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Abstract

The map from eye to brain in vertebrates is topographic, i.e. neighbouring points in the eye map to
neighbouring points in the brain. In addition, when two eyes innervate the same target structure, the
two sets of fibres segregate to form ocular dominance stripes. Experimental evidence from the frog and
goldfish suggests that these two phenomena may be subserved by the same mechanisms. We present
a computational model that addresses the formation of both topography and ocular dominance. The
model is based on a form of competitive learning with subtractive enforcement of a weight normalization
rule. Inputs to the model are distributed patterns of activity presented simultaneously in both eyes. An
important aspect of this model is that ocular dominance segregation can occur when the two eyes
are positively correlated, whereas previous models have tended to assume zero or negative correlations
between the eyes. This allows investigation of the dependence of the pattern of stripes on the degree of
correlation between the eyes: we find that increasing correlation leads to narrower stripes. Experiments are
suggested to test this prediction.

1 Introduction

1.1 Striped and Topographic Projections

Projections from cells in one region of the nervous system to those in another are very often arranged so that there
is a continuous map of one surface on to the other. In addition, when two equivalent input structures innervate the
same target structure it is common for the two projection patterns to be segregated, often interdigitated in stripes
or blobs (see for instance [Constantine-Paton & Law 1982]). Perhaps the most thoroughly investigated example of
both these phenomena is the mapping from the eye to the brain. In mammals such as cats, monkeys and humans,
each retina maps via the lateral geniculate nucleus (LGN) in a topographic fashion across primary visual cortex (V1).
Although cortical cells in this region are initially binocularly innervated (i.e. receive connections from both eyes),
during the course of development connections from one or the other eye are lost so that in the adult a substantial
proportion of cortical cells are monocularly innervated. Looking down on the cortex from above, regions of the
cortex dominated by left and right eyes alternate in a pattern somewhat reminiscent of zebra stripes: the so-called
“ocular dominance” stripes (e.g. [Hubel & Wiesel 1977, Hendrickson 1985, Horton et al 1990]). In vertebrates
such as frogs and goldfish, the projections from the two eyes are normally completely crossed to innervate only
the contralateral tectum. However, experimental manipulations can be performed (such as implant of a third
eye) that artificially create a region of tectum innervated by both eyes. In this unnatural case the two projections
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again segregate to form an interdigitating pattern of stripes (e.g. [Constantine-Paton & Law 1978]; for reviews see
[Constantine-Paton 1983, Udin & Fawcett 1988]).

This result has prompted suggestions that there is not a special biological mechanism for forming ocularly dominant
cells in visual cortex or optic tectum: rather, monocularity arises naturally as a by-product of mechanisms concerned
with map formation [Constantine-Paton & Law 1982, Constantine-Paton 1983]. However, so far no computational
model has been proposed that can satisfactorily account for both phenomena simultaneously (see [Goodhill 1991(b)]
for discussion). The first motivation for the work presented here was to formulate a model for topographic map
formation that can also account for ocular dominance stripe segregation without further assumptions.

1.2 Input Correlations

It is known experimentally that neighbouring cells within the retina have correlated activities when firing spon-
taneously in the goldfish [Arnett 1978, Ginsburg et al 1984], and in the cat [Mastronade 1989, Meister et al 1991].
Although correlations between the two retinae have not been measured, it seems reasonable to assume that for
animals such as cats and monkeys that use stereo vision the following are true:

� Between-eye correlations are approximately zero before eye opening, and for the abnormal cases of dark-
rearing, binocular deprivation, and artificial strabismus.

� Between-eye correlations are normally positive after eye opening.

Previous models have tended to address only the cases of zero or negative correlations between the eyes (see
Discussion). However, the majority, if not all, of the development of monocular from initially binocular receptive
fields in the cat for instance appears during weeks 3 to 6 after birth, whereas eye opening occurs between postnatal
days 7 and 10. (see e.g. [Hubel 1988]). The second motivation for the work presented here was therefore to account
for the development of cortical cell monocularity in the presence of positive correlations between the eyes.

