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ABSTRACT 

The thesis is divided into five sections: 

(a) Trigonometric sums involving prime numbers and applications, 

(b) Mean-values and Sign-changes of S(t)-- related to Riemann's 

Zeta function, 

(c) Mean-values of strongly additive arithemetical functions, 

(d) Combinatorial -identities and sieves, 

(e) A Goldbach-type problem. 

Parts (b) and (c) are related by means of the techniques used but 

otherwise the sections are disjoint. 

(a) We consider the question of finding upper bounds for sums like 

and using a method of Vaughan, we get estimates which are much better 

than those obtained by Vinogradov. We then consider two applications 

of these, namely, the distribution of the sequence (ap2) modulo one. 

Of course we could have used the improved results to get improvements 

in estimates in various other problems involving p2 but we do not do so. 

We also obtain an estimate for the sum 

and get improved estimates by the same method. 

(b) Let N(T) denote the number of zeros of s(s) - Riemann's Zeta 

function. It is well known that 

N(T) = L(T) + S(T), 

where 
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L(T) = 2~ T 10g(T/2n) - T/2n + 7/8 + O(l/T), 

but the finer behaviour of S(T) is not known. It is known that 

Slt) ~ \o~ t 
ft 
J 'S lv..) cku. « 
<' 

so that S(T) has many changes of sign. In 1942, A. Selberg showed 

that the number of sign changes of Set) for t E (O,T) exceeds 

1/3 
T (log T) exp(-A loglog T), (1) 

but stated to Professor Halberstam in 1979 that one can improve the 

constant 1/3 in (1) to 1 - E. It can be shown easily that the 

upper bound for the number of changes of sign is log T. 

We give a proof of Selberg's statement in (b), but in the process 

we do much more. Selberg showed that if k is a positive integer 

then 

(2) 

\vhere T~ < H < T2 and C
k 

is some explicit constant in k. We 

have found a simple technique which gives (2) with the constant k 

replaced by any non-negative real number. Using this type of result, 

I prove Selberg's statement, with 
-E 

(log T) replaced by 

(c) I use the" method for finding mean-values above to answer similar 

questions for a class of strongly additive arithemetical functions. 

We say that f is strongly additive if 

(1) f(mn) = f(m) = fen), if m and n are coprime, 
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(2) f(pa) = f(p) for all primes p and positive integer a. 

Let 

1< 

Ak. tx) L 
\f(f) \ 

-=-
p 

~<)(, 

Halberstam and Delange showed that if then f lies in a certain 

class, then one can show that for any k E ~ 

where 

This ,is a moment problem and was motivated by a paper due to Erdos 

and Kac. I use my technique to show that 2k can be replaced by 

any positive real number. 

(d) This section contains joint work with Professor Halberstam and 

is still in its infancy. We have found a general identity and a 

type of convolution which serves to be the starting point of most 

investigations in Prime Number Theory involving the local and the 

global sieves. The term global refers to sieve methods of Brun, 

Selberg, Rosser and many more. The term local refers to things like 

Selberg's formula in the elementary proof of the prime number theorem, 

Vaughan's identity and so on. We have shown that both methods stem 

from the same source and so leads to a unified approach to such research. 

(e) I considered the question of solving the representation of an 

integer N in the form 

N = 
) 

where the p. 's are prime numbers. This problem was motivated by 
1 

Goldbach's Problem and is exceedingly difficult. So I looked into 

getting partial answers. 



Let E(x) denote the numbers less than x not representable 

in the required form. Then there is a computable constant 8 > 0 

such that 

E(x) « 

To do this we use a method of Montgomery and Vaughan but the proof 

is long and technical, and we do not give it here. 

We show by sieve methods that the following result holds true: 

N = P."- -tr: .,. K ~\?'+~5 

We have been unable to replace the product of three primes by two. 

vi 

Note:, k is a constant depending on the residue class of N modulo 12. 
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BRIEF INTRODUCTION 

Each chapter has a detailed introduction describing the contents 

and therefore I shall give at this stage only the scope of my thesis. 

Chapters 1 and 2 

We study exponential sums over prime numbers, using the Vaughan 

identity. Applications are then made to the distribution of the 

sequence ~:"r modulo i : p prime numbers} ,where c< is an 

irrational number. 

Chapters 3 and 4 

We introduce a technique that is used to obtain all the moments 

of \Slt)\ and we use these to obtain results on (a) the sign-changes 

of Set) and (b) the finer behaviour of the limiting distribution 

of S(t). 

Chapter 5 

We apply the method of moments, introduced above, to obtain 

corresponding results for the limiting distribution for a general 

class of additive functions. 

Chapter 6 

This is work done in collaboration with Prof. Halberstam. We 

introduce a type of arithmetical convolution and a summatory formula 

which is then used to derive the combinatorial identities underlying 

all the known sieve methods. This account gives a unified approach 

to the subject of sieves. 
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Chapter 7 

We apply sieve methods to the problem of representing natural 

numbers N in the form 

N -= 



SECTION A. EXPONENTIAL SUMS IN PRIMES 

Chapter 1. On the Distribution of «p~ modulo 1 

Chapter 2. Estimate for the Exponential Sum ~ ~(<<~') . 
{'~N 

3 
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Chapter 1. 

The Distribution of «v
J

- Modulo 1 

§1.1. Introduction 

In 1977, Vaughan [5J introduced an elementary method in prime-

number theory which enabled him to improve known results on the 

distribution of the sequence (<><f) modulo 1, where a.. is an irrational 

number and p runs through the set of prime numbers. We shall con-

sider the corresponding questions for the distribution of (~p4) 

modulo 1. The basic result is embodied in 

THEOREM 1. Suppose 0<. is a real number and a. and <-~ are 

positive integers satisfying (~Jq,)-::\ and 10<. - a/~\ < '\,~2. Then, 

for any positive integers Hand N , given any real number €.'70 

we have 

H N .1.. 

"'" IJLA(n)e.Chn2o()\ ~ \-lN1-'-£(<\-1 +N-\: ~ '\,-\-\-'N-2.)'t , 

h:1 0=1 

where the constant implied EY the ~ notation depends at most £!!. E.. 

Even the case \-\ = I of Theorem 1 appears to be new and we 

record it as 

THEOREM 2. Suppose that ~ and N are as specified in Theorem 1. 

Then, given any real number 

l'i 

L !\(n) e..(n4 <.X) ~ 
0=1 

where the constant implied depends at most ££ t.. 

Such results, due to Vinogradov [6,7J, exist in the literature 

but are weaker in the sense that they are non-trivial only for much 

shorter ranges of ~. For the ranges of ~ for which Theorem 2 is 
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non-trivial, Vinogradov appears to have in the exponent nothing 

1 
better than 192 where 

1 
we obtain 4' but he has a power of a logarithm 

in placet of Nt. 

In 1958, Chen [lJ showed that, for any real cJ.. ..,;3/-g , 

for ~""LN\-o(), where u..,~,N and ~ are positive integers, and 

p runs through prime numbers. Also, Co J '\.-) := \ For ~ -= 2 and 

this shows that , whereas 

Theorem 2 implies that 

, 

~ 3/~ 

for all '\. satisfying Nl.~<t~N 

As has been remarked by Vaughan [3J, one would like to eliminate 

the term not inolving ~ in the estimate in Theorem 2. 

-..I... 

follow if it were possible to replace the term N Z by 

We shall give two applications of Theorem 1: 

This would 

-\ 
N . 

THEOREM 3. Suppose eX. is a real irrational number and r is an 

arbitrary real number. Let 11911 denote the least distance of B- from 

an integer. Then, given any real number E. 70 , there is a positive 

number c('i:.), depending only £!!. E., such that 

for infinitely many prime numbers f 

t The €. derives from repeated use 
d\q(n) « nt for the divisor functions. 

were to be gained by it, then N
E could 

e""f'(.::.(\~la~N)-1 \"\~N) , where c. 

cons tant and N 4 ,",,0 (c) • 

of the classical estimate 
It follows that, if anything 

be replaced everywhere by 
is some suitable positive 
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Heilbronn showed in [2J that for any integer N ~ \ and every 

real number ~ , integers n can be found such that \ ~ n ~ Nand 

where £. is an arbitrarily small positive number and c:.(£.) is a 

positive constant depending on c. We call such a result a 'local 

result'. A 'semi-local result' is a result of the same kind but 

valid only for N ~\'\~). It can be shown that local and even semi-

local results are unattainable with n restricted to primes when 0( 

is a Louiville number. In general, such results are attainable by 

our method if the denominators of the convergents of ~ do not increase 

too rapidly (in some sense). 

THEOREM 4. Suppos e that 0 ~ --y <. --( ~ b ~ 1. and 0<. , Q., and 

4 ~ ~ defined in Theorem 1. Let ~~1 denote the fractional part 

of {} and let Tl~( Y '~.J N) denote the number of prime numbers 

such that Then, for any real number 't...70 

...L 

;- 9.-~N-2.)~ (b~q,) 

where 1\ eN) denotes the number of prime numbers not exceeding N 

and the constants implied Ex. the ~ notation depend at most £E. t . 

In 1946, Vinogradov [8J obtained a result like this but with the 

weaker error term 

Theorem 4 implies a similar error term, valid for 



€. 
term N 

,with 9-=-1t but at the expense of having the additional 

All these results will be proved in §§1.4 and 1.5. 

§1.2. Notation 

Throughout, every opportunity has been taken to make explicit 

important notation used at the point where it has been introduced. 

,,(n) is von Mango1dt's function, 

dh (I')) is the number of representations of I') as the product 

of exactly t integers, 

denotes the divisor function, 

r-<.n) is the Mobius function, 

~ll') denotes number of primes not exceeding n , 

-{J1<.YI) ~ L \c~ P 
tJ-$N 

, where ~ always denotes a prime, 

[{)o1 is the integer part of -B- , 

~ B} is the fractional part of {r , that is ~-l{y], 

1\ c-\\ is the least distance of ~ from an integer, i. e. 

mIn \n -B-\ ' 
\"\E:7L 

denotes the cardinality of the set ~ • 

The following shall always denote integers (even if suffixed): 

ct , d ) h ) t I Y'>'\ ,n , '\- I r J t) \A) 'd ) H) N J V I W . 

The following shall always denote real numbers: 

We shall use Vinogradov's symbol <.< as an alternative to the 

o -notation. We say f ",O(~f) or ~~ 5 if there is a constant M such 

that I ) \ ~ \Y\,) In all cases, constants implied by either symbol 

7 
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will be absolute or dependent at most on ~, where the definition 

of L is specified in the appropriate context. 

§1.3. Auxillary Results 

The proof of Theorem 1 will occupy us for most of the chapter. 

As we shall show, it will be necessary to estimate exponential sums 

of the type 

_ L \? CI""tJn e(hm2. Yi
2

<x) \ 

\~h~1-\ hl}l'\ 

, 
(M}r)) E ~ 

where Ii ,V , V' , W , and WI are positive non-zero integers satisfying 

and V \N ~ N, and 

-§ -: t (tV))n) : V < rr. ~ V I } W < n ~ \N ') rnn ~ \\i 1, 

with (~In) running through all the lattice points in the hyperbolic 

region in 1R x \R as defined by ~. Note that ~ is empty if \J \t\j ";;j N 

and that 

will be arbitrary complex numbers satisfying inequalities of the type 

and 

where A and f) will be specified variously later. 

In the analysis of 'Sl \-\ ,~), two classes of sums need to be 

distinguished: 

Class I: bY) -= \ for all n in (w,'W']; 

Class II: 6 n -=f1 for some n in lw,w']. 

As one would expect, Class I sums are easier to estimate and, by the 

well-known Weyl procedure, Class II sums can be reduced to Class I 

sums in a small number of steps. Essentially, the idea is to apply 

Cauchy's inequality to S(\-\/~)a number of times so as to yield sums 

of the type 
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~L \Le(~(().)r\7 .. )I\~Q{)\ ; 
..... , n:z. n~ 

here n3 runs through all the integers in an interval of length X3 

which may depend on Yi, and Vl2.., and -)-(1'\,,1"\1..) is a polynomial in ~\ 

and n2.. Such a sum is then 

~ L L h"l \ t"I . ( ~?» \ \ f ( n. ) Y"\ l. ) 0( \\-1 ) -' 
n l rI:z. 

and can be estimated by some classical results of Vinogradov (see 

Lemma 1 below). 

We have, from Cauchy's inequality 

(1.3.1) \%(\-\>'~)\ ~(L 
i~h~H 

.L 

b
n, 

\'n
2 

e(hM(n,"l.-n2."l.)o())2. 

h M f\\ ~n2.. 

0'''' ) (\ i. ) E: '-!! 
L "'" l I 2... 

(1.3.2) 
} 

say, and ~,will be estimated in one of two ways, according as 

%(H)~) is in Class I or Class II. 

Suppose that p(\-\,-%) is in Class I. Then 

ls.h~1-\ V<"Yh~'" \')1~1'h. 

(m}y1i.)E~ 

~-=\)2... 



(1.3.3) '!:: 

'~h~\-\ V<..n-.~V' \~hj\<1.W V) 

(Vln In) E-~ 

(Y'n)"-t'j) E: ~ 

The variable n in the multiple sum above actually traverses an 

interval of length 

by the definition of -f,. Hence, from (1.3.3), 

(1.3.4) \ 2.,\ ~ L L 

and the expression on the right is of a kind to be estimated in 

Lemma 2 below. 

Suppose now that ~(\-\ ,~) is in Class II. We may write LI in 

the form 

(1.3.5) 

where 

L, -L L 
'~h~\-\ v< '(h ~V I \t\ ~ I 

(~ft)E~, 

~ 

and (\'YIlt) runs through all the lattice points in 'ij,. Also 

10 



'S. ~t) = L L 
(\, 1'\2. 

2.. 1.. t 
\'I, ·(h. -::. 

(VVI,n\.) E...g, 

Changing the order of summation in (1.3.5), we have 

, 

and this expression will be treated along the same lines as Class I 

sums. By Cauchy's inequality, 

(1.3.6) 

say, and 

I-§ I \ 

and 

\ 2.., \ ~ (2.. L \ s l lt)\2.)\( 

-= 

~ 

L 

\~~~\-\ \~\t\ <\NIl.. 

J.. 

B~H2.( L 

\L 
l~h~H \~\I;;\~W'2.. m 

(h\,-\:.)t~t 

...l 

dlt)2.) 2.( L \~ 1\ 
l~t~4Wl. \~hS:1-\ 

L « N L 
_l... 

\t\·2.. 

\ ~ It \ < \N'2. v<m<y' \~\t\~4-w2. 

rnl.l-tl ~N 
2 

~ 

1- L, ') 2-

« NW , 

L2. =:- L L L e. ( h t ( ri"\ ? - tl"ILl.) 0( ) 

ISh~14 IS\t\<W1z. Yrt, ~ r'oL 

(\"(\~ )t) C ~ i 

\" ::: \ , 2. . 

) 

-= L L L L e.( ht~(~ -t 2m) t>() 

I~hsl-\ \Sltl<W'2.. \~\~\<Vl YYJ 

(h1lt)E:~1 

(m,\:;ij) e~ I 

11 



Then 

rYI 

(VY\/t) c~ I 

( no-t ~ } t) E ~ I 

and the inner-most sum actually extends over all integers of a 

certain interval. Thus, summing over ~, we have 

(1.3.7) 

12 

where LlT 1 '1) is the length of the interval traversed by M. Indeed, 

(1.3.8) 

V<.m~v\ 

ml..\t\ ~N4 

(Y"l~~)2.\t\ ~ N 4 

so that, by (1.3.6), (1.3.7), and (1.3.8), 

(1.3.9) 

J... 

e,2. \--\1: (L d l-lt) ) 2 ~ 
\ ~ -\;~tt-w 2.. 

x ( \-tN V\I 

_1-

=- N It\ 2- , 

and this we shall evaluate after Lemma 1 below, which we shall now 

state. 

LEMMA 1 (Vinogradov). Suppose that X and '{ are positive 

integers. Also suppose that \ 0( - oJ ~ \ "-.. '\.--2- ,where 0( is ~ rea 1 

number with a and '-} integers satis fying (a) ,\-) -= \. Then 



L Y1-)Ir1 ( Y ) \\«x.\I-lj 
)t:.~)( 

« x y q, -\ -+ ex;- ~) \L)~ 2..~ 

L '(Y\In( X Y Ix .) \\o(X\\ -I) « (X'l ",-I -t X 1" q,. ) (\\)~ Xx t~ ') . 
x~x. 

These inequalities are essentially Lemmas 8a and 8b of 

Chapter 1 of [9J. We are now in a position to prove 

LEMMA 2. Let N, \-\ ,V ,Vi, W , and W' be positive integers 

satisfying V 4 VI ~:2..V , W < W' ~2.W, and VW ~N. Suppose «., 

13 

0..., and q, are defined ~ in Lemma 1 with the additional requirement 

Let (Qrn) and (btl) be two sequences of complex numbers such that 

there are positive numbers A and B , depending on N, such that 

and b ... « 5. 

Define the sum 

$ • . = L \ L- CAm L b .... e.( Q( hrv/-n2. ') \ . 

\~~~I-\ V<.r'l1 ~V' W<'t'1~Wl 

rYJn~N 

Then, for any fixed real number £. 70 , 

(a) if b",~, for all flE:(VV)W'J, we have ---- ---

(b) otherwise, we have 

Proof. (a) It will suffice to bound the expression in (1.3.4). 

We put 
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(1.3.12) So T~Cl t 

and h will run through all the integers in the interval shown. Also, 

the number of representations of i in the form (1.3.12) is not more 

Thus, from (1.3.4), 

(1.3.13) 

\.1\ ~ &Nt\V 

and by Lemma 1, this is 

By the conditions on 'i, and from (1.3.2) and (1.3.13), 

(b) We shall evaluate the multiple sum in (1.3.9). In (1.3.9) 

put 

(1. 3 .14) 

Also, 



The number of representations of J in the form (1.3.14) is at most 

d3 lLL\) and so, from (1.3.9), 

15 

2, «&'f-\t( L J21tli (HNV,/ • L d~lltl) ""n( ~~ ,IU,o<\I-')r 
l~t~'+\NL 1~\.t\<;"'\6I--\NW 

For our purposes, it will suffice to have 

L (P-lt)« N C \N 2-

\~l-:;,lt-y~2. 

By Lemma 1, we then have that 

and, since \03 q. <<. \0') N ~ 

and the result follows from (1.3.1) and (1.3.2). 

We now establish a consequence of Lemma 2 which will be a 

principal tool in the proof of Theorem 1 in 94. 

LEMMA 3. Suppose that d.. , Q , <\, , and N are ~ defined in 

Lemma 2. Let M" M'Z.., N, ,\'h be positive integers such that 

and 

Also suppose that (a~) and (bn) ~ complex seguences ~ in Lemma 2, 

with 

and 

Define the sum 
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Then, given any real number f... '7 <) , 

(a) if for all 

(b) otherwise 

Proof. We shall indicate the proof of (a) only since (b) is 

analogous. We subdivide the interval (\"\,) M-,..] (also (N,)~'h_) ) 

into O(\\)3 N) subintervals of the type (V)\I'l (also C'v'JJW']) such 

that M, ~v < V I ~~V:S: Ml.(also N\~ W <Wi ~'1\{\/~ Nl..) respectively. 

Moreover, we may assume that VW s N as otherwise the contribution 

from integers in these intervals to the sum below is zero. It is 

clear that 

L L l L \ L a~ L bn e(hmLnl.oc)\ \~ 
" W i ~h~ \-\ V'-rn -!:-\t ' W.:. n ~'N I 

V"I1", ~ N 

and the sum in brackets is estimated by Lemma 2 for the cases (a) 

and (b). For case (a), this gives 

E -1 -L .L 1-
1-

52 « A(N~) 2- L HN >-V 1- \--\NV z. 9, - 2- T (kV,\-j2.} 
y w 

A (N t\1:'£ 
..I.. .l, 1-

-\" (\4tvhq,)~ ') <$. ( \--\ N '-ML -\- \-\N \Xh_L. q. - L , 

which is as required with 3e replaced by ~ . 
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§1.4. Proof of Theorem 1 

We shall show that 

...L 

(1.4.1) s;4(H)N) -= ~ \ L (\lr1) elhrl~o()\ ~ \-n.,jl-t€.(<t-'-t-N-~ T9,.H-'N-J'+ 

\~"'~H i~V\~N 

(i) Suppose that q,7N2.\-\. Then, the expression on the right of 

1;- €. 
(1.4.1) exceeds \-IN • This is clearly a trivial estimate for 

A(\-\IN) and so (1.4.1) holds for q.7~2.H. 

(ii) Next, suppose that \-\4N and q,.~N2.\i. By Cauchy's 

inequality 

1-

J4(I-\)Nl ~ Hi ( 2- I L I\\~) eCh n2 oc")\2-')2. 
l~h ~ 1-\ '<;,.r.SN 

l... 

Aln,) AV •• ) e ("Cn,L"., )«)Y 
Now put 

2 L I\tn,)I\(Vld "(\o~N)7- d(LLI). 
hI ~N 111. ~N 

r\,'l. - ~h_1.. -:::..t, 

(h -:f '" 1.. 

It follows from above that 

.J4 (\-\)N) ~ \-\ N ~(\"3 N)~ --t- \--\~ \ L 
\~hS::1--\ \~\.t\<N2 

C&anging the order of summation and by Lemma 1, we have 

.l... 

