Topographic Receptive Fields and Patterned Lateral Interactionin a
Self-Organizing Model of The Primary Visual Cortex

Joseph Sirosh and Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin, Austin, TX 78712
{sirosh,risto} @cs.utexas.edu

Abstract

A sdlf-organizing neural network model for the simultaneous and cooperative devel opment of topographic
receptive fields and lateral interactionsin cortical maps is presented. Both afferent and lateral connections
adapt by the same Hebbian mechanism in a purely local and unsupervised learning process. Afferent in-
put weights of each neuron self-organize into hill-shaped profiles, receptive fields organize topographically
across the network, and uniquelateral interaction profiles devel op for each neuron. The model demonstrates
how patterned lateral connections devel op based on correlated activity, and explainswhy lateral connection
patterns closely follow receptive field properties such as ocular dominance.

1 Introduction

Theresponse propertiesof neuronsin many sensory cortical areas are ordered topographically, that is, nearby
neuronsrespond to nearby areas of thereceptor surface. Such topographic mapsform by the self-organization
of afferent connections to the cortex, driven by external input (Hubel and Wiesel 1965; Miller et a.1989;
Stryker et a.1988; von der Malsburg 1973). Several neural network models have demonstrated how global
topographic order can emerge from local cooperative and competitive lateral interactions within the cortex
(Amari 1980; Kohonen 1982, 1993; Miikkulainen 1991; Willshaw and von der Malsburg 1976). These mod-
els are based on predetermined lateral interaction and focus on explaining how the afferent synaptic weights
are organized.

A number of recent neurobiological experimentsindicate that lateral connections self-organize like the
afferent connections: (1) Thelateral connectivity isnot uniform or genetically predetermined, but formsdur-
ing the early development based on external input (Katz and Callaway 1992; Lowel and Singer 1992). (2)
In the primary visual cortex, lateral connectionsare initially widespread, but develop into clustered patches.
The clustering period overl aps substantially with the period during which ocular dominance and orientation
columns form (Katz and Callaway 1992; Dalvaand Katz 1994; Burkhalter et al.1993). (3) Lateral connec-
tions primarily connect areas with similar response properties, such as columnswith the same orientation or
(in the strabismic case) eye preference (Gilbert 1992; Lowel and Singer 1992). (4) The lateral connections
are far more numerous than the afferents and are believed to have a substantial influence on cortical activity
(Gilbert et al.1990). To fully account for cortical self-organization, a cortical map model must demonstrate
that both afferent and lateral connections can organize simultaneously, from the same external input, and in
amutually supportive manner.
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Figure 1. Architecture of the self-organizing network. The latera excitatory and lateral inhibitory connections of
asingleneuron in the network are shown, together with its afferent connections. The afferents form alocal anatomical
receptive field on the retina.

We have previously shown how Kohonen'ssel f-organizing feature maps (K ohonen 1982) can be general -
izedtoincludeself-organizinglateral connections(the L aterally Interconnected Synergetically Self-Organizing
Map (LISSOM); Siroshand Miikkulainen1993, 1994). LISSOM isalow-dimensional abstraction of the cor-
tical self-organizing process and modelsasmall region of the cortex whereall neuronsreceive the same input
vector. In contrast, this paper shows how redlistic, high-dimensional receptive fields devel op as part of the
self-organization, and in essence scales up the LISSOM approach to large areas of the cortex where different
parts of the cortical network receiveinputsfrom different parts of the receptor surface. This Receptive-Field
L1SSOM model showshow (1) topographically ordered receptivefields devel op from simpleretina images,
(2) latera connections self-organize cooperatively and simultaneously with the afferents, (3) long-rangelat-
era connections store correlations in activity across the topographic map, and (4) the resulting lateral con-
nection patterns closely follow receptive field properties such as ocular dominance.