2 Outline of the Model

The model is formulated at a general enough level to be applicable to both the retinocortical and the retinotectal
systems. It consists of either one (monocular case) or two (binocular case) two dimensional sheets of input units
(indexed by � ) connected to one two-dimensionalsheet of output units (indexed by � ) by fibres with variable synaptic
weights � � � . It is assumed in the retinocortical case that the topography of the retina is essentially unchanged by
the LGN on its way to the cortex. In addition, the effects of retinal and LGN processing are taken together, and thus
for simplicity we refer to the input layers of the model as being retinae and the output layer as being the cortex.
Earlier versions of the model appeared in [Goodhill 1990, Goodhill 1991(a), Goodhill 1993].

Both retina and cortex are arranged in square arrays. All weights and unit activities are positive. Lateral interactions
exist in the cortical sheet of a circular center-surround excitation/inhibition form [von der Malsburg 1973], although
these are not modeled explicitly. The initial pattern of weights is random apart from a small bias that specifies an
orientation for the map (see later). At each time step, a pattern of activity is presented by setting the activities � � of
retinal units. Each cortical unit � calculates its total input � � according to a linear summation rule:

� � �
	

�
� � � � �

The following assumptions are made to speed calculation at each time step:

� Lateral inhibition in the cortex suppresses the activity of all but the unit 
 with maximum response, and the
units in a small neighbourhood of 
 . Units close to 
 have an output that decreases as a function of distance
from 
 .

� The “winning” unit 
 is the unit that has the largest activity when driven purely by the retina, before taking
into account the effect of lateral feedback.
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� The input-output function of the cortical units is monotonic, so that 
 is simply the cortical unit with the
greatest input.

This winning unit and its neighbours have their weights updated at each time-step in a Hebbian manner by adding
in a small fraction of the input pattern:

� � � � � � � � � � � � � � � 
 �
� is a small positive constant, and � is the function that specifies how the activities of units � near to 
 decrease with
distance from 
 . � is assumed to be a gaussian function of the Euclidean distance between units in the cortical sheet,

with standard deviation � � . We refer to � as the “cortical neighbourhood function” (CNF).1 So far these assumptions
are similar to those made by Kohonen [Kohonen 1982, Kohonen 1988]. However, an important difference is in the
form of the inputs to the model, and the normalization rule used to maintain weights within bounds.

2.1 Inputs to the Model

Inputs to the model are random dot patterns with short range spatial correlation introduced by convolution with
a blurring function. Patterns were generated by assigning the value 0 or 1 to each pixel in each eye with a fixed
probability (50% for the results presented here), and then convolving each eye with a gaussian function of standard
deviation � � . This produces patterns of activity with a range of correlation determined by � � . It is important to note
that these patterns are distributed: all input units have in general non-zero activity. Between-eye correlations were
produced in the following way. Once each eye has been convolved individually with a gaussian function, activity
� � of each unit � in each eye is replaced with 	 � � � � 
 � 	 � � �� , where � �� is the activity of the corresponding unit to� in the other eye, and 	 specifies the similarity between the two eyes. Thus by varying 	 it is possible to vary the
degree of correlation between the eyes: if 	 �  they are uncorrelated, and if 	 �  � � they are perfectly correlated
(i.e. the pattern of activity is identical in the two eyes).

The correlations existing in the biological system will clearly be rather different to this. However, the simple
correlational structure described above aims to capture the key features of the biological system: on average, cells
in each retina are correlated to an extent that decreases with distance between cells, and corresponding positions in
the two eyes are also on the average somewhat correlated.

2.2 Subtractive Normalization

The sum of the weights for each postsynaptic unit is maintained at a constant fixed value, as in for instance [von der
Malsburg 1973]. However, whereas in [von der Malsburg 1973] this type of constraint is enforced by dividing each
weight by the sum of the weights for that postsynaptic unit ("divisive" enforcement), it is enforced here by initially
subtracting a constant amount from each weight ("subtractive" enforcement), as follows.

For each cortical unit, the quantity � is calculated:

� �
�

� � � � � � �� �

where � � is the total weight available to each cortical unit (a constant), and � � is the total number of retinal units
for which � � � ��  . Then

� � � �
�

� � � � � if � � � � � � 
 otherwise

� is now recalculated: if � ��  (i.e. some weights have become zero), divisive enforcement is applied:

� � � � � � � � ��
� � � �

This is similar to the normalization used in [Miller et al 1989], and is considered further in the Discussion.