\--\N-tC1~3N)-t • \---\\ ( 2- <::"L.Lt\ V))\>1ll-\-,\\lOt\l"))l.. 

\~\t\<:'I"\L 

.L t. .L E ( 
..1. 

• N
L 

L 

~ ~ N z. (\Cl~ N) -;- \-\L.N I-\N1...,\-' -t9,J 

E. .l. 
~ .L 

1. J.) 
\--\ N L 

L. 

\-\Lt L 
~. \~ (. \; \"\ ~ - l.- T --t- \-\ N T 

Nf-( 
.L ..I... 3i't ~ .L) 

~ 
\--\N'\.-'t -;- hN

2 
--t \-\ N 2.. q. .... 



(iii) We may assume from now on that \--I <N and q. ~ ~l.K so that, 

in particular, iC3 c~ ~ bS N . 

We shall apply a method of Vaughan which is very efficient in 

estimating sums of the type For a detailed 

description of the method, we refer the reader to [4J and [5J. The 

starting point of the method is the identity 

2- f\ \}n) 1- L L 'tm f( M JII) 

\A"-n~N u<n~Nu-\ U<'",!S. Nn-' 

-= L r td ) L L rLdr }I'I) , 
d~u u<n!SNd-

' 
r'SNa-'n-' 

18 

where LWI -= L ,lo.) 
4 \rn 

Our choice of the function 3\l'\1)n) is 

O.o:;.u 

d-

where IA. is an integer less than to be defined explicitly later 

on. Then, we obtain 

(1.4.2) L A~V\) ~(hn2.. 0<.) -= .AI - A1- - ~ 3 
f\~N 

where, using , we have 

(1.4.3) .AI - 2- rld.) 2- L "..(1") e(hc\2..\Ly\~O() 

6~U r- -:; NO:-' n <;:,Nd-'r- I 

L u..\..c\ ) 2- ( \ 0<;) ~ ') el\.d'l....M~O() 

- I 
I'""h SNd- ' 

'-' -:::"'\k 



with 

(1.4.4) = 

next 

(1.4.5) A'l. -

-

where 

(1.4.6) 

and finally 

(1.4.7) 

L rLd ) L e.( hd~"k2.o{) ) 

d ~ \'Y\ InC U ~ N ~ -, ) ~ <. ~ ~ N d - , 

L 
d~v.. 

L 
.t ~I.A. 

~lJ.) L '" (1'\ ) L e.( ~J.l..I\l.,~o() 

()"",\A. ,~Nc1 -'rt- I 

L..J., L -e ( hL \_2- 0<.) , 
2... 

r- ~ N,t-' 

L r lcA ) 1\ (~I d.. ) 

c\\L 

dsv.. 

. , 

, 

Observe that Ai(~), Al... , and A3> are sums of a type discussed in 

§3. It follows from (1.4.1) and (1.4.7) that 

(1.4.8) ~ L ( \ A \ \ ; \ ~ ~ \ ~ \ ~3 \ ') 

-h -s \-\ 

19 

We shall denote the first three sums on the right of (1.4.8) by S, , 

(}32 , and 033 • We proceed to estimate these sums by Lemma 3. 

From (1.4.3), it follows that 

= 
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where 

L \~\(r)\ "'" 
\ "" \-) ~ 1-\ 

L \ L ~\d) L e(hd 2 k2.o() \ 
\~h~\-\ d~rY)\V\lu.lNf->-') f<'~-:::N 

d~~N 

, and 

N2. :: 1'-1 , and noting that \tA~d) \ ~ \ (so that A. -= \ ), we see that it 

follows from (1.3.15), for any S'70 , that 

Hence 

(1.4.9) 

€. 

From (1.4.6), we note that c t -s(\o~ .f) d(J,) ~ N We write 

(cf. (1.4.5)) 

(1.4.10) 

L ") C\'Y) e( hWlLr4 o() 

NI/2.<r~~Vl1-' 

say. Then 

5 ::; 

L L \A~j) \ L 
(j) 

"U32.. ~ = ~2 , 
\sh~1-\ )-::..\ j :.. \ 

where the meaning of the notation is plain. We now estimate 

( .l -=. \ , 2...) .. _ . ,'5) as fo llows • For 
)(2 (,) 

02.. , apply Lerrnna 3(a) with M\:: \ 

Ml. .". U. , N \ = \ 
£ 

, N~ :::.N, and A.::.1\l • From (1.3.15), it follows 

that 
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(2.) 

For ~2.. ,apply Lermna 3 (b) with 

£. 
and A =N • Then 

Trivially, 

~) ~ 
The estimation of ~2.. follows from Lermna 3(b) with M,-=-N"L-==-N 

~ £. 
\,/12. : U , N, =. \ , B= \ , and 1\"" N , so that 

(s) 

Finally, by a change in the order of summation in .A2.. , we have from 

( 1. 4. 10) t ha t 

and to estimate 

L en-. e (h r 2
m l. 0<) 

II ..... 
l.A<vn"f,N 

r- \'Y) ~ N 

, 

'lC}lS) "i 
UJ2. , we now apply Lemma 3(b) with MI ~ N"L ~ N , 

M2.. = Nu. -\ , N, -.::. u , A ~ I 
£ 

, and ~=N. From (1.3.16) it follows that 

Combining these five estimates, we arrive at 

(1.4.11) 

+ 
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We have finally to estimate lO3. 
E

It is clear that 'tw\ ~ d(m) <..< N • 

We shall rewrite ~3' from (1.4.7), as 

(1.4.12) L ~L L ') 
U<'YI-'S Nn-. -\ u<..rn ~ Nv. -\ N'h<n~Nrn-' 

x 

) 

say. Then 

(1.4.13) 

:, 

L ( L \~~j)\ ). 
j-==-\ \~h~\-\ 

(:~ ) 

We observe that ~~ , after a change in the order of summation, is 

L- Aln) L 'L"", eChV\1
4

\')7.o() 

N 'h. ~ n ~ N u - \ U. < \'VI !S N y\ - I 

(2.) 

and this is essentially like ~~ --the only difference being in the 

position of the weights. Thus, it would suffice to estimate 

..l... 

We put M.= N"l. =N
4

, \'<\'1-= Nu-', N\:::.u 

A. ~ I::> -:::: N ~ , in Lemma 3 (b), so that 

. 
for J = 2 and 3. 

To estimate 

~ 

in Lemma 3(b) with A. = ~ -=- N 

and 

Then 



Combining these estimates, we see that it follows that 

(1.4.14 ) 

Collecting the estimates for ~I , "S2, and S3> from (1.4.10), 

(1.4.11), and (1.4.14), we have 

(1.4.15) 

We minimize the terms in the second expression on the right of 

(1.4.15) by an appropriate choice of 

'13 
N ) q.. 

..l. 
2-

113 
U <. N ,namely by 

and note that since ~ <. N
2

\-\ , this expression is well defined. 

Such a choice ofu gives us (1.4.1) with :'t. replaced by E.. 

§1.5. Proof of Theorem 3 and Theorem 4 

23 

We shall follow in the spirit of the proof of Theorem 2 in [5J. 

For each real number 1 satisfying o~ ~ < i , define the function 

(1.5.1) 
> 

We extend the range of definition of ~"l.(x) periodically with period 1 

in x.. Then, we obtain the Fourier-series expansion of S"1t".) as 

(1.5.2) 
€...(n·n:_) , 



I 

where L denotes sU1lllIlation over YY) with values corresponding to t~ 

taken together. 

Let 0( and e be real numbers as defined in the statement of 
! 

Theorem 3. It follows from (1.5.2) that 

We write the sum on the right as 

for some integer 1-\"7 \. It follows that 

(1.5.3) L !\lV\) ~ 'It ( ~ 1..\1. -f-' ') ) 

\'SI"''':'N 

where 

(1.5.4) = 

and 

(1.5.5) 

--I 

L 

Now, let a.;'i- be a convergent to the continued fraction for d.., 

with ((\J'\.J =\. Then, \c:( - (\/<)..\ < ",-2. • Next, take 

(1.5.6) 

24 
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We evaluate :!-2.. as follows. We write '3-1.. as 

(1.5.7) 
L I\ln) L ~ t ~(m(()1-~-f-'~ttt~-e(O\ (n~oi--l-' -,)) ~ • 

n~N 11"1\7\-\ 

Note that if either of h~()( -\-' ±'t is an integer, for some n , the 

contribution of this term to the sum over ~ is zero. We put 

-+ 
and assume that -9; is not integral. From (1.5.7), 

\ "}, \ ~ H\.~ N)t L \ ~ ~m el"'\7"~)\ T LJ z.' ;'" e( "'17-0-) \ I 
"~N Iml?\-\ ()~N \m\? H 1 

Put As is well known 

and therefore, by Abel summation, 

._' 
\ e ( m \1-oj:) \ \-\ -\ !. -I 

\ L ~ \\ fJn \\ 
Yn 

\rY)\-::>\-\ 

Moreover, since 

, 
\ e. ( Wl-trn"I ') \ \ L ~ \ 

lC"fYI 
, 

IMI '7 ~ 

j: 

uniformly in \1 and -&" , we have 

-, 
~ ( VYI -&,,:t ') \ mIn ( \) \-i -\ \\ B'; 1\ - \) • 

\ L ~ 
tc~ 

\M\::O\-\ 

I' 
It follows that 

,,-

(1.5.8) 7-4 <<. l\o~ N ') L vY\\" ( l) \-\ -\ \\ t><.~1.. -f> -± L \\-1') . 
..... ~t-I 
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We define the function 

which is periodic, with period 1 in hl. This function has a Fourier-

series expansion, in the form 

0<;) 

) I c.1--t e. ( h v.:r ") ) 

h""'--o() 

where 1 has the same meaning as in (1.5.2). It is easily verified 

that 

) 

h -\ 

We may write 

\h\ '> \-\2.. 

Then, it follows from (1.5.8) that 

"12- « (\05 N ~"t L I'hll'"\( H-')~-\) \ L -e..ChV12.0(.) \ 

1-;" \ \-,\ ~ \-\ 2- \sn~N 

L \~ c~ -e.('n( 0<.\'11._(> ±)l ') ') \ 
2-

-+ (\()?>N) 
1- Nt-(\UOCjN~) 

\~Y\~N il,\~H2-

-:::: o:J-)..l \) 
~ 

j-~l.) -\- o ( N \-\ -, (\oJ N 1-\ ) L ') 

(:2.) 

say. We estimate J).. trivially as 

~ (\0'd N) L L \-\",-2. ~ N\1-' \0') N • 

\ ~I'\ "'" N \ \-, \ ? \-\ 2. 

(I) 

To estimate ~2 ,we put 

= 
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Then, the sum of 
:1(1) • 

2... 1.S 

yCI-\2-) yel) 
H2 

) ~-2- 'YCt-) d=t -+ 
Kl. H H 

To estimate l((~), we apply Cauchy's inequality to obtain 

v. (2.v.N -+ 2-
\ ~\l-.\ ~u 

L e (hlV'\L -\''12.
2

) 01..) ') 

n'~"h-
\ ~I()\) vl 4 f,N 

u (2\'\ N ~ L 

ul...N + U L 

where we have put .1 ,:::2.~t and 

\'E:-\h\~u \~\t\""-N 

2ht = J. 

Hence, it follows by Lemma 1, that 

Next observe that 'V(l)r\-I~ N\-\-'. Thus, it follows that 

Y( H:z..) _ 'V(I) 

\-\2.. \-\ 

Hence, we have shown that 
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(1.5.9) 

by (1. 5.6) . 

We now proceed to evaluate :r,. Define the function 

(1.5.10) L \ L f\.(VI) e( mn
2 

p( ') \ 

\"Snl~~ n'E:,N 

In Theorem 1, choose and then fix an Eo r o. Then 

where 

From (1.5.4) we have, after an application of Stie1tjes integration 

at the last step, 

L \ 
"-

e..lVVly)2.o() \ 
~ vv\ IV' l "") vY)- I) L I\lvo ) 

\ ~ 'fY\ -== \1 V)~N 

~ 
~(\-\) -11 cg(l) , )k 11-2 '§ (~) ell>.. 

\--\ '1),-1 

From (1.5.10), we have 

(1.5.11) 

Since J:7('R) is a decreasing function of ~ and since 'l'l,~'l\) ~ ;.Sl,-I), 

we have from (1.5.6) and (1.5.10) that 
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(1. 5.12) 

We now choos e £. :-7£:..., l.°n (1 5 9) b ••• Then, from (1.5.3), (1.5.12), and 

(1.5.9), 

(1.5.13) L Ali)) t ~'\ (~n2. -f') - 2.~ 1 
n~N 

For the proof of Theorem 3, we put 

-t --t ~£o 
c.( €'o) N 

where c(~c \ is a sufficiently large constant, dependent only on to. 

Since ~ is irrational, there are infinitely many values of ~ 

satisfying Observe that if then 

For each such <i, we choose N ~ ~ , and so by (1.5.13), 

(1. 5 .14) L I\ln) \ ~~ (~n2 -~) - 2'1, } 

n~N 

for sufficiently large values of N defined as above. Thus, we have 

shown that there exists an increasing sequence of positive integers 

L ~ '1. (~nL - ~) L 1\(", ) 
C '1'~ -1 2£'0) 

!\l.,... ) = :l. '"'Ill -;- 0 N· 
L 

f'I ~N~ 
~ 

"~Ni. 

where ilL ':: c.(E. o ') 
N .-~ ; 3 t c 

for \.. = 1,2, ... . Hence, for all 
~ , 

sufficiently large N~, from the prime number theorem, 

) 
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(1. 5 .15) L l\D~ p) ~~~Cx.~'- - f» 7 CCE.o) 

r <. N~ 

The sum on the left is 

, 

and Theorem 3 now follows. 

For the proof of Theorem 4, we may assume ~ < \ as the result , 

is trivial for ~ =\ . Note that ~ in (1.5.13) was an arbitrary real 

number. We now choose ~ ~--{ +-'£.~ and "'l-=th , in (1.5.13). Then 

(1.5.16) L !\(Vl) t~h (O<n
k
_'{ --i~ ') 

n~N 

~o 1.. 1-

-= ~ 2-1\(1'1) -+O(N}O-e-/~)(\\)~J.N~) +(N'\.}.-') (Nci 2 -+N2.). 
f\S:-N 

The error term is 

if and only if there is an integer h 

such that 

that is such that .sy ~ o{n~ -h <. -y -+ ~ , and since ..... ~ ~ ~ \ it 

if and only 

which is what we require. 

Hence, from (1.5.16), it follows that 



L lOJ p 

t' ~N 
-y ~ 1,,1,\,2.3 <:" ~~ 

and Theorem 4 follows by partial summation. 

§1.6. Appendix 

It is crucial, in some applications, to have a power of a 

E. 

31 

logarithm in place of N in Theorem 1 (and so Theorem 2). Under the 

assumptions of Theorem 1, we can prove the following: 

where Glee.) is a positive constant depending at most on ~. 

The main point is an improvement in the estimate for the sum in 

(1.3.13). An application of Holder's inequality (for details of the 

technique, see the proof of Lemma 4 in §2.2) gives 

A similar improvement is obtained in §1.4(ii). The next improvement 

is required in the estimate for 

, 
\~\t\"::' Wi L 

in (1.3.6). We show here that for any ~q\, 

« 

By the definition of <;'I\..t), we note that 
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(1.6.1) 
~ 

\~ll\~ )('\~ <S M£. 

~ ~ \ ~ 1.. .J 

(a) Suppose that n1..~m1... Then, we must have ml:n, so that 

the contribution to ~ from the sum above is 

(1.6.2) 

\ ~ \t\ ~ M 

.!.. 
1.. 

Then, the sum in 

question is 

= 1 

"" ) Yh.) \t\ ) n\ , 

'f\~ 11''\1..1. -=. 01," i (nt.-tt)2. 
\ t \) "1-

t.C2Y1z. -Tt) :1),2._\"(\12. 

" I) 01 , ~ M '12. 

Applying Cauchy's inequality twice, to the final sum gives us a 

contribution of 
1.. 

(1.6.3) 
(L d(n)lt) ( 

f"'I ~ M 11'1-

1-

L J( \n IL -MIlo\')) 

"') ,(\\, ~ M'll. 
) 

L , 
\sl.t\~M 

where 

d( Lt\') , 

so that (1.6.3) is 
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1. \$ ( 2- d~(U,\) )"-~ \"<\ 2 (jOlj M ') 

\~Lt\ ~M 

3,/z. 

~ M l~o tv\ ') 

Collecting this estimate and that of (1.6.2) gives us, by (1.6.1), 

the stated result. 

There is no other new difficulty elsewhere. 
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Chapter 2. 

Estimate for the Exponential Sum 

§2.l. Introduction 

We use the method given in Chapter 1 to prove the 

THEOREM 5. Suppose ~ is ~ real number and ~ and q are positive 

integers satisfying (0'1 '\. )-=:\ and \ 0<.. - C\/q.,\ <.. \.-2. • Let N be a 

positive integer. Then, given any real number E"70 there is a 

positive number Colt.) such that 

(2.1.1) 

..L \ elf..) 

;- N 6. 2.0 ) Qo~ N) J 

where 

(2.1.2) 

and the implied constants depend at most on S. 

The result is of a poorer quality than Theorem 2 (one may hope 

to replace the exponent ~O by ~), but is better than similar results 

available in the literature. Thus, Vinogradov proves in [8J that the 

sum is bounded by 
\ 

I - 15"310 

N -\-

valid for 

§2.2. Proof of Theorem 5 

N6 
-'-
101.'+ 

Throughout this section, c(~) will denote a generic constant 

depending on ~70 only. We also put 
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( 9- -\ -\: N -~ '\- ') . 

As in the proof of Theorem 1, we shall require some preliminary 

results corresponding to Lemmas 2 and 3. 

LEMMA 4. Let N, V , y' ,W ,w' be positive integers satisfying 

V <:. V I ~"J...V ,W -< W I ~ 2\i\.} ,and YW ~N. Suppose 0<., a. ,and ~ 

are defined as in Lemma 1 with l03 q, « \a~ N 

Let (~m) and (6~) be two seguences of complex numbers, and 

define the sum 

(2.2.1) 
W<'n~W' 

Then, for any fixed real number ~ 70, there is a constant elf..) 70 

such that 

(2.2.2) (a) if y\ E: (w ) \N'] , we have 

(2.2.3) (b) otherwise, we have 

Proof. 

(a) By Cauchy's inequalit~ we have 

(2.2.4) ( 2- \(1..,\).)-i ( 

\/<rn<:;:V' 

\/W ~ L L Le("'r"'(""-n1')~ 
v< WI ""-v , " , t n1. 

W<t1~ ~Wl 
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We denote the triple sum in (2.2.4) by \4. Putting 

we get 

(2.2.5) L 2- ~ ( yY)?> * ( h )Yl2..) <X. ) 

\h\~ \ (\1... 
, 

where the sum is over the integers 

2.: ) , ~ \\,\ 1S 1fY\\V\ (W.J ... ) 

Applying Cauchy's inequality to (2.2.5), we get 

(2.2.6) \ \'2..\"2. 

f: YV\/ L L ( 'N 
rn \h \ 

-t- L e( .. ",,' ( '" l h , '" \ .. 'l'l \, , n ~ ) )" l ) 
n? ~Y\4 

Now, note that 

(2.2.7) 

so that putting 

we get from (2.2.6) that 

(2.2.8) + L L L L elm' ~,lh ,t,(\4)") ) 

M Ih\ Itln\ n'1-

~ L L 2.... \ L .{ b",'\'\:n't" )\ ) 

Yh \h\ It\"#\ nlt-

-f 2- L 2- nl\V'l \J\j )\\ ~m3~tQl, \\-j ) 
y'Y\ \~\ \\::\7/\ 
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Putting 

(2.2.9) 

and letting f~v) denote the number of representations of v in the 

form (2.2.9), so that f Cv ) is bounded by ~4l"), we have from (2.2.8) 

that 

(2.2.10) 11,1'- <% VW l VW'- T L J .. \v) ~'"( II~ ,11'0<11-')) . 

\v\~N1..V 

By Holder's inequality, the sum in (2.2.10) is bounded by 

(2.2.11) ( 

for any 9- ';> \ Using Lemma 1, and the fact that 

, 

for some cr,k, the expressions in (2.2.11) are bounded by 

(2.2.12) 

and we choose ~ ~ t . Hence, collecting the estimates from (2.2.12), 

(2.2.10), and (2.2.4), we have (2.2.2). 

(b) By Cauchy's inequality 

(2.2.13) \I, \' ~ (L I(\~.t) ~ 'v 2'Asv)6 h l'-
Y<"rn~V I 

L\'" , "'OL e C. ," 'en,' -".') 0( ) l 
"" =t-"L J 
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After a change of summation, the inner sum in (2.2.13) is bounded by 

(2.2.14) 

n I -:\: I'll. 

with 

) 
( 

I I -I, 
V -< rY\ ~ y'V\ In \J J N n ,- ) i"\ n 2. ) 

Put 

so that (2.2.14), say .\~ , is 

(2.2.15) 

with 

By Cauchy's inequality, we have 

(2.2.16) \ lL\L ~ W ( L \6
n
,,\'t-) t L -2- \ L e( 'V(h'JYh_)m~o( J~1-} 

nl. \l"'11\ n).. ....... 

_ W ( L \bV\~4-) t L 2- L e.( ~(J'1\)\'l~) ((nl~-mL~)<X) 
r)"l- \\...,\ ,'12. 1't),-:\=-M2,. 

