deYst e ]
a=\
since o1
.
5 (0, =
a =\

(ii) Suppose PIN . Then the sum in (7.3.1) is

\

P P
%_Sl(UP)‘*\} ;Z__é(—q$3> - 2.S0Hp) ;L_ (
=)

A& =\

-~ PR

Since

-
1

_ AN
Q( i\;‘ = -1 )

- V\/l

o
i}

) <o

165



166

and
P -
a — N
A AN
a =y
we have
2(p 1) , \)\N ) P2V (veduwy |
o , pin =3 (wody) |
G(P)t \ 2 P =2, z2\in ,
CRDE Pon(p)
5 R PN P=1(wmady) ,
Ce ) -\ -
P-A) a2p -y PoenNn(p) PN, P=32 (mednu)
P
5 ) P =2, 2N
where
2 » N s Quadrahe vesdae
N o
nle) - Z(P)'— - 47,
-\ »  ofheriose
We next note that
QLK)
(7.3.3) WelpY = whip)d pix
$*(x) ’ ’ ’

(we have used the multiplicative structure of () here). We shall
need explicit estimates for {\2) ,¢\3) ,¢elu)y , €(8) ,f(a) and ¢(24)

later on. The first two are trivial. We give the last four:
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L 5 N =2 (\m&dq) ,
ela) =

o] y olherwase ,

20 , N =2 (ooh2)
e (%) -

o , o thearwise

‘q > N =\ > 2 [an L\' (v’vmj:‘ Q\ N
glay =

o ,  oThecwise

2 , N E 2 o 0 (wed (L)
e (1Y) -

o ) ofteciavsa

§7.4. Verification of L, and N.,Cr,L) .

We now verify conditions L and HX:0,L),

24
sets ~ﬂ\, A, A’ ,JAB ,\ﬂs and A .

We consider the six

Case (i).
N is not a quadratic residue modulo 3. Hence
2 - £ﬁ~ T N AT I
o PN, P =3 (wedy)
_ - on(p) _ Snp) A
w(p) = ‘ - —KFTFF— ’opAN =1 (mody),
— 2 - Snip) _ %N(\ﬂ—l ) \D’YN , P= 3> (moc\\}))
P v-0*
Po2AN , P F2
o

l, is satisfied by all ¢*> . When =2 if 2N | then /3 =0

If 24y and N is a quadratic residue modulo 3, then ».(3) <\ Hence,

0D, is satisfied for all p . Also
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A A
7 100 ) , U8 e,
(.U'n(\)) -
= A
P P - O( ?L J P\\\\ » \)5\ (YV\OC\\{') R
@ s PANG, p=3 (vmody)
Hence
z% O\ (p) ~N ?? ' ~
—;“P_ l09\> = 2 \ic‘i‘_) -+ lif_)_\) - ) 105?
Wep <2 W<pa2 v ‘ P
WEp <2 W$P<g
PN PN
P =1 (W\oc\i\—) vF=3 thoc\\{)
+ O
Hence
Wi(p) \og p z ? log p
i - - = <
\ - \05 > \ . = O(‘) ,
W$p<‘t Wesp <
PN

say, where ¢ is an absolute constant. We put L = C lsylog N | and

.
note that the above argument is valid for all the six sets to

{130 L) . We need only verify i), for the rest of the cases,

verify
Case (ii).
Clearly, we need only verify that when p=3 and 2An, then

Twa(a) < l«rA," for some Av»\ ., We have, from (7.3.3)

wiay _ $Ca)y oy

a 37() 3¢

1 owal») =

Case iii).
We now have to consider the case p=2IN | while case (i) provides

the rest of the verification for . ©Now, from (7.3.3)
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_‘3: wa_(l) = LO\(‘-%) = s (\4) (o)
“+ $Tw) )

since N =0 (med u) .
Case (iv).