1Later the “cortical interaction function” (CIF) will also be referred to. By this is meant the actual distribution of excitatory and inhibitory
lateral connections between cortical units. For a discussion of the relation between the CNF and the CIF see [Kohonen 1988, Dayan 1992].

3



A constraint was also applied to the sum of the weights for each retinal unit. A rough biological motivation for
such a rule is the idea that afferent fibres are supported by a flow of nutrients, and each presynaptic cell generates a
fixed quantity of these, which must be divided between the fibres emerging from that cell. A linear normalization
constraint for each retinal unit, divisively enforced, was employed in the model at each step after the aforementioned
normalization constraint on cortical units:

� � � � � � � � ��
� � � �

where � � is the total weight available to each retinal unit.

2.3 Dead Units, Stability, and Saturation

To avoid the problem of “dead” units (that is, units which do not capture any patterns and hence whose weights do
not progress beyond their initial values), we adopt a form of “conscience” mechanism [Hertz et al 1991, page 221].
Here the activity of each cortical unit in response to each input pattern is divided by the number of times it has won
the competition so far. This serves to roughly equalize the number of times each cortical unit wins the competition,
and thus ensures that dead units do not occur. This could be implemented biologically by a mechanism whereby
a cell adjusts its threshold or gain so as to keep its average activity roughly constant. Stability was achieved in
the model by introducing a mechanism whereby, once weights reach their maximum or minimum values, they are
“frozen” and not allowed to change further (similarly to [Miller et al 1989]). Thus once all connection strengths have
saturated the complete map is frozen.

2.4 Initial Bias

There is biological evidence for a crude activity-independent mechanism acting in the early stages of visual map
formation that sets up an initial polarity for the map (see e.g. [Udin & Fawcett 1988]). The imposition of such an
initial condition is necessary for most models of map formation to generate global order (e.g. [Willshaw & von
der Malsburg 1976, Willshaw & von der Malsburg 1979]: for an interesting discussion and analysis see [von der
Malsburg & Singer 1988] and [Häussler & von der Malsburg 1983] respectively). Such an initial bias in connectivity
is imposed in the present model by generating connection strengths randomly within a fixed range which varies
depending on the match in topographic position between each pair of retinal and cortical units, as explained in
figure 1. This is similar to the bias used in [Willshaw & von der Malsburg 1979].

3 Results

3.1 Single Eye Case

Figure 2 shows the formation of a topographic map from an initially disordered state (a,d) for the case of a single
eye innervating the cortex. Gradually receptive fields refine over the course of development (figure 2(b,e)). Finally,
cortical units receive non-zero connections from only a small region of the retina, and neighbouring retinal units are
connected to neighbouring parts of the cortex (figure 2(c,f)). Map formation and ocular dominance segregation fail
to occur if the normalization constraint for cortical units is enforced divisively rather than subtractively [Goodhill
1991(a), Goodhill 1991(b)].

3.2 Two Eye Case

Typical results for the case of two positively correlated eyes are shown in figure 3 (see table 1 for parameter values).
Initial conditions are as before, except that now each unit in both eyes has a connection of random strength to every
cortical unit. The initial ocular dominance of each cortical unit is thus random (figure 3(a)). A similar overall bias is
given to the map for both eyes, so that there is a slight initial registration in the two maps. Development proceeds as
in the single eye case, except that now, simultaneous with the refinement of receptive fields, cortical units gradually
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Figure 1: The initial bias used to impose an overall orientation for the map. Each retinal sheet was first notionally
scaled to the same size as the cortical sheet, and then the normalized distance between each pair of retinal and
cortical units calculated. For a unit in the top left corner of the cortical sheet, the distance to the unit in the top left
corner of a retinal sheet is zero, and the distance to the bottom right corner is unity. Weights were then chosen from
a uniform random distribution in a range determined by the topographic distance between each pair of retinal and
cortical units, as shown. The parameter � determines the amount of initial bias: if � �  there is no bias, and if
� � 
 there is a entirely monotonic relationship between topographic distance and size of initial weight. A value of
� �  � � was used for the simulations reported here.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Results for a single eye of 
 � � 
 � units innervating a cortex of the same size. There are two types of
pictures. In (a-c) each large white square represents a cortical unit. Each of these contains a map of the connection
strengths between that cortical unit and every retinal unit. The size of a small black square represents the size of that
weight, and its position within the white square represents its position in the retina. In (d-f) the “centre of mass”
of the weights for each cortical unit is plotted as a point in retinal space. This highlights information about the
topography of the map (but does not show the extent to which receptive fields have refined). (a, d) Initial weights.
(b, e) After 6000 iterations. (c, f) After 100,000 iterations.
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Parameter Value