-;-

the 0 -term coming from the case V'" =1,\12.. The multiple sum in (2.2.16) 

we shall denote by I., , and we put 
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so that 

) 

and we have 

(2.2.17) L L LJL e( ~lnIJYl~) ~lt')nh)O()' 
\~,\ rll.. It,\ Yn7.. 

By Cauchy's inequality, 

(2.2.18) 

Put 

'-V l t I) \'YI't) - \..\J l t I J 1'>13.") = ~ t,t").. ( t , -t t 2.. ""\; 1.. vY\ ~ ) ""'- '"» <. t.. J \: 1- ) WI "3 ) 
} 

say. Also, note that 

-v <'V. 

The multip le sum in (2.2.18), say "1 It, is then 

(2.2.19) LL L L L ~(,\,l\.1I)Yl1-)~U:I)t~)l'rl3) o() 
\nl\ Ill. It,\ \\:.1.\ 1'1\3, 

By Cauchy's inequality 
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Putting 

.J 

in the multiple sum in (2.2.20), the said sum is 

(2.2.21) <$ LLLLL \ L e.( 1lt\)t1-)n'3)'1lh\)\"~)n3)<X}\ 
\h\\ \\:;,\ \b.\ "'3, Ih ... \ Yl~ 

= L L L LL \ L -e(~ltl)b-)~],).I0~\~2~~\A)\ 
l\...\\ \\.\\ \bJ \')')~ \ \."n. \ n~ 

~ L L LL L MIlA ( Y\J , \\ ~ l ~ IJ b.. ) m; ) . 6 ~ \ ~ L Q( \ \ - I ) 

\1,,\ Ib\ Ib.1 Wl3 \1-."1.1 

Putting 

(2.2.22) 

and noting that the number of representations of v in the form 

(2.2.22) does not exceed d"t-lv) , the sum in (2.2.21) is 

(2.2.23) 

by the argument given for the estimate of (2.2.10). Collecting the 

estimates from (2.2.23), (2.2.20), (2.2.18), (2.2.16) and (2.2.13) 

gives us the result (2.2.3). 
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For our purpose, the sequences ~Q....,) and 1.6,.,'1' are going to 

satisfy the property: 

L \C\"",\1rI. 
). ). 

(2.2.24) ~ V (\o~ V ') ~ V (\o~N) 

V<.Yn~V I 

L \ \.:,,,\ \f-
A " ~ \N (\~ W) ~ V'J (\,,~ N) , 

\l\1<.Y\~w' 

where A is dependent on k only, and the value of which need not 

concern us. Indeed, we shall always absorb A into c(£) in the 

analysis that follows. 

LEMMA 5. Subject to the conditions of Theorem 5 and the 

conditions given above, in (2.2.24), let M" M ..... , N, , N'L be positive 

integers ~ that 

M, < Ml. "I, <. N'l... 
) 

Define the sum 

(2.2.25) T 

<i. 70 , there is a constant 

(2.2.26) (a) if for all 

(2.2.27) (b) otherwise, 

Proof. This follows on using (2.2.24), with Lemma 4 in a manner 

analogous to the proof of Lemma 3. 
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3-

For the proof of Theorem 5, we may assume that q...:. N since 

the result follows trivially otherwise. So, we have \~?~,~ <.. ~l;)caN. 

Using Vaughan's identity (cf. §1.4), with 

o 

where u. is an integer not exceeding 
1/3 

N ,and is made explicit in 

(2.2.42), we have 

(2.2.28) 

with 

(2.2.29) 

(2.2.30) 

2-. f\.llf'l) elYY3.ot.) 

n~N 

with Cd as in (1.4.6), and finally 

(2.2.31) 

where 

S \-.A.. 1. ,s C c.\ 1 , ~ L~ 1. Note that the sequences ~ I uJ ~ T t '''~ 

satisfy the condition stated in (2.2.24). 

, 

,and t I\(n») 

By Lemma 5(a), with M1 =\ )\Y\l...=vY\'Y'llu)N~-')N\-::~) N'l.-:::.N, 

it follows that 
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11, (p.,) ~ ( 3/4- 3.11+ -tE.. .l. ~ -t '\ ( c::.<"L) 
,..<) ,- """ u N + U L N I'::::.. ) \ora N) , 

so that 

(2.2.32) + U 

..L 
.I... \,,\, -4- -f,. \ (\ c.l~) 

I , 6. ) 0 o~ N ) , 

To estimate Az. , we write it as 

(2.2.33) ( L ~ ~ 

"?m~N'" L +L L -+ 

n-. ~\A. r~NY'<'"I 
-I 

IA <. r -= N ":t. u<:: W1~ N 1/1- r~\A 

.l. 

N'" < I'n"'u. 1.. 

j=-' 

say. WethenhavebyLemma5(a),with M\=N, =\.>ML:::'U }NL-=-N, 

(2.2.34) 

.J... 
"4 

by Lemma 5(b), with \",\ \ = NI =.\..,\ M2-= N2 -::. N 
) , 

(N 
3\ l_E..') cl!. ) 

A~l..) 
~4. ~ E.. 

(2.2.35) 
~ + N ~Ib \. \o~ N) . 

trivially 

(2.2.36) . 
,) 

from Lemma 3(b) with 
tv\ __ ,,1... I'" _ \ 

) 1'11.. - V' } ~,-
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(2.2.37) 

.I... 

d f L 3 (b) . h \'/\ ..... " \ I'-.. \ 2.. I' I, ~ N u. -, an rom emma w~t "\\ -=\}. ) \'\1- -= ~, -=c \~ .> I'!... , 

(2.2.38) 

Collecting the estimates together from (2.2.34), (2.2.35), (2.2.36), 

(2.2.37) and (2.2.38), and using (2.2.33), we have 

(2.2.39) 

(\ '\ c.(-s) 
\. o~ N ) . 

To estimate ~3' we write it as (after a change in the order of 

summation) 

(2.2.40) 

Applying Lemma 

1/2.. 

M:L~N and 

(2.2.41) A?> 

L 'LVYI I\t",) 

u<Y\~Nu. -\ 

5(b) to both sums in 

Nl- = Nu - \ , we get 

2.1 4£' 

~(N 
3J. - II'S 

--t N u 

-\- L L l\l~n~ } «",'n'o,) 

'" <'r") ~ N"2. U"-Vl'! ~Nu ~\ 

vYln ~N 

(2.2.40) with M,-::N\-=U., 

-L -'i. ') elL. ') 

N ~\b C\o~ N") -+ . 

Collecting the estimates from (2.2.41), (2.2.39), (2.2.32) and 

(2.2.28), we have 

"2 1\(",) €(n?o() 

Y\~N 

_11<> .l. ~-£. 

N ~ -:2.. "" ;- u. --+ L\ N I~ 

1- -f
\1.. 

1'.16. 
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Choose 

(2.2.42) u -= , 

to get the result. 



SECTION B. THE METHOD OF MOMENTS AND ITS APPLICATIONS 

Chapter 3: On Riemann's Zeta-function--Sign Changes of S(t) 

Chapter 4: Mean-values and the Distribution of \5l~)\. 

Chapter 5: On the Distribution of a Class of Additive 
Functions 

46 
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Chapter 3. 

On Riemann's Zeta-function--Sign Changes of S~t) 

§3.l. Introduction 

Let 

where the amplitude is obtained by continuous variation along the 

straight lines joining 2 ,2...~l.t and t -ti. t ,starting with the value 

zero. When t is equal to the imaginary part of a zero of Z;(s) , we 

put 

S(t.) 

The variation of S~) is thus closely related to the distribution 

of the imaginary parts of the non-trivial zeros of ~(S). It is also 

well-known that 

Nl t) 
t .~ 0 ( t) 

where the term Olt-') is continuous in t . 

In a comment on Littlewood's pioneering work on Stt) , Selberg is 

reported as having said that "it is possible to show that the number 

of changes of sign of 
, - £ " 

S\t') , for t E: <. 0) \"), exceeds T L \i)~ \) 

and indeed, he added the observationt that with a bit more effort, 

(\ )
- f. 

one could even replace ~ T by an explicit slowly decreasing 

function. 

tIn some notes given to H. Halberstam, one of the editors of 
Littlewood's collected papers, to be published by Clarendon, Oxford. 
The above comment is in connection with Littlewood's paper "On the 
zeros of Riemann's Zeta-Function," Proc. Camb. Phil. Soc. 22 (1924), 

295-318. 
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The best, unconditional, result available in the literature is 

due to Selberg [lJ himself, and has 

...L 

(\o~ \)3 e.xp( -A J\09 l0'::l \ ,), 

in place of above. 

We provide a proof of Selberg's statements. 

,where -1: <.. 0( ~ \ ,and 

~ ~ arbitrarily small real number, there is ~ A. -= A. lei.. ,~ ) /' 0 

and a changes its 

sign at least 

_1.. -t 'b 

\-\ (\O<jT) ~x~(-A (\o~103T)( \"5\o~\,,'j T)" '), 

times in the interval (\ ~ \" -\- \-\). 

In particular, there exist positive constants A(~) and \ol~) 

such that Slt) changes sign at least 

times in the interval (0,1), for T7\ol~). 

Note. If we assume the Riemann Hypothesis, the theorem is true 

with (I <. 0( ~ \ 

For the proof of this theorem, we shall require asymptotic 

formulae for integrals of the type 

,+\-1 

~ 
.2..\r{ 

\Slt)\ cit , 
.,. 

and 
T-t\"\ l.~ 

~ Sllt+h) -Silt) \ dt ) 

i 

where 
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with the error terms uniform in integers ~ ~ \ and h?Q with a , 

suitable value of ~. (The results given in this direction in [lJ 

are not uniform in ~.) These formulae are established in Sections 

3.2-3.4. We shall prove 

THEOREM 2. If T""' ~ \-\ ~ I" ,where i <. Q( ~ \ ,there is a 

such that for any integer k satisfying 

,. 

where the implied constants depend at most ~ QI.. , and 

THEOREM 3. ..L<--.J <. \ 
2. <A -

, there ~ 

an abso lute constant A2.'" A.l...lt><.)?o such that for any integer ~ , with 

and any h satisfyingt 

\ \ -
...::: - 00 \ -' 

10k ...) 

T;-I-\ 

5 =. + ,. 

tThe lower bound given here can be relaxed, as is clear from the 

proof, but is itself more than we will need. 



As a consequence of these theorems, we shall prove in Sections 3.5 

and 3.6 the following two results. 

THEOREM 4. If ,<:>( $ \-\ 
~\ and .1.-<'0( 

2-
-:; , given any b ~o 

we have ---
-[-I- " 

1 2. \-\ J \o~\c)~ \" \ S\'c)\ J.t --
JK 2IT 

T 

the implied constants depending at ~ on 0( and ~ . 

THEOREM 5. If (T1-h )01. ~ \-\ ~\ and -;:'<'0( ~ \ , given any 

~ 70 and any '" satisfying 

.1. 
\°3 \" 

(\og T') L h- ' < <- E, ) 

\,,~ \o~ \0':) \" 

for some suitably chosen constant € \ £. \ lot) '> 0 , then 

\"-t\\ 

1 \ S\lt-th) - Sllt)\ dt 
T 

where the implied constant depend at most ~ ~ and ~ . 
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Notation. All implied constants are absolute and depend at most 

on ~. Moreover, we shall use A to denote the generic constant of 

this kind (thus, for example, we might write A"l... =-A. etc.). 

The rest of the notation is made clear in the context, with p 

and ~ (with or without suffixes) denoting prime numbers. 
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§3.2. Preliminary Lemmas 

We first state a lemma which will be needed later, on several 

occasions. 

LEMMA 1. Let ~ be a real positive number and suppose that ~(n) 

are complex numbers, satisfying 

for some fixed constant L. 70 Then for any integer 'R"4 \ , we have 

(3.2.1) 2 ~(PI) .• _ ';;lf~) b ('1-,) 0 -0 S.l~k) 

( PI- - 0 fie 4, 0'· '\.Iol. ) -r, 
kl (L '~~)y 

PI ,.0 -.. ,~~ <~ 

'\,1) 0 -- o,'lk <;~ 

PI 0 i' k -:. '\... 0 ~ '\..1<. 

\'<'j 

Proof. Suppose first that all the P~~ in the sum on the left of 

(3.2.1) are different. Then we shall have a contribution of 

(3.2.2) 

where L:.
1 

denotes the sum over those primes PI.>·· -"J P\.. such that 

since to each choice of distinct PI) _ .. 0 )?\.. ' there are exactly ~\. 

ways of choosing 1,') .. '" <1.k so that <\1' _ .. ~~ = Pi .. ·· Pi, We can 

write the sum in (3.2.2) as 



( ') ~::~) \'rJ. 
(3.2.3) L-,~..) 

i'1) ..• ,f'w.<~ 

~. * P.> So,.."., ~"*-.l 

The second expression in (3.2.3) is 

~ 4(p,) ..•• ~ 2(p~) 

(Pl .... f~,)~T. 

-1.:t 

(p, .... Pl\l.-L) 

= C2k 
( L f'- 2'- ) k-2. ( L p-ltC) 

~<j p~~ 
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) 

Next, the contribution from the remaining terms in the sum on the 

left of (3.2.1) is 

(3.2.4) C2~ 2 

-= C 

PI> ... 7 Pk -<. 'j 

q, I ) ... ) '\."" <..j 

PI" '17" -= ~I ... C).k 

\\ :: p ~ $0 vne ~ i: j 

2~ L (~I 

PI I •. ) p\< -4 <. 'j 

<\.1)' .. " '1-\t-l.. <'j 

, 

- 2..t. 

L 
- It "t 

. P\?'-l.. ') Pk - I 

p\( -') <1..1< -. <'j 

PI . -. f\~. p 1. -: '1- I 

;>. 

-2. k-\ . ·Cj.k -2, '\..k - I 

Now, there are at most ~-\ ways of choosing 9..-k.-1 such that 

q,k-, and Pk-I are the same. Hence, the above estimate for (3.2.4) 

is 

(3.2.5) 

\\) .. ~ \"\0\-2. <:.j 

'\.IJ ... ,q.\r.-I..<j 

1',-- .t=>\<-l. ~ q,1"·'\.~'2.. 

, 

, 
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since there are at most ~ choices for D I ~_\ • We may now show, by an 

