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ABSTRACT

TOPL is a suite of software tools for specifying freeway opera-

tional improvement strategies, such as ramp metering, demand

and incident management, and for quickly estimating the bene-

fits of such improvements. TOPL is based on the macroscopic

cell transmission model. The paper summarizes the theory of the

cell transmission model and describes the procedure to carry out

a TOPL application. The procedure is illustrated for the 26-mile

long I-210W freeway in California, whose model is calibrated

using loop detector measurements of volume and speed. The

measurements show that congestion originates in a bottleneck

and moves upstream, as predicted by the theory. The simulations

show that appropriate ramp metering can dramatically reduce

total congestion delay and mainline travel time.

1 INTRODUCTION

In November, 2006 California voters approved a $20 billion bond

measure to improve transportation. Subsequently, the California

∗Corresponding author. Email: horowitz@berkeley.edu.

Department of Transportation (Caltrans) launched an ambitious

‘corridor management program’ to design and implement op-

erational improvements—emphasizing ramp metering, incident

management, traveler information, and demand management (in-

cluding using tolls)—that would reduce congestion in 2025 by

40 percent [1]. This paper describes TOPL (Tools for Operations

Planning), a suite of software tools for (1) specifying such opera-

tional improvements and (2) quickly estimating the benefits such

improvements are likely to provide.

TOPL is based on the macroscopic Cell Transmission Model

(CTM). Traditionally, transportation planning investigations fa-

vor use of microscopic models, and indeed Caltrans has let con-

tracts for microsimulation models. However, data collection and

model calibration efforts are significant for microscopic models,

therby slowing these efforts [2]. In contrast, the CTM model is

based on aggregate variables such as volume or flow and den-

sity, which for California freeways, are routinely measured and

archived [3]. Consequently, TOPL models are very quickly spec-

ified, calibrated and run to generate useful results.

This paper illustrates the procudure used in TOPL to calibrate

the macroscopic Cell Transmission model. Section 2 reviews the



Cell Transmission model used for freeway corridor simulation.

It also highlights main results advocating the use of ramp me-

tering to alleviate excessive demand [4]. Section 3 explains the

procedure adopted in TOPL for freeway network calibration, im-

putation, analysis and simulation. Finally, section 4 illustrates

the application of the methodology to simulate and study the 26-

mile long I-210W freeway in the Los Angeles area.

2 CELL TRANSMISSION MODEL

The cell transmission model used to simulate freeway traffic in

TOPL [5]. This section summarises the model and the traffic

behavior predicted from the analysis of this model [4]. Figure

1 shows the freeway divided into N sections or cells, each with

a maximum of one on- and one off-ramp. Vehicles move from

right to left. There are two boundary conditions. Free flow pre-

vails downstream of section 0, and vehicles from upstream of the

freeway enter an “on-ramp” with specified inflow rN . The flow

accepted by section (N − 1) is fN(k) vehicles in period k. The

cumulative difference forms a queue of size nN(k).

0 i-1 i i+1

f0 fifi-1 fi+1

si ri

N-1

rN
fN

nN
s0

r0 sN-1
rN-1

Figure 1. FREEWAY WITH N SECTIONS.

Symbol Name Unit

section length miles

period hours

Fi capacity veh/period

vi free flow speed section/period

wi congestion wave speed section/period

nc
i critical density veh/section

n̄i jam density veh/section

βi split ratio dimensionless

k period number dimensionless

fi(k) flow from section i to i− 1 in pe-

riod k

veh/period

si(k),ri(k) off-ramp, on-ramp flow in section

i in period k

veh/period

ni(k) number of vehicles in section i in

period k

veh/section

Table 1. MODEL VARIABLES AND PARAMETERS.

Table 1 lists the model variables and parameters. The length of

all sections is normalized to 1 by absorbing differences in length

in the speeds vi,wi. Since the lengths have been fixed by the

segmentation scheme described before, the time period of the

simulation is chosen to effect 0 < vi,wi < 1, so that the vehicles

do not cross an entire cell in one period, making the scheme un-

stable. The off-ramp flow is assumed to be a portion βi(k) of the

total flow leaving the section:

si(k) = βi(k)(si(k)+ fi(k)), or si(k) = [βi(k)/(1−βi(k))] fi(k).