2 TheReceptive-Field LISSOM Mode

The cortica network is modeled as a sheet of neurons interconnected by short-range excitatory lateral con-
nections and long-range inhibitory lateral connections (figure 1). Neurons receive input from a receptive
surface or “retina’ through the afferent connections. These connections come from overlapping patches on
the retinacalled anatomical receptive fields, or RFs. The patches are distributed with a given degree of ran-
domness. The N x N network is projected on theretinaof R x R receptors, and each neuron isassigned a
receptivefield center (¢q, c2) randomly withinaradiusp « R (p € [0, 1]) of the neuron’sprojection. Through
the afferent connections, the neuron receivesinput from receptorsin asquare areaaround the center with side
s. Depending on its location, the number of afferents to a neuron could vary from %s X %s (at the corners)
to s x s (at the center).

Theexternal and |ateral weightsare organized through an unsupervised|earning process. At each training
step, the neurons start out with zero activity. The initial response 7;; of neuron (i, j) is based on the scalar
product
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where¢,, ., istheactivationof aretinal receptor (4, ;) withinthereceptivefield of theneuron, 1;; -, , isthe
corresponding afferent weight, and o is a piecewise linear approximation of the familiar sigmoid activation
function:

0 x <46
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where § and § are the lower and upper thresholds. The response evolves over time through lateral interac-
tions. At each time step, the neuron combines retinal activation with lateral excitation and inhibition:
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where E;; 1,; istheexcitatory lateral connection weight on the connection from neuron (&, [) to neuron (¢, j),
I;; 1y istheinhibitory connection weight, and 7, (¢t — 6t) isthe activity of neuron (k, /) during the previous
timestep. All connectionweightsare positive. Theinput activity stays constant whilethe neural activity set-
tles. The scaling factors +. and +; determine the strength of the lateral excitatory and inhibitory interactions.
Theactivity pattern starts out diffuse and spread over asubstantial part of the map, but withinafew iterations
of equation 3, convergesinto a stable focused patch of activity, or activity bubble. After the activity has set-
tled, the connection weights of each neuron are modified. Both afferent and lateral connection weights adapt
according to the same mechanism: the Hebb rule, normalized so that the sum of the weightsis constant:

> [Wigmn (1) + ij Xonn]

where 7;,; stands for the activity of the neuron (, j) in the settled activity bubble, w;; ., is the afferent or
the lateral connectionweight (¢4;; -, ., ;.51 OF 1;; 11), o isthelearning rate for each type of connection (o 4
for afferent weights, a; for excitatory, and «; for inhibitory) and X,,,, isthe presynaptic activity (&, ., for
afferent, ny, for lateral). Afferent inputs, lateral excitatory inputs, and lateral inhibitory inputsare normalized
separately. Thelarger the product of the pre- and post-synapticactivity n;; X ., thelarger theweight change.
Therefore, both excitatory and inhibitory connections strengthen by correlated activity; normalization then
redistributesthe changes so that the sum of each weight type for each neuron remains constant.

(4)

3 Self-organization

Although the self-organi zing mechani sm outlined aboveisrobust, thewidth of the anatomical receptivefields
and how ordered they are strongly affect the outcome of the process. In a series of simulations, the condi-
tions under which self-organization could take place were studied, using networks with various receptive
field widths and varying degrees of initial order. In each case, al synaptic weightswere initialy random: a
uniformly distributed random val ue between zero and one was assigned to all weights, and the total weight
of each connection type of each neuron was normalized to 1.0.! Gaussian spotsof “light” on the retinawere
used as input. At each presentation, the activation &, ., of thereceptor (rq, r2) was given by:

T4 — 962')2 + (rg — y¢)2
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!Various schemesfor initializing afferent connections have been studied by other researchers. These schemesinclude tagging
connectionswith chemical markers (Willshaw and von der Malsburg 1979) and establishing an initial topographic bias (Willshaw
and von der Malsburg 1976; Goodhill 1993). Our focusis on receptive field width vs. initial order becausethis factor hasturned out
most crucial in determining the success of the self-organizing processin the present model.
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(a) Initial random weights (b) Final organized receptive fields