Here we consider the case ?=3 and p=2 when 2¥N | VWe have

W, (3 _ wsla) v,(2) - Sd@) g2y ™
3 T <
and
Wi (2) s Wiy etu) 02y
2 12 AW P23
since Nz0 (mody)
Case (v).
Here we consider the case p=2 . Hence, by (7.3.3)
g (2) o wliey - eCie) 36
z o #tlie) = ew

Case (vi).

It remains to consider both the cases 3 and 2 when 24N . Then

@2y 3D i@ wie) | ) el as
oy 12 EEET O B R T I PR
and
Waylz) = Wwi(teywa(3) elis) e(+) < 26
. =5 Topz(le) g3 el

Hence {1, is satisfied for all ¢ , for each of the individual sets.

§7.5. Completion of Proof of Theorem 1

We now complete the proof of Theorem 1, with the help of

Theorem 2. We define
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Wy (2) = \j C- wK(P)>

Pz v

and

\

MO D( e I

Now, by Lemma 5.3 in [2] (see Appendix)

We (2) = G (W \;1 (\ + o( \'ig;\><ex?< of \0;% )>> |

pE]
and using Z =X | it follows that

\Ig e’ « atog N
(7.5.1) WK( X ) = g G’QKCN) \O%X ( \ O( \037( )>

Let us choose

a = 8l v = 8

Then, by Lemma 9.1 of [2]

: At M
[
&(M-AS Fla- )0 - ) - S 2 ey
A FY

|

Hence, by Theorem 2, we have

(7.5.2) w4 % 8, % 1)

i S X s loalo
7 b i(\-%))\%s - \3\3XE
\03 X (\03 X)./“t

We just note that Gk (W70 but there is no real need to work them out
in full (though, we have all the necessary information to do so). As

an example, we give
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Sy = 2| -2y 1 (1- 39“3\1 (

2<piN PAN (pm” (o
=1 (\moc\q) NQAE mod P N QK(medp)
P=\ (mody) P=32 (mady)
I
=< \ -
\~\ 7 Q (Vﬂ)‘ﬁ r\ (' Cp-N7*
PAN,NQNTE mod P > PAN , P =3 (medy)

We now interpret the result given by Theorem 2., We shall work with

K
the general set = as the argument is valid for all the values of X

we are considering.

We first discard all those numbers from S\" which are not square-

A

38 -
free with respect to the primes in the interval LX > X 1. The

number of such elements is clearly at most

ZZ— :z— 1 « Zi— (fVPFL«wn) « xug«z )

Elk]
X <P|<X Prq ™M

. x < p ax
N2p>4q2 (med g

say. We may absorb this estimate in the error term in (7.5.2). The
K
remaining elements of A are square-free with respect to the primes

Vig 3lg
X < P <X

Y
Let » denote a non-excluded member of & which gives a positive

contribution to the weight

é _ B log ¢,
I - A <-\ 3 \03X\>

X'/ B

=P, éX y
P\\ b > Ple?g

Vs
Clearly, ® does not have any prime divisors less than X ., Hence,

the weight of b 1is at most

2 \05 11
ooy -5 B
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3
Suppose A7 4 | Now, if {L{eY > % | the weight of b would be at most

IRRYERE S =

\og x

(where we have used b} ¢ 3N

).

If N is sufficiently large, this
would not be positive, which contradicts the definition of b

Hence,
it follows that

| {aes®  a-@ ) = wW(ASR, 7, %,2) ~ol(x ")

provided one can find a A7 >l4 But since

(=
(-FN) gz >

-2 - .
when 3 =7 , we have shown that such a A exists and moreover,

X
, 13 AN
W(ﬂK';‘Pb > 85 ®5,2) =z T SINOE legx

for sufficiently large X . Theorem 1 now follows.

Remark., Halberstam and Richert remarks on pp. 252 of [2] that an

improvement of & in Bombieri's Theorem would lead to the replacement of

the Gh's by Qu's in the quasi-Goldbach problem. For our purposes, we

are not so fortunate as Montgomery in [3] has shown that

Z__ Z (\\/(X)‘\,.C) S box \l - @Ax \ng L S5t ,

L log (AT
X
blq> ZL6) 3
4 = < vvwx\("

@) =1

Asg
—@x A Agx® - O (A= oy x) )
)
for Q»x .