Assume βN(k) = 0∀k. With β̄i(k) = 1−βi(k), the model is, for
k ≥ 0,

ni(k +1) = ni(k)− fi(k)/β̄i(k)+ fi+1(k)+ ri(k), 0 ≤ i ≤ N −1, (1)

fi(k) = min{β̄i(k)vi ni(k),wi−1[n̄i−1 −ni−1(k)],Fi}, 1 ≤ i ≤ N,

(2)

f0(k) = min{β̄0(k)v0 n0(k),F0}, (3)

nN(k +1) = nN(k)− fN(k)+ rN (k). (4)

Flow conservation in section i ≤ N −1 is expressed by

ni(k + 1) = ni(k)− fi(k)+ fi+1(k)+ ri(k)− si(k), (5)

which is equivalent to (1), using si(k) = βi(k)/β̄i(k) fi(k); and in

section N by (4). The flow fi(k) from section i to i− 1 is gov-

erned by the ‘fundamental diagram’ (2) with this interpretation:

β̄i vi ni(k) is the number of vehicles that can move from section i

to i−1 in period k; wi−1[n̄i−1 −ni−1(k)] is the number that i−1

can accept; and Fi is the capacity or maximum possible flow from

section i to i− 1. Equation (3) indicates there is no congestion

downstream of section 0. It is tacitly assumed that the flows si(k)
are not constrained by off-ramp capacity.

The parameters in Table 1 correspond to the fundamental dia-

gram of Figure 2. The state of the system is the N-dimensional

vector n(k) = (n0(k), · · · ,nN−1(k)). Assume stationary demands

ri(k) ≡ ri. Then the following propositions hold [4].

Proposition 1. A feasible demand r has a unique uncongested

equilibrium nu(r):

nu
i (r) = (β̄i vi)

−1 fi(r), 0 ≤ i ≤ N −1. (6)

In addition to the uncongested equilibrium (6), there is an infinite

number—in fact, a continuum—of congested equilibria. Let E =
E(r) be the set of equilibria. Then, Each on-ramp demand vector



Figure 2. FUNDAMENTAL DIAGRAM, CHARACTERIZED BY CAPAC-

ITY Fi AND SPEEDS vi,wi.

r = (r0, · · · ,rN) induces a unique equilibrium flow vector f (r) =
( f0, · · · , fN) calculated from

fN = rN , (7)

fi = β̄i ( fi+1 + ri), 0 ≤ i ≤ N −1. (8)

Demand r is said to be feasible if 0 ≤ fi ≤ Fi, 0 ≤ i ≤ N; strictly

feasible if 0 ≤ fi < Fi, 0 ≤ i ≤ N; and infeasible if fi > Fi for

some i.

n = (n0, · · · ,nN−1) is an equilibrium state for a feasible demand

r if the trajectory n(k) ≡ n is a solution of (1)-(3), i.e.,

fi = min{β̄i vi ni,Fi −wi−1[ni−1 −nc
i−1],Fi}, 1 ≤ i ≤ N −1,

(9)

f0 = min{β̄0 v0 n0,F0}. (10)

At equilibrium n, section i is uncongested if 0 ≤ ni ≤ nc
i and

congested if ni > nc
i ; the equilibrium n is uncongested if all sec-

tions are uncongested; otherwise it is congested. A section i is

a bottleneck if fi = Fi, i.e., in a bottleneck flow equals capacity.

Suppose there are K ≥ 0, we can partition the freeway into 1+K

segments.

Proposition 2. The set of equilibria E ⊂ RN can be expressed

geometrically as

E = [ñ−1, ñ0]∪ [ñ0, ñ1]∪·· ·∪ [ñN−2, ñN−1], (11)

in which [ñk−1, ñk] denotes the straight line segment joining ñk−1

and ñk.

Proposition 2 indicates that congestion starts at a bottleneck sec-

tion and spreads upstream. Also, the flows in all sections are the

same at every equilibrium in the set (11), even though at (say)

the equilibrium nu no section is congested and vehicles move at

free flow speed, whereas at ñN−1 every section is congested and

vehicles move at lower speed. Thus the presence of congestion

is not an indication of excess demand.

Proposition 3. (i) r̃N < rN is the largest upstream flow for

which the demand r̃ = (r0, · · · ,rN−1, r̃N) is feasible. The cor-

responding equilibrium flow φ̃ is

φ̃N = r̃N , φi = β̄i(φ̃i+1 + ri), 0 ≤ i ≤ N −1.

(ii) With demand r, under the no-metering strategy the system

converges to the (unique) most congested equilibrium ncon ∈E(r̃)
corresponding to demand r̃. The queue nN(k) at the upstream

ramp grows at the rate of (rN − r̃N) vehicles per period.

(iii) r̂0 < r0 is the largest flow for which the demand r̂ =
(r̂0,r1, · · · ,rN) is feasible. The corresponding equilibrium flow

φ̂ is

φ̂N = rN , φ̂i = β̄i(φ̂i+1 + ri), 1 ≤ i ≤ N −1, φ̂0 = β̄0(φ̂1 + r̂0).