Number of retinae 2
Number of retinal units in each dimension 16
Number of cortical units in each dimension 32

Learning rate � � 0.01
Number of iterations 350,000

Amount of initial bias � � 0.5
Constant for cortical unit normalization � � � 10.0
Constant for retinal unit normalization � � � 20.0

Width of cortical neighbourhood function = � � 1.5
Width of retinal convolution = � � 1.5

Parameter controlling correlation between two retinae = 	 0.15

Table 1: Parameters for two-eye case.

lose connections from one or the other eye (figure 3(b)). After a large number of input patterns have been presented,
cortical units are almost entirely monocular, and units dominant for the left and right eyes are laid out in a pattern
of alternating stripes (figure 3(c)). In addition, maps from the two eyes are in register and topographic (figure
3(d-h)). The map of cortical receptive fields (figure 4) confirms that, as described for the natural system in [Hubel &
Wiesel 1977], there is a smooth progression of retinal position across a stripe, followed by a doubling back at stripe
boundaries for the cortex to “pick up where it left off” in the other eye.

3.3 Width of Cortical Neighbourhood Function

Figure 5 shows the effect of varying the width of the cortical neighbourhood function (CNF) on stripe width. It
is apparent that a wider CNF leads to wider stripes. This is analogous to the increase in stripe width seen with
increasing width of the cortical interaction function in for instance [Swindale 1980, Miller et al 1989].

3.4 Between-Eye Correlation

An important aspect of the model is that the effect on degree of monocularity and stripe width of the extent of
positive correlation between the two eyes can be investigated. This has not been done in previous models (see
Discussion). Figure 6 shows a series of results of the model for increasingly strong positive correlations between the
two eyes. An effect on stripe width can be observed: stronger between-eye correlations lead to narrower stripes.

4 Discussion

4.1 Relation to Other Models

A number of previously proposed models for topographic map formation have been extended to also account for
ocular dominance stripe formation (e.g. [Willshaw & von der Malsburg 1976] extended in [von der Malsburg &
Willshaw 1976], [von der Malsburg & Willshaw 1977, Willshaw & von der Malsburg 1979] extended in [von der
Malsburg 1979], [Fraser 1980] extended in [Fraser 1985, Fraser & Perkel 1990], [Whitelaw & Cowan 1981] extended in
[Cowan & Friedman 1991]). However, these extensions have tended to involve biologically implausible assumptions
such as the following:

� There is a global chemical difference between the two eyes (e.g. [von der Malsburg 1979]), a hypothesis which
is ruled out most conclusively by the isogenic eye experiment of [Ide et al 1983].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Results for two eyes for parameters of table 1. (a-c) show the ocular dominance of cortical units after 0,
50,000, and 350,000 iterations respectively. Each cortical unit is represented by a square with colour showing the eye
for which it is dominant (black for right eye, white for left eye), and size showing the degree to which it is dominant.
In (d-h) the centre of mass of the weights of each cortical or retinal unit is represented as a point in retinal or cortical
space respectively, and neighbouring units are connected by lines to form a grid (similar to figure 2, except that now
we have two sets of pictures, one for each eye). There are three types of picture: (e,g) represent retinal topography
for the right and left eyes respectively. For each retina, the centre of mass of the weights for each retinal unit is
plotted as a point in cortical unit space. It can be seen that for both eyes this map is locally continuous, with gaps
(complementary between the two eyes) corresponding to regions of the cortex where the other eye is dominant. (f,
h) represent cortical topography for right and left eyes respectively. For each cortical unit, the centre of mass of the
weights for that unit is plotted as a point in retinal unit space. The “holes” in the map arise where cortical units
are dominant for the other eye, and are largely complementary between the two eyes. Comparing these pictures
with the ocularity in (c), we see that for each eye topography is largely continuous within a stripe. (d) represents
cortical topography for both eyes. Here the centre of mass of weights for each cortical unit is averaged over both
eyes, imagining the retinae to be lying atop one another. This type of picture reveals where the map is folded to
take into account that the cortex now represents both eyes. We see here that discontinuities in terms of folds tend to
follow stripe boundaries: first particular positions in one eye are represented, and then the cortex “doubles back”
as its ocularity changes in order to represent corresponding positions in the other eye.
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Figure 4: The receptive fields of cortical units, showing topography and eye preference. Units are coloured white
if they are strongly dominant for the left eye, black if they are strongly dominant for the right eye, and grey if they
are primarily binocular. “Strongly dominant” was taken to mean that at least 80% of the total weight available to
a cortical unit was concentrated in one eye. Within each unit is a representation of its receptive field: there is a
16 by 16 grid within each cortical unit with each grid point representing a retinal unit, and the size of the box at
each grid point encodes the strength of the connection between each retinal unit and the cortical unit. For binocular
(grey) units, the larger of the two corresponding weights in the two eyes is drawn at each position, coloured white
or black according to which eye that weight belongs. It can be seen that neighbouring positions in each eye tend to
be represented by neighbouring cortical units, apart from discontinuities across stripe boundaries. For instance, the
bottom right corner of the right retina is represented by the bottom right cortical unit, but the bottom left corner of
the right retina is represented by cortical unit (3,3) (counting along and up from the bottom left corner of the cortex),
since unit (1,1) represents the left retina.
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(a)