inductive procedure, that (3 2 5) . •• ~s 

(Lr-n"t' ( L f-"1O) 
~~~ VI "'j 

+ C. 2. k ( k - I) ( k -2.) ~ ( L V -H Y" -"{ L p -.. 10 Y > 

p<~ r'" 'j 

and the result follows. 

Define the number CJx,t for x 7,,- 2. , t"?' Q in the following 

manner: 

(3.2.6) .:::: -' 2.. 

where f runs through all thos e zeros j-> -+ ~ -y of C; (s.) for which 

(3.2.7) \t-y\ ~ 

LEMMA 2. Suppose that \~ ~ H ~ \" ,where {..( <:>( "S \ ,and 

Then, we have 

for 0 ~ 1Y ~ 'ak 

(3.2.8) 
cAt 

This is Lemma 12 of [lJ, but with the error term made uniform 

in k and~. The result is implicit in the proof of Lemma 12. 



LEMMA 3. Let \-\ > \ , \<. ~ \ and 

are complex numbers satisfying 

(3.2.9) 

Then 

(3.2.10) 

and if 

(3.2.11) \ 0(; \ < ~ ) 

then 

(3.2.12) 

Proof. Write 

-= 

It follows that 

\r n \ < 6
k L 

I'IJ .. )f'\or,. <j 

< 

54 

\ <. '" s. \...ll/'I<. • S ppo th t o - \ use _a_ ''\ f 

\0'3 p ~ .... 

l0:l 'j 



Hence, we have 

(3.2.13) 

(3.2.14) 

Now 

Also, 

m<n 

Substituting these estimates in (3.2.14), we obtain (3.2.10). 

To estimate (3.2.12), write 

( 2- oi.
v
! ~ - \ - 2~'t ) k 

r~ 'j 

-I -2.~t 
n 
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where 

\ ~~ \ p:'i<. L 1 
K 

< == ~ c .... ) 
r'. > •• ~ f'k 4( j 

n = p •.... Pk 

say. Hence, the integral in (3.2.12) is 

(3.2.17) 

Now 

(3.2.18) 

PI) .... .I P"'<j 

,\-1)") 'l-t <j 

P, .... p~ -=- q" .. - 9-1<. 
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\ 
-\ 

_\ -I \ YYI\ 
r"Yl Yl ;)0 n , 

By Lemma 1, with 't~\ and C =\ ,the right hand side of (3.2.18) is 

(3.2.19) 

Next, 

k -( \ 
A K. 

by the argument leading to (3.2.16). This is now 



(3.2.20) C ' -I 
.. Y) 

P,,- ,pk, .... 'j 

'i. 1 ). • I '-to. <.. j 

I?,. fi,.. ~ '1... 'H ... 

J 

by Lemma 1, with C;:\ and 't=~. The result now follows by sub-

stituting (3.2.19) and (3.2.20) into (3.2.17). 

Let x.:;.\ and write 

f\..(>A) 
) \ ""= n ~.,.. 

10<:) 1.... ( x?"", ) ~( x~/ 

"(~ ) 

- 2. \0') n ) 
)("Y\~x2.. 

J\x<"r.) ) 
=. 

2 10')2)( 

I\.ln) 
\oCj l.l )( !>/n ') 

XL~Y'\ 4:X 
3 

2.. \oJ2. n 

We quote the following result from [lJ. 

LEMMA 4. and 

-k.. ~ 0( ~ \ Put 

::: T 

Then 

(3.2.21) 

where 

Al\» - !\-,:.cn 
(3.2.22) = rr \o~ p 
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(3.2.23) p - 1..\ t 

) 

(3.2.24) 

and 

(3.2.25) 

LEMMA 5. Suppose that To(~ \-\ ~"\ and ~ <.. 0( ~ \ Then 

(3.2.26) S(t) + Tel 

Proof. By Lemma 4 

(3.2.27) 

where the notation is plain. Now, by (3.2.10), with B -=oC~), 

(3.2.28) 

T 

2.1< 
\ Edt) \ 

and by (3.2.12), with B-=OU), 

(3.2.29) dt 

By Lemma 2, with 'S=\ and ")) -= 2t, we obtain 

. 
/ 

J 

58 
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(3.2.30) 

Next 

T+I-I THI 

(3.2.31) ~ 
\ (" 2.t< 2~()"J\:; --i.) 
J \..<JX,t -~ ') x-

I 
T 

and by Lemma 2, with 

, 

the first factor in the product on the right of (3.2.31) is 

The second factor is, by Holder's inequality 

(3.2.33) 

, 
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and by (3.2.10) with t)-=. O( \), the integral over t is 

(3.2.34) 

Hence, (3.2.33) is 

k..L l.~ 

~ (Ak'). \--\2. .(\03X.) 

Thus, from (3.2.32) and (3.2.34) 

~k 

(3.2.35) ~ (At') \-\ 
T 

Hence, combining (3.2.27) with the estimates (3.2.28), (3.2.29), 

(3.2.30) and (3.2.35) the result follows. 

As a consequence of Lemma 5, we have 

THEOREM 6. Suppose that ,01.. <S \-\ ~ \" with -i < 0<. ~ \ Then 

if K // \ 

(3.2.36) 

(3.2.37) 

is an integer --

3 

x.. 

11"t\ 

~ IS \t) 

"\ 

and 
o<..-\. 

I/~ 
LO\c. 

\ ~ r.. ~ \-\ -

Proof. We may write the expression between modulus signs in the 

integrand of (3.2.37) as 

Slt) ;- rc- I LIlt") ;- TL,-I L 
L>":"''' <. 't: 

Taking the 2..k - th power and then integrating over L T ) 1" ~ \-\ J , the 

integral on the left of (3.2.37) is 



(3.2.38) ~ :-{ i'"\ SIt) -<- K. -. L\ It) \ '-'<It 

I i 

By Lemma 5, the first integral in (3.2.38) is 

4-\.. 
~ (A\") \-\ , 

while by (3.2.10, with Bc=:Oll) the second integral is 

Itk 

~ (Ak') l-\ 

(In the notation of Lemma 3, 

\~3 I' ~d ~ 

\c:l 'Z. \Q~ P 

\o~ f 

\o~ t. 

so that (3.2.9) is satisfied with e in place of ~.) 

§3.3. Proof of Theorem 2 

Put 

(3.3.1) 

(3.3.2) 

Then 

Zk 
(3.3.3) Slt) 

Slt) + Tel L 
P<' C 

The last sum on the right of (3.3.3) is at most 
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, 



2..f.r. 

\.6 (t) \ L ( ~) I Mot' \ L 
~ -:: I ~<.:e-

, 

l..k. - \ 
J..k -I - t - (~k) J, 

\L :: \ 6. \t) \ L .1-\1 
l6.lU\ 

5'~ltl09P)\ . 

fP t·",O p<. ~ 

2~ - \ 2k - \ -1, 

~ \'~lt)1 L (~~!-\) l6.\t)\ 
t 

\L S\Vj ( t \0 ~ r ) \ 
~ rr 

~ ~() 

Thus, we have 

(3.3.4) 

(3.3.5) 

(3.3.6) 

1HI 

) 
T 

1+k 

« ;:) I D.lt)\:l~ Jt 

,. 

by Holder's inequality. 

itk 

(3.3. 7) ~ CAr..) H 

P<c 

p<t 

i 

, 

) 

subject to the conditions of Theorem 6, which are easily verified. 
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To evaluate 

(3.3.8) , 

we write 

(3.3.9) 

where 

(3.3.10) ) 

p<t 

and the integral (3.3.8) then has the binomial expansion 

2t. 

(3.3.11) (~t· L t-I); (~ .. ) IH

" "t
j 'i. L<-j <it 

j'=o T 
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Lt ttH 

~ 0 ( ~ -. ~ C 1 \ 11 1t j 1,2 k -j ,H \) . 

jik 

The integral inside the error term in (3.3.11) is 

(3.3.12) ~ 

Using the fact that 

for any two distinct positive integers ~ and b , the logarithmic term 

in (3.3.12) is greater than 

-2k 
~ ) 



so that the contribution from (3.3.12) is 

and the error term in (3.3.11) is then easily seen to be 

(3.3.13) 

Next 

(3.3.14) 

k 
4: A H. 

T+ \-\ 

r 2.1< 
j \ "llt)\ dt 

T 

l-\ L 
flJ "J r~ <. t
q I ) , ' , )1\ 1<. <. to 

PI' ' ' f1< -=. '1-, .. - '\1<. 

-+ o( L (~, p~ q. '\r..'t'h 
i' I J ' . . / Pi< , <\' , .-' ~ q. 1.; < t 

PI ,?(.. "" '\.'" 'l'k 

The error term in (3.3.14) is, as in (3.3.12) 

(3.3.15) 

By Lemma 1, with c.=\ and 't "'--'2. the first term in (3.3.14) is 

+ 0 (r~!H(L p -') k-l ) 

p< l 

Now 

(3.3.16) 

so that from (3.3.14), (3.3.15) and (3.3.16) 

(3.3.17) 
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Hence, from (3.3.8), (3.3.11), (3.3.13) and (3.3.17), we obtain 

This, when substituted into (3.3.7) gives us the estimate for 

the error term as 

(3.3.19) 

4f< 

« (A\.- ') \--\ 

Hence, from (3.3.4), (3.3.5), (3.3.18) and (3.3.19), our theorem 

follows. 

§3.4. Proof of Theorem 3 

With the notation of Theorem 6, put 

6 r lt) - 6.lt) - Stt) 

say. Then 

t-tl-. 

-;Ilt-th) -SIlt) ::: ~ S~u) c\LA 

t 

and 

t-t h <.( 

( 3 • 4 • 1) I) S~ IA) J. ~ \ 

t 

tTl-. 

= _li.-I~ L2. l U.)Ju 

\ 

TLl."tc: 

t 
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exactly as in the analysis of (3.3.4). Now 

ti\..,:Lk 

\ ~ t:\~~) d", \ ~ 
2k -\ 

h 

t t 

and therefore, with the help of Holder's inequality, 

1t H t-t h 2.f< 

(3.4.2) j \ ~ Slu) d.u\ dt 

, t 

Next, note that 

) 

(3.4.3) 
\ 6..lt) \ 

so that by Theorem 6 with 

(:-t\...)d. ~ \-\ ..,;,"T . J., "::"0<"'::"\ 
.J 2. -

and l t>( - ~ )h.ok 1/1<-

eli-h) ~ =e <f: \-\ 

(3.4.4) TH\ ~k 

) \ 6\ t ) 
1.~ 

(A~ ') \-\ \ at; ~ 

1 
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lot.. 

dt 



Thus, subject to these restrictions, we have 

,1-1'1 t.", '-¥-1;- \-\ b h 2.t: 

(3.4.5) ~ \~ S\~)dU\ <It 

T t 

= Tt _Lf< 1 I ~ L1J\)) A~ \ cit 

1 t 

We now proceed to evaluate the main term in (3.4.5). The 

integral is 

(3.4.6) 

T 

Now 

(3.4.7) 

so that 

(3.4.8) 

where 

(3.4.9) 

Go;, let -r\., ) l~~) - <":'$ a lOJf) 

-# ~o~ p 

't = -,,It-) -= L p -\-tt l\o~ r f' ( p-lh -I) . 

,,<..t 

The integral in (3.4.6) is therefore equal to 
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(3.4.10) 
(2k)\ 

( ~( '. )4 

zt Itt\ 

~ o( 4-~ lJ~") \ ~ ,; '1 4
-; H\) . 

..)-=-o ,. 

j\t 

Now, if ji k , the integral within the sum in the error term in 

(3.4.10) is 

(3.4.11) ~ L 
PI ... · ,p)-<:c 
q.,) ... ) '\.1..t< -) <.'C 

,) 

~ n 
\h 

I p p. \-' \ '\.n - \ \ \ ~ 5 I··· J 

'1.'" Lj.1..kj , \ OJ '\..., 

since 

and by the analysis used in dealing with (3.3.12). Put 

Then, from (3.4.11), the error term in (3.4.10) is 

(3.4.12) 
2k T 

~ A'r<. H . 

Now 

ItH 

(3.4.13) J = H L 
T 

\'I)"J \'", < r 
'1. \~) '}{ < c 

v,, P f.. -= q, •.. '\.-1<. 
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in exactly the same manner as we evaluated (3.3.14) and (3.4.10). By 

Lemma 1, with 't ~ -t , 

(

\\., \ ( I 

P j - \ ) \\0') ? j ') -

and C -=h ,the sum in (3.4.13) is 

(3.4.14) 

Now, assuming that 

< \ \o~ 1" 
10k 

we write the sum in (3.4.14) as 

(3.4.15) 

The first 

(L 

sum 

'/l 
p < e " 

in (3.4.15) is then 

) 

) 

\"L 

L P - \ o( h L L h L l <>:l '-~ ) 
(3.4.16) 

it 
-T 

pc:.-eill-, r f<.~'/h 

by (3.3.16). The second sum in (3.4.15) is 

(3.4.17) 
'/h e ~tl<t 

-= h">--\ \.,-\ 
L;" oJ -t O( \r,2) , 
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whence we have 

(3.4.18) 
hL. 

\o~ h.-I 
tt J 

p<,c. 

Collecting these estimates in (3.4.13) gives us 

Substituting this result and (3.4.12) into (3.4.5) gives us Theorem 3. 

§3.5. Proof of Theorem 4 

The main idea in the proof is to relate the integral to integrals 

involving the even powers of '5\-\::). This is done by noting that for any 

rea 1 number F , 

(3.5.1) \F \ 

Put 

(3.5.2) 

and 

(3.5.3) = 

Then, we may write 

(3.5.4) 

\ 

4T["l.. 

_..L 

~ 2. 5lt) . 

1-

Wlt) LJ)) 
~\.I. ) 

u.. 



for any real number A ~ D (but)., will be chosen sufficiently large 

later on). The second integral in (3.5.4) is, trivially, at most 

-I 

~/~ A Therefore 

TtH 

(3.5.5) ) IV\lCt)\ r\t 

T 

Next, note that 

(3.5.6) 

so that the main term in (3.5.5) is 

(3.5.7) 

where N is chosen to be of the form 

(3.5.8) 
, 

,,-'2. -x. ) 
(, 2N12.. ) 

+ 0 ( ( '2.N T 2) '. J 

with e a sufficiently small positive absolute constant. Thus, 

Theorem 2, the error term in (3.5.7) is 

r\ (2..N -\ 2.) I. I 2.N -\ \ 

4"1 -- J. (3.5.9) ~ (2N;-l. )\. ~1f)'. l. N -\I , 

\-\ 
(LA ')2N 'A 

~ 
N\ Nl.. 

by 
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Now, again by Theorem 2, noting the condition on t=j , which is 

satisfied, the main term in (3.5.7) is 

o 

The error term in (3.5.10) is 

(3.5.11) 
, 

In the leading term in (3.5.10), the sum is 

(3.5.12) \ - e. 
_ I+I.A 2-
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Hence, the error term in (3.5.12) contributes to the leading term in 

(3.5.10) 

(3.5.13) 

The first term in (3.5.12) contributes, when inserted in (3.5.10), 

(3.5.14) 

_ Ltu '2.. 

I-e. 
---c\u 

Collecting all the estimates together, we have 

it-Ii 

(3.5.15) 5 \\'\I(t)\ ckt , 
2.. 

=-\-\ 
VJ( 

from (3.5.9), (3.5.11), (3.5.13) and (3.5.14). 



Choose 
i-2.'l. 

). = N 

where S 70 is an arbitrarily small absolute constant. This gives 

us 

(3.5.16) 

and hence Theorem 4, by the definition of Wlt). 

§3.6. Proof of Theorem 5 
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The proof of this theorem can be carried out in exactly the same 

way as the proof of Theorem 4. We put 

_.1. (t-t\" 
h -I t, 1- J Slu) ctll 

t 

where 

= 

To use Theorem 3 in the same way as we used Theorem 2 in the 

previous section, we shall assume that 

<. _1- lb~ \" ) 
\0 N 

with N defined in (3.5.8). So, we may use Theorem 3 for each k.~N • 

The analysis then carries through as in Section 5, with W\~) in place 

of \Ntt) and ';1.., in place of 't giving us 

with the previous value of ).. Theorem 5 now follows from the 

definition of Wdt). 



§3.7. Proof of Theorem 1 

The method of proof is standard and is given here only for 

completeness. Put 

where (cf. (3.5.3)) 

(3.7.1) 

Define 
t;h 

J:lh)tl -::: I = ) Sl ~) d.u 
t 

and 
hI-. 

:J(\',t) ]" - ~ \ <;llA) \ cl.lt . 
t 

Let E denote the subset of (1)"\;- \-\) such that for each t t E , 

Then 

Also 

) 3l\:) dt
E 

~ ] l~) c\t 

F-

:::0 ~ (:-nt) - \ Itt)\) cl.t 
E:. 

where P-\LE.) denotes the measure of c. So, we have 
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(3.7.2) 

The numerator in the expression given in (3.7.2) is, by 

Theorem 4 and Theorem 5 

(3.7.3) 

subject to (3.7.1) and the conditions of this theorem (this is because 

Now 

,+\-\ 

j -:lIt) cit 

T 

J \"3 h - \ 

h 1-1"1.\1"1-\ 

~)) \SII-)\ cit du 

o \;-1.\ 

). 

/ 1 
::l.. 

So, if T is sufficiently large (i. e. 1 ~ '0 ( 5lJ o() ), and 

(3.7.4) 

for some suitable C, = C,l~)~)70, we have the expression (3.7.3) as 

\0,:) cj> l "1) 

J \03 \0 ~ T 

for some suitable C2-c.~) 70 • The denominator in (3.7.2) is simply 
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(3.7.5) du. d t , 

"';-u ""t \; 

\ \Slt)\' Jt; dUo , 
T-I-lA 

by Theorem 2. Thus, we have seen, subject to (3.7.4), and sub-

stituting (3.7.5) into (3.7.2) that 

for some suitable 

G-, ) ..... ) Gtl1 \., -11 ,where each of the intervals is of length '" , except 

possibly for the last. If G\ contains a point of E , then SIt) must 

change sign either in G-.:. or <i-~'T'. Since at least l"'-'n-.CE) - 2. ') 

of these intervals contain a point of E, then Slt) must change sign 

at least 

times in the interval ("I )\+\-\) , where C.4CS,) and Cs(~) are suitable 

positive constants. 
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Chapter 4. 

Mean-Values and the Distribution of 

§4.l. Introduction 

In Chapter 3, we showed how one can derive the asymptotic formula 

for the first mean of \ Sl.t1\. In this chapter, we shall prove the 

following extensions of Theorem 2 and Theorem 4 of Chapter 3. 

THEOREM 1. Suppose To( ~ \--\ ~ \" ,where -t <. ()( ~ \ Let). be a 

positive real number. Then, for any ~ '"70 and for \" ~ 10 -=- \0 ( 0( ~ b) 

some suitably large To ~O, we have 

It-\-I 

(4.1.1) ~~ \Slt)\ 
). 

cit - v). 

1" 

subject to the condition that 

(4.1.2) 

where 

(4.1.3) 

and 

A. 
-\ 

~ 

fA 

\0<) \0) \0:J 1" 

\'l~ \o~ i"5 \o~ , 

--Ct -$,)). 

L.T 

Z, 
- (i -b ) 

, 

(4.1.4) rc A:') 

Corollary. If \<>( ~ \--\ -f:. \, ~.::; 0( ~ \ 

o<).~\ 

A '? \ ) 

and for ~ sufficiently large number \0(").)""7 0 , 

we have 

, 
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(4.1.5) dt 

We then apply Theorem 1 with A E 7L to obtain some information 

on the limiting distribution of ISlt)\. Put 

(4.1.6) , 

and denote by Mlcs-)T) the measure of the subset in (T) \tH) such that 

where cr- is a non-negative number. Put 

Then, P(6)I) is a distribution function with characteristic function, 

say, tr\s) , defined by 

Now, ?l~)I) tends, weakly, to a limiting distribution, namely 

--" = 

The corresponding characteristic function is 

Our purpose is to evaluate the discrepancy between pCt::\"") T) and P(<i"") 

for T sufficiently large. We do this by means of the Berry-Esseen 

Theorem (see §5.3). We find a relationship between 41l~) and 1(s) 

by means of moments, using Theorem 1 and prove 
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THEOREM 2. ~ 7/0, we have 

where LT was def ined in (4. 1. 3) • 

We then have the following corollary, which we label as 

THEOREM 3. For , the measure of the set 

contained in (\ JI1- \-\) for which 

, 

where N<r) depends at most ~ IS'" and 0( • 

In particular, we have the 

Corollary. Subject to the conditions on H, as above, the measure 

of the set contained in (\ )I+i-\) for which 

\ :5 l t ) \ -<. S -J \03 \03 1" 

It is clear from the mean-value theorems that the measure of the 

set contained in (1 lIt \;) for which 

for any ~"70 ,is also O('b\-\) for \" ~\o('b) The result of our 

corollary appears to be new and says that \Slt)\ has normal order. 

We defer the proof of Theorems 2 and 3 to the next chapter, where 

corresponding proofs are given for additive functions (the method 

being identical). 
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§4.2. Proof of Theorem 1 

Define W(t) as in (4.1.6) so that by Theorem 2 of Chapter 3 

(4.2.1) = 

f., .L \ 

o( (A~) tv-2-) , 

for 

L 

(4.2.2) I ~ t- ~ (\\3'd \0 ~ "1) (. 

We consider two cases, depending on the size of A 

(a) 0 < A ~ \ . 

We start with the formula 

2. 

\ F \). 
\ ~oQ ( SlV\ l f\ u ') 

d"" (4.2.3) 
L) \ 1- ), 

, 
0 u 

X 2- X-A) \ ) ( 'S\V\ I\"::l"" ) 
du o( '= -t ).C), 

C). Ii" /\ 
V. ) 

0 

for any complex number F , and real number "X. /"0 and with 

(4.2.4) du 

o 

Note that in the proof of Theorem 4 of Chapter 3, we had used ). -: \ • 

(b) Define the non-negative integer m and the real number & 

uniquely by 

(4.2.5) ) 
) '), '/ \ . 

We use the formula 
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I f="\"A 
\ F \ ).fY\ )~ ( 5th 

4-

(4.2.6) \F\I.\ ) 
-: 

du 
1>~ ).-te 

, 
0 u 

\ F\ 2..Y\'1 r (SIVl \F\u )4 ~ o( 
\ F \ .l.YYl 

X -, -<> ) , -= dlA 
l)~ L'ttt 1>e 

0 
u 

with 

<>C 

( 5 Wi U ) It 

) du. (4.2.7) ])~ -= 
2. "'H~ 

1..\ 
0 

The proof of Theorem 1 for 0 <:. ) ~ \ is similar to the proof of 

the special case, namely Theorem 4 of Chapter 3, and so, we shall give 

the details only for Theorem 1, for ). "7 \ • 

Put 

F wlt) 

and integrating over t we have from (4.2.6) 

(4.2.8) 

We assume that 

(4.2.9) 

= 

o( X. -\ -e I 

H 

so that by (4.2.1), we have the error term in (4.2.8) bounded by 

(4.2.10) 

Next, by Taylor's Theorem, with the remainder term, we have 
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N ( 2..1"1"'12. 

l S\~ U ') Lt ..L L 'l.J (4~) J (4.2.11) -=-
~ 

b· u. -t o (J..N-t'L)I. ) J 

):::2. 

where 

( j-'f\ 
-I) 

4-j~1 ( J - \ - \) (4.2.12) b. -: If , 
J (Lj) ~ 

and N is an integer, exceeding 2, which will be made explicit later on. 

The error term in (4.2.11) contributes, in (4.2.8), an amount 