Under the ramp metering strategy that reduces the on-ramp flow

in section 0 from r0 to r̂0, the system converges to some equilib-

rium in E(r̂). The queue at the on-ramp in section 0 grows at the

rate of (r0 − r̂0) vehicles per period.

(iv) Flows under the ramp-metering strategy are larger through-

out the freeway:

φ̃i < φ̂i, 1 ≤ i ≤ N and φ̃0 = φ̂0 = F0.

Suppose βi > 0 for some i ≥ 1, so that there is non-zero off-

ramp flow in at least one section. Then the total discharge under

the ramp-metering strategy is strictly larger than under the no-

metering strategy. Moreover,

µ =
rN − r̃N

r0 − r̂0
= (β̄1 · · · β̄N)−1 > 1. (12)

Proposition 4. There is a ramp metering strategy that achieves

the metering gain. With a small sacrifice in capacity, the strategy

achieves the uncongested equilibrium.

3 TOPL PROCEDURE

The TOPL procedure for calibration, imputation and scenario

simulation require the following steps.



3.1 Network specification

The freeway network must be defined in the form of Figure 1,

i.e., the freeway must be divided into cells, each with (at most)

one on- and one off-ramp. Each cell should be homogeneous

in terms of number of lanes and grade, so that it is sensible to

represent the behavior of traffic in the cell by a single aggregate

fundamental diagram. In order to facilitate calibration, it is de-

sired that each cell should have a vehicle detector station that

measures volume and speed.

In TOPL, network specification begins with a GIS map from

which the freeway geometry (number of lanes and position of

ramps) is extracted. An algorithm takes the specified geometry

and the location of detector stations, obtained from PeMS [3]

and produces a cell division of the freeway. The resulting cell

structure is manually inspected and changed if needed.

3.2 Fundamental diagram Calibration

The calibration of the fundamental diagram parameters shown in

Figure 2 is performed on data provided by PeMS. Each cell of

the network contains a vehicle detector station (vds) that mea-

sures volume and speed. A health history report is generated to

determine the days when the detector was reported to function

properly, and data is obtained for days when the detector regis-

tered congestion,i.e, the speed across the vds became less than

40 mph for at least 5 minutes during the day. The congestion

is required to observe capacity and estimate congestion speed w.

Each cell is then calibrated on the flow vs density scatter plot

(Figure 3).

First, the free-flow speed v is estimated by performing a least-

squares fit on the flow vs density data at the time instants where

the speed was reported to be above 55 mph by the vds. Then

the maximum observed flow is recorded and it is projected hor-

izontally to the free-flow line previously determined by v. This

projected point constitutes the Capacity for this cell of the free-

way and the corresponding density is labeled as the critical den-

sity where the freeway section hits its capacity and starts getting

congested.

Finally, the congestion parameter w and the jam density are es-

timated. The main assumption in the calibration process is that

the freeway sections rarely reach their ideal states and hit their

actual capacity due to random external effects such as driver be-

havior, weather conditions, road work, incidents, etc. Thus, the

calibration aims at the upper end of the distribution in terms of

capacity and w. This ensures that the simulations are performed

with the best estimates of the actual capacities and congestion

wave speeds, and hence, we can simulate the effects of different

external factors which reduce the external capacities. For this

reason, an approximate Quantile Regression [6] method is im-

plemented rather than a least-squares fit on the congested flow vs

density data. In this procedure, the flows corresponding to den-

sities higher than the critical density are partitioned into bins so

that each bin corresponds to one density value and contains 10

flows. Among these 10 flows, the maximum non-outlier is taken

to represent the bin. This maximum non-outlier is determined as

follows:

Bin = { f1, f2, ..., f10} (13)

Bin Flow = max
fi

( fi | fi ∈ Bin, fi < Q3 + 1.5 × IQR)

where f1 through f10 and fi are the flow values inside one such

bin, Q3 is the 75th percentile of the data points in the bin and

IQR is defined as the difference between the 25th percentile and

the 75th percentile of the data.

After all the Bin Flows are determined, a least squares fit is per-

formed on these data points. The regression line is constrained to

pivot at the projected maximum flow point to complete the trian-

gular Fundamental Diagram of the CTM. The final results of the

calibration for the example vds is depicted below in (Figure 3).

For those cells which do not function properly, nominal values

Figure 3. ESTIMATED PARAMETERS ON THE DENSITY VS. FLOW

SCATTER PLOT OF VDS 761342

are used. Also, in case a vds station does not record conges-

tion, nominal values are used for Capacity and congestion wave

speeds, while the calibrated value is used for free-flow speed.