(b)

Figure 5: Effect on stripe width of varying the width � � of the cortical interaction function. The cortical topography
averaged over both eyes, the stripe pattern, and the power spectrum of the fourier transform of the stripe pattern
are shown for each case. (a) � � � 
 �  . (b) � � � � �  . Note that stripe width tends to increase with � � , as indicated by
increasing power at the low-frequency end of the power spectrum of the fourier transform.

� Activity in the two eyes is not correlated (e.g. [Cowan & Friedman 1991]), or even (after being processed by
the LGN) negatively correlated [von der Malsburg & Willshaw 1976].

In addition several models have been proposed to account only for ocular dominance, for instance [Swindale
1980]. From the perspective of this paper these are limited since they assume a pre-existing fixed topography, and
it has not been shown that they can also account for the development of topography. [Miller et al 1989] present
results for the case of non-positive correlations between the two eyes: recent work [Dayan & Goodhill 1992, Goodhill
1991(b), Aguilar-Chongtay 1992] has analysed the breakdown of monocularity in this model with increasing strength
of between-eye correlations.

[Obermayer et al 1990, Obermayer et al 1991] presented a model of map formation similar to Kohonen’s algorithm,
which they applied to the simultaneous development of topography, ocular dominance and orientation columns.
Although the results they show are impressive, they are based on the notion of presenting a succession of single
points from an abstract “feature space” to a cortical layer of units, rather than development being driven by
distributed patterns of activity. This means their model cannot be extended to the case of real-world inputs, unlike
the model presented here. In addition, the model presented here uses fixed lateral connections in the cortical sheet,
whereas Obermayer et al gradually shrink the extent of lateral connections from an initially large width to zero.
There is no biological evidence for such a shrinking process.

Although the “elastic net” model of map and stripe formation of [Goodhill & Willshaw 1990] is based on mechanisms
that are rather different to the present model and harder to interpret biologically, it is similar in that it also predicts
that stripe width should depend on the form of the input correlations in a similar way. In the elastic net model the
cortex attempts to find a “short path” connecting retinal units in an abstract space with distances representing the
average correlations between these units. Recent work [Yuille et al 1991] suggests that there may be a mathematical
relationship between this model and that of [Miller et al 1989]. A more abstract optimizationformulation, addressing
the overall pattern of stripes in cats and monkeys in terms of boundary constraints, has recently been proposed in
[Jones et al 1991].
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(a)

(b)

(c)

Figure 6: Effect on stripe width of varying 	 , which controls the degree of correlation between the two eyes. The
cortical topography averaged over both eyes, the stripe pattern, and the power spectrum of the fourier transform
are shown for each case. (a) 	 �  �  . (b) 	 �  � 
 . (c) 	 �  � � . Note that stripe width tends to decrease as 	 increases
(indicated by increasingly more power appearing in the high frequency end of the power spectrum of the fourier
transform), and that the topography becomes smoother. It can also be seen that as 	 increases (i.e. correlations
between the two eyes become stronger), an increasing proportion of cortical units fail to become fully monocular by
the time the simulation was terminated.
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4.2 Normalization