Figure 2: Self-organization of the afferent input weights. The afferent weightsof five neurons (located at the center
and at the four corners of the network) are superimposed on the retinal surface in thisfigure. The retinahad 21 x 21
receptors, and the receptive field radius was chosen to be 8. Therefore, neurons could have anywhere from 8 x 8
to 17 x 17 afferents depending on their distance from the network boundary. (a) The anatomica RF centers were
dightly scattered around their topographically ordered positions (uniformly, within a distance of 0.5 in retina coor-
dinates), and the weights were initialized randomly (as discussed in the text). There are four concentrated areas of
weights dlightly displaced from the corners, and one larger one in the middle. At the corners, the profiles are taller
because the normalization divides the total afferent weight among a smaller numer of connections. (b) As the self-
organi zation progresses, the weights organize into smooth hill-shaped profiles. In this simulation, each input consisted
of 3randomly-located Gaussian spotswith ¢ = 2.0. Thelatera interaction strengthswerey. = v; = 0.9, thelearning
rates o = ag = o1 = 0.002, and the upper and lower thresholds of the sigmoid 0.65 and 0.1. The map was formed
in 10,000 training presentations.

where n is the number of spots, a? specifies the width of the Gaussian, and the spot centers (z;,y;): 0 <
x5, y; < R, were chosen randomly.

When the networks were trained with single light spots (n = 1), similar afferent and lateral connection
structures developed in &l cases. With more realistic input consisting of multiple light spots (» > 1), the
networks with wide anatomical receptive fields and relatively small topographic scatter self-organized just
as robustly. Figures 2—4 illustrate the self-organization of such a network. Theinitial rough pattern of af-
ferent weights of each neuron evolved into a hill-shaped profile (figure 2). The afferent weight profiles of
different neurons peaked over different parts of the retina, and their center of gravities (calculated in retinal
coordinates) formed atopographical map (figure 3).

Networks with large topographic scatter compared to the RF size, however, failed to develop global or-
der with multi-spot inputs. It isinteresting to analyze why. With single light spots, the afferent weights of
an active neuron aways change towards asingle, local input pattern. Eventually these weights become con-
centrated around alocal areain the RF such that the global distribution of the centers best approximates the
input distribution. However, when multiple spots occur in the receptive field at the same time, the weights
change towards severa different locations. If the scatter islarge and the neighboring receptive fields do not
overlap substantially, the inputsin the nonintersecting areas change the weights the most, and the receptive
fields remain crossed. If the scatter is small and the overlap high, the input activity in the intersecting re-
gion becomes strong enough to drive the weights towards topographic order. The model therefore suggests
that for the self-organization of afferent connectionsin the cortex to be purely activity-driven, the anatomical
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(a) Initial dightly disordered map (b) Final ordered map

Figure 3: Sdlf-organization of afferent receptive fields into a topographic map. The center of gravity of the &f-
ferent weight vector of each neuroninthe42 x 42 network is projected onto the receptive surface (represented by the
square). Each center of gravity pointis connected to those of the four immediately neighboring neuronsby aline. The
resulting grid depicts the topographical organization of themap. Initialy, the anatomical RF centerswere only slightly
scattered topographically, but because the afferent weights were initially random, the centers of gravity are scattered
much more (a). As the self-organization progresses, the map unfoldsand the weight vectors spread out to form aregu-
lar topographic map of the receptive surface, such asshown in (b). Because the anatomical receptivefieldsarelargein
thisexample compared to theinitia topographic scatter, the self-organization is robust both with single and multi-spot
inputs.
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(a) Initia rough interaction profile (b) Final smooth interaction

Figure4: Self-organization of thelateral interaction. Thelatera interaction profilefor aneuron at position (20, 20)
inthe42 x 42 network is plotted. The excitation and inhibition weights are initially randomly distributed within radii
3 and 18. The combined interactionisthe sum of the excitatory and inhibitory weightsand illustratesthetotal effect of
thelateral connections. The sums of excitation and inhibitionwere chosen to be equal, but because there are fewer ex-
citatory connections, the interaction has the shape of arough plateau with acentral peak (a). During self-organization,
smooth patterns of excitatory and inhibitory weights evolve, resulting in a smooth “Mexican hat” shaped lateral inter-
action profile (b).



receptive fields must be large compared to the amount of initial topographic scatter among their centers.?