3.3 Ramp flow imputation

On-ramps and off-ramps also contain vehicle detector stations,

and the flow data obtained from them forms an essential input

for the simulation of the freeway. However, these data are often



found to be missing or incorrect. TOPL has an elaborate pro-

cedure to impute missing and incorrect ramp data. The CTM

model is utilized to determine the flow profile recorded in the

vehicle detector station. The procedure has been extended from

the repetitive control technique described in [7, 8] .It is assumed

that the density and ramp flow profile is 24 hour periodic, and

the on-ramp and off-ramp flows are represented as a convolution

of a kernel on a constant periodic ramp parameter vector.

r(k) = Kr(k)
T cr, s(k) = Ks(k)

T sr, (14)

where Kr(k) and Ks(k) represent a periodic, time dependent ker-

nel vector. Some typical kernel functions include a unit-impulse

or a gaussian window centered at time k. The imputation procud-

n n ndnup

fup fdn

v    , w   , Fup up up v    , w   , Fdn dn dnv , w , F

Figure 4. IMPUTATION PARAMETERS AND CELL DEFINITIONS

ure assumes and initial estimate for the ramp parameter vectors

ĉr and ĉs. These estimates are then adapted so that the model

calculated densities match with the density profile recorded in

the vehicle detector station. The input parameters for the impu-

tation procedure are indicated in Figure 4. The procedure for the

imputation is outlined below.

f̂up(k) = min(vupnup(k)− sup(k),w(n̄J − n̂(k)),Fdn)

f̂dn(k) = min(vn̂(k)−Ks(k)
T ĉs(k),wdn(n̄

J
dn −ndn(k)),F)

ño(k + 1) = n(k + 1)− (n̂(k)+ f̂up(k)− f̂dn(k)

+ Kr(k)
T ĉr(k)−Ks(k)

T ĉs(k)−a(n(k)− n̂(k)))

If ( Mode is FF and (ño(k + 1) < 0 or

min(wdn(n̄
J
dn −ndn(k)),F) ≥ fdn(k))) or

(Mode is C and min(wdn(n̄
J
dn −ndn(k)),F) ≥ fdn(k))

ñ(k + 1) =
ño(k + 1)

(1 + Kr(k)FKr(k)T )

ĉr(k + 1) = ĉr(k)+ FKr(k)ñ(k + 1)

f̃ o
dn(k) = fdn(k)− (vn̂(k)−Ks(k)

T ĉs(k))

f̃dn(k) =
f̃ o
dn(k)

(1 + Ks(k)FKs(k)T )

ĉs(k + 1) = ĉs(k)−FKs(k) f̃dn(k)

Else

ñ(k + 1) =
ño(k + 1)

(1 + Kr(k)FKr(k)T + Ks(k)FKs(k)T )

ĉr(k + 1) = ĉr(k)+ FKr(k)ñ(k + 1)

ĉs(k + 1) = ĉs(k)−FKs(k)ñ(k + 1)

The system is in Freeflow (FF) mode if min(wdn(n̄
J
dn −

ndn(k)),F) ≥ vn̂(k)−Ks(k)
T ĉs(k). Otherwise, it is in Conges-

tion (C).

The parameter a is chosen so that the error equation is asymp-

totically stable. The adaptation procedure is carried out through

the entire density profile multiple times, so as to reduce the ‘er-

ror’ ∑ |ni(k)− n̂i(k)|. This procedure is repeated until the error

is acceptable. A similar procedure is adopted when only one of

the ramp flows need to be imputed. Figure 5 shows an example

of imputation performed for one of the cells in the I210W free-

way. Finally, the ramp flows are now used to generate split ratios,
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FLOWS FOR VDS 761374

which are usually time-varying.

3.4 Base case and Scenarios

At the end network specification, calibration and imputation, the

CTM model is fully specified. The model is run for a ‘base case’,

which simply means a particular day or several days for which

good data are available. The model output is compared with ac-

tual field data in terms of (1) location of bottlenecks and speed



contour plots, (2) hourly delays, (3) travel time, and other perfor-

mance measures.

Several scenarios are specified. A scenario is created by specify-

ing changes in the fundamental diagram and in the on-ramp de-

mand. These include (1) increasing demand by (say) five percent

relative to the base case; (2) modeling an incident in a particu-

lar cell by reducing the capacity of the cell by one or two lanes

for a certain time period; (3) a demand management scheme that

reduces on-ramp flows at some locations by a certain amount.

TOPL provides several ramp metering control laws, including

ALINEA [9] and those described in [10]. Running each speci-

fied scenario with and without ramp metering in place provides

an estimate of the benefits of ramp metering.