(4.2.13) 
( 4- W It) )2N-t2. \ x 

(2.N-t2.) ~ J o 

X 2..N -\-\ -\} 

1.1"1;\ -6 

l..N;- \ - ~ 

X 

.2..N-tl -8 

, 

where we have used (4.2.1), with the notation 

M """ 

The main term in (4.2.11) contributes, in (4.2.8) 

).tH \X ",-,-Il 
N 

:2.) 

(4.2.14) 
_\- \ 2.\'h ..L L bj ( \N It) u ') ch", cit } 

1)~ 
''H \N It-) ~ 

\ 0 j=2 

= 

N 

Zt \ Tt-~ 
de \ J.~ I ~x -2. -~ L b· 

2,) )...lYl1-tj) 
v \.I'ilt) ) 

U j 

55 'De :r=- 2. T 
C> 

1"1 

--L. ~~ -2-6 L b) 
~) 

V)'l~"1j) 
du 

V. 

~\)~ 
U 

0 ~ -=- 2 

:1..-1.. 
x ~ . 

O( \. u-,--I> ~\bj\ ,,")(AM)""TJdu ) 
-t 

Y-e 



The error term here is simply 

(4.2.15) 

N 

L \bS\ (AI'1)(fY)-t~) 
J~2 

)<.2-

e 

To estimate the main term in (4.2.14), we write 

;2.. 
<>D 

1.>"L1'Tl ~2l = \ 2LYYI-t j ) -0(2-

2.- l.... 
0( e 

L.YY\-t j -r 2-
TC 

0 

so that we get 

(4.2.16) 

X. 
I (U-.2.-e 

~D\} j 
o 

2. 
, .L. 

7L 2..m-t 2 

do( , 

The interchanging of integrands justified by absolute convergence. 

The error term in (4.2.16) is 

(4.2.17) 

'V2M -t,L 

)\ 2.N -1'1 - B-

Do- 2.N;\-E} 

:2..1'\ 't \ - ~ 

"",--2.f'1 -t 2. ( 4-)<.) 

1>~ ~ (2N -t2.) \ 

Ib N 

(l.N i- :2.)! 

N 
16 

83 
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The contribution from the main term in (4.2.16) is 

0() 0() 

Sin'i-( :if \,\c() 2. 

~ 2.1')) - 0( 2. t \ \ ~ o( x-\-~) 1 .1,...; ? (4.2.18) 
TC?·rn ... -t 

P( e.. -
1.. +-&-

dv. 
1>-& u 

o o 

<>0 

2. 

~ 
_0(' C « )\+~ X -\ - 9-) - _2..VY\+"i: 

Q{'2.YY\ e - do( + O( V2.\'Y\ 
Iv iC > 

0 

2.. r r.( 2.rr\ T\ T& 
L. 

-0( 

o( 'A - \-~) - e ~o( 
'VAI'YI 2.m+' -e .rn ~ 

7C I 
0 

~ "VA -+- o( V~Vh 
)(.-\-~) 

Collecting the error terms from (4.2.18), (4.2.17), (4.2.15), (4.2.13) 

and (4.2.10) we have shown that 

-r-t-11 

-2-( 
(4.2.19) " J Wlt/' clt 

T 

N 2..N-t\-t} 

16 X 

+ 

We use the bound 

N-t2 N~l. N 

-V2 V'1"'<2.N+2. ~ (:(y-y-.) V:z.vnV2.I'\+2. <..::..(2..""') "V-z.mlI\N). 

We make the following choices: 

.l.. -i-
\ 2-

X ~ N 
Ibm 

\;)~ ~ 

N 
\ 05 \133 t.. 

, 

and assume that 

:. o ( 
N ~ -i. ) 

J 
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where ~70 is a small positive number. The errors induced by these 

choices in (4.2.19) are 

( 

for some positive number ~. This concludes the proof. 



Chapter 5. 

On the Distribution of a Class of Additive Functions 

§5.1. Introduction 

Let i(n) be a real function, for each positive integer n , 

satisfying the following conditions (of strong additivity): 

(i) f(mn) =h'f"\) -; f\l1) for all integers (n, ,n) =. \ , 

for all primes p and all integers 

tl... H \ • 

For any k"", \ , put 

p< x 

where r runs through the primes. 

Now suppose that 1(11) belongs to the class of additive 

arithmetical functions satisfying 

(5.1.1) (a) A~(~ tends to infinity as x tends to infinity, 

(5.1.2) (b) there exists a number M such that 

for all primes p • 

We shall denote this class by C . 
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It was shown by Ha1berstam [6J and Delange [3J that the following 

theorem then holds: 

THEOREM. If 1 E- e , then for any integer k"¥ \ , and for x 

sufficiently large, we have 

1.t:. 

(5.1.3) 
L (-5(,,) - t\ ,(X)) 
\'i ~:><. 



where 

-i t z. 

e.. dt. 

o 

This complemented the famous result due to ErdO's and Kac [4J 

that, if No\x}l.\l) is the number of integers r"\ not exceeding )( such 

that 

(5.1.4) 

J... ... 
fln) <. A,lx) -+ c..cr A2. ex) ) 

then for any real number ur as x tends to infinity, 

(5.1.5) 
-lt2. 

e. dt . 
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The main purpose here is to show that asymptotic formulae of the 

type (5.1.3) can be obtained for any real number ). ijO in place of 2..'k 

We shall prove 

THEOREM 1. Suppose sf- 'L:,. Let).. be any positive real number. 

Then, for any E.. 7D and for x sufficiently large, we have 

(5.1.6) 

subject to the condition that 

= 

where 

(5.1. 7) 

~ -E. ) 
Z'J.. 

\0,3 A2.lx ) 

\=-) \,.<:\ ALex) 

} 

with the implied constants depending at most £g M and ~ • 

} 
). ~ \ 
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In particular, we have 

Corollary. Suppose fEL,. For any A~O and x#'Xc()) , for 

some sufficiently large number XoC>.) , ~ have 

(5.1. 8) L \ \-In) - !\\(X)\A 

n!:.x 

This follows clearly from Theorem 1 on noting that 

(5.1.9) 

Such results were previously not within the scope of the methods 

of Halberstam and Delange. More specifically, their methods made use 

of the fact that since there are no modulus signs in the sum in 

(5.1.3), one can interchange orders of summation in the subsequent 

analysis. This, of course, would not be possible in (5.1.6). 

Our proof uses the method introduced in Chapter 3 and Chapter 4. 

We shall require the result (5.1.3) with an explicit error term 

uniform in k. We have 

THEOREM 2. If:f E. 'C. , for any integer k q \ 

large, there is a constant A =I\lM) such that 

(5.1.10) 
2.k 

L \ flY)) -A,(x)\ 

n~X 

where the implied constants ~ absolute. 

and x sufficiently 

Delange's method will give this result without difficulty. In 

fact, what we need is to prove Theorem B of [3J with an explicit error 

term. Let 



s (p) 

\"\ (j) -:: ;> \ flp)\ 

i><-'1 

THEOREM 3. Let 5Ee , and k be any positive integer. Suppose 

that J is a real number satisfying 
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Then, for x sufficiently large, there is a constant B~B(M) such that 

(5.1.11) 

) 

where the implied constants are absolute. 

with "\ C: 1 Our next object is to apply Theorem 1 A to the question 

of the limiting distribution of ~\n), to obtain a result of the type 

(5.1.5). Put 

and let NlQ"A,,) denote the number of integers .t ~k such that 

where IS" is a non-negative number. 

Put 

Then P(<>,k) is a distribution function with characteristic function, , 

say, fr...(s) , defined by 
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(5.1.12) 

Now, ~(~JK) tends, weakly, to a limiting distribution, namely 

= 

o 

for ~~O. The corresponding characteristic function is 

o 

Our purpose is to evaluate the discrepancy between Pl~,~) and 

?(~) for K sufficiently large. We do this in §5.3 by means of the 

Berry-Esseen Theorem (see [2J and [5J). We find a relationship between 

4>rJC;) and ¢("S) by means of moments (using Theorem 1) and prove 

THEOREM 4. For any :S- E: t: and 

o( 

where Zr.: is defined as before. 

We then have the following 

Corollary. The number of integers ,t ~ k 

.i.. 
2. 

such that 

If (-t) - A I(t..) \ < CJ A 2Ck) , 

k PCo-) o ( k (\~ L k ') -~ ) 

Results of this type were obtained before by LeVeque [8J, 

Kubilius [7J, Turan and Renyi [9J and others, with estimates of the 

discrepancy substantially better than that above, but for very 

special classes of functions or for a general class (cf. [7J) but 
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making use of the probabilistic model for additive functions. Since 

our method depends on the moments of fln), one would need to improve 

the error-terms of Theorem 1 to get the corresponding improvement 

in Theorem 4. 

Notation. Throughout, A will denote a generic constant 

depending at most on M (thus, for example, we will write A~ .", A etc.). 

The letter p (with or without suffixes) is reserved for prime 

numbers. 

Other notations are made clear in the context. 

§5.2. Proof of Theorem 1 

Define 

(5.2.1) w (V'\) = 

Then, Theorem 2 implies that 

(5.2.2) 
\ 
)C. 

J... 
2-

where we denote Al.(x.) by t.., for simplicity. 

We shall consider two cases, depending on the size of A. 

(a) 0 <- A ~ \ 

We start from the formula 

~ 
\0< \ 

\ 

C?I 

l 
c'), 

(X) 

~ 
0 

\' 
0 

2.. 

( SiV\ \o<.\u. ') 
clu. 

u 
I ~). 

(S~.., \<>(\u.)2-
du O( l 

T -" ) -T 

'xL:;\ 
ItA 

\..\ 

, 
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for any complex number ~ , real number \70 and with 

= J,J. . 

o 

(b) '). 71 • 

Define the non-negative integer ~ and the real number ~ uniquely by 

A -= l Yl1 ..,. \ ;--Er 0<-94.2 

Here, we shall use 

( 51"! 

4-

iti\A 
\t>(\2yY) ~~ \<.>(\\.I.} 

AlA. (5.2.3) -=-
D~ ~i-0 

0 U 

( SlY, 
4 (lo(\'2.Wl -I-e) \0(\'-"'" ~\ \'.<\u ') 

=- du -, o -- 1 --
\J. '1..1.e- Ii\} ) V~ 0 

with 

We give the details of the analysis only for case (b) as case ( ) 

is similar. So, putting 

0( -== W(n) , 

in (5.2.3), and summing over all n not exceeding ~ , we get 

(5.2. ) -'- L 
A 

X \VV(V\')\ 

1\~)f. 

\ )T t 2-
2m 4-

-l.-~ ( -;,V\ W(h) U ') 1 = - U I Wlr'l) \ elu 
1>0- :><. 

0 Y\~x 

o( ~ 2-
'2.v,.., -I-(}) 

\wl."d\ T 
x 

\')~X 
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By Theorem B, in the form (5.2.2), the error term in (5.2.4) is 

bounded by 

(5.2.5) 

Now, by Taylor's theorem with the remainder term, we have 

(5.2.6) 

where 

b· 
J 

.L 
== 'a 

l'i 

Lbj x. 2.) 
(, ):2.N ~ ~ ) ,--4- .,<. 

-t" 0 \ 
( (J. N "i 2..) . 

J -= 2. 

and 1'\ is an integer (exceeding 2) which will be made explicit later 

on. 

The error term in (5.2.6) contributes, in (5.2.4), an amount 

(5.2.7) 

4-L.N-t2.. 

(.2..N -+1-)~ 2..N-t1 -B-

T 2.N-+1 -& 

2.N't1 -% 

where we have used (5.2.2), with the notation 

The main term in (5.2.6) contributes, in (5.2.4) 



(5.2.8) 

_\

~~ 

_\ 

X 

~T 
0 

T N 

L W (Y\ {'M.- ~ IA- -:1.. - & ~ L ( 2j g bj W(n)u) du , 
h~X. 0 

-l-=:L 

N 

U- 2 - e 2-6 j 
u.~ 1 ~ LC Wln) j2lVv\,j) 1 JIA J 

j -:: J... r\'f,.JL 

Au 

2.j G )4Cn,-t)) \ 
U AM dll...) 

The error term here is simply 

(5.2.9) ~ 

N 

(A M) I+(WI-tj) 

':l-) - \ - e-
~ -I L \bj\ 

l' , 
j -= .2-

2.) - \ -e 

I~ 1.) 

-I CAM) 4-M \" -\-9- L 
"\ 

~ -
(?j)\ 

) 

~=2 

\ 4--1Y\ _ I - G- T l. 

x.,- (I\M) \" -e-

To estimate the main term in (5.2.8), we write 

-= 

so that we get 
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r 
0() 

N 

(5.2.10) 
_1- -2-g. 

,~ ~ 
- ~ t" 1 ?- bj ~ut )7-~} 

. 2..rn 

gJ).(} 
U e. t cit dl..l.. , 

() 0 J -= 2 

()() \' 
( (,,"' )2" • >- ) ~ 

II _1-

~ 
t .... VV\ 

_.1. t:1. 

~ 
{ S\",,'t(ut) = -2-6 -to (:IN-t2)\ 

JlAclt 

1>~ 
e :2. \). } 

() 0 

the interchanging of integrands justified by absolute convergence. 

The error term in (5.2.10) is 

\ ( ~o() t~M-n -1-t
4 

') ( 

T lb N 

~ ~ 2N - ~ ) (5.2.11) 
J)~ 

e:l. dt u. dv.. 
(.2-N -t 2. )\, 

6 
0 

I 
J'A:lM-t2 

1 2-1'\ -t' -0- \G N 

~ J)~ (2N-'I'2..)~ 
., 

2N 1- \ - \7 

2.1"1 -H -B 

~ 
\ ( 4T) 

'D~ 
f:1M-t'Z. 

N (2N-t2)! 

The contribution from the main term in (5.2.10) is simply 

(5.2.12) 

<X:I 

II ~ 
1- '2.Vh -t \ - e- _ .L t L 

~ -v e. 2. ot 
JC 0 

(5.2.13) = 

Collecting all the error terms from (5.2.13), (5.2.11), (5.2.9), 

(5.2.7) and (5.2.5), we have proved that 



(5.2.14) 
I 

X. 

We shall use the bound 

(5.2.15) 

r( A ~\) 

Ni-'2.. 

~ (2.n-.) ~2\'n f 2.N-tl.. 

which is easily verified. We now make the following choices: 

(5.2.16) 

(5.2.17) 

and assume 

T 

N -= 

t -E
N 

96 

where ~ is a small positive number. So, from (5.2.15), (5.2.16) and 

(5.2.17), the errors in (5.2.14) are bounded by 

for some positive number ~. This concludes the proof of Theorem 1. 
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§5.3. Proof of Theorem 4 

We first state the Berry-Esseen Theorem: 

If Ftx) and G;Cx) are two distribution functions, G'Cx) exists for 

all x and \&I()c:)\~o( ,~t\A) and 9lv.) the characteristic functions 

of F~) and G{x) respectively, and the following condition is satisfied: 

(5.3.1) 

then for -oO<..:x:..<oO , 

(5.3.2) 

where K is an absolute constant. 

We shall apply this result with G-lx) -=P(x) (implying .;... ~ ~ ) , 

and restrict ourselves to the domain LO}~). We put 

Now, by Taylor's theorem, we have 

N-\ 
x-) 

~ L -e. -= -.-, 
j. 

N 

( 
\ XI \ 

o NT") 
~=o 

Substituting this into (5.1.12), we get 

(5.3.3) 

N -\ 

cfr..(S) := L 
j "'0 

We apply Theorem 1 to the above, noting that for the case )~o , 

the error term does not exist, to get 



. 
N-\ 

C~ ~/ (N~ \ ~\) -l\.-E.) 

L Zk ) (5.3.4) ~f..( C;) '= fj ~ o L-.-, rj 
, I 
j. . _, J. 

j=O ,J-

o( 
IS\N \ ~ \~ -(i -q) 

~N 
-+ rN Zk: '+ 

N~ N' J 

where Zk is as in Theorem 1 (with ~ replaced by K ), and subject to 

the restriction 

N -= o( L; -~) . 
The main term on the right hand side of (5.3.4) is 

r N-l 

(, ~~)j ) 
(5.3.5) ]I J.. t" ( L dt e-2. , 

0 j=o J . 

0() 

I ~Nt! IN) 1 
J~ j e -~e- { el<;t o( cAt 

'T > 
"" 

0 

o( 
I <; \ N fN) =. cp(s) + N\ 

Collecting the error terms from (5.3.4) and (5.3.5), we get 

We apply this inside the formula (5.3.1) to get the bound 

(5.3.6) 
\ c:; I 

-1 o 

1 

L ~~ ( z:J-' d ~ j 

J, J 
'~j ~N-\ 0 

-+ 
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We choose 

) 

and 

where ~7o is a suitably small absolute constant. Then, the left 

of (5.3.6) is 

and Theorem 4 follows from (5.3.2). 

§5.4. Proof of Theorem 3 

For each positive integer q. , put 

L 
c~ 

Fq,(X) ~) -= ~j (n) 

f"\~:L 

and 

'V
j 

(v-.) = L 1 

p\n) \'<j 

For any positive real number ~ , and any integer V) ~ \ 

L L 
4..~ 1- 0( I . o(r 

'" 
(PI) .•. tepr ) 

t j (n) .", 0(1 ... ",1 
, 

,. r· 

«\ + ., .... o(.r "'" '\ PI<·· <...h <~ 

r ~ -V~(r\) PI \ V'\) •.. ~ Pc- \ '" 

where the notation is clear. Summing over ~ , we get (cf. §2.1 of 

[2 J) 

= 
o(,,'t - .. -ta{ r -= q, 

r~1C.l~) 

to< , ~ .,. <l( f' I. 
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Omission of the integer-part brackets introduces an error of 

so that 

(5.4.1) 

where 

o(.\-t ... -tc:l., ='\ 

\ ~ TC t'j) 

-= x 

Define the entire function 

(5.4.2) = 

L 
- ",.t. 
L 0(1' .. · o(r~ 

~ r -

l f(p) ') 
e -\ 

p 

On expanding Ci~{t:) in a Taylor expansion 

00 

(5.4.3) G.~ (to ) -= L a j l j) l:.) ) 

J =0 

it is easily checked, from (5.4.1), that 

(5.4.4) 

Now, 

) 

Hp,)ci, ... Hpr)~r 

rl' . Pr 

100 

;-
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implies that 

(5.4.5) , 
h=o 

\-.=0 
q,. 

LC-\)~ (~) Al\j)~ t}1-

~ ==0 

The second sum in (5.4.5) is, in absolute value, at most 

On the other hand, the first sum on the right of (5.4.5), namely 

is the coefficient of c~ in the Taylor expansion of 

so that 

(5.4.7) L (f~ Cn) - A\~'j)) 't -= x 'l- I. b,\-~j) T 2'1. -e~ (X)j) tv\lj) "V J 

n~?C.. 

where 

Define the entire function 

~Hf') ) e.xp( -
e C1- l i')_ \ 

) TIC ~ -\ 

H~ (l:) \1-
(5.4.8) -:: p , 

P<'j 
P 

0() . -
= L Cj\.J) -r) 

J 

j =- 0 
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where, obviously, 

It is easily shown (cf. [3J, §2.5l) that \-I~(~)converges uniformly in 

any compac t set as ~ -'> <>() , to I-\lt-) , say. Now 

so that 

IX::) pO 
(7'(1 

(5.4.9) L bj lj) eJ ( L Co,) L~f) c) ) ~X~ \ L A~\,:\) 
lk \ = kl. 

)":0.0 j-=O ~:'2 

We are interested in b~\J). For this, it is necessary to find a 

bound for 

uniformly in ~ and '\.. We have 

where ~ denotes the unit circle with centre at the origin. So, we 

have 

\ c. j lj) \ ~ 

l.n 

2~ ~ \ \-\ ~ l e ~~ ) \ j 9-

6 

Putting 

) 

M e -;- \ I to \ :::. , e 1'1\e-\ -t \ 

l' 
p 
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Hence 

00 

\ \--\.j(e"e-)\ ~ Cl ( \ -t ~ (j~I)~ 
(eM-tI)..\-t1 r -(j,1l 

) 
P<j 

) =- \ 

00 (e.M'Tlyl 
\\ ( ( M ")2.. -1- L y -j ) ~ \ -t €;\ P 

U-tl)\ , 
p<~ J=-U 

n ( ( e. M f"""+ \ ') ex r ( 
eM ;.1 

) ) <.. \ + 
f' , 

~<'j 

~ \\ \ \ -t A ~ -2.. ) 

~ <~ 

Hence, we have 

Now, from (5.4.9), it is clear that b~l~ can be written as a poly-

in terms of the c;<'j) IS • Put 

(5.4.10) -' 

where ~~ l Cj\jL A{l'j)] is the polynomial expression. Replacing 'C 

by At , we get the transformations 

6j tj) ~ 'A) 6j lj) . 
.) 

Cj l'j) \-) 
"A) Cjlj) ) 

Aj l'1) \---? :A) P-jl'j) J 

so that 
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, 

From this, we deduce that the terms in the polynomial are of the form 

0< .. 

eCj )q(2-)~3)"'·) c.j\.'j) A~ (j) 

where 

The constant depends only on j J 0(1...) ' ''- and not on j. Since 

we have 

Now, we have 

(5.4.12) 
(t' - 1.) 01.,-) , 

unless all the J) 0(3) ', .. ) "'r are zero, in which case we get 

Put 

J 
an integer. 

Then, from (5.4.12), the right hand side of (5.4.11) is bounded by 

, 
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if at least one of ~ )~~.~~l· is non-zero. Consequently, the 

contribution of these terms of the polynomial (5.4.10) is 

(5.4.13) ~ A. \ e. (j ) «1, - .. ) o{r ') \ 

The main term comes from the polynomial when 

= o(r ~ 0 ) 

to give the contribution 

It remains to find an upper bound for the sum in (5.4.13). First note 

that each of the summands is non-negative, and the sum is really the 

coefficient of r..'l in 

where we 

(5.4.14) 

_1_ e.xp ( e."l: - c - \) ) 
\ - 1. 

assume that \"t=.\ <I Hence, 

) i- exp( €C: - C -I} 
l.:Kl \-c 

~I 

the sum in (5.4.13) is 

-ct,. -, 
de c 

) 

where ~, is the circle of radius ~ with centre at the origin. The 

expression in (5.4.14) is easily 

We have shown that 

Substituting into (5.4.7) gives us the theorem. 



§5.5. Proof of Theorem 2 

Put 

(5.5.1) 

Then, we have 

(5.5.2) f(n) - t>\llx) 

so that 

L~ 2~ 

(5.5.3) ( f l \'\ ) - 1\ I \.X ) ) -= (~j t Ir\ ) - I~ I \ ':}) ') 

l~-...l 

(t-~("') -A'l~)) ~(><)j).L 

Summing over h in the expression in (5.5.3), we have 

(5.5.4) 

The last sum above is bounded by 

X 

Next, we have that 

(5.5.5) 

1-
2-

-= L ~lp) 

\l In> \> ~ j 

106 
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Also, 

(5.5.6) A\lx) - A\l'j) ~ 
5- (r ) 

L 
\ 

-= ~ M 
r p 

j ~r <.::x.. ~<;P<'x. 

<.<. Mt \ (;:)~ x. 
.) --

:> \033 
~ O( ~ ) 1 

) 

using the well-known fact that 