Thelateral connectionsevolvetogether with the afferents. By the normalized Hebbian rule (equation 4),
thelateral connection weightsof each neuron are distributed according to how well the neuron’sactivity cor-
relates with the activities of the other neurons. Asthe afferent receptive fields organize into a uniform map
(figure 3), these correlationsfall off with distance approximately like a Gaussian, with strong correlationsto
near neighborsand wesker correl ationsto moredistant neurons. Thelateral excitatory and inhibitory connec-
tionsacquire the Gaussian shape, and the combined lateral excitation and inhibition becomes an approximate
difference of Gaussians (or a“Mexican hat”; figure 4).

4 Ocular dominance and lateral connection patterns

The activity patterns and correlationsin the retina are not as simple or random as in the above experiments.
Also, the visua cortex has a complex organization of orientation and ocular dominance columns, and this
organizationisreflected inthe patternsof lateral connections. Asalfirst step to studying how afferent and | at-
era connectionsevolveinthevisua cortex, the development of ocular dominance was simulated. A second
retinawas added to the model and afferent connectionswere set up exactly asfor thefirst retina (with local
receptive fields and topographically ordered RF centers). Multiple Gaussian spots were presented in each
eye as input. Because of cooperation and competition between inputsfrom the two eyes, groups of neurons
developed strong afferent connections to one eye or the other, resulting in patterns of ocular dominance in
the network (cf. von der Malsburg 1990; Miller et al.1989).

The self-organization of the network was studied with varying between-eye correlations. At each input
presentation, one spot is randomly placed at (z;,y;) in the left retina, and a second spot within a radius of
¢ x R of (z;,y;) intheright retina. The parameter ¢ € [0, 1] specifies the spatia correlations between spots
inthetworetinas, and can be adjusted to simul ate different degrees of correl ationsbetween imagesin thetwo
eyes. Multi-spot images can be generated by repeating the above step: the simulations bel ow used two-spot
images in each eye. Two different simulations are illustrated. In thefirst one, there were no between-eye
correlationsin the input (¢ = 1), thus simulating strabismus, where prominent ocular dominance patterns
are known to develop. In the second case, there were positive between-eye correlations (¢ < 1), ssmulating
the case of normal binocular vision.

Figure5illustratestheresponse propertiesand lateral connectivity inthe strabismic case. The connection
patterns closely follow ocular dominance organization. As neurons become better tuned to one eye or the
other, activity correl ations between regionstuned to the same eye become stronger, and correl ations between
oppositeeye areasweaker. Asaresult, monocular neuronsdevel op strong lateral connectionsto regionswith
the same eye preference, and weak connections to regions of opposite eye preference. Most neurons are
monocular, but afew binocular neurons occur at the boundaries of ocular dominance regions. Because they
areequally tunedto thetwo eyes, thebinocular neuronshaveactivity correlationswith both ocular dominance
regions, and their lateral connection weights are distributed more or less equally between them.

Figure 6 shows the ocular dominance and lateral connection patterns for the normal case. The ocular
dominance stripes are narrower and there are more ocular dominance columnsin the network. Most neurons
are neither purely monocular nor purely binocular and few cells have extreme values of ocular dominance.
Accordingly, thelateral connectivity inthe network isonly partialy determined by ocular dominance. How-

2Even with large scatter, it is still possible to establish topographic order with additional mechanisms such as chemical markers
(Willshaw and von der Malsburg 1979), or special initialization schemes (Willshaw and von der Malsburg 1976). Also, computa-
tionally thereisno restriction on how large the receptivefieldscan be. They can cover thewholeretina, and global order will develop
because such receptive fields overlap alot (i.e. completely). Of course, anatomically such full connectivity would not be redlistic.