An important aspect of the model is that it uses subtractive rather than the more common divisive enforcement of the
normalization constraint for cortical units. With divisive enforcement receptive fields fail to refine and segregation
into ocular dominance stripes does not occur. An intuitive explanation of this behaviour (see [Miller & MacKay
1992]) is that divisive enforcement leads to a graded response of cortical units to the correlations in their inputs:
since all input units are correlated to some degree, all weights remain non-zero. Subtractive enforcement however
is “less sympathetic” and causes all weights to reach their minimum values (zero in this case), except for the few
best-correlated inputs. An analogy is that of taxation: divisive normalization corresponds to income tax, where
everybody pays the same percentage of their earnings, whereas subtractive normalization corresponds to a “poll
tax”, where everybody pays the same fixed sum.

A mathematical analysis of the effect of these normalization rules has been carried out for a very simple competitive
learning case in [Goodhill 1991(b), Goodhill & Barrow 1993]. Here weight vectors evolving in the positive quadrant of
a two dimensional space are considered: one axis representing the left eye and the other axis the right eye. It is shown
that under divisive enforcement of the normalization constraint weight vectors become evenly distributed through
the space, whereas under subtractive enforcement weight vectors saturate at one or other axis, corresponding to
ocular dominance segregation.

Competitive learning rules are in general hard to analyse, due to the strong non-linearity of picking the winner. This
problem does not arise in Hebbian rules with linear weight development operators, for instance the “correlational”
rule of [Miller et al 1989]. The issue of subtractive as compared to divisive enforcement is extensively analysed and
discussed in this case for general dimension in [Miller & MacKay 1992]. This paper also considers ways in which
such normalization rules may be implemented biologically.

4.3 Stripe Width

The model presented here makes a different prediction from most other models as to what determines ocular
dominance stripe width. In for instance [von der Malsburg & Willshaw 1976, Swindale 1980] stripe width is set
primarily by the extent of the cortical interaction function: longer-range excitation between cortical units leads to
wider stripes. In these models the degree to which (positive) correlations between the eyes affect stripe width has
not been investigated: segregation can fail to occur for these models in this case. An intuitive argument can be given
to explain why correlations might be expected to have an effect, as follows.

Suppose that cortical cells are locally interconnected by excitatory lateral connections. Given a Hebb-type learning
rule, the most stable state will be when neighbouring cortical cells receive inputs that are highly correlated. Cells
within each retina will tend on average to be correlated to an extent that decreases with distance. This accounts
for the overall topography of the map from the two eyes. However, for animals with stereo vision, corresponding
regions of the two retinae will also in general be correlated. Neighbouring cortical cells thus have competing
tendencies to connect with neighbouring cells in the same retina and corresponding cells in the other retina, and
the pattern of stripes is a compromise between these two tendencies. The stronger the correlation between the two
eyes, the more often the latter tendency will win, leading to narrower stripes.

The form and extent of the cortical interaction function (CIF) also clearly plays a role in setting the stripe width. If
the CIF is long-range and purely excitatory, then stripe width will be determined by the correlations between eyes,
as described above. However, if the CIF has an excitatory center and an inhibitory surround (as implicitly assumed
in this model, and explicitly included in some other models e.g. [Swindale 1980, Miller et al 1989]), then it will
not be favourable for an individual stripe to be wider than the width of the excitatory center (assuming within-eye
correlations are positive). The CIF in this case provides an upper bound on stripe width.

4.4 Experimental Predictions

It has been predicted that stripe width could be affected by the strength of the correlations between the two eyes.
Perhaps the simplest experiment to test this prediction would be to look for changes in stripe width in the cat
after artificially induced strabismus, which severely reduces the correlations between the two eyes. Although the
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effect of strabismus on the degree of monocularity of cortical cells has been extensively investigated (e.g. [Hubel &
Wiesel 1965]), the effect on stripe width has not been examined (David Hubel, personal communication). The model
presented here predicts that reduced between-eye correlations should lead to wider stripes. One exception to this
would be where, in the normal case, stripe width is already at the upper bound allowed by the cortical interaction
function, in which case stripe width will be unchanged.
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