(5.5.7) L +- = \o~ \03 -x. ~ c.. --( O( ~') J 

e~X. 

for some constant c. So, from (5.5.6), (5.5.5) and (5.5.1), we have 

(5.5.8) 

Applying Theorem 3 to the sums in (5.5.4), and applying the bound 

(5.5.8), we obtain the estimate of 

\<.. .\. 

(5.5.9) ~ A xl. 

4-~ 

x CAfe-) 

+ 
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We choose 

(5.5.10) 

and with the condition 

(5.5.11) 

we see that ~ has the necessary property. Moreover, 

.L 
It-"t:. 

L l5-<'p)\ 
x.. 

Ml'J ) =- ~ \V\ l"Cllj") « \~l 
109 x 

p<~ 

Since 

\ 0<) x.. 
4-C<. ) = 

\0:\ j 

the error from (5.5.9) is clearly 
..L 
% )LK -\ 1 k-i. ~± ( 

).. 

ItK 

t (5.5.12) « CAl) x.. Al.l~ ) -t \ o~ x. ~ 

as desired in Theorem ~ To evaluate the second sum in (5.5.4), we 

apply Theorem 3, to get an error term bounded by 

2..K. 

(5.5.13) (Ak) x.. I 

Finally, the main term in Theorem 3 contributes 
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(5.5.14) 

and the error term is easily contained in (5.5.13), by noting that 

..L 

L \ 
IALlx) Ltk \ 1""2-- A:<-lx ) ~ P J 

L 
A- it\<.6 P <.x. 

\ (lc{\ ~ ) .L 

« -t 
x.. - ,+1<... 

~ \ I/,+¥.. :1 

0:) x. 

~ \ o~ it\<. 



SECTION C. SIEVES AND AN APPLICATION 

Chapter 6. Combinatorial Identities and Sieves 

Chapter 7. An Analogue of Goldbach's Problem 
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Chapter 6. 

Combinatorial Identities and Sieves 
(with H. Halberstam) 

§6.l. Introduction 

The theory of sieves has played a very important role in the 

general study of the distribution of prime numbers and various 

111 

representation problems involving primes. Sieves fall into two general 

categories: Local Sieves and Global Sieves. 

Local sieves derive from functions that are, essentially, weighted 

characteristic functions of primes or of numbers with at most a fixed 

number of prime factors. Such are the Generalised von Mangoldt 

functions L\K Cn\ , defined by 

~ ~ ~ 
L- )"ll T) ( \~ d ) J 

d\n 

which have the important property 

if 

(that is, if ~ has more than k distinct prime factors). 

Perhaps the first, and most celebrated, instance of a local sieve 

is the famous Selberg formula, used in the elementary proof of the 

prime number theorem (see [14J): 

(6.1.1) = -t Oc. x) , 

or what is the same thing, 

(6.1.2) 
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The Global sieves rest on the observation that if one sifts out, 

from a finite set of integers, all multiples of small primes, then, 

the remaining--unsifted--integers have only large prime factors, and 

consequently only a few of them. In particular, one has the inclusion-

exclusion principle 

= 

for any function o.{.) , where f'-lC) is the Mobius function, a.nd for .t- h- 2 

\\ ~ 
p<e 

A particular choice of a(.) (letting ae·) be the characteristic 

function of the odd natural numbers) yields the Erathosthenes-Legendre 

formula 

.I.. 
2-

ILL N ) - \ 

where [:x..] denotes the integer-part of x. • 

J 

Developments of these ideas have led to many varieties of Global 

sieves, e.g. the Brun sieves, the Selberg sieve, the Rosser-Iwaniec 

sieve and more recently, Greaves' sieve. 

As far as the mechanism of the two categories of sieves is con-

cerned, one can say that 

(i) local sieves isolate numbers with few prime factors, and 

(ii) global sieves isolate numbers without small prime factors. 

There have been instances recently where a combination of both 

kinds of sieves have led to significant progress: for example, the 

work of Iwaniec, with Jutila [8J and then with Heath-Brown [9J, 
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II 

showing that the interval ():.. - X. 2.0 ) X ') contains primes if x is 

large enough. 

My purpose here is to report on work done, with Prof. Halberstam, 

which unifies in one way the two categories of sieves. This leads to 

a general and elegant approach to sieve theory, from which all known 

sieves can be deduced as special cases. 

In §6.2, we introduce a new type of inversion principle which 

will then lead us to the Fundamental Sieve Identity. In §6.3, we 

discuss Local Sieves and in §6.4, Global Sieves. 

§6.2. The Fundamental Sieve Identity 

Let ~(N) denote the hyperbolic region in 7L)<. 7L defined by 

(6.2.1) 

Let 1-(Mjn) be a function defined over -;HlN) , and with it associate the 

summa tory function F{1"I,n) by the relationship 

(6.2.2) \="(I'YI,n) -= L ~ l \I\1d -l ~ ') 
(I'Y'I 11"1) E- j4 

C\\n 

We shall introduce a convention whereby the original functions will 

be in lower case while the associated functions will be in upper case 

e.g. r~~ F .~ ~< --"7 r.!\ t c ,"-' 'l]),e. 

If -i(vn In) = Hvt) for all I'Y1 , and if 

F(n) "'" 

then, by the Mobius inversion theorem, we have 

(6.2.3) L t-A l ~) f ( YI/ d ) 

(. \ \1"1 
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These may be considered to be "projections" of our definitions above 

to the one-dimensional case (Le. 7L", l -~ 1'- ). We have the following 

LEMMA 2.1 (Inversion principle). If rand fare defined and 

associated as above, we have 

(6.2.4) 2- ~lcl) F(V'\1d) ~) . 

L\\ (\ 

Proof. By (6.2.2), the expression on the right hand side of 

(6.2.4) is 

2- fl~) f(Wldk/ ~ ') 

-ka\n 

Let ~ and ® be another pair of functions related in the same way. 

Then, we have 

LEMMA 2.2 (Hyperbolic Inversion Principle) 

(6.2.5) 

Proof. By (6.2.2), we may write the sum on the left hand side 

in (6.2.5) as 

-r( Y\)~) ( L -Mmd) ~ ') 

c\ \'" 

= 2- S--(kd~Y>1)B(~d.)k) 

\~\"l'\tcl ~ N 

L t1-l .. Lk)F(-k,-L) 

\~...t~SN 



Corollary 2.1 (Fundamental Sieve Identity) 

(6.2.6) L -t(\)M) ®Cm) \) 
\"f.m~N 
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This simple identity forms the basis from which everything else will 

follow by suitable choices of the functions rlWl,n) and {t(V'I1/Vl). 

§6.3. The Local Sieves 

Choose 

(6.3.1) 

where a(.) is an arithmetical function. Then, it is clear that 

Substituting this into (6.2.6), we arrive at 

LEMMA 3.1 (Local Sieves Identity) 

(6.3.2) 

We shall derive from this various well-known formulae and 

identities in the next sections. 
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§6.3.l. The Selberg Formula 

We take k ':. \ and choose tr in the following way: 

(6.3.3) = 

so that 

L P-\ : ') 10'3 (h-IJ.) , 

dll'\ 

d\n 

Thus, if Y\ -=\: \ , it is clear that 

®(~ ,Vi) -=. ACn) 

and we get 

{ \09 Yl1 ) 
f) =d 

(6.3.4) ®(~Jf\ ) 
A(n) o~...v~s-e 

Substituting into (6.3.2) gives us 

(6 3 5) 
)"" /,I .... )l\l"'-)\" ~ J Q.(nw,) Ml\1) \oQ.~1'"Yl - ') C\C.,.,n) A (h-I) A Cn) .. L-- '-'\\ .. , .. , v~ 'tYl L- f J L- L~.£~ 

Of course, this formula is no other than 

(6.3.6) L O\.\IV\) 1\1.(vn) 

\ 'S YYl"",N 

L a(Wln) ~(h) \o'j ~ M 

1 .... \tvl"'SN 
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but it is interesting that it should come from specializing (6.3.2), 

and, more important, it suggests other variations. 

In [14J, Selberg made the choice 0(.\'))-=\ , and after some cal-

culation, derived the formula (6.1.2). It is also noted here that 

Bombieri [2J shows the existence of formula of the type (6.1.1) with 

weights Q n which are constrained to satisfy certain conditions (see 

§6.3.3 in these notes). 

§6.3.2. A Variation on the Selberg Formula 

The formula (6.1.2) allows one to deduce information about *lx) 

from properties of the average function 

(6.3.7) 

We show here that one can get a similar formula involving ~,l~)" 

LEMMA 3.2. 

(6.3.8) 

Proof. First of all, write 

(6.3.9) 

""1" o(x. ') , 

?C.. S(;~ .. ) at-x:..) J 



say. Take k ~ \ and let 

u(" ) -=- (\ - ~ ') 

and 

(6.3.10) 

so that 

(6.3.11) ®(VYl'Yl) ::: L r(~) ( \-

d\n 

-::.. L rlC\) 
-L 
\o~ x 

d\n 

:::. 

f 
''If"\) /\cr~ 'X. 

Thus, we have from (6.3.2) that 

( 6 • 3 • 12) (o~r;< L j\ em) ( \ - : ) 

\~"'" ~)(.. 

10.3 n/cl 

) \03 x. 

L rlJ.) \o~ J. 
c\ In 

n 7 \ 

I 
n -= \ 

( vv\1'1) 
\ - -

x 
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Observe that we may write the expression on the left hand side 

of the equality in the form 

which is, by (6.3.9) 
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(6.3.13) 
\ 

-;- , O(x) . 

So, to prove the lemma, we need only find an asymptotic expression 

for the right hand side of the equality in (6.3.12). To do this, we 

use the following, easily verified, formulae: 

L ~ \o~n 
T O( \O~ x. ) 

~ , 

f\~x. 

L -L -1 Lit T 0 ( ~ ) } 
f\ 

V")<Sx.. 

O(x.) , 

and 

o ex) J 

where C\) ••• J (.'t are absolute constants whose exact values need not 

concern us. Hence, we have 

(6.3.15) L lOJ~ (I - m; ) 
M~xll') 

L f"'(~) lOj ~ {-i. ~ \°3 ~ 

" ':::ox. 

..LA. 
2 

C. \ X. 
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To estimate the first sum here, we put (using (6.3.14)), 

(6.3.16) 
\o~ VY\ 

~ oC 
\og "<-{VI \ 1 

x./n J S) 

-= .L L\(YI) 
n - CL X L t->-~V)) l09 ~ -,- O(x.) . 

YI~~ 

The first sum in (6.3.16) is simply, by Mertens' Theorem 

--t- O( \) ) 

so that we need only estimate 

_\~ 

o( \) 

Collecting these estimates together give us the lemma. 

At this stage, it is worthwhile pointing out that formulae of the 

type (6.1.2) and (6.3.8) can give upper (or lower) bounds provided we 

have the corresponding lower (or upper) bounds by some other means. 

In particular, it was shown by Erdos in [5J that 

(6.3.17) 

for any £. 7 0 and x 7,. ::t~(c..) , for some suitably large X.o(~). By 

formula (6.1.2), it is clear that the lower bound in (6.3.17) gives 

the better upper bound 



without any further work. (This has not appeared in print before, 

although the result (6.3.17) has been frequently quoted.) 

§6.3.3. The Twin-prime Problem 

In [lJ, Bombieri showed that 

(6.3.18) . N \('J~ 1"1 

on the assumption of the Halberstam-Richert conjecture: 

(6.3.19) 
(I -A 

N \.\03 N) 
J 
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( "I-H ;()) J 

for any fixed £.. 70 and every large A. The method of Bombieri is an 

instance of the local sieve (with Ql~)=A(mt2) in formula (6.3.2)) 

but an additional idea (using the Global sieves) was required to 

carry the analysis through. It has not been noticed before that the 

result (6.3.18) also follows, more simply, from the following 

\ - ~(N) 

Conjecture. Let Q ~ N where blN) is a positive 

function such that 

N -"7 0('). 

(6.3.20) 

Then 

(6.3.21) L t-A(~") \~ l. ~ ~ ~ l N ) '\r ) 2.. ) - ~~q) 1 
q..."=>.Q 

This conjecture contains the stronger form of the Halberstam

Rickert conjecture, where N'-e.. is replaced by e.xp \. - (\o~ 'N,vt.. 1 
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The novelty of (6.3.21) is that the changes of sign 

of ~(n) is left intact and so, it may be that (6.3.21) is easier to 

show than (6.3.19). 

To prove (6.3.18) subject to the conjecture, we write 

__ \ 2. N 
t'X)T 

in (6.3.6), to get 

d \ W'I 

We choose 

(6.3.23) 

2. N 
- \-:I~ m 

so that the second sum in (6.3.22) can be written as 

(6.3.24) ~ N ( L t\(~) !\()\1-tl-) ') 

m~t 

and by Selberg's sieve 

:it 

t 

, 
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so that (6.3.24) contributes an error of O(N) in (6.3.22). Rewrite 

the main term in (6.3.22) as 

(6.3.25) L rlc\) l~l~) , L J'-l~) ~L( ~~") ~ ) 
d\"", c\\m 

~~Q d7Q 

+ 

( 
'l..N 

-+ 0 \o~ Q 

The error term in (6.3.25) can be rewritten as 

lo~ 2 ~ 

Kim 

K <. nya 

) 

t < NQ.-' Q<.vY\ ~N 

\'\1 ~ 0 \'\1od t.. 

\OJ J. ~ \ L \~ k ~ L IOj'" .c Tc(NH; 1<,2) -qQ<2; k, 2 ) J 
1< <N~-I ~<NQ-' 

(( J 2.) "7 \ 1.\~ 

so that by the Brun-Titchmarsh inequality, this is 

N-ll 
l. N 

L ~ lo!:) N ? 
(6.3.26) \()~ Q 

~(t.) \"3( Nhr<) 
1: < NQ.-' 

~ 
l.. N , t~~ N N 

\o')CN~-\) 

\~'J Q. 
) 

\°3 Q 

- o ( \'{ ~0J N ') ) 
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subject to the conditions on Q.. The main term in (6.3.25) is simply 

Put 

'PC N " d) 2..) 

Then, we have the main term in (6.3.27) as 

N 

c:plJ. ) 

subject to the conjecture. It is then easily seen that 

(6.3.28) 

- ( 

+ L 
J~Q 

= It N lOCJ N 11 (\-
P">.2. 

+ 

after a bit of calculation. Collecting together the estimates in 

(6.3.22), (6.3.24), (6.3.26), (6.3.27), and (6.3.28) gives us 

Bombieri's result, subject to the conjecture. 

t~ means sum over all odd integers. 
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§6.3.4. A Variation on the Local Sieve Identity 

We now choose, in (6.3.2), with 1<. =. \ 

(6.3.29) 
) . 

= 

Then 

(6.3.30) ®C~, n) = L (\OJ ynd) r ( ~ ) -= .Lf\o~ 'T) ,ld) , 
ell", JII') 

!2...<.. v J."£: V 
~ -

~ \ ~<j Vl'1 L r(O.) ~L J'-lL(l.)(lo3 ~ ) 

c\1 ... d\V\ 

cl~v d~v 

-::: f>1'1 \05 m 1- "'(" , 

say, where the meaning is clear. So, we have 

n = \ ) 

(6.3.31) A(n) I<.V'\~Y ., 

v < n ~ \~ vy\ - I ) 

and on substituting into (6.3.2) gives us 

(6.3.32) 

L c ~V1 \~'jW\ -t --In ') ~(V\)m) 

yY)~N VI_I 

Fe VI ) W)) \0,j Y") . 

We now have the follmving identities: 



Put 

) 

to give 

(6.3.33) L u(vn) ~ t\(m) l~yY\ ~ L "(~) ,,( : ) 1 
I"Y) ~N 

(l \ Y'") 

1'\ ~\J 

L a..lW\ ) 1 L f->n \~ ~ -t On 1 
'fYl~N n h", 

'f\TV 

2- pCn) L- a (VVIV\) \o~ 'LVV) 
J 

'('\~V 
rv1~No-' 

which is a generalisation of Selberg's formula. Of course, we can 

truncate this even further, namely by putting 

a.(rnn) ACn) 

c ) 

with ll\l-=N • Then, a simple calculation gives us 

and we arrive at the identity 

(6.3.34) t At m) \o3 h1 -t L AlYl) 1\ ( ~ ) 1 ~(Yh) 

1l"S.\J 

n \no 

n"'V 

~7u.. 

'" 

L f(Y\) L 
n!:::\j \,l<.m~No-1 
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where we have put 

(6.3.35) 

§6.3.5. The Vaughan Identity 

The identity of Lemma 3.1 may be considered to be a general form 

of the famous Vaughan identity, which we derive here. We put 

and suppose that \ ~ U :s N 

(6.3.36) A('f'rI) o..(VYl) 

( 

+ 
~N 

I 

i 

Then we may write (6.3.2) as 

B(n) 

L A (r'VI) a(WI) 

\~W\~u 

a(nl) 

a(Vv\V\ ) ) 
c\ t 

t 

(we are using f<"""- I ,but a similar formula will also hold for each 

The particular form of the identity (6.3.36) known as the Vaughan 

Identity is derived by putting 

Y\:s\j<N, 

(1-(n) 

so that 
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@(r\') = = 

where V, N is otherwise arbitrary. 

An exposition of this identity can be found in Vaughan [15J. We 

have already used Vaughan's identity in Chapter 1 but it is not clear 

what advantage we would get by choosing the function e(.) differently. 

To close this section, let us remark that there is no reason why 

we should not use other arithmetical functions in place of ACn) to 

get an identity like (6.3.2). 

For example, if we took 

for all 

then 

) J 

F(n/YYl) = 

Then, formula (6.2.6) would give us 

L @CV1) L 
) 

so that the choice 

Ben) =- ~(n) (I- 103 \'l 
~ t03N 

) 
) 

gives us the well-known formula 

MeN) \o~N -t L ACV\) \Y\( ~ ) 

"<SoN 

where 

t''\( N ) =- L t-t CIfl ) 

ns. N 



129 

§6.4. The Global Sieve 

Let ~ denote the set of prime numbers and ~ a subset of ~ • 

Write 

(6.4.1) 

and 

(6.4.2) 

define 

(6.4.3) 

and put 

(6.4.4) bi.(m) 

( Co ~2.) , 

~ TT p 

P€l? 
-ll ~p<-c 

• 

) 

Also, define pCI) -=- ~ , and for M7'"1 ,let pC.,.,) denote the least 

prime factor of YY\ • 

Now, let ~(N) denote the region contained in ~(N), and defined 

by: 

(6.4.5) 

by 



(6.4.6) fCh)Y'n) -::. 

So, we have 

(6.4.7) FCn/h")) 

l 
C\. ( (\ yY'\ ) (~ ) 

PC~~1:))-:\ 

0 

a(n",) L 
dim) 

J 
o \he-,"-.l\ se.. 

I\d \ pC C 4 J C) ) 

(rl1d ) P(C"1., c)) =-1 

fl d ' 

. 

The sum in (6.4.7) is simply 

L 1 1 
) 

d \ \'n 

en, , ?(:h., "1:) ) -= c\ 
'" } 

So, we have 

(6.4.8) ) 
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, 

and zero otherwise. Substituting these into the fundamental identity 

in (6.2.6) gives us 



LEMMA (The Global Sieve Identity). 

(6.4.9) L be \ ) ~ (rn ') <l(W!) C9 ( r,,) \) 

~~N 

L 
\ ~ Yn~ Nn- ' 

(1'Y1) P("l~It-))-=.\ 

\Sn~N 

() \ PC t2. ~ t) 

Corollary 1. Suppose B(I)-=\ Then 

(6.4.10) 8(1"1) L 
\ ~r') ~\\1 

"" \ Pte].. 11:- ) 

-L b (m) Q(nYl1) 
"!., ) pen) 

\<.n ~N 
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Proof. We take -&(f"',n)-=- $tn) for all (m,n), so that it suffices 

to show that the second term in (6.4.9) is the same as the last term 

in (6.4.10). For this, we use the method given for the proof of 

equation (1.8) in [7J--which is a special case of our (6.4.10). It 

is clear that 

J I .!L .pen) 
\ p(n) 

-:: 2 1. Blc\) -1:-ij(c\ p(n))1 
Lq ;'tn) 



So, the second term in (6.4.9) is 

(6.4.11) 

\ <. Y\ \ p (~ ... J 't) d \ ~n) 
\)~N 

1 e(:k) -dl( t.l} L 
1<;' f--.\ P<"~l./t) 1\ PCh,t) 

t~N k 

\< t, \ PCh,t-} 

t. ~N 

pte,.) < yl..t) ( PC to L I ~ ) ) 
\"Y) J -=- I 

f<l 

lL 
l J.lt 

) 

-t/ p_(e2.,c) , 
k 

pel) > p( k) ) 

(~ , P( l- ... Jt ) \ ~ I 
J, 1<.1,) ) 

( ~ ) P Cl:- 'J e, L )) -= I 

The last sum in l. ..... } can be written as 

(6.4.12) 

1 

pCl»p((,:), 

1 -=. l t) pC e:(, ~ ») J 

( .!.. '\ I 1 ) ~(tl,td) ::: . 

132 
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The conditions 

are satisfied if and only if 

(6.4.13) 

This means that 1 can only have prime factors exceeding pCK) • The 

condition 

is, therefore, the same as the condition 

(6.4.14) (t ) -PC C I J r..,...) ') = \ 

Combining (6.4.13) and (6.4.14) shows us that the sum (6.4.12) is 1 

if and only if 

as required. 

Following the example of an argument given in [7J, we now put 

-Ere n) 

where ~(,) =\ , but is otherwise arbitrary. (Actually we need only 

have Xli) -.of 0 ). The function x,(.) acts as a sort of characteristic 