(a) Connections of a Monocular Neuron (b) Connections of a Binocular Neuron

Figure 5: Ocular dominance and patterned long-range lateral connections in the strabismic case. Each neuron
is colored with a grey-scale value (black — white) that represents continuously changing eye preference from exclu-
sive left through binocular to exclusive right. Most neurons are monocular, so white and black predominate. Small
white dots indicate the strongest lateral input connections to the neuron marked with a big white dot. Only the long
range inhibitory connections are shown. The excitatory connectionslink each neuron only toitself and its eight nearest
neighbors. (a) The lateral connections of a left monocular neuron predominantly link aress of the same ocular domi-
nance. (b) Thelatera connectionsof abinocular neuron comefrom both eyeregions. Inthissimulation, the parameters
were: network size N = 64; retind size R = 24; afferent fieldsizes = 9;d = 0.1; 8 = 0.65; spot widtha = 5.0; ex-
citationradiusd = 1; inhibitionradius=31; scaling factors~, = 0.5,7; = 0.9; learningratesaa = ag = a1 = 0.002;
number of training iterations=35, 000. The anatomical RF centers were dightly scattered around their topographically
ordered positions (radius of scatter=0.5, asin figure 2), and al connections were initialized to random weights.

(a) Connectionsof a Neuron with
Intermediate Ocularity (b) Connections of aMonocular Neuron

Figure 6: Ocular dominance and patterned long-range lateral connectionsin the normal case. The simulation
was otherwise identical to that of figure 5, except that between-eye correlationswere grester than zero (¢ = 0.4). The
stripesare narrower, and most neurons have intermediate val ues of ocular dominance (colored gray). Their lateral con-
nectionsare only partialy influenced by ocular dominance, asin (a). However, asshownin (b), thelatera connections
of the most strongly monocular neurons reflect the ocular dominance organization like in the strabismic case. If the
between-eye correlations are increased to one (perfectly matched spots in the two retinas), ocular dominance proper-
tieswill disappear and simple topographic maps and Mexican hat latera interaction will result, asin figures 2— 4.

7



ever, the lateral connections of the few strongly monocular neurons follow the ocular dominance patterns
like in the strabismic case. In both cases, the spacing between the lateral connection clusters matches the
stripe-width.

The patterns of lateral connections and ocular dominance shown above closely match observationsin
the primary visual cortex. Lowel and Singer (1992) observed that when between-eye correl ationswere abol -
ishedinkittensby surgically induced strabismus, long-rangelateral connectionsprimarily linked areas of the
same ocular dominance. However, binocular neurons, located between ocular dominance columns, retained
connections to both eye regions. The ocular dominance stripes in the strabismics were broad and sharply
defined (Lowel 1994). In contrast, ocular dominance stripesin normal animalswere narrow and less sharply
defined, and lateral connection patterns overall were not significantly influenced by ocular dominance. The
receptive field model reproduces these experimental results, and al so predictsthat the lateral connections of
strongly monocular neurons would follow ocular dominance even in the normal case. The model therefore
confirms that patterned lateral connections develop based on correlated neuronal activity and demonstrates
that they can self-organize cooperatively with ocular dominance columns.

5 Computational Predictionsof the Model

RF-LISSOM is a computational model of known physiological phenomena, and it can be used to identify
computational constraintsthat must be met for these phenomenato occur. Below, adaptation and extent of
lateral excitation and inhibition, and correlation vs. lateral excitation, are discussed as possible such con-
straints. Other computational details are included in the appendix.

5.1 Adapting lateral excitation and inhibition

For proper topographicorder to developinour moddl, theinitial ateral excitatory radius must belarge enough
so that the network produces a single localized spot of activity for each input spot. Otherwise spurious cor-
relations are introduced into the self-organizing process, and the map islikely to develop “twists’. A good
genera guidelineisthat the initial radius of excitation should be comparable to the range of activity corre-
lations in the network. However, the excitatory radius need not be fixed. As in the Self-Organizing Map
algorithm (Kohonen 1982), the radius may start out large, and gradually decrease until it covers the nearest
neighbors only. Decreasing the radius in this manner makes the receptive fields gradually narrower and re-
sultsin finer topographic order. Thisisavery robust effect and has been observed in numerous experiments.