-8
Hence, for our purposes, WX = ’*Q“SM seems best possible and

this is simply = =% . Consequentially, a new argument is required



(or perhaps the use of a different system of weights specially
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designed for the problem), for a further qualitative requirement,

§7.6. Appendix

We shall state modified Lemmas and Theorems which appear in [2],

and these shall be used to prove Theorem 2.

x
assume conditions.L., M.,

LEMMAY 5.2. If

' wip)
\ 2 i

WLp<LzE

and

WEp<Z

uniformly in s .

, fLzCVHr )

b

Lew < &,

R(\)O\)

Proof. The first assertion follows directly as in [2].

second assertion, we put $=0 and use

) =

Then

~Z wip)
P ate>

Partial summation gives

-§ wl) . X
plog ¢

WEp<E

The result then follows for =5=0.

partial summation.

- (p)

P

o 2(Ce)
< Ay Pt

WEP<E

< AN D

W4p< Z

\03( Z./w)
(teq 2)(l0g w)

Lo (p)

alpd

LC(P)

e

plegp

Throughout, we shall

The general case then follows by

For the
w(p)
“j?‘hﬁ?'
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LEMMA® 5.3. 1If Zewg z

OO -83Y - (ol 50)

P
) Y RV L
W) <\03w) e ol ‘0(3’«\1” )
e 'F
W(Z‘) = \—\(\ - - A;) <—\—__— e EX\)(C’( \uaw))
?

Proof. This is exactly as in [2] with Lemma®™ 5.2 replacing

Lemma 5.2.

LEMMA® 5.4, Suppose that leqz > 3L ., Then

{ L
E}_(_Z) = WI(z) eky rl(:K"'D i\ -~ O( \0323} ,

Proof. The argument used in the proof of Lemma 5.4 is valid

until one reaches line 3 of pp. 149. The sum concerned is

O( Z S(P)> |

V¥Ia sp< g

Using

SCP) < A U:l;_?_))

and {1x(x ,L) , the sum is

of 7 @) - o(mm) -ob.

xd <P<XM

Hence
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Z a(d4) \03 a = Z i(d) ( h'e \03 % —~ O(L.)}

d<x x
AVP(2) z $d<x
A\p(z)

+ 22_ g(d)(;&\cgz +O(Lf) + O(L (e, 2Y)

d<xfz
AVP(z)

But this is precisely the line after it. The only other point in the

proof we need to justify is (3.11), which states
K

This follows from Lemma 4.1, with #=% | A2=L and our assumption that
L < %\632 . Application of Lemma™ 5.3 gives the result. There is no

other change needed in the proof.

2F + |
LEMMA® 6.1. Suppose log 2 W max (LY, 12 P . Then

L LK+t ~—3<:#|
A = \N(E)E i = O(G?z((t o )>})
(%, 2) % (2T
if z<%¥ and
. loaf
T \032

Proof. There is essentially nothing new to add as Lemma 6.1 is

23 x|
proved under the condition ‘Og z>» L . Moreover, the variable

W appearing in (4.7) is perfectly safe since it is always chosen to

satisfy

w 77 E .

2'4'?|)

THEOREM™ 6.3. Suppose logz 77 mox (L7, LT Then
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o — =X -\
S(h B 2) < R xwier {0 G +O(\:Lﬂ(fc* .

2K« \
+ T ‘§> “+ ) V”\KC\%\,

A1P(2)
A<g>

for T©>0 and z<%.