4 TOPL APPLICATION: I-210

This section is devoted to a TOPL case study of I-210W, a 26-

mile long freeway in Pasadena, Southern California, shown in the

map of Figure 6. The map shows the location of three major bot-

tlenecks. The bottlenecks are visible in the speed contour plots

Figure 6. I-210W WITH LOCATION OF THREE MAJOR BOTTLE-

NECKS AT HILL ST., BALDWIN ST. AND THE I-605 CONNECTOR.

for two days shown in Figure 7. Observe in both plots that con-

gestion starts at a bottleneck and moves upstream, forming the

characteristic low speed triangles, as predicted by Proposition 2.

Figure 8 is a screen shot of a display window of the TOPL sim-

ulation of I-210W for the base case, after steps 1-3 of the TOPL

procedure are executed. TOPL simulation require the boundaries

to be in free-flow, so that flow boundary conditions may be speci-

fied for the simulations. Hence, the initial section of the freeway

(which was in congestion), was disregarded in the simulation.

Comparisons with empirical data (Figures 8 and 7) indicate that

the estimated CTM model conforms reasonably well with mea-

surement. For example, the contour plots clearly show the three

major bottlenecks. Similarly, the delay in the morning peak is

much larger than the afternoon peak, which is to be expected, be-

cause the morning commute direction is West, toward downtown

Figure 7. SPEED CONTOUR PLOTS FOR TWO DAYS, 2/6/07 and

3/5/07: Source [3].

Los Angeles. Also Figure 9 shows that the simulated perfor-

mance measurements- Vehicle Miles Travelled (VMT),Vehicle

Hours Travelled (VHT) and Delay (Hrs) compare well with the

actual data. These comparisons lend confidence to the results of

the scenario analysis considered next. Figure 10 shows the sim-

Figure 8. I-210 SIMULATION : BASE CASE.

ulation of an accident occurring near the second bottleneck. This

accident causes the capacity of the freeway to be reduced by one

half between 4:00 pm and 4:30 pm (indicated in the figure by X).

This reduction in capacity causes the demand to be infeasible,

and congestion spreads as predicted by Proposition 3. Figure 11

shows the reduction in the congestion impact of the accident by

ramp metering. The freeway is maintained in free flow, as sug-

gested by Proposition 4. Of course, free flow on the mainline is

partly paid for by delay on the ramps. Nonetheless, there is a net

reduction in delay as summarized in Figure 12. The figure plots

travel time (including time spent on the ramps) for three scenar-

ios: base case (black), accident with no metering (dotted red),

and accident with metering (dashed magenta). The area between

the red and magenta plots is the net delay savings due to ramp

metering.

A more dramatic scenario is illustrated in Figure 13 which sim-

ulates the impact of a 5% increase in demand (all on-ramp flows

are increased by 5% relative to the base case). Figure 15 shows



Figure 9. I-210 SIMULATION - PERFORMANCE MEASURES.

Figure 10. SIMULATION OF AN ACCIDENT.

that this 5% increase in demand causes a 38.1% increase in travel

time. Nevertheless, ramp metering can still keep the mainline

free flowing as indicated in Figure 14, while limiting the increase

in total travel time to 7.8%.

Figure 11. SIMULATION OF THE ACCIDENT WITH RAMP METERING

IN PLACE.
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Figure 12. PLOTS OF HOURLY DELAY : BASE CASE (BOTTOM) ,

WITH ACCIDENT (TOP) AND UNDER METERING (MIDDLE).

5 CONCLUSION

The macroscopic CTM model is much easier than microscopic

models to calibrate and use to specify strategies to improve free-

way operations and to evaluate their potential benefits. The cal-

ibrated CTM model for I-210W generates behavior that agrees

closely with empirical measurement, including location of bot-

tlenecks, propagation of congestion upstream from bottlenecks,

hourly delay and travel time. The validity of the model is further

confirmed by comparing its performance under a simulated acci-

dent with empirical measurements. This lends confidence to the

model’s prediction of major reductions in delay by appropriate

ramp metering.

TOPL can be used to provide benefit assessment for various ramp

metering stratergies. Critical sections can be identified for me-

tering, and different algorithms can be tested for evaluating their

efficacy. Scenarios like capacity (lane) expansions can also be



Figure 13. SIMULATION OF A 5% INCREASE IN DEMAND.

Figure 14. SIMULATION OF INCREASED DEMAND UNDER METER-

ING.

simulated, and their benifits assessed. Overall, TOPL can be ef-

fectively used as a critical tool for freeway operations planning.
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