Even at afixed excitatory radius, the lateral weights adapt, which has a similar effect as adapting the
excitatory radius. If the input correlations are short-range, the lateral excitatory profile will become more
peaked, and the inhibition will become stronger in the vicinity of each neuron (figure 4). Therefore, the ac-
tivity patternsin the network will become smaller and more focused, as happens when the excitatory radius
decreases. Asaresult, the receptive fields will become narrower. For example, small Gaussian input blobs
will produce short range activity correlationsin the network, and produce smaller receptive fields.

Therange of lateral inhibitionisnot acrucia parameter, aslong asit isgreater than approximately twice
theexcitatory radius. If therangeisless, activity patterns often split up into several separate bubbles, and dis-
torted mapsform. Theweak |ong-rangeconnectionsmay berepeatedly pruned away during self-organization,
asinthe previous LISSOM mode (Sirosh and Miikkulainen 1994). By weight normalization, such pruning
will increase the strength of the surviving connections, thereby increasing the inhibition between the corre-
lated areas. Asaresult, theactivity patternswill become better focused, and more specific mapswill develop.



5.2 Long-rangeinhibition vs. excitation

For the self-organization of receptive fields to occur, our model requires that long-range lateral interactions
be inhibitory. Thisis an important prediction of the model. The inhibitory interactions prevent the neura
activity from spreading and saturating. Asthe lateral connectionsadapt, it is necessary that the lateral inhi-
bition strengthens by correlated activity. If it was weakened instead, inhibition would concentrate on those
unitsthat are the least active, in effect self-organizing itself out of the system. The activity patterns would
then spread out and saturate, and highly distorted maps would resuilt.

Anatomical studiesin the visua cortex show that long-range horizontal connectionshave mostly excita-
tory synapses and link primarily to other excitatory neurons (Kisvarday and Eysel 1992; Hirsch and Gilbert
1991; Gilbert et a.1990). The crucia question is whether afferent stimulation produces mainly excitatory
or inhibitory lateral responses at long range. Partial experimental support for long-range inhibition comes
from optical imaging studies, which indicate that substantial lateral inhibition exists even at distances of up
to 6mm in the primary visual cortex (Grinvald et al.1994). This range coincides well with the extent of
long-range horizontal connections. Other studies such asthat of Nelson and Frost (1978) have a so reported
long-range inhibitory interactions without clearly identifying the anatomical substrate. Due to insufficient
evidence, however, the question of whether the primary effect isinhibitory or excitatory remains controver-
sia. Until thisissueis resolved and the underlying cortical circuitry is delineated, it will also be difficult to
determine if and how lateral inhibitionin the cortex strengthens by correlated activity, as predicted by the
model.

5.3 Factors affecting the development of ocular dominance

Four main factorsinfluence how ocular dominance columnsform: (1) the network size NV, (2) theretinasize
R, (3) the excitation radius d, and (4) the between-eye correlation parameter ¢. For given values of the net-
work parameters N, R and d, the degree of between-eye correlation determines whether ocular dominance
columnsform. In simulationswith small values of ¢ (closely matched imagesin both eyes), only topographic
maps develop. Asc isgradually increased from zero, asharp transition from a simple topographic map to an
ocular dominance map occurs at athreshold ¢, € (0, 1), and stable ocular dominance patterns appear. For
example, in the simulationsillustrated in figures5and 6, N = 64, R = 24 and d = 1, and the threshold
at which ocular dominance columns first appear is approximately ¢; = 0.25. As the network parameters
change, ¢; appearsto changein afairly simple manner. Thethreshold is approximately the same for all net-
works for which theratio 42, or the excitatory radiusin retinal units, isthe same. Asthisratio increases (as
when the excitation radius increases, or the network becomes smaller), the relative size of activity bubbles
on the network becomes larger, increasing correlation and causing transition to ocular dominance at higher
levels of ¢. Thisisanalogous to the self-organizing maps (Kohonen 1982), where an input dimension (i.e.
ocular dominance) becomes represented on the map only when thevariancein that dimension (¢) growslarge
enough compared to the neighborhood radius (%).