Proof. This follows from Theorem 6.1 and Lemma®* 6.1. Note that

Theorem 6.1 needs no verification.
LEMMA® 7.2, Suppose ‘oqz,»7 L* | and

Z\ QZLSZ F e

>

Let Yit) be a non-negative, monotonic and continuous function for t=!

and define

oux ( £/~
M T riwer, TN egw
\o El
9
Then i,
cy g /P 3 K, -
Z_ | ) - X W(z)( ) £ Wilt-)dt
P \03 P °3§
Z\Spsi;_ \aagl
\03 Z,
X
< LM ow (z) (log 2) )
* O (‘Gj :’K;«H
THEOREM® 6.1. We have for any 5~ ' , that
d
. P wq) X & z 3 i) \le\
Sy, %) 2) ¢ 5 (5o o)
,\427‘

LEMMA™ 4.1. Suppose that log 2 >L* , Then

. \CS‘L_ R 23 [ )g
\ < W(z){\ + O( ""‘?SL-D‘ \og® T N \032k

G(x)z)
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Proof. The proof of this follows Lemma 4.1 using

<
L = AXRe T < \cjl_

THEOREM™ 6.2. Suppose ‘oge >\, 1f § =t , we have

SC.fAcL')R;%) < DL:L—)XW(%){\ —»O(ex?i-"t(\cﬁ'c -\1\&)%

| d
D 3" R4

A\rP(y)
d<g*

where

Proof. For T>% , we use the proof given on pp. 192, Theorem 6.2,

So, assume that T<@e., Then Theorem” 6.1 and Lemma™ 4.1 give us

¢ 2% L 2
S(ﬁqy,—&,%) < Uf—c%‘)xw(z)sl‘*o(e“\’(“ﬂ*" *(T*@\) < 3\)} .

Assume logT e, Otherwise, we get a result of the quality of

Theorem 4.1 (which one obtains on applying Lemma”™ 4.1). Now put
)\ = \03 T + —‘5\ \03\0‘1\ T

Then

2
("_' * = 3 e) < 37T
A logqz =

The result then follows.

THEOREM* 7.1. Suppose bgz>tf and £>% . Then we have

S(Aq,§8,2) = @gﬁ Xwﬂ})%\ *(D<.fx9(—lt ))}
4

s )
* e':z_ 5! \Rd%\ )

A<E>
A1°(®)
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where

and (&} < 2

Proof. As in the proof of Theorem 7.1, we need only prove the

lower bound. By Lemma 7.1, with log ¥, = 21" , we have

¥ (. .
%(ﬂq)?,%) - U:‘j"lxw(l-) = S(HA PR D) w9 x Wz
9 v g

~ D USCAn B - o xwe]

°q
E\ap < E
peR

For the sum, we note that we may apply Theorem% 6.2 with v replacing 2

since

z

l°3\3 > \03 2, >~ L

The argument given in the proof of Theorem 7.1 for the estimation of
the sum is now valid because we can now use our previous results., It
remains to estimate

S(ﬂﬁ;f,aq - %EQ.XVV(}J.

By Theorem 6.2, this is

- Pld)

& L:w““(%ﬂ exp( 2Ty v D3 Ragl
A <g?r
d\P(z)

where

\03 g \aq 5
\03%\ LLE

Also, by Lemma”™ 5.3

K
\OSE ) Cx?( O( \G;E|)> .

W(Z() = W(%) (
\OSZ\

It therefore remains to show that

[

(\031—>x' exv( ~LT, A Q( \03%‘3) & exp( - 2T )

\05 T
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_ - )
Since Loy zy) < , and U is large, we may discard the error

term. Hence, the above is

lsa &
< < Xy2 - 1T + \ B
< ha ( ' * ) \031. > >
& - 3% ey logy &
QX\) ( Z . 2 j< loa - > )
log 2 logw, \og 24

\03%
\03 T

and since >\ , the above expression is

< exp(—lt)

The result then follows with the same proof as in Theorem 7.1.