function for some subset of the divisors of P(t~/c) • We then have 

a generalised form of the identity (1.8) given in [7J. 



Corollary. If ):,(,) =\ , then 

(6.4.15) L btl) 1:: (I'Y\) aevY}) 

01~N 

+ 
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= 

The sieve methods of Brun, Selberg, Jurkat-Richert and Rosser-

Iwaniec each correspond to a specific choice of ~) in (6.4.15). Later 

on , we shall also show how the sieve of Greaves' fits into our scheme 

of things. It can also be shown that the sharp form of the linear 

sieve as formulated recently by Iwaniec t [lOJ follows from choosing 

as a certain interval function (letter from Motohashi to Halberstam). 

§6.4.l. The Inclusion-Exclusion Principle 

Take 

-xcV)) -=\ 

Then, (6.4.15) becomes 

L be-Dc-ern) a.(M) 

fY'\~N 

for all n . 

so that on choosing c 4. = 1:1 ,we have the familiar formula 

M~N 
n~N 

n\PllIJ'C) 

t ThiS paper is not without errors but Motohashi and Vaughan have 
correct versions of the proofs of the results. 



..I-
2-

and t: =- N ,we arrive at 

a(l) + L ~lp) =. L flc\ ) L a(vnJ) 

Ni:<.P <S N 
J \ PC Nill.) (Y) S N ~\ - \ 

A~N 

§6.4.2. Generalised Form of the Meissel-Busthab Identity 

Take 

o 

Then, it is clear 

x(~ \ - X(n) 
r(h) ) 

Thus, we arrive at 

(6.4.16) L 6 e \)t;.(m) a.(W1) 

V'Y\~N 

n =- \ 

n'7 \ . 

o ) 

-= L b~ 1.1 7:;L (no) 0. Cr'Yl ) 

M~N 
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The special case of this identity, obtained when C\~Cl..-=l and Q.(Vl) -= \ 

for all ~1 , is the famous Busthab identity. We shall digress here for 

a moment and give an application of this version of Busthab's identity. 
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§6.4.3. A Weighted Version of a Chen Identity 

Let Rln\ denote the number of representations of an even integer 

n as the sum of two odd prime numbers. By the sieve methods, it is 

possible to show that 

(6.4.17) 

where 

( 1--\-)\\ IT (p_\)~ 
i'72. fIn 

~-;'-2 

p-\ 

P - 2.. 

Improvement of the constant 8 in (6.4.17) is very difficult, and 

recently, Chen (see Pan [13J) showed that 8 can be replaced by 7.988. 

To do this, a crucial role was played by a formula, which is a special 

case of the following identity: 

(6.4.18) 

+ 

L (\-ftpJ) 

lJ..~?<e-

L bc(~) 
o.t54 ' 
p \ a.. 
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valid for any sequence 9\ of square-free numbers, with 1. ~ C L -:;, 7: 

and any function f(·). Chen's formula ([13J) follows with the choice 

for all 

The question which arises automatically is whether one can do better 

than Chen's result by a different choice of S(·). For the problem 

for R(n) , one is led to solving an extremal problem but which I have 

been unable to solve, yet. At any rate, it appears that if H.p) =i 

•• is not the optimal function, it is not very far from it and the 

ensuring improvement would be very small indeed. 

Remark. If the sequence J\ is not square-free, if l ftp) \ ~ M 

for all p , and with 7:: ~ N , the identity 

(6.4.18) is still valid but one has an error term 

Proof of (6.4.18). Define the function 

w(o...) , 

and zero whenever the sum is empty. Then, it is obvious that 

(6.4.19) L b l (Q) ( \ - \"lle>. ) ') 

l\.E c-\ 

since W~) is zero under the conditions. By the Generalised Busthab 

identity (6.4.16), with a.lrn) the characteristic function of the 

sequence 54-- , with weight \ - ",,(m) , with CI = 2. and N =- '>0 , the 

sum on the right of (6.4.19) is 
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(6.4.20) -L L 

The first sum in (6.4.20) is 

(6.4.21) 

The second sum in (6.4.20) is, after another application of (6.4.16), 

(6.4.22) L b2;( ~) t,-wto..)1 , 
df~ 

P \ 0.. 

where in this expression, there is exactly one prime factor of Q in 

the given interval, namely p. So, we have wlo..):o ftp). This gives 

us 

(6.4.23) 

Next, we have 

(6.4.24) 

Ci.e ~ 

p\a. 

L 1 \ - wlQ)} bp ~ ( ~. ) 

Ci. c v-4 
P,fz. \ C\. 
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Now, because the sequence 54 is square-free, l-w(<1.) is really 

) 

so that (6.4.24) is 

(6.4.25) 

Collecting the expressions from (6.4.20), (6.4.21), (6.4.23) and 

(6.4.25) gives us (6.4.18). 

Remark. In [4J, Chen improves 7.988 to 7.8342 by using many 

very complicated formulae. Prof. H-E Richert, in a letter to Prof. 

Halberstam has shown that those formulae can be deduced from (6.4.15). 

§6.4.4. The Brun Sieves 

For ~ a positive integer, take 

-V(n) ~ k :> I II l PC 2:7-/ 'l: ) 

(6.4.26) 

in (6.4.15), where ~(n)denotes the number of distinct prime factors 

of n. This gives us 



(6.4.27) 

since 

k;\ ') 

(-\) L-

Y\ \ pC"l:1.. it) 

\<h ~N 

-vCf"I) "'\(;\ 

r"I\P(C"L/£) 

r-,~N 

-VCn)-st( 

) 
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If the ~(.) is non-negative, (6.4.27) tells us that, for any pair of 

non-negative integers , and s, 

(6.4.28) 

n \ p( teL) t:-) 

Y\..:::N 

-yen) ~ l..S-t\ 

V) \PC e1-)e-) 

1'\ ~ ~ ~ -y( \"1) <f 2 i' 

which represents the content of Brun's "Pure" Sieve. This simple 

beginning suggests the following more general assertion, whenever a(n) 

is non-negative. 
4-

-t' 

Given any pair of functions X and X 
X.-(I)=1 

(with ), and 

satisfying 

(6.4.29) 

and 



(6.4.30) 

we obtain from (6.4.27) 

(6.4.31) k(Vl) X-en) ') b "'2. (l'Yl) CA(nW\) 
I L- t:I'L.7.. 

(\ \\JC~ L/ t) r')wl'SN 

~ L b~\J1:(YV1) 0,.(1111) 

VVl~N 
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, 

-+ 
and now, we need to make an optimal choice of X- and X subject to 

(6.4.29) and (6.4.30). Indeed, Brun gave an example which is superior 

to the choice (6.4.26), as follows: 

in (6.4.31). Relative to a suitable partition 

'1. xr "'- X.r _, <. -'..... < AI -< XI:> -= t; , 

of [1. I Co) , take 

(6.4.32) X -rCf) =-

o 

where b is an additional parameter (as are )(.., ~ -. - , Xr ). Note 

tha t X -+ en) -=:. \ if n has not more than 2b prime factors of ~ from 

[Xl):C) , not more than 2.(.b-tl) from t.~l./ t) and so on. We check that 

the definition (6.4.32) indeed satisfies (6.4.29). 

Suppose f'A(()) =\ and suppose that 

This is only possible if 
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'1)( ( p~Y») ) P()(~JC)) ~ 2(l-1-b-l) L -:: \ , - . . .>r 
) 

and 

-v( (n/?Cx~ 1:)) ~ 2(le+ b - l ) ;1 so VVlc.. Lo ~\ o ) 

This means that 

PeY)) I i)( x,' ) r lo)'l: 

and in fact, there are exactly l..l~o-+b-,) ~ \ prime factors of n in 

But these account for all of them and leads to a contra-

diction because it implies t-t(V\)-:-I. If we assume plV\) =- -\ ,and 

<0 

this implies that 

but 

v ( ( sovnc. 

This is clearly impossible. Thus, the choice of Brun (6.4.32) is 

indeed a legitimate X~ and leads to an upper bound sieve. A similar 

construction is available for a X- . 

§6.4.5. Selberg's (Upper) Sieve 

Let A- ... ( () \ P ( t L.} t) ) be any real numbers subject only to the 

condition ~,-::\ • Now, in (6.4.15), take 

(6.4.33) 
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where t 1'\') ilL} denotes the least common multiple of rl, and "1... 

Then, we have 

(6.4.34) 

:: -r lh1
\ L 

t\'\')Y\"2..3 

Substituting this into (6.4.15), we get 

(6.4.35) 

= 

2 \ L ( ~.,,; An'r(nl)( :In," A"'P(~,)l 
{"I I )\'h1 :: ~V1) \<I"'I~N 

T L Ad. Ad,} 
\ d "A1.1~\1 

, 

L b~I)~(n)(Yl'l) C\(lY)) 

m~:N 

n\M 

The first sum on the right of the equality, in (6.4.35), is 



(6.4.36) b~\)1:.l.. (Yh) CleVY\) L 
n \ P('tl./t=) 

'Yl\1'"'n 

b 'P" ("') "C~) ( L A" )'~ 
Y1 l (Yh ... p( t1-J 'l: ) ) 

The last expression in (6.4.35) can be rewritten as 

(6.4.37) L L (L ().~, • '\ ~'I'')(:l'n. ~ :\n'l'i) 
~ \ PeeLlt) K\ peel-It) 1. n\)Y\1-1-: t.. 

pCI<.)7\> 

)C. ) be,,\,l 4 ) a.(vn) ) 

m::::,.N 

-kp \ WI 
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)< 

= L L be I J~(h"\) 0.(\11-1) L ( L (.1n, <l.n,p)( ),., ~ An,~)) 
f' \ P(~1-)t-) Y\'\~N t \ vn lV\\)n1-} ~ {< 

p\fYl 
i<. \ Plc.l.J:t-) 

pCt<.) 7\, 

L 

L br.,p(m) Q(m) ( L Up ·1.'r}) 

where p-t" denotes the prime number which is the successor of ~ , in 

~ Collecting (6.4.35), (6.4.36) and (6.4.37), we have 

, 



(6.4.38) L b£IJc(.YY"I) a.(VY1) 

Y'(I~N 

(L 

For non-negative Q(.) ,with c\ -=: 1:'2.. -=- 2 , this gives at once the 
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well-known form of Selberg's upper sieve; but the point of identity 

(6.4.38) is that it suggests that more might be true than is usually 

deduced by Selberg's procedure. For example, while the classical 

Selberg result reads 

(6.4.39) 

(6.4.38) implies that 

(6.4.40) L 6~(\Yl) a.C.VVl) ~ 

yY\~N 

~ L cd~) ( L 1. '" J '-
YYl ~N J \ "'1 

~IP("1:-) 

L 
L 

L a. lWl) ( Ac\) 
~~N d\rY"I 

J. IP('~. ') 

It is not known if there is a better choice of A's. than the Selberg 

A'~ , which optimize (6.4.39). Heath-Brown has raised the problem of 

optimising the A's in (6.4.40) subject to 

For the next two sections, we introduce the following: we write 

a typical factor n of P(C.~IC) , n~\ in the form 
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(6.4.41) \i = PI Pl. .... Ps ) (1'1"7 Pl.. 7 ... , '7 fs') ) 

and give XCn) the structure 

(6.4.42) 

where '1,C.) is an arithmetic function to be chosen as follows: 

§6.4.6. The Sieve of Jurkat-Richert 

With parameters 070 and 'j?/ 1:.2. , let 

(6.4.43) 
) 

so that 

n 
X ( \'~n)) ( \ - ~(r'I)) (6.4.44) X ( t>Cn' ') - 'XCn) -== 

f'-tl 

~-s f's-\ ... P, "7j c..v, d.. 

0>-+ \ 
~i. P~-l PI ~'3 ~ 0.\\ ~ ~I'>'''J ~-I , 

~ 

o 

whence, in particular, we get a non-zero contribution when 

(6.4.45) 

This choice of X then leads to the sieve of Jurkat and Richert 

[llJ and may be considered as the sieve that results when one iterates 

the Busthab identity infinite times. 
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§6.4.7. The Sieve of Rosser-Iwaniec 

Again, let ~ '70 and 'j 7, 2 be parameters, and suppose that X. 

has the structure (6.4.42). Now, the expression 

(6.4.46) 

is non-positive (so that X is a ~~) provided that 

(6.4.47) 

and (6.4.46) is non-negative (so that X is a X-) provided that 

t--t(V1) = - \ 

(6.4.48) 1(") 
~lVl) -= \ 

Accordingly 

-+ 
X(n) 

where .Q, ~ t i (s - I) 1 , with '1+ satis fying (6.4.47), leads to an upper 

bound sieve, while 

where .t-:::[:is], and ~- satisfying (6.4.48) leads to a lower bound 

sieve; both in the case of non-negative 0.(.) On choosing 

(HI 

Ps \'~-I"" p, <''j , 

for s odd, and the same cho ice for 'yt -( Pl. \,s ") with s even gives 

us the Rosser-Iwaniec sieve. 
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§6.4.8. The Weighted Sieve of Greaves 

It has been shown by Kuhn [12J, Chen [3J and others that if 

certain weight functions are attached to the well-known sieves, and 

the resulting expression rewritten in such a way that each component 

is really an unweighted sieve, then the results known for such sieves 

tend to give improvements over those sieves without any weights. In 

particular, these weights may not be non-negative but the expressions 

can be reduced to several others where the weights are non-negative, 

and then, say, the Rosser-Iwaniec sieve could be used to treat the 

individual terms. 

Recently, Greaves [6J introduced a weighted sieve where the sieve 

problem is attacked directly (that is, not by reducing it to expressions 

as described before). But, he gives the impression that the Rosser-

Iwaniec sieve is necessarily bound up with his weighted one. We give 

here the general setting from which Greaves' sieve follows. 

Put 

(6.4.49) Wl!) \ - L w(~) .t 7' , 
J 

P \.L 

and ~ 

W(I) \ 
" 

where -wt·) is as yet an arbitrary function. Then, 

1<. =- \ , 

(6.4.50) L wet) r-(A-) -::::. -w(p) K = \' - ~"V>'I<! > 

-t\ ~ 
c o th-U-- w~ ')~ 
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Now, put 

(6.4.51) 

and let @(m,Y)) and ®,(m)h) be the associated functions as defined 

in (6.2.2). Then, if Y'I \Vl '!:4-/t) , we have 

(6.4.52) @ ( vn,V1) = L 'G{rnct ) -s: ) ~ L B-,(W1d J }) We ~) ) 
d\1" d \" 

and since (%) J) =\ we have 

W In) 

So, putting this in (6.4.52) gives us 

(6.4.53) Wen) L-&'(m(L-}) -+ LB-\(Mc\)~)L~(P) 
v\\n d,\n Y\d. 

-= wtv-.) @,(Wl)\I)) * L -w-lp) @,(vny) ; ') . 

p\Y) 

We now choose 

eel) =, , 

in the identity (6.4.16), so that from (6.4.51), we get 

(6.4.54) L b~,)1;(W\)o.(m) 
M$.N 

VV\~ NV\-' 

C rn ~ P("l:~'t)) ~ \ 
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By (6.4.53), the last expression (6.4.54) is S\~S4 , where 

and 

(6.4.55) 

~ ~Nf\-' 

( M I PC C2 I ~ ) J =-1 
Y\ 

~ L LU3"(f)Gi,C;)L b", "1 (m)o.(nn1) 
~II L 1 / 

\ <. Y\ \ P( ~ 1-1 1::) \> \ f1 M ~ N t') - \ 

n~N 

-= L ®,U~) L -user) 

"t \ ret; 1. /t ) d P ( t 1. ,t;- ) 

~~N t.. 

M~N\...-\f -\ 

CYl1,P('tl- / t ))=-I 
{.:..v 

VYl~Np-1 

(""" P(e-l-/'t))~1 
p 

say. Observe that S~ is actually equal to 

(6.4.56) 

M~N 

( ""1 I P ( ?:..l.. , C )) ~ p 
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We shall now simplify S, and Sit- further. We have by the argument 

given in Corollay 1, that 

(6.4.57) '5 1 

\ <. 1, \ p ( t;1.. 11:- ) 

.,l~N 

l<. L 
t I P(1.c L/ 'b) 

W(lt) L bC1)tL(m) 

m~N--l-' t- I 

...t ' 
(~ P(Cl..-/~)) ~ I 

rtt) "pLt) ) --L t 

and since (..t, t) ~\ , we have 

Wlt) 

so that from (6.4.57), 

- L'iJYlP) 

p \! 

') 

"", ~ L t (jC ~'l) ; 8, (1) ~ {CL WIt), 

1<..1\P("t1.,'t) t\PCCL-/t) 

(6.4.58) 

.t~N p(U7I'U.,) 

\'",,,,l"") "C..,Hl) - (L -W-(~)) , 

P \.t 
('0')) P(~"l..,1;))-=, 

.,It;-

t\ P.(¢2-le) 

1-

PlU 7 peL) 

b (~) aC ".,J.tl'l \ 
t:1 ) ~L ) ~ 

say. By a similar reasoning, we also have 

) 

C\ (fl1J.t ) , 



(6.4.59) 

t \ P(C1.)t) 

1 
p(t) ~~U-l 

Now, in the expression in (6.4.59), we may write 

so that 

'W"lpJ 1J,t-( p ) 

Putt ing this in (6.4.59), and writing f. -=- ~t ,we get 
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(6.4.60) L 1 e'(~l)) -d},LU} L ( L ur(P)) " 

1<).. \?(1:L)~) -f<\ PCy(l),c) ~\K 

'IL 
rn'f:.N .. ,V'f<. ~\ 

(
\11/ PeeLI!))"", I 

li< 

.-l 
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The first expression in (6.4.60) is actually equal to 

(6.4.61) L L b""hC",) "l~ll k ') 

m~NJ.. -'k-' 

(Y"'"l) PC62../~))=, 
.,(,,{<. 

say. Denote the second expression in (6.4.61) by S3. So, we have 

(6.4.62) 

(S5 - 'S>b ') 

Now, the method given in Corollary 1 allows one to treat the inner 

sums in S 1 ,s.s and S;,.. We get 

~ L t ~( Au' -t E~tt)} Y\J(.,u L b~')fUJ (m) Glm.!.) 

\<.}.. \P( tL)t-) rn~N..t-1 

and 

(6.4.64) 

and combining Sl - Sic, ;- Ss , we can write it as 

(6.4.65) Q(VlIJ..)t L r~d.) " 

d\(m,P(c"l.>\- U) 
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Combining all these estimates together, taking $3 to the left hand 

side of (6.4.54), and simplifying, we get 

LEMMA. For any function -e-( .) , with Btl) -=, ,we have 

(6.4.66) L dJ'n-J) b~I)t2(\'\'\) ( L )'AtcUV"J(J.)) 

VY\ ~ N d \(vn) P("2; 2./t-) ") 

b..,.z (~) aCnV'V\) 
";-1) ""2 

- L 1 B<. ;;~,)' \/(",} L b<"h(~) aCo",,) ( L I'ld)W(<\"') 

l<-n\PCr:l-lt) (Y1~NY\-\ d \Cm)PCt>-IP(I1)) 

Observe that this is a generalisation of the identity (6.4.16), on 

choosing 

so that 

W(Yl) =\ n \ P ( CL ) c) . 

The combinatorial argument behind Greaves' sieve is obtained on 

choosing t\ = t L =. 2. and with the fr{Vl} ~ reV)) :(:(>1) such that the ~(.,-.) 

are those defined for the Rosser-Iswaniec sieve. 
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Chapter 7. 

An Analogue of Goldbach's Problem t 

§7.l. Introduction 

Goldbach's Problem says that if N is an even integer, then it 

has a representation in the form 

N -; PI -t P2. 

where the p~IS shall denote prime numbers. On squaring the above 

equality, we arrive at 

(*) 

This is our motivation in asking for the solability of the 

equation 

(**) N 

where K depends on the residue class of N modulo 12. The problem 

(**) is very difficult but is true for almost all integers (as can be 

proved by the Circle method.). In particular, I have shown that the 

measure of the set containing even (odd) integers n~N not satisfying 

the representation 

) 

This was motivated by (*) and the proof 

is long and complicated--using the Circle method as developed for such 

a purpose in Goldbach's Problem by Montgomery and Vaughan [4J. 

In 1973, J-R Chen showed that every sufficiently large even 

integer can be represented in the form 

tNotation in this chapter follows that of Reference [2J. 



where G~ is a number with at more I prime factors. We ask the 

corresponding question for our equation (**), and we show the 

following 

THEOREM 1. Let 

. , 

Then, for sufficiently large 

2(' 

-
3 

t-... 2. 2-
l't - ?I ;\'1-
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where ~\<..(N) '70 , is defined later (~ §7. 5), while K takes the 

values 

N - \)~," ) q ) 

3 N - 5) 1\ , 

1- N - 0, 4- ( moO. \:2... '; 

b N - ~ ) 

~ N - '" ,10 } 

2.4 N - 2.. 

In particular, every sufficiently large integer N can be 

represented in the form 

We have been unsuccessful in proving the theorem with 03> re-

placed by Q L --the method of Chen does not apply here because we don't 

know how to sieve sums of two squares of primes effectively. 

The method of proof of Theoreml is by means of the linear sieve 

as given in [2J. The main tool is Theorem 9.1 of [2J but, 
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unfortunately, the condition Jlf~/L) is not satisfied by this problem. 

So, in the Appendix at the end of this section, we verify Theorem 9.1 

of [2J under the weaker condition SL3(~)L) , defined as 