Whether the lateral connections adapt or not is not important for the devel opment of ocular dominance.
WEell-defined stripes can form even if the lateral weights are fixed, although such stripes are broader than
those devel oped with self-organizing lateral connections. Similarly, ocular dominance columns form under
avariety of boundary conditions. With self-organized lateral connections, they form at least with sharp and
periodic retinal and network boundaries, and with smaller or same-size anatomical RFs at the boundary, al-
though the patterns of the stripes may be qualitatively different in each case.



6 FutureWork

Perceptual grouping rules such as continuity of contours, proximity and smoothnessappear aslong-range ac-
tivity correlationsin the cortex. Von der Malsburg and Singer (1988) and Singer et a.(1990) have suggested
that lateral connections store these correlations and perform perceptual grouping and segmentation by syn-
chronizing cortical activity. The Receptive-Field LISSOM model could be extended to test this hypothesis
computationally.

Sofar, we have demonstrated how theinhibitory lateral connectionsof LISSOM learn to storelong-range
activity correlations. On the other hand, model s such asthat of von der Mal sburg and Buhmann (1992) show
that neurona firing can be synchronized quite effectively by inhibitory lateral interactions. Thesetwo results
could be brought together into aLLISSOM architecture using neuronswith realistic firing properties, and used
to study segmentation and binding phenomena.

In future research, we intend to work on self-organization in networks with firing neurons, study what
knowledge will be extracted by lateral connections from realistic input, and how this knowledge could be
used in feature grouping and segmentation.

7 Conclusion

The Receptive-Field LISSOM model demonstratesthat cortical self-organi zation can be based on short-range
excitation, long-range inhibition, and Hebbian weight adaptation. Starting from random-strength connec-
tions, neurons develop localized receptive fields and lateral interaction profiles cooperatively and simulta-
neously. Self-organization takes place with multiple retina inputs and with multiple anatomical receptive
fields of varying sizes, but requiresthat the receptive fields be large compared to the degree of scatter among
their centers. With inputs coming from two retinas at the same time, ocular dominance stripes devel op, and
lateral connections primarily connect areas of the same ocular dominance. When input correl ations between
eyes increase, the ocular dominance stripes become narrower, and the influence of ocular dominance on the
lateral connection patterns decreases. The model therefore suggeststhat lateral connections have adual role
in the cortex: to support self-organization of receptive fields, and to learn long-range feature correlations,
which may in turn serve as a basis for perceptua grouping and segmentation.

Appendix
Simulation parameters

The main parameters that influence self-organization are the sigmoid activation function, and the strength
of the recurrent lateral excitation and inhibition~. and +;. The activation function (equation 2) affects the
self-organizing processin two ways. First, the lower threshold & determinesthe minimum input required for
aneuron to participate in weight modification. If the weighted sum is below 4, the output activity n;; = 0,
and the weightswill not be modified. Only input vectors close enough to the neuron’sweight vector causeit
to adapt; the higher the §, the smaller the area of theinput space stimulating the neuron. Second, for agiven
&, the upper threshold 5 determines the gain of the neuron activation. If 3 iscloseto §, the neuron is more
nonlinear and small differences in its input can produce large changes in its output. When 5 is lower, the
map amplifies smaller differencesin the activity pattern. Therefore, the selectivity of receptivefields can be
controlled by adjusting § and 3. Good maps are usually obtained for values of § from 0.0 to0 0.2 and 5 from
0.55 t0 0.8. The actual parameters used in each simulation are shown in the figure captions.
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For agiven sigmoid, if thelateral excitationistoo strong (high value of +.), saturated activity spotsform
and distorted maps result. If . istoo small, or if ~; istoo large, the activity spots do not become suffi-
ciently focused, and topographic maps do not develop. When the sigmoid slopeisin the range 1.0 to 2.0,
the excitation radiusis d = 4 and the inhibition radiusis greater than 2d, the operating ranges are typically
0.8 < v, < 1.1and0.7 < v < 1.4. If the excitation radius is decreased, individual weights will grow
stronger because thetotal lateral excitationweight of each neuronisnormalized to 1.0. Asaresult, the exci-
tation may becometoo strong. To offset thisproblem, thevaueof +. will haveto decrease with the excitation
radius. At the excitation radius of d = 1, the operating range of v. was 0.4 < v, < 0.65.
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