The Linear Sieve: ¥ =\

LEMMA® 8.1. Suppose 3z 5> \* and 2 <% <% . Then,

for any v ,

2 lG il
\og, ¥ 3
Wi((z) qs\,( 0‘33}) = Wz K#V( \03?_—)
\oq 3%
== Wiy ) 9 P wWiz)L \03}>
- W) C + O\ ———=-
Z__ P f (%V*\\ \03 P ) ( (‘szw)z_
B\ pL T

Proof. One applies Lemma® 7.2 in place of Lemma 7.2 and the

result follows.

LEMMA* 8.2, Let loq 2,57 L* . Also suppose that

where

Then

P \03 P

N ° g1/ ) s E
Z_ ui\z_) W(p) cXP( -2 P) < W e CXPS( - ‘\033i:_§<\ T 3

BAeP < r\

\Dglli
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Proof. Again, replace Lemma 7.2 by Lemma™ 7.2.

*
THEOREM™ 8.2. Suppose that ‘cyg %> L* and z.<¢w < % . Set

'E' = T - ) =\, , --- .
3 P\-"\)S > h) ) >

Then, the expression holds.

Proof. The first point to note is that the various substitutions,
namely p taking the place of # , is perfectly valid since p=>z, and

SO

\039 > \03 ra = Ll 5

a condition needed to be satisfied by bjz. for us to use the previous

results above.

THEOREM* 8.3. Suppose that

(7

¥ >t , leqg ¥ > L

Then
o El

L
\033} ) ¢ O( (\03‘% )'/"*3}

) =
S(A, R, 2) < L‘%}X‘“‘“% \

~in)
-+ : > \\{c\«n\ )

v s*g"
A\ PC)

and

log §2 L
. (a) 9 —

q
_ -—j 5\F(v‘\) \an\

n<g™

n|p(e)
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Proof. Our assumptions above allows us to choose z, as in

Theorem 8.3. Moreover the use of Theorem” 7.1 allows us the choice

The proof now follows exactly as that of Theorem 8.3. One should

note that the various interchanges occurring at the bottom of page 232

are valid since

e

ey e » gz = (g v) 0 >
Consequently, we may use our previous results.

THEOREM™ 8.4. For z<x and log 2 > L , we have

o e X = E
6)(‘*1 2 D) < X W) %\ \‘(( ) + P &\03)&)‘/\% )

103‘2-
and ‘ L
o9 X =
SCJQ ')X?) ) 7 X W() 1%(0( \03?:) - B (\er:j X)‘/N‘% b
with the functions © and § as defined there.

Theorem 9.1 (our Theorem 2) now follows with the aid of
Theorem™ 8.4, Theorem® 8.2 and Lemma®™ 7.2. There is no change in the
argument.

Note. It has been assumed throughout that L is not bounded as

otherwise we may replace it with {l.(x) or even oK,
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T(9.1)
T(7.2) T(7.3) and T(8.4)
T(7.1) (T.81) T(8.2)
|
T(6.2) L(8.1)
|
L(7.2)
T(6.1) L(4.1) \ }\\

\
L(6.1) T(6.1) \\\
/////////j;/ L(7.2)

L(4.1)  L(5.4) |

This is a chart interconnecting the relevant Lemmas (L) and Theorems

(T) required in the analysis for Theorem 9.1.



(1]

(23

(3]

(4]

(5]

re]

(7]

(8]

RY

(2]

(3]

(4]

(5]

183

REFERENCES

Section A

Chen, J. R., "Estimates for trigonometric sums," Acta. Math.
Sinica 14 (1964), 765-768.

Heilbronn, H., "On the distribution of the sequence §n*%} mod 1,"
Quart J. Math. Oxford 19 (1948), 249-256.

Vaughan, R. C., '"Mean value theorems in prime number theory,"
JLMS (2) 10 (1975), 153-162.

Vaughan, R. C., "Sommes trigonometriques sur les nombres
premiers," C. R. Acad. Sci, Paris, Ser. A 285 (1977), 981-983.

Vaughan, R, C., "On the distribution of «p modulo 1,"
Mathematika 24 (1977), 136-141.