(n.~ (~~ L) ') \ 

where L may depend on Y.. (to be defined later). For the sake of 

simplicity, we also introduce the condition 

, for some abso 1 ute cons tant A. 

(Note that ~ is a consequence of .JLl..(~JL) and is satisfied in most 

applications.) We shall also need the following conditions: 

for some A,?/ \ , 

v(c\ ) 

~L(c:\) 3 \k~\ ~ A.~ 'A (to~)C..).I- . 

Then, we can prove the following: 

If u. and v ~ two numbers (independent of X ) satisfying 

0( -\ ~ U <" > 

and 

0< A <. A4- for some absolute 

then 

V\J (" .) ~ ) \.\ )" , >. ') 
QE 9\ 

~ ...L 

XV,,-p<.X u 

(a. ) t' ( )l.Y\I) ) = \ f \<A) P E ¥ 

t This is Theorem 9.1 of [2J with different conditions but same 

notation. 



satisfies 

for X sufficient 1y large, with c)... 

IS" 

\0;j)( ">") L 

§7. 2. Proof of the Theorem \ . 

We now proceed with the task of proving that the conditions 

.JL~(J<. )L) ,-.flo, JL, and R(l)o() are satisfied. Throughout, 

~ t p : set of primes 1 

PC l:) = Il p 
r<~ 

Put 

'I .L; \ We need to estimate ~q for dIPCl:) 

(7.2.1) 

:::: 

== 1 

3~p,C\.~M 

N:: p2 -t'\.2- (\'1"100. \<. ) 

1 + 

~s,r ,q,..~M 

N ::: p"" ~q.. 1. (MOct 't<d) 

1 

3~f1)'1- ~M 

N ::. ~ l. -\ i:\,. l. (V'NO \<-c\) 

(\)'\, Kc\) ?\ 
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The second sum is 

~ L L 
3,~f ~M !>~q. ~M 

~\I<..d. q. t Ko. 

N =~1."1 ,\1- ~oc\ 

M 
\C)'3 Kd. 

d 

1 + 

'.<.d) 

~~r/<\.~M 

f\KJ) q.\Kd 

N=. {'--tOy)... (mod \<.d) 

say. Let eCa) denote the number of solutions to: 

The first sum in (7.2.1) is 

\~U)V ~KJ. 

N =- "" 2. ; V L (mod \<-0. ) 

(l.\y I Kc\) =\ 

(L 
3.Sf ~M 

~ =. u (VVlod, 'f::d ) 

1 

~ -;;''\,~M 

'i =- v ~O(U<o..) 

1C ( \""\) \<.c\) u) TC ( I'Y\ ; \-<. d , v") 

\ ~ l\ ,v ~ \<-0. 

N -= U. 2.. --\ V 2. (\'V\od Kd ) 

(\lv) \<,d) ~I 

L\ 1"'\ 
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We put )l (M i \<.d I ~ ) :: ¢(Kd. ) 
-t E ( l.\ I Kc\ ) Then, the above 

sum is 

f ( Kcl) ) 
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where ~l.(d) =- "1 \ld.) ; 'Yh lJ.) ,def ined as 

l E:: ( '-' ) I<c\) + E l'oJ ) ~c\.) 1 

and 

We now define 

X -= 

cu\<.(d) 

\ R~ \ 

u 'v (MOc\ K.d) 

N ~ U. 1. ~"VL (YY10o. Kcl) 

( l.\ \I ) I<-d. ) :. \ 

u.JV (VVI<3d. \<-0.) 

N == u. 2- -t ,,1- ('(Ylod. \~ ) 

(l~ 1'1 ')2-

d ~ ( \<..0. ) 
:=: 

cP 2CK o.) 
) 

-= \R\(~)\ -\ \Rdd. )\ 

We first verify Rl,)o(,) for some 0(. Clearly 

(7.2.2) 

Il( -A 
d ~ X (\"'3 x) 2. 

, 

') ~ 2(d ) 2 v(c1) 
<.< M \"'3 x ~ d J 

c\ ~~ ~Q~ 'A)-f>-.l-
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Since c\ is square-free, 

and for sufficiently large A~, the expression on the right of (7.2.2) 

is 

5 
M (loC))() 

To estimate the contribution from ~2..lc\) we follow the method of 

Greaves [lJ. We give the proof, with 0{ = \:. ,for completeness. First 

L ~ E ( U J K~) ~ E l v J K\ ) 1 
? 

u ,I v WI oJ, Kc\. 

N~\A1..~",2. lvYIoJ \<-d) 

( '" '\I ) \<..d-) =- \ 

~ (L~ \~) L IEl<-JdH 

<p( ~ ) c. \l'V'.oc\ J. ) 

(<- ) c\ ) =: \ 

since k is a bounded absolute constant. For any e;,70 ,this is 

L { L\ M (l"'<j X)-B 

4<'c}.) 
'- LI-V\.oc\ d ) 

T (\o5 X {' cree\.) EL(CJc\)} 

L; M 

(c )0 ) =- \ 

-; 

-t (\o~ x,)B L EL(<-}d ) 

Co. lw-.o t\ d ~ 

(cJe\. ) -=- , 

(b,~X)B L E1.(c.)c\) 

c. ~odd ') 

(C ) c\ ) =- \ 



Also 

Hence, we have 

.L 
.2.. 

L\ ) v \'y, .~,.~ \<. Oc 

N'='.u 2. -1 V L (v, . ..cd Kd) 

(\.IY) Kc\) =-\ 

>( C -B 
cj> I.e' ) \o~ X. ') 

(b 3 x)B L 

Consequently 

« 

u ~od, 0\. 
(U)6. )=\ 

Using the Brun-Titchmarsh theorem in the form 

valid for \ ~ ~ < x. 
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) 
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2 'tLlc\) L E 2-( c. J\ ) 

J~X',('( \o~ x.j-A.l... 

and so is 

.L 

( \'.,\2. L '( 't(c\) / q,<'J.») l... ( 

c\~Xo«(\\)3X.) -;"2-

L EL(c,J)} 

c. (VYloc\ c\ ) 

(<.. ) c\)= \ 

The inequality of Barban-Davenport-Halberstam in the form 

2 E2.(C,A)A) 

'- (""'oJ J. ) 
(c.,..i.)-,;::' 

gives us 

C 
-e,-t5 

X l09 ;( ') 

and a suitable choice of A'/... and e, gives us '1<.( \ )0( ') with 

§7.3. Evaluation of fed). 

, 

We shall consider the properties of the function "Cd) which will 

.. 
be required to verify ..Il. I , .. D- o and JL3 l I) L). The function t' (J.) is a 

.L 
.L 



multiplicative function of d for if . d = d\~l. such that (cit, 7d·1.) -= I 

we have 

~ L 1 
\J ,y (l'"rIoO.. ~, 0. L ) 

(UV) ~"b)~' 

= 

u, )Y,(YV'I(;)c.\. d,) 

(u, v, ) J., ) -::. \ 

L1 
\-\ 1. I Vl. LM~d..ci"2. ) 

(Ut.y~ ,ch..)=-\ 

N =.u. l..·nt2.. ~»d d, ell.. ) 
N ~ (,,\,2..-1-'\1,1..) aL.L 

-+(ut. L 
... 'i~)d,L. 

U\}\JI~ocld,) 

(UI'\II )01\= \ 

LA 1. I 'h .. \. VY\ od ct1. ) 

(U"2.\J2. )0.'2..):::.\ 

N ~ U ,'l. -'I VI1. (vYlcO c1,) 

N =- L\ 1..... ~ 'J-.. ~ (h'I';'<:\ 0. 2. ) 

(l'Ylod d,J ... ) 

Since 

1 

We next consider the properties of e(p) where P is a prime: 

p 

} L B2..(a)p) c:. (- ~ n) 

C\ -=- \ 

where 

('t 

L 

So 

f - \ 

(7.3.1) t ~ b"2.( C\ ~? ') e (- 't-. N) . 

c\ ~ \ 
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( i) Suppose D\N. Th h r en t e second sum in (7.3.1) is 

P -\ 

(7.3.2) L (SCa)p) _1')2- , 
Cl -:0 \ 

where 

We use the well-known properties of Slo ?~) namely: 

(a) Slo) ~) = ( ~ )l S( I) P ') "If V { C\ ) 

{p- i> ::::. \ ~ccl. 4- ') J 

(b) S(\>\>} .: 

0 p =2. 

(v-p p~?, lvnoJ 4 ') 

Hence (7.3.2) is 

p -\ 

L l s 2. ( \) p') -\- I - 2. ( ; ) L S l I )?) 1 = 1 (p) \ 'S L( I ? p) -t \ 1 
U=I 

since 

= 0 

(ii) Suppose P1N Then the sum in (7.3.1) is 

r - \ ? - I 

\ S L( I ) p) -t' 1 L e ( - a pN ) - 2 S ( , ) \J) L ( ~ ) L e ( - G\\~ ) 

(\ := , 
<..~ =- I 

Since 

-\ 



and 

r -\ 

L (;)L e( - ~lpN ) 

we have 

where 

.:.\ -=- \ 

o 

(r-I{-I -P~N(P) 

P 

} 

LP-I)'- -t2..r-\ - P~N(\l) 

P 

o 

We next note that 

(7.3.3) -= 

pI N 

pIN 

r ::. 2.. ) 

ptN 

K 

P -= \ 

~ =: 

2\N 

, P~\ 

l VV\.~d. 4") 
~ 

~ (vnoJ. 4) 
) 

( ynoj 4 ") 
) 

) N IS Quo.dra.h<.. Y~$lclMe 
""'<!Ie! y ) 

t \\ K 

(we have used the multiplicative structure of f() here). We shall 
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need explicit estimates for fll.) ,n?» ,\(4) ,el~) ,\lC\~ and f(24) 

later on. The first two are trivial. We give the last four: 
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=: 

O~W\:.~ 
I 

:: 

\ 
l'-t N = I", 2. 

,_0, 4- ('Y" ,::-1 ~ \ 
) 

f( (q :: 

0 " t\Au- LN \ ~e. 

l 
'?;,(" N - l- eY' \() (","",cd \\:,) 

) 

~(1-Lj) ::: 

0 O~\...0\ ~z 

§7.4. Verification of .fl., and J"L:,CI ,L) . 

We now verify conditions AI and $?;,(I,L). We consider the six 

sets Y4' , .,\ ~, ,,2 ..:A".A'i3 .A 2.&+ 
J1 -.J"'\, , ~ and .7' • 

Case (i). 

N is not a quadratic residue modulo 3. Hence 

2. -+ 

P l' N ) P=-I (I-Y\o d 4-) ) 

(vv->od'-t ) 
} 

-ill is satisfied by all r-i: ~ • When p=- 3> , if ~\N , then ,,(3) -= 0 

If 31N and N is a quadratic residue modulo 3, then W,(3) <.1. Hence, 

Jl\ is satisfied for all y. Also 



Hence 

Hence 

UJ,(P) 
-:: 

~ 

w", (p) 

- l09 f> r 

l 
i o( ~) p 

2... 

-1 o( fL) -P 

C' 

=- L 
\0<) f 

P 
W~\><'-l-

-t 0 (\) . 

\()~ ~ \ ~ 

~ 

, r r-tN ) 

p \ N ) r= \ (mvd4) 
} 

p1'N } P '=-3 

~L l0.9 Y 
,., 

W~p <t 

yIN 

p ::: \ (YY\oa It ) 

L \O~P 

P 
W"'V<t 

pIN 

C- lUJ \.05 ~N 

--I: 

(vn~c\4-) 

w~p<£ 

~IN 

p 

t' '= .!, (""'0(\ \j ) 

0(1) 

say, where c. is an absolute constant. We put L -= c. b')\"3 N , and 

. ~/' l note that the above argument is valid for all the six sets Y1 to 
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verify ~3(')L). We need only verify JL\ for the rest of the cases. 

Case (ii). 

Clearly, we need only verify that when p~~ and ~~N, then 

1.. -, for AI 7,- \ We have, from (7.3.3) 3l0~(~) ~ I+AI some . 

i L'Y:o,l3.) 
w l l"1) 

-:::: 
~ ('1) 

~ ~ --::: 
~ 42.(q) 3(" 

Case iii) . 

We now have to consider the case f =2 IN , while case (i) provides 

the rest of the verification for j:" \ • Now, from (7.3.3) 



::: 0 

since 

Case (iv). 

Here we consider the case r=3 and p=l when 6~N 

and 

2. 

since N sO \VYlod 4-") 

Case (v). 

-= S'.(q) f.(L) 

cp 1( co q, 2-( L) 

((4) ~C?,) 

q, 2l4-) q, 2( ?, ) 

< 

=0 

Here we consider the case '")~'. Hence by (7 3 3) , ..... , . . 

Case (vi). 

WIllb) 

11" 
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We have 

It remains to consider both the cases 3 and 2 when ;~N Then 

and 

W"L4 (2. ") 

L 

eU G) ~~ 3.) 

q,L{lb)4 L (3) 

Hence Jl., is satisfied for all p , for each of the individual sets. 

§7.5. Completion of Proof of Theorem 1 

We now complete the proof of Theorem 1, with the help of 

Theorem 2. We define 



Wkl~) -= Cl ( I - USKr
l \» ) 

P<' t 

and 

~K(N) -=. n( \ - ~K~e))( \_..Lj-' 
I' . 

f 

Now, by Lemma 5.3 in [2J (see Appendix) 

-'I 

( \ -T O( \~5 Z: )} ( CX?( 0 ( 
e. 

W\,,-(c) GK(N) 
\ C<j t: 

lIs 
and us ing c -= X 1.. t f 11 th , 0 ows at 

(7.5.1) 

Let us choose 

u = %'I?:> 

Then, by Lemma 9.1 of [2J 

~ 

\o~X 

( ~ dt 
- A J F ( '+ - ! ) ( \ - 2>t-) t 

~I~ 

Hence, by Theorem 2, we have 

(7.5.2) 

(I ~ O( 
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L 

~)) , \~ i: 

We just note that ~K(N)~o but there is no real need to work them out 

in full (though, we have all the necessary information to do so). As 

an example, we give 
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ptN )N0,\4~ ml.>d. p ) 

p=, ",",,0<:\1.4-

t-<UJ:, r'<1 o d P 
p:: \ lv>\Odlt) 

(1- ~ \ 
\ (V-I)~) 

3.~,\\ 

+ CP-\)~ ') 11 ( 
~;,;-

\ -+ - ) 
<. P -\)~ " 

P1'N 
N (:H;'(ffl~ p) 
p~? (1\1"'.:\,+) 

n (I 
P-\' N I \' ~3 (wv1~d.~) 

N UNfZ.(vYlodr ) 

We now interpret the result given by Theorem 2. We shall work with 

I< 
the general set ~\ as the argument is valid for all the values of ,~ 

we are considering. 

We first discard all those numbers from ~K which are not square-

[
} !:.JS'1 

free with respect to the primes in the interval ~) x • The 

number of such elements is clearly at most 

« -, I~ -t E

X ) 

say. We may absorb this estimate in the error term in (7.5.2). The 

remaining elements of ~K are square-free with respect to the primes 

\<.. 

Let b denote a non-excluded member of A which gives a positive 

contribution to the weight 

I -

".. 31>; 
)\"~f'.~X ? 

P. \ b ') Y I E- -:ro 

I/s 
Clearly, b does not have any prime divisors less than X 

the weight of b is at most 

\ - A ( SLCbJ 

Hence, 
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Suppose A"7 ~/,+. Now, if .Jl.~b) ij '+, the weight of b would be at most 

(where we have used \b\ ~ 3N ). If N is sufficiently large, this 

would not be positive, which contradicts the definition of b. Hence, 

it follows that 

provided one can find a A 7 3/'-t-. But since 

when A -= ~ , we have shown that such a ), exists and moreover, 

for sufficiently large X. Theorem 1 now follows. 

Remark. Halberstam and Richert remarks on pp. 252 of [2J that an 

improvement of ~ in Bombieri's Theorem would lead to the replacement of 

the Q:,'s by Gl.'S in the quasi-Goldbach problem. For our purposes, we 

are not so fortunate as Montgomery in [3J has shown that 

(\. ~lX c V")~q,. 

(c I'\, ) ~ \ 

for Q ij x • 

-y, 

Hence, for our purposes, Q. -:: :L Q<:l ') -x..) seems bes t poss ib le and 

this is simply oX "'-1.. Consequentially, a new argument is required 
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(or perhaps the use of a different system of weights specially 

designed for the problem), for a further qualitative requirement. 

§7.6. Appendix 

We shall state modified Lemmas and Theorems which appear in [2J, 

and these shall be used to prove Theorem 2. Throughout, we shall 

~ 

assume conditions jl., ,JL, , .... (l-3( \) \....) ,R( \ )~) • 

LEMMA* 5.2. If 

\ 

and 

uniformly in 5 • 

-w-tp) 

p 

w~p<c 

L 

Proof. The first assertion follows directly as in [2J. For the 

second assertion, we put S -=0 and use 

+ 

Then 

L-
W(I') L 

c.u :l.(p) 

L 
""Lf) w(~) \\)~ r 

~lp) ~ AI -= AI -- p:4 ?\o3r p 
f' 

w~p <!. w!:-\J<. to WSi'<-c 

~ AlA L 
ceq::» -P \05? 

\I"~i>< 1: 

Partial summation gives 

\0,3 ( ~/w) 

(\ .. ~ e)(lc3 W ) 

The result then follows for s=o. The general case then follows by 

partial summation. 
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* LEMMA 5.3. If 

n (\ -+ ~~~)) ( \ 

P 
:: 

) 

-rv 
"(\~Cl1-) (( L ) _"J_ eK 0 --\~ 'W V IcC) "'I') J 

\N( ~) 

Proof. This is exactly as in [2J with Lemma* 5.2 replacing 

Lemma 5.2. 

LEMMA* 5.4. Suppose that IcJ"'l: 7 3L. Then 

Proof. The argument used in the proof of Lemma 5.4 is valid 

until one reaches line 3 of pp. 149. The sum concerned is 

Using 

and .ll~C;K.. ) L) , the sum is 

o( 

Hence 
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But this is precisely the line after it. The only other point in the 

proof we need to justify is (3.11), which states 

This follows from Lemma 4.1, with ~-:t ,A2..=L and our assumption that 

L <. 1;l~r. Application of Lemma* 5.3 gives the result. There is no 

other change needed in the proof. 

LEMMA* 6.1. Suppose Then 

if l: ~ ~ and 

Proof. There is essentially nothing new to add as Lemma 6.1 is 

l.j<, "1- , 

proved under the condition 103 c >") L't. Moreover, the variable 

us appearing in (4.7) is perfectly safe since it is always chosen to 

satisfy 

THEOREM* 6.3. Suppose Then 
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for 'L > 0 and 1:: < S • 

Proof. This follows from Theorem 6.1 and Lemma* 6.1. Note that 

Theorem 6.1 needs no verification. 

LEMMA* 7.2. Suppose \c3~''7'7 L4 ,and 

Let *,It.) be a non-negative, monotonic and continuous function for t H' 

and define 

Then 

M = 

o( 

S 2../ "'I 
10'3 W ) -

* THEOREM 6.1. We have for any ~7 \ , that 

LEMMA* 4.1. Suppose that \~ 7: '7 ll. • Then 

2}:. 
-+ 

). 
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Proof. The proof of this follows Lemma 4.1 using 

t \o"'! 2 . 

THEOREM* 6.2. S \ ~L2 uppose ~C) e ' If S ~ 1::. ,we have 

where 

Proof. For 'l."":7r , we use the proof given on pp. 192, Theorem 6.2. 

So, assume that '1:~C:. * * Then Theorem 6.1 and Lemma 4.1 give us 

.... Ie 

Assume \"3 \.. '7 e. Otherwise, we get a result of the quality of 

* Theorem 4.1 (which one obtains on applying Lemma 4.1). Now put 

Then 

The result then follows. 

THEOREM* 7.1. Suppose \0<) 1: :> L~ and ~ 4 c. Then we have 

w tq.,) X. W (-c) <) \ -t 0 ( :: X p ( - ~'L ) ') 1 
'l 1. 

.1' , ) 

~ \\Zdq,,\) 
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where 

) 

and I€-\ ~2. 

Proof. As in the proof of Theorem 7.1, we need only prove the 

lower bound. By Lemma 7.1, with \"') to, " 2L'- , we have 

For the sum, we note that we may apply Theorem* 6.2 with p replacing ~ 

since 

The argument given in the proof of Theorem 7.1 for the estimation of 

the sum is now valid because we can now use our previous results. It 

remains to estimate 

sc ~q, I .\? ) t \ ') 

By Theorem 6.2, this is 

where 

'l., 

* Also, by Lemma 5.3 

It therefore remains to show that 

wlt) >< V\I ( 7=,) . 
q 

'T L ~-Vld)\Rd,\\ I 

c\ < '$" 
d \ Pt"lo ) 



Since LGo') to \ f' <<.. L -\ , and 1., is large, we may discard the error 

term. Hence, the above is 

~>;\J ( -;2. L \ 
b'j b 

) -T -x. \'" . 
\0~ t I 7 

- \<l~ ~ 
e.x 17 ( 2- l03 1-

-I J<. Iv", 
Ie,,) c 

and since 

lO~t \ 

\o~ 't 
> \ ,the above expression is 

\o~ c- I 

) 

\03 c-
') 

\0'3tol 

The result then follows with the same proof as in Theorem 7.1. 

The Linear Sieve: J.:.. = \ 

LEMMA"" 8.l. Suppose 

for any y 
} 

W (l,) 
\ 01j 'S 2-

4' v ( \o~ c ) 

'o~ t I '7'/ L 2- and 

V\} (t I) cfv( 
\o~ ~ 2.. 

\0'3 to 

1.-\ ~ t ,;; ~ 

) 

-T 0 ( 

Then, 

W l r) L ''''3 c ) 

(\0j~' )L 

Proof. One applies Lemma* 7.2 in place of Lemma 7.2 and the 

result follows. 

* 2 \ L2. LEMMA 8. • Let 0'3 C, ~'7 Also suppose that 

where 

( 
J 

'e -:>'/3 ) r ~ \«II'" l <:, 

Then 

179 
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Proof. Again, replace Lemma 7.2 by Lemma* 7.2. 

THEOREM* 8.2. Suppose that \o:} t:, >)> l).. and z., 'f, C:- ..,;, ~ Set 

J... 

~ :;:; ,:>, 
J 

Then, the expression holds. 

Proof. The first point to note is that the various substitutions, 

namely p taking the place of -t. , is perfectly valid since p, tl and 

so 

2-
":>7 L } 

a condition needed to be satisfied by \Cjll for us to use the previous 

results above. 

* THEOREM 8.3. Suppose that 

Then 

) 

and 
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Proof. Our assumptions above allows us to choose ~I as in 

Theorem 8.3. Moreover the use of Theorem* 7.1 allows us the choice 

The proof now follows exactly as that of Theorem 8.3. One should 

note that the various interchanges occurring at the bottom of page 232 

are valid since 

Consequently, we may use our previous results. 

THEOREM* 8.4. For 'l:~)<. and we have 

and 

with the functions F and ~ as defined there. 

Theorem 9.1 (our Theorem 2) now follows with the aid of 

Theorem* 8.4, Theorem* 8.2 and Lemma* 7.2. There is no change in the 

argument. 

Note. It has been assumed throughout that L is not bounded as 

otherwise we may replace it with .Jl1...lJ<.) or even JL<-l"l<.,L) 



T(7.2) 

T(7.1) 

T(6.2) 

T(6.1) L(4.1) 

T(9.1) 

(T.81) 

T(7.3) and T(8.4) 

L(8.1) 

L(7.2) 

L(6.1) 

/I 
\ 

T(6.1) 

L(4.1) L(5.4) 
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L(7.2) 

I 

L(5.3) 

L(2.3) 

This is a chart interconnecting the relevant Lemmas (L) and Theorems 

(T) required in the analysis for Theorem 9.1. 
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