Vinogradov, I. M., "A new estimate of a trigonometric sum
containing primes,'" Bul. Acad. Sci. USSR Ser. Math. 2 (1938),
1-13.

Vinogradov, I. M., "A general distribution law for the fractional

parts of values of a polynomial with variable running over
primes," Ibid., 51 (1946), 491-2.

Vinogradov, I. M., The method of trigonometric sums in the
theory of numbers. Translated from the Russian, revised and
annotated by K. F. Roth and A. Davenport (Interscience, New
York, 1954).

Section B

Selberg, A., "Contributions to the theory of the Riemann Zeta-
Function,'" Arch. Math. Naturvid 48 (1946), 89-155,

Berry, A. C., "The accuracy of the Gaussian approximation to the
sum of independent variates,'" Trans. Amer. Math. Soc. 49 (1941),
122-136.

Delange,H., "Sur un theorem d'Erdds et Kac,'" Bull. Belgian Royal
Acad., Sr. 5 (1956), 130-144,

Erdds, P. and Kac, M., "The Gaussian law of errors in the theory
of additive number theoretic functions,'" Amer. J. Math. 62
(1940), 738-742.

Esseen, C. G,, '"Fourier analysis of distribution functions, A
mathematical study of the Laplace-Gaussian law," Acta. Math. 77

(1945), 1-125.



184

[6] Halbers?am, H., "On the distribution of additive number-
theoretic functions," Journ. Lond. Math. Soc. 30 (1955), 43-53.

[7] Kubilius, J. P., Probablistic Methods in the Theory of Numbers,
Vol. 11, AMS Transl. 1964,

(8] LeVeq9e, W. J., "On the size of certain number theoretic
functions," Trans. Amer., Math. Soc. 66 (1949), 440-463.

[9] Renyi, A. and Turan, P., "On a theorem of Erdos-Kac," Acta Arith.
4 (1958), 71-84.

Section C: Chapter 6

[1] Bombieri, E., "On twin almost primes,' Acta Arith. 28 (1975),
177-193 and Corrigendum ibidem, pp. 457-461.

(27 Bombieri, E., "The Asymptotic Sieve,'" Rend. Accad. Naz. XL (5)
1/2 (1975/76), 243-269.

[3] Chen, J. R., "On the representation of a large even integer as
the sum of a prime and the product of at most two primes,"
Sci. Sin. 16 (1973), 157-176.

41 Chen, J. R., "On the Goldbach Problem and the Sieve method,"
Sci. Sin. 21 (1978), 701-739.

[5] Erdés, P., Acta Univ. Szegedrensis Szeged, Hungary 5 (1932),
194-198.

[6] Greaves, G., "A weighted sieve of Brun's Type," to appear
Acta Arith.

[7] Halberstam, H. and Ric ert, H. E., Sieve Methods. Acad. Press
(Lond.), 1974,

[8] 1Iwaniec, H. and Jutila, M., "Primes in short-intervals," in
press, 1979.

[9] 1Iwaniec, H. and Heath Brown, D. R., "On the difference between
consecutive primes," Inv. Math. 55 (1979), 49-70.

(107 1Iwaniec, H., "A new form of the error-term in the linear
sieve," Acta Arith., in press, 1979.

[11] Jurkat, W. B. and Richert, H. E., "An improvement of Selberg's
sieve method I," Acta. Arith. 11 (1965), 217-240.

(127 Kuhn, P., "Zur Viggo Burn'schen Siebmethode. I," Norske Vid.
Selsk. Forh., Trondhjem 14 (1941), no. 39, 145-148.



[13]

(14]

[15]

(1]

(2]

(3]

(4]

185

Pan, C., "A new Mean-Value Theorem and its applications,"

Recent Progress in Analytic Number Theory, Vol. 1, Acad. Press
(to appear).

Selberg, A., "An elementary proof of the prime-number theorem,"
Ann, of Math. (2) 50 (1949), 305-313.

Vaughan, R. C., An elementary method in prime number theory.
Lecture Notes, Institute Mittag-Leffler.

Section C: Chapter 7

Greaves, G., "An application of a theorem of Barban-Davenport-
Halberstam," BIMS 6 (1974), 1-9.

Halberstam, H. and Richert, H. E., Sieve Methods. Academic
Press (London), 1974).

Montgomery, H. L., Topics in Multiplicative Number Theory.
Springer Verlag Notes No. 227.

Montgomery, H. L. and Vaughan, R. C., "On the exceptional set in
Goldbach's Problem," Acta. Arithm. 27 (1975), 353-370.



	256457_0001
	256457_0002
	256457_0003
	256457_0004
	256457_0005
	256457_0006
	256457_0007
	256457_0008
	256457_0009
	256457_0010
	256457_0011
	256457_0012
	256457_0013
	256457_0014
	256457_0015
	256457_0016
	256457_0017
	256457_0018
	256457_0019
	256457_0020
	256457_0021
	256457_0022
	256457_0023
	256457_0024
	256457_0025
	256457_0026
	256457_0027
	256457_0028
	256457_0029
	256457_0030
	256457_0031
	256457_0032
	256457_0033
	256457_0034
	256457_0035
	256457_0036
	256457_0037
	256457_0038
	256457_0039
	256457_0040
	256457_0041
	256457_0042
	256457_0043
	256457_0044
	256457_0045
	256457_0046
	256457_0047
	256457_0048
	256457_0049
	256457_0050
	256457_0051
	256457_0052
	256457_0053
	256457_0054
	256457_0055
	256457_0056
	256457_0057
	256457_0058
	256457_0059
	256457_0060
	256457_0061
	256457_0062
	256457_0063
	256457_0064
	256457_0065
	256457_0066
	256457_0067
	256457_0068
	256457_0069
	256457_0070
	256457_0071
	256457_0072
	256457_0073
	256457_0074
	256457_0075
	256457_0076
	256457_0077
	256457_0078
	256457_0079
	256457_0080
	256457_0081
	256457_0082
	256457_0083
	256457_0084
	256457_0085
	256457_0086
	256457_0087
	256457_0088
	256457_0089
	256457_0090
	256457_0091
	256457_0092
	256457_0093
	256457_0094
	256457_0095
	256457_0096
	256457_0097
	256457_0098
	256457_0099
	256457_0100
	256457_0101
	256457_0102
	256457_0103
	256457_0104
	256457_0105
	256457_0106
	256457_0107
	256457_0108
	256457_0109
	256457_0110
	256457_0111
	256457_0112
	256457_0113
	256457_0114
	256457_0115
	256457_0116
	256457_0117
	256457_0118
	256457_0119
	256457_0120
	256457_0121
	256457_0122
	256457_0123
	256457_0124
	256457_0125
	256457_0126
	256457_0127
	256457_0128
	256457_0129
	256457_0130
	256457_0131
	256457_0132
	256457_0133
	256457_0134
	256457_0135
	256457_0136
	256457_0137
	256457_0138
	256457_0139
	256457_0140
	256457_0141
	256457_0142
	256457_0143
	256457_0144
	256457_0145
	256457_0146
	256457_0147
	256457_0148
	256457_0149
	256457_0150
	256457_0151
	256457_0152
	256457_0153
	256457_0154
	256457_0155
	256457_0156
	256457_0157
	256457_0158
	256457_0159
	256457_0160
	256457_0161
	256457_0162
	256457_0163
	256457_0164
	256457_0165
	256457_0166
	256457_0167
	256457_0168
	256457_0169
	256457_0170
	256457_0171
	256457_0172
	256457_0173
	256457_0174
	256457_0175
	256457_0176
	256457_0177
	256457_0178
	256457_0179
	256457_0180
	256457_0181
	256457_0182
	256457_0183
	256457_0184
	256457_0185
	256457_0186
	256457_0187
	256457_0188
	256457_0189
	256457_0190
	256457_0191
	256457_0192
	256457